JP6675714B2 - Sludge volume reduction method for microbial material and excess sludge - Google Patents

Sludge volume reduction method for microbial material and excess sludge Download PDF

Info

Publication number
JP6675714B2
JP6675714B2 JP2017021092A JP2017021092A JP6675714B2 JP 6675714 B2 JP6675714 B2 JP 6675714B2 JP 2017021092 A JP2017021092 A JP 2017021092A JP 2017021092 A JP2017021092 A JP 2017021092A JP 6675714 B2 JP6675714 B2 JP 6675714B2
Authority
JP
Japan
Prior art keywords
sludge
strain
exiguobacterium
wastewater
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017021092A
Other languages
Japanese (ja)
Other versions
JP2018126085A (en
Inventor
大助 杉森
大助 杉森
牧 孝昭
孝昭 牧
山田 直樹
直樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukushima University NUC
Original Assignee
Fukushima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukushima University NUC filed Critical Fukushima University NUC
Priority to JP2017021092A priority Critical patent/JP6675714B2/en
Publication of JP2018126085A publication Critical patent/JP2018126085A/en
Application granted granted Critical
Publication of JP6675714B2 publication Critical patent/JP6675714B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、活性汚泥法を利用した水処理設備において発生する余剰汚泥を減容化するための汚泥減容微生物資材、及び該微生物資材を用いた余剰汚泥の減容化方法に関する。   The present invention relates to a sludge-reducing microbial material for reducing the volume of surplus sludge generated in a water treatment facility using an activated sludge method, and a method for reducing the volume of surplus sludge using the microbial material.

活性汚泥法は、微生物の集合体から成る汚泥(活性汚泥)によって排水を処理する方法であり、処理能力が高く、ランニングコストが比較的低いことから有機性排水の処理方法として広く用いられている。活性汚泥法による水処理設備では、曝気槽とよばれる水槽内に活性汚泥を入れ、該曝気槽に空気を送り込むことにより微生物に酸素を供給する。そして該曝気槽に処理しようとする排水(汚水)を流入させて、該汚水中の有機性汚濁物質を微生物に分解・除去させる。曝気槽で処理された水は汚泥と共に後段の沈殿槽に流入して該沈殿槽にて汚泥と分離され、必要に応じて殺菌処理等を施された上で公共水域に放流される。   The activated sludge method is a method of treating wastewater by sludge (activated sludge) composed of a collection of microorganisms, and has been widely used as a method of treating organic wastewater because of its high treatment capacity and relatively low running cost. . In a water treatment facility using the activated sludge method, activated sludge is put in a water tank called an aeration tank, and oxygen is supplied to microorganisms by sending air into the aeration tank. Then, wastewater (sewage) to be treated flows into the aeration tank, and microorganisms decompose and remove organic pollutants in the wastewater. The water treated in the aeration tank flows into the sedimentation tank at the subsequent stage together with the sludge, is separated from the sludge in the sedimentation tank, and is subjected to a sterilization treatment or the like as required, and then discharged to a public water area.

このように、活性汚泥法は有機性汚濁物質を微生物に分解させるものであるため、必然的に微生物が増殖して系内の汚泥量が増大する。上記沈殿槽で水と分離された汚泥は該沈殿槽から引き抜かれ、その一部が曝気槽に返送され再利用されるが、残りの余剰な汚泥は系外に取り出されて凝集・脱水等の処理を施される。その後、該汚泥は主に建設資材(セメント原料等)、肥料等としてリサイクルされているが、約30%は埋め立て処分される。しかし、近年では埋め立て地の確保が難しくなっており、これに伴い汚泥の処分費用が高騰しているため余剰汚泥の減容化が求められている。   As described above, since the activated sludge method decomposes organic pollutants into microorganisms, the microorganisms inevitably grow and the amount of sludge in the system increases. The sludge separated from the water in the sedimentation tank is withdrawn from the sedimentation tank, and a part of the sludge is returned to the aeration tank and reused, but the remaining excess sludge is taken out of the system and subjected to coagulation and dehydration. Processed. Thereafter, the sludge is mainly recycled as construction materials (such as cement raw materials) and fertilizers, but about 30% is landfilled. However, in recent years, it has become difficult to secure landfill sites, and as a result, sludge disposal costs have risen. Therefore, it is required to reduce the volume of excess sludge.

こうした汚泥の減容化を実現する技術としてこれまでに種々のものが提案されている。例えば非特許文献1には、汚泥減容化技術として、化学的処理方法、物理的処理方法、及び生物的処理方法等が挙げられている。化学的処理方法は、オゾン、アルカリ又は次亜塩素酸等を余剰汚泥に添加し、微生物の細胞壁を可溶化するなどして汚泥の減量化を図る手法である。また、物理的処理方法は、ビーズミル、高速回転ディスク又は超音波などによって微生物を破砕したり、熱処理によって微生物を構成するタンパク質を変性させたりすることで汚泥を減容化するものである。しかしながら、こうした化学的処理方法や物理的処理方法では、余剰汚泥の処理のための設備を新たに設ける必要があり、その設置スペースやコストが問題となる。   Various techniques have been proposed so far to realize sludge volume reduction. For example, Non-Patent Document 1 describes a chemical treatment method, a physical treatment method, a biological treatment method, and the like as sludge volume reduction techniques. In the chemical treatment method, ozone, alkali, hypochlorous acid, or the like is added to excess sludge, and the sludge is reduced by, for example, solubilizing cell walls of microorganisms. The physical treatment method is to reduce the volume of sludge by crushing microorganisms using a bead mill, a high-speed rotating disk, ultrasonic waves, or the like, or denaturing proteins constituting the microorganisms by heat treatment. However, in such a chemical treatment method and a physical treatment method, it is necessary to newly provide equipment for treating excess sludge, and the installation space and cost are problems.

一方、生物的処理方法は、微生物や酵素を排水処理設備の曝気槽などに添加して、該微生物や酵素の作用により汚泥を減容化するものであり、上記の化学的処理方法や物理的処理方法に比べて低コストに実施できる場合が多いことから近年注目されている。例えば特許文献1には、汚水処理施設で分離された汚泥をバチルス属細菌に分解資化させて減容化する方法が記載されており、特許文献2には、汚泥とストレプトマイセス属に属する放線菌を含む微生物群を含有する汚泥分解剤とを接触させることで汚泥を分解する方法が記載されている。しかしながら、こうした生物的処理方法には処理効率の点でいまだ改善の余地がある。   On the other hand, the biological treatment method is to add microorganisms and enzymes to an aeration tank of a wastewater treatment facility and to reduce the volume of sludge by the action of the microorganisms and enzymes. In recent years, it has attracted attention because it can be implemented at a lower cost than the processing method in many cases. For example, Patent Literature 1 describes a method in which sludge separated in a sewage treatment facility is decomposed into bacteria of the genus Bacillus to reduce the volume, and Patent Literature 2 describes sludge and belonging to the genus Streptomyces. A method of decomposing sludge by contacting with a sludge decomposing agent containing a microorganism group including actinomycetes is described. However, such biological treatment methods still have room for improvement in terms of treatment efficiency.

特開2003-190993号公報JP 2003-190993 A 特開2004-174488号公報JP 2004-174488 A

甲斐祐司、他14名著「汚泥の減量化と発生防止技術」株式会社エヌ・ティー・エス, 2000年11月6日, p193Yuji Kai and 14 other authors, "Sludge Reduction and Prevention Technology", NTT Co., Ltd., November 6, 2000, p193

本発明は上記の点に鑑みてなされたものであり、その目的とするところは、活性汚泥法による水処理過程で発生する余剰汚泥を高効率に減容化することができ且つ低コストに実現可能な汚泥減容微生物資材及び余剰汚泥の減容化方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to reduce excess sludge generated in a water treatment process by an activated sludge method with high efficiency and realize low cost. It is an object of the present invention to provide a possible sludge volume-reducing microbial material and a method for reducing the volume of excess sludge.

本発明者は上記課題を解決するために鋭意検討を重ね、その結果、余剰汚泥を効率よく分解可能な微生物としてエキシグオバクテリウム・エスピー(Exiguobacterium sp.)Z153-2株及びエキシグオバクテリウム・アセチリカム(Exiguobacterium acetylicum)Z153-3株を単離した。 The present inventors have conducted intensive studies to solve the above problems, and as a result, as a microorganism capable of efficiently decomposing surplus sludge, Exiguobacterium sp. Strain Z153-2 and Exiguobacterium sp. Acetilicum ( Exiguobacterium acetylicum ) Z153-3 strain was isolated.

すなわち上記課題を解決するために成された本発明に係る汚泥減容微生物資材は、
エキシグオバクテリウム・エスピー(Exiguobacterium sp.)Z153-2株(受託番号NITE P-02409)若しくは、エキシグオバクテリウム・アセチリカム(Exiguobacterium acetylicum)Z153-3株(受託番号NITE P-02410)、又はその両方を主成分として含有することを特徴としている。
That is, the sludge volume-reducing microbial material according to the present invention made in order to solve the above problems,
Exiguobacterium sp. Z153-2 strain (Accession number NITE P-02409) or Exiguobacterium acetylicum ( Exiguobacterium acetylicum ) Z153-3 strain (Accession number NITE P-02410) It is characterized by containing both as main components.

また、上記課題を解決するために成された本発明に係る余剰汚泥の減容化方法は、
活性汚泥にエキシグオバクテリウム・エスピー(Exiguobacterium sp.)Z153-2株(受託番号NITE P-02409)若しくは、エキシグオバクテリウム・アセチリカム(Exiguobacterium acetylicum)Z153-3株(受託番号NITE P-02410)、又はその両方を主成分として含有する汚泥減容微生物資材を添加することにより余剰汚泥を減容化することを特徴としている。
In addition, the method for reducing the volume of excess sludge according to the present invention made to solve the above-mentioned problem,
Exiguobacterium sp. Strain Z153-2 (Accession number NITE P-02409) or Exiguobacterium acetylicum Z153-3 strain (Accession number NITE P-02410) Or by adding a sludge-reducing microbial material containing both of them as main components.

なお、余剰汚泥とは活性汚泥法を利用した排水処理系において、処理槽(例えば曝気槽)内の活性汚泥量を適量に維持するために系外に引き抜かれる汚泥のことであり、本発明における「余剰汚泥の減容化」は、この余剰汚泥の量を減らすこと又は余剰汚泥の発生をなくすことを意味している。   In the wastewater treatment system using the activated sludge method, the excess sludge is sludge that is drawn out of the system in order to maintain an appropriate amount of activated sludge in a treatment tank (eg, an aeration tank). “Reduction in volume of excess sludge” means reducing the amount of excess sludge or eliminating the generation of excess sludge.

上記本発明に係る汚泥減容微生物資材及び余剰汚泥の減容化方法によれば、前記資材を活性汚泥に添加するだけで余剰汚泥を効率よく且つ低コストに減容化することが可能となる。   According to the method for reducing the volume of microbial sludge and excess sludge according to the present invention, it is possible to reduce excess sludge efficiently and at low cost simply by adding the material to activated sludge. .

Z153-2株の16S rDNA塩基配列を使用して得られた分子系統樹を示す図。The figure which shows the molecular phylogenetic tree obtained using the 16S rDNA base sequence of strain Z153-2. Z153-2株の生理・生化学試験の結果を示す図。The figure which shows the result of the physiological and biochemical test of the Z153-2 strain. Z153-3株の16S rDNA塩基配列を使用して得られた分子系統樹を示す図。The figure which shows the molecular phylogenetic tree obtained using the 16S rDNA base sequence of strain Z153-3. 試験例1におけるプロテアーゼ活性測定の結果を示すグラフ。5 is a graph showing the results of protease activity measurement in Test Example 1. 試験例2における汚泥分解量の測定結果を示すグラフ。9 is a graph showing a measurement result of a sludge decomposition amount in Test Example 2. 試験例3における汚泥量の測定結果を示すグラフ。9 is a graph showing the results of measuring the amount of sludge in Test Example 3.

本発明に係る2種類の微生物は、いずれも土壌から分離された菌株であり、それぞれZ153-2株、Z153-3株と命名した。これらの菌株の分析結果を以下に示す。   The two types of microorganisms according to the present invention were both strains isolated from soil, and were named strains Z153-2 and Z153-3, respectively. The results of analysis of these strains are shown below.

1. Z153−2株の分析
1-A. 16S rDNA塩基配列解析
DNA抽出はアクロモペプチダーゼ(和光純薬製)により、PCR増幅はPrime STAR HS DNA Polymerase(タカラバイオ製)により、サイクルシークエンスはBigDye Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems製、CA、米国)により、それぞれ実施した。使用プライマーはPCR増幅が9F, 1510R、シークエンスが9F, 785F, 802R, 1510Rである。シークエンスはABI PRISM 3130 xl Genetic Analyzer System(Applied Biosystems製、CA、米国)により行い、塩基配列決定にはChromasPro 1.7(Technelysium Pty Ltd., Tewantin, AUS)を使用した。BLAST相同性検索及び簡易分子系統解析にはソフトウェアとしてアポロン2.0(テクノスルガ・ラボ製)を使用し、データベースとしてアポロンDB-BA9.0(テクノスルガ・ラボ製)及び国際塩基配列データベース(Genbank/DDBJ/EMBL)を使用した。
1. Analysis of Z153-2 strain
1-A. 16S rDNA nucleotide sequence analysis
DNA extraction is performed with Achromopeptidase (manufactured by Wako Pure Chemical Industries), PCR amplification is performed using Prime STAR HS DNA Polymerase (manufactured by Takara Bio), and cycle sequence is performed using BigDye Terminator v3.1 Cycle Sequencing Kit (manufactured by Applied Biosystems, CA, USA). , Respectively. The primers used are 9F, 1510R for PCR amplification and 9F, 785F, 802R, 1510R for sequence. Sequencing was performed using ABI PRISM 3130xl Genetic Analyzer System (Applied Biosystems, CA, USA), and ChromasPro 1.7 (Technelysium Pty Ltd., Tewantin, AUS) was used for nucleotide sequence determination. For BLAST homology search and simple molecular phylogenetic analysis, Apollon 2.0 (manufactured by Techno Suruga Lab) was used as software, and Apollon DB-BA9.0 (manufactured by Techno Suruga Lab) and an international base sequence database (Genbank / DDBJ) were used as databases. / EMBL).

上記シークエンスの結果、Z153-2株の16S rDNA(16S rRNA遺伝子)の塩基配列は、配列表の配列番号1に示す通りであった。   As a result of the above sequence, the nucleotide sequence of the 16S rDNA (16S rRNA gene) of the Z153-2 strain was as shown in SEQ ID NO: 1 in the sequence listing.

上記のアポロンDB-BA9.0に対するBLAST相同性検索の結果、Z153-2株の16S rDNA塩基配列は、Exiguobacterium属の16S rDNA塩基配列に対し高い相同性を示し、エキシグオバクテリウム・プロファンダム(Exiguobacterium profundum)10C株に対し相同率99.7%の最も高い相同性を示した(表1)。なお、表中の「BSL」はバイオセーフティーレベルを意味しており、この欄が空欄のものはバイオセーフティーレベルが1の微生物である。以下、Exiguobacterium profundumE. profundumと略称する場合がある。 As a result of the above BLAST homology search against Apollon DB-BA9.0, the 16S rDNA nucleotide sequence of the Z153-2 strain showed high homology to the 16S rDNA nucleotide sequence of the genus Exiguobacterium, ( Exiguobacterium profundum ) showed the highest homology of 99.7% to the 10C strain (Table 1). In the table, "BSL" means the biosafety level, and a blank column indicates a microorganism having a biosafety level of 1. Hereinafter, Exiguobacterium profundum may be abbreviated as E. profundum .

Figure 0006675714
Figure 0006675714

Genbank/DDBJ/EMBLに対するBLAST相同性検索の結果においても、Z153-2株の16S rDNA塩基配列は、Exiguobacterium属の16S rDNA塩基配列に対し高い相同性を示したが、基準株に由来する16S rDNA塩基配列は検索されなかった(表2参照)。 In the results of the BLAST homology search against Genbank / DDBJ / EMBL, the 16S rDNA nucleotide sequence of the Z153-2 strain showed high homology to the 16S rDNA nucleotide sequence of the genus Exiguobacterium , but 16S rDNA derived from the reference strain. No base sequence was searched (see Table 2).

Figure 0006675714
Figure 0006675714

アポロンDB-BA9.0に対する相同性検索で得られた上位14塩基配列を用いた16S rDNA塩基配列に基づく簡易分子系統解析の結果を図1に示す。なお、図中において系統枝の分岐に位置する数字はブートストラップ値であり、左下の線はスケールバーを示している。また、株名の末尾のTはその種の基準株(Type strain)を示している。同図から明らかなように、Z153-2株はExiguobacterium属の種で形成されるクラスターに含まれた。また、Z153-2株はE. profundumとクラスターを形成し、このクラスターは98%の高いブートストラップ値で支持され近縁であることが示された。 FIG. 1 shows the results of a simple molecular phylogenetic analysis based on the 16S rDNA nucleotide sequence using the top 14 nucleotide sequences obtained by homology search for Apollon DB-BA9.0. In the figure, the numbers located at the branches of the system branches are bootstrap values, and the lower left line indicates a scale bar. In addition, T at the end of the strain name indicates a reference strain (Type strain) of that type. As is clear from the figure, the Z153-2 strain was included in the cluster formed by the species of the genus Exiguobacterium . In addition, the strain Z153-2 formed a cluster with E. profundum, and this cluster was supported by a high bootstrap value of 98% and was shown to be closely related.

以上のことから、Z153-2株はExiguobacterium属に含まれE. profundumに帰属する可能性が考えられたが、プライマー箇所を除くZ153-2株とE. profundumの16S rDNA塩基配列間には4塩基の相違点が確認された。このうち3塩基の相違はギャップ、混合塩基(IUBコード R=A又はG)及びE. profundumの登録配列におけるN(塩基の未決定)によることから、これらの相違を両者の明確な差として捉えることは難しいものの、残りの一塩基の相違は明確な差と捉えられる。
このことから、Z153-2株はE. profundumに近縁ではあるものの、両者が種として異なる可能性も否定できない。そのため、Z153-2株をE. profundumに近縁なExiguobacterium sp.と推定した。
From the above, Z153-2 strain is likely attributable to the E. profundum included in Exiguobacterium genus is considered, between the 16S rDNA nucleotide sequence of E. profundum and Z153-2 strain except primer locations 4 Base differences were confirmed. Among these, the difference of 3 bases is attributed to the gap, mixed base (IUB code R = A or G) and N (base undecided) in the registered sequence of E. profundum , so these differences are regarded as clear differences between the two. Although difficult, the difference in the remaining one base is considered a clear difference.
From this, although the strain Z153-2 is closely related to E. profundum , the possibility that both strains are different as a species cannot be denied. Therefore, the Z153-2 strain was estimated to be Exiguobacterium sp. Closely related to E. profundum .

1-B. 形態観察
光学顕微鏡による形態観察を行うと共に、BARROWらの方法(BARROW, (G.I.) and FELTHAM, (R.K.A):Cowan and Steel's Manual for the Identification of Medical Bacteria. 3rd edition. 1993, Cambridge University Press.)に基づき、カタラーゼ反応、オキシダーゼ反応、ブドウ糖からの酸/ガス産生、ブドウ糖の酸化/発酵(O/F)について試験を行った。なお、グラム染色にはフェイバーG「ニッスイ」(日水製薬製)を使用し、顕微鏡としては光学顕微鏡BX50F4(オリンパス製)を使用した。
1-B. Morphological observation While observing the morphology with an optical microscope, the method of BARROW et al. (BARROW, (GI) and FELTHAM, (RKA): Cowan and Steel's Manual for the Identification of Medical Bacteria. 3rd edition. 1993, Cambridge University Press.), A catalase reaction, an oxidase reaction, an acid / gas production from glucose, and an oxidation / fermentation (O / F) of glucose were tested. In addition, Faber G “Nissui” (manufactured by Nissui Pharmaceutical) was used for Gram staining, and an optical microscope BX50F4 (manufactured by Olympus) was used as a microscope.

その結果、Z153-2株は運動性を有するグラム陽性桿菌で、芽胞を形成せず、Nutrient agar培地上でコロニー色は黄色を呈し、グルコースを酸化せず、カタラーゼ反応は陽性、オキシダーゼ反応は陰性を示した(表3)。これらの性状は、16S rDNA塩基配列解析の結果において帰属が示唆されたExiguobacterium属の性状と一致した。 As a result, strain Z153-2 is a gram-positive bacillus with motility, does not form spores, shows a yellow colony on Nutrient agar medium, does not oxidize glucose, has a positive catalase reaction, and has a negative oxidase reaction. (Table 3). These properties were consistent with those of the genus Exiguobacterium whose assignment was suggested in the results of 16S rDNA nucleotide sequence analysis.

Figure 0006675714
Figure 0006675714

1-C. 生理・生化学試験
細胞同定キット(APICORYNE, bioMerieux製, Lyon, France)による生理・生化学試験を行ったところ、Z153-2株は硝酸塩を還元し、α-グルコシダーゼ及びβ-グルコシダーゼ活性を示し、ゼラチンを加水分解し、グルコース、リボース、及びマンニトールなどを酸化し、キシロース及びラクトースを酸化しなかった(図2)。
1-C. Physiological and biochemical tests Physiological and biochemical tests were performed using a cell identification kit (APICORYNE, manufactured by bioMerieux, Lyon, France). As a result, strain Z153-2 reduced nitrate, and reduced α-glucosidase and β-glucosidase. It showed activity, hydrolyzed gelatin, oxidized glucose, ribose, mannitol, etc., and did not oxidize xylose and lactose (FIG. 2).

また、英国NCIMB Ltd.の方法及び分類・同定の関連文献に従い、追加試験を実施したところ、Z153-2株は嫌気条件下で生育せず、15℃及び45℃で生育し、50℃で生育せず、7%NaClで生育し、10%NaClで生育せず、アミグダリン、アルブチン及びセロビオースなどを酸化し、D-キシロースを酸化しなかった(表4)。これらの性状は、16S rDNA塩基配列解析の結果において近縁性が示唆されたE. profundumの性状に類似点があるものの、相違点も確認された。特に10%NaClで生育せず、メリビオース及びDラフィノースを酸化し、D-キシロースを酸化しない点でE. profundumの性状と相違していた。 In addition, additional tests were conducted according to the method of NCIMB Ltd., UK and related literature on classification and identification. As a result, the strain Z153-2 did not grow under anaerobic conditions, but grew at 15 ° C and 45 ° C, and grew at 50 ° C. No, it grew in 7% NaCl, did not grow in 10% NaCl, oxidized amygdalin, arbutin, cellobiose, etc., and did not oxidize D-xylose (Table 4). These properties were similar to those of E. profundum , which was suggested to be closely related in the results of 16S rDNA nucleotide sequence analysis, but differences were also confirmed. In particular, it did not grow on 10% NaCl, oxidized melibiose and D-raffinose, and did not oxidize D-xylose, which was different from the properties of E. profundum .

Figure 0006675714
Figure 0006675714

以上の結果から、Z153-2株はExiguobacterium属に含まれ、既知種ではE. profundumに最も近縁と考えられる。しかし、上記の16S rDNA塩基配列解析及び生理・生化学性状試験の結果は、Z153-2株がE. profundumとはやや異なることを示唆していることから、種レベルでの帰属分類群を推定することは難しく、Z153-2株をE. profundumに近縁なExiguobacterium sp.とすることが妥当と判断した。なお、E. profundumはバイオセーフティーレベル1の微生物である。 From the above results, the Z153-2 strain is included in the genus Exiguobacterium , and is considered to be the closest relative to E. profundum among known species. However, the results of the above 16S rDNA nucleotide sequence analysis and physiological and biochemical properties tests suggest that the strain Z153-2 is slightly different from E. profundum, and hence the species taxon at the species level was estimated. Therefore, it was considered appropriate to use the Z153-2 strain as Exiguobacterium sp. Which is closely related to E. profundum . E. profundum is a biosafety level 1 microorganism.

2. Z153−3株の分析
2-A. 16S rDNA部分塩基配列解析
上記1-Aと同様にしてZ153-3株の16S rDNA塩基配列解析を行った。但し、プライマーとしては、PCR増幅に9F, 1406Rを使用し、シークエンスに9F, 536Rを使用した。
2. Analysis of Z153-3 strain
2-A. Analysis of 16S rDNA partial nucleotide sequence The 16S rDNA nucleotide sequence of the Z153-3 strain was analyzed in the same manner as in the above 1-A. However, as a primer, 9F, 1406R was used for PCR amplification, and 9F, 536R was used for sequencing.

上記シークエンスの結果、Z153-3株の16S rDNA(16S rRNA遺伝子)の部分塩基配列は、配列表の配列番号2に示す通りであった。   As a result of the above sequence, the partial base sequence of the 16S rDNA (16S rRNA gene) of the Z153-3 strain was as shown in SEQ ID NO: 2 in the sequence listing.

アポロンDB-BA9.0に対するBLAST相同性検索の結果、Z153-3株の16S rDNA部分塩基配列は、Exiguobacterium属の16S rDNA塩基配列に対し高い相同性を示し、エキシグオバクテリウム・アセチリカム(Exiguobacterium acetylicum)DSM20416株に対し相同率99.6%の最も高い相同性を示した(表5)。以下、Exiguobacterium acetylicumE. acetylicumと略称する場合がある。 Apollon DB-BA9.0 results of BLAST homology search against, 16S rDNA partial base sequence of the Z153-3 strain showed high homology to the 16S rDNA nucleotide sequence of Exiguobacterium genus Exiguobacterium acetylicum (Exiguobacterium acetylicum ) The highest homology was found to be 99.6% with respect to the DSM20416 strain (Table 5). Hereinafter, Exiguobacterium acetylicum may be abbreviated as E. acetylicum .

Figure 0006675714
Figure 0006675714

Genbank/DDBJ/EMBLに対するBLAST相同性検索の結果においても、Z153-3株の16S rDNA部分塩基配列は、Exiguobacterium属の16S rDNA塩基配列に対し高い相同性を示し、基準株ではE. acetylicum DSM20416株及びNBRC12146株に対し、相同率99.6%の高い相同性を示した(表6)。 In the results of the BLAST homology search for Genbank / DDBJ / EMBL, the 16S rDNA partial nucleotide sequence of the Z153-3 strain shows high homology to the 16S rDNA nucleotide sequence of the genus Exiguobacterium , and the reference strain E. acetylicum DSM20416 strain And a high homology of 99.6% to the NBRC12146 strain (Table 6).

Figure 0006675714
Figure 0006675714

アポロンDB-BA9.0に対する相同性検索で得られた上位10塩基配列を用いた16S rDNA部分塩基配列に基づく簡易分子系統解析の結果、Z153-3株はExiguobacterium属の種で形成されるクラスターに含まれた(図3)。また、Z153-3株はE. acetylicumとクラスターを形成し、両者は同一の分子系統学的位置を示した。 As a result of a simple molecular phylogenetic analysis based on the 16S rDNA partial nucleotide sequence using the top 10 nucleotide sequences obtained by homology search for Apollon DB-BA9.0, strain Z153-3 was found to be a cluster formed by Exiguobacterium species. Included (FIG. 3). In addition, strain Z153-3 formed a cluster with E. acetylicum, and both showed the same molecular phylogenetic position.

以上のことから、Z153-3株はExiguobacterium属に含まれE. acetylicumに帰属する可能性が考えられた。Z153-3株とE. acetylicumのプライマー箇所を除く16S rDNA部分塩基配列間には2塩基の相違点が確認されたが、これらの相違はいずれも混合塩基(IUBコード R=G又はA、Y=T又はC)によることから、両者はほぼ一致すると捉えられる。 From the above, it was considered that the strain Z153-3 may be included in the genus Exiguobacterium and belong to E. acetylicum . Two base differences were confirmed between the Z153-3 strain and the 16S rDNA partial base sequence excluding the primer positions of E. acetylicum , but any of these differences was a mixed base (IUB code R = G or A, Y = T or C), it can be considered that they are almost the same.

2-B. 形態観察
グラム染色にフェイバーG「ニッスイ」(日水製薬製)を使用すると共に、光学顕微鏡BX50F4(オリンパス製)及び実体顕微鏡SZH10(オリンパス製)を使用してZ153-3株の簡易形態観察を行った。
その結果、Z153-3株はグラム染色陽性、好気条件下での生育を示す桿菌で、Nutrient agar平板培地上でのコロニー色は淡黄色から黄色を呈した(表7)。この形態観察の結果は、Exiguobacterium属の一般的な性状と一致した。
2-B. Morphological Observation Using a Faber G “Nissui” (Nissui Pharmaceutical) for Gram staining, and using a light microscope BX50F4 (Olympus) and a stereo microscope SZH10 (Olympus) to simplify the Z153-3 strain Morphological observation was performed.
As a result, the Z153-3 strain was a bacterium that was positive for Gram staining and showed growth under aerobic conditions, and the color of the colony on the Nutrient agar plate medium changed from pale yellow to yellow (Table 7). The results of this morphological observation were consistent with the general characteristics of the genus Exiguobacterium .

Figure 0006675714
Figure 0006675714

以上の結果から、Z153-3株はExiguobacterium acetylicumと推定した。なお、E. acetylicumはバイオセーフティーレベル1の微生物である。 From the above results, the strain Z153-3 was estimated to be Exiguobacterium acetylicum . E. acetylicum is a biosafety level 1 microorganism.

上記のZ153-2株及びZ153-3株は、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託され、それぞれ受託番号NITE P-02409及びNITE P-02410が付与されている(受託日はいずれも2017年1月24日)。   The above strains Z153-2 and Z153-3 have been deposited with the National Institute of Technology and Evaluation, Patent Microorganisms Depositary, and have been assigned accession numbers NITE P-02409 and NITE P-02410, respectively ( Both are January 24, 2017).

本発明に係る汚泥減容微生物資材は、上記の微生物(すなわちExiguobacterium sp. Z153-2株及びExiguobacterium acetylicum Z153-3株)のいずれか又は両方を主成分として含有するものである。該微生物の資材化方法としては、例えば、村尾澤夫他1名編「応用微生物学改訂版」(1993年、培風館)、上島孝之著「産業用酵素」(1995年、丸善)、又は微生物研究法懇談会編、「微生物学実験法」(1993年、講談社)などに記載されている方法を用いることができる。以下に具体的な資材化方法を列挙するが、本発明に係る汚泥減容微生物資材は下記の方法で製造された物に限定されるものではない。 The sludge-reduced microbial material according to the present invention contains, as a main component, one or both of the above-mentioned microorganisms (that is, Exiguobacterium sp. Strain Z153-2 and Exiguobacterium acetylicum Z153-3 strain). Examples of a method for converting the microorganism into a material include, for example, “Applied Microbiology Revised Edition” (1993, Baifukan), “Industrial Enzymes” by Takayuki Uejima (1995, Maruzen), or the microorganism research method. The method described in the round-table conference, "Microbiological Experiments" (1993, Kodansha) can be used. Specific methods for material conversion are listed below, but the sludge volume-reducing microbial material according to the present invention is not limited to those produced by the following method.

液状資材とする場合には、例えば、以下のいずれかの方法で資材化することができる。
(A)上記微生物を肉汁培地(ブイヨン培地)などの一般栄養培地で所定の時間に亘って培養し、必要に応じてこれにpH調整剤などを添加して資材とする。
(B)遠心分離等により上記(A)の培養物から菌体を回収し、該菌体を生理食塩水等の媒体に適当な濃度となるように懸濁する。そして、必要に応じてこれにpH調整剤などを加えて資材とする。
(C)凍結乾燥等により上記(A)の培養物を適当な濃度に濃縮し、必要に応じてこれにpH調整剤等を添加して資材とする。
(D)遠心分離等により上記(A)の培養物から菌体を回収し、該菌体を肉汁培地等の培地に懸濁する。そして、必要に応じてこれにpH調整剤などを加えて資材とする。
(E)上記(D)を更に凍結乾燥等によって適当な濃度に濃縮して資材とする。
When a liquid material is used, for example, it can be made into a material by any of the following methods.
(A) The microorganisms are cultured in a general nutrient medium such as a broth medium (bouillon medium) for a predetermined period of time, and a pH adjuster or the like is added thereto as necessary to prepare a material.
(B) The cells are collected from the culture of (A) by centrifugation or the like, and the cells are suspended in a medium such as physiological saline to a suitable concentration. Then, if necessary, a pH adjuster or the like is added to this to make a material.
(C) The culture of (A) is concentrated to an appropriate concentration by freeze-drying or the like, and if necessary, a pH adjuster or the like is added thereto to prepare a material.
(D) The cells are collected from the culture of (A) by centrifugation or the like, and the cells are suspended in a medium such as a broth medium. Then, if necessary, a pH adjuster or the like is added to this to make a material.
(E) The above (D) is further concentrated to an appropriate concentration by freeze-drying or the like to obtain a material.

粉末資材とする場合には、例えば、以下のいずれかの方法で資材化することができる。
(a)上記微生物を肉汁培地などの一般栄養培地で所定の時間に亘って培養し、必要に応じてこれにpH調整剤などを加え、凍結乾燥等によって乾燥させて資材とする。
(b)遠心分離等により上記(a)の培養物から菌体を回収し、該菌体を生理食塩水又はスキムミルクとグルタミン酸ナトリウム等を含む溶液等の媒体に適当な濃度となるように懸濁し、必要に応じてこれにpH調整剤などを加え、凍結乾燥等により乾燥させて資材とする。
(c)遠心分離等により上記(a)の培養物から菌体を回収し、該菌体を肉汁培地等の培地に懸濁し、必要に応じてこれにpH調整剤等を加え、凍結乾燥等によって乾燥させて資材とする。
(d)上記(a)から(c)のものに、繊維くず、おがくず、白土、ケイソウ土などの微粉体を加えて資材とする。
When powder material is used, for example, it can be made into a material by any of the following methods.
(A) The microorganisms are cultured in a general nutrient medium such as a broth medium for a predetermined time, and if necessary, a pH adjuster or the like is added thereto, followed by drying by freeze-drying or the like to obtain a material.
(B) The cells are collected from the culture of (a) by centrifugation or the like, and the cells are suspended in a medium such as physiological saline or a solution containing skim milk and sodium glutamate to an appropriate concentration. If necessary, a pH adjuster or the like is added thereto, and the material is dried by freeze-drying or the like to obtain a material.
(C) The cells are collected from the culture of (a) by centrifugation or the like, the cells are suspended in a medium such as a broth medium, and if necessary, a pH adjuster or the like is added thereto, and freeze-drying or the like is performed. To make the material.
(D) A fine powder such as fiber waste, sawdust, clay, diatomaceous earth, etc. is added to the above (a) to (c) to obtain a material.

また、上記の方法の他に、担体結合法、架橋法、包括法、複合法等の公知技術により、上記の微生物を種々の固定化用材料によって固定化してもよい。更に、上記微生物を他の公知の錠剤化技術によって錠剤化するようにしてもよい。   In addition to the above methods, the microorganisms may be immobilized with various immobilizing materials by known techniques such as a carrier binding method, a cross-linking method, an inclusive method, and a complex method. Further, the microorganism may be tableted by other known tableting techniques.

本発明に係る余剰汚泥の減容化方法は、活性汚泥に上記の汚泥減容微生物資材を添加し、該活性汚泥を該資材中のExiguobacterium sp. Z153-2株及び/又はExiguobacterium acetylicum Z153-3株に分解させることで余剰汚泥の減容化を図るものである。例えば、上述の活性汚泥法を用いた有機性排水の処理施設における曝気槽に本発明に係る汚泥減容微生物資材を添加することにより、該曝気槽で発生する余剰汚泥を減容化することができる。このとき、前記微生物資材の添加量は、曝気槽における1日あたりの活性汚泥の発生量と、該微生物資材による活性汚泥の減少量とがほぼ同量となるように調整することが望ましい。これにより曝気槽内の活性汚泥の量を、排水中の有機性汚濁物質を十分に分解・除去可能であって、且つ余剰汚泥が発生しない程度の量に維持することが可能となる。 In the method for reducing the volume of excess sludge according to the present invention, the sludge-reducing microbial material described above is added to activated sludge, and the activated sludge is subjected to Exiguobacterium sp. Strain Z153-2 and / or Exiguobacterium acetylicum Z153-3 in the material. It is intended to reduce the volume of excess sludge by breaking it down into strains. For example, by adding the sludge volume-reducing microbial material according to the present invention to an aeration tank in an organic wastewater treatment facility using the above-described activated sludge method, it is possible to reduce excess sludge generated in the aeration tank. it can. At this time, the amount of the microbial material added is desirably adjusted so that the amount of activated sludge generated per day in the aeration tank and the amount of activated sludge reduced by the microbial material are substantially the same. As a result, the amount of activated sludge in the aeration tank can be maintained at such an amount that the organic pollutants in the wastewater can be sufficiently decomposed and removed and excess sludge is not generated.

本発明に係る余剰汚泥の減容化方法は、いわゆる標準活性汚泥法、すなわち上述のように、曝気槽で処理した水(処理水)を汚泥と共に沈殿槽に送り、汚泥を沈殿させることで処理水と汚泥を分離する方式の排水処理設備のほか、膜分離活性汚泥法(MBR法, Membrane Bioreactor法)による排水処理設備にも同様に適用することができる。MBR法は、活性汚泥法の一種であり、上記の沈殿槽に代えて、精密ろ過膜(MF膜)又は限外ろ過膜(UF膜)等のフィルターを用いて汚泥と処理水の分離を行うものである。   The method for reducing the volume of the excess sludge according to the present invention is a so-called standard activated sludge method, that is, as described above, the water treated in the aeration tank (treated water) is sent to the sedimentation tank together with the sludge to precipitate the sludge. The present invention can be similarly applied to wastewater treatment equipment using a membrane separation activated sludge method (MBR method, Membrane Bioreactor method) in addition to wastewater treatment equipment that separates water and sludge. The MBR method is a type of the activated sludge method, and separates sludge and treated water using a filter such as a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) instead of the above-mentioned settling tank. Things.

以下、本発明に係る微生物であるエキシグオバクテリウム・エスピー(Exiguobacterium sp.)Z153-2株(受託番号NITE P-02409)及びエキシグオバクテリウム・アセチリカム(Exiguobacterium acetylicum)Z153-3株(受託番号NITE P-02410)の効果を確認するために行った試験例について説明する。 Hereinafter, the microorganisms according to the present invention, Exiguobacterium sp. Strain Z153-2 (Accession number NITE P-02409) and Exiguobacterium acetylicum strain Z153-3 (Accession number) Test examples performed to confirm the effects of NITE P-02410) will be described.

(試験例1)
まず、以下の方法により本発明に係る微生物のプロテアーゼ活性を測定した。ここで、微生物のプロテアーゼ活性とは、当該微生物が最適環境下で培地中に分泌するタンパク質分解酵素の量(酵素活性の量)を意味する。
(Test Example 1)
First, the protease activity of the microorganism according to the present invention was measured by the following method. Here, the protease activity of the microorganism means the amount of the protease (the amount of the enzyme activity) secreted into the medium by the microorganism under an optimal environment.

プロテアーゼ活性測定に際しては、Exiguobacterium sp. Z153-2株及びExiguobacterium acetylicum Z153-3株を、それぞれスキムミルクを添加した人工下水培地で培養して使用した。
具体的には、人工下水培地100 ml(組成はYE(Yeast Extract)0.04%、バクトペプトン0.03%、牛肉エキス0.03%、リン酸水素二ナトリウム0.05%、尿素0.05%)にスキムミルクを1重量%添加したものを500 mL三角フラスコに入れ、pH 7.5程度に調整した上で汚泥を2〜3%加えた(これによりpH7程度となった)。これをオートクレーブ(121℃、15分)で滅菌した後、硫酸マグネシウム0.010%、塩化ナトリウム0.015% 、塩化カルシウム0.009%、塩化カリウム0.007%を加え、前培養液を1体積%添加して25℃、120 rpmで振盪培養した。
In measuring the protease activity, Exiguobacterium sp. Strain Z153-2 and Exiguobacterium acetylicum Z153-3 strain were each used after being cultured in an artificial sewage medium supplemented with skim milk.
Specifically, 1% by weight of skim milk was added to 100 ml of artificial sewage medium (composition: YE (Yeast Extract) 0.04%, bactopeptone 0.03%, beef extract 0.03%, disodium hydrogen phosphate 0.05%, urea 0.05%) The resulting mixture was placed in a 500 mL Erlenmeyer flask, adjusted to about pH 7.5, and added with 2 to 3% of sludge (this brought the pH to about 7). After sterilizing this in an autoclave (121 ° C., 15 minutes), 0.010% of magnesium sulfate, 0.015% of sodium chloride, 0.009% of calcium chloride, and 0.007% of potassium chloride were added. Shaking culture was performed at 120 rpm.

培養初日(0日目)〜7日目の各日に培養液の一部を採取し、該培養液を遠心分離して得られた上清をプロテアーゼ活性測定に用いる試料とした。100 mM Tris-HCl(pH 7.2、終濃度76 mM)190 μLに3%アゾカゼイン(終濃度0.6%)50 μLを混合し、これに上述の試料10 μLを添加して37℃で5分間静置して反応させた。その後、20%トリクロロ酢酸(終濃度3.3%)を50 μL加えて反応を停止させ、反応液を遠心分離して上清の340 nm(アゾカゼインの分解で生じるアゾ色素の吸収波長)の吸光度を測定した。なお、検量線はProteinase K(40.1 U/mg)を標準とした。   A part of the culture solution was collected on each day from the first day of culture (day 0) to day 7 and the supernatant obtained by centrifuging the culture solution was used as a sample for protease activity measurement. Mix 190 μL of 100 mM Tris-HCl (pH 7.2, final concentration of 76 mM) with 50 μL of 3% azocasein (final concentration of 0.6%), add 10 μL of the above sample, and stand at 37 ° C. for 5 minutes And reacted. Then, add 50 μL of 20% trichloroacetic acid (final concentration 3.3%) to stop the reaction, centrifuge the reaction solution, and measure the absorbance of the supernatant at 340 nm (the absorption wavelength of the azo dye generated by the decomposition of azocasein). did. The calibration curve was based on Proteinase K (40.1 U / mg) as a standard.

以上の結果、培養0日目〜7日目におけるプロテアーゼ活性は図4に示す通りであった。なお、1 U(ユニット)は1分間にアゾ色素を1 μmol生成させることのできる酵素量である。同図から明らかなように、Exiguobacterium sp. Z153-2株のプロテアーゼ活性は約5 U/mlであり、Exiguobacterium acetylicum Z153-3株のプロテアーゼ活性は4 U/mlであった。 As a result, the protease activities from day 0 to day 7 of the culture were as shown in FIG. Here, 1 U (unit) is the amount of enzyme capable of producing 1 μmol of an azo dye per minute. As is clear from the figure, the protease activity of Exiguobacterium sp. Strain Z153-2 was about 5 U / ml, and the protease activity of Exiguobacterium acetylicum Z153-3 strain was 4 U / ml.

(試験例2)
続いて、本発明に係る微生物資材による汚泥の減容効果を確認した。この試験では、処理対象の汚泥を含む排水として標準活性汚泥法による排水処理設備の曝気槽から採取した水を使用した。本発明に係る微生物資材としては、Exiguobacterium sp. Z153-2株の培養液(以下「実施例資材1」とよぶ)及びExiguobacterium acetylicum Z153-3株の培養液(以下「実施例資材2」とよぶ)を使用した。なお、前記培養液は各微生物を乾燥ブイヨン培地(日水製薬株式会社製)を用いて、25℃、100 rpmで24時間振盪培養したものである。また、従来の微生物資材(以下「比較例資材」とよぶ)として、有限会社アースラブ・ニッポン製の有用微生物資材アースラブ(粉剤)を使用した。なお、各微生物資材 1 ml(比較例資材については 1 g)中に含まれる生菌数を蛍光標識法(CFDA染色法)で測定した結果、実施例資材1では3.6×108 cells、実施例資材2では2.4×108 cells、比較例資材では3.5×108 cellsとほぼ同程度であった。
(Test Example 2)
Subsequently, the effect of reducing the volume of sludge by the microbial material according to the present invention was confirmed. In this test, water collected from the aeration tank of a wastewater treatment facility using the standard activated sludge method was used as wastewater containing sludge to be treated. The microorganism material according to the present invention includes a culture solution of Exiguobacterium sp. Strain Z153-2 (hereinafter referred to as “Example material 1”) and a culture solution of Exiguobacterium acetylicum Z153-3 strain (hereinafter referred to as “Example material 2”). )It was used. The culture solution is obtained by culturing each microorganism with shaking at 25 ° C. and 100 rpm for 24 hours in a dry bouillon medium (manufactured by Nissui Pharmaceutical Co., Ltd.). In addition, as a conventional microbial material (hereinafter, referred to as “comparative material”), a useful microbial material Earthlab (powder) manufactured by Earthlab Nippon Co., Ltd. was used. Incidentally, the fluorescent labeling viable cells contained in (1 g for Comparative Example Material) Each microbial material 1 ml result of measurement in (CFDA staining), Example Material 1, 3.6 × 10 8 cells, Example Material 2 was about 2.4 × 10 8 cells, and that of Comparative Example material was about the same as 3.5 × 10 8 cells.

1 Lのガラスビーカーに処理対象とする汚泥を含んだ排水(食品工場の活性汚泥処理槽水)1 Lを入れ、そこに前記資材のいずれかを添加した。添加量は実施例資材1及び実施例資材2については1 ml、比較例資材については1 gとした。そして、エアレーションと撹拌により前記排水中の浮遊懸濁物質(Solid Suspension、SS)を完全に懸濁させ、水温25℃で4日間培養を行った。また対照として、前記排水1 Lにいずれの資材も添加しなかったものについても同様の条件で4日間に亘りエアレーションと撹拌を行った。そして、培養開始時(0日目)、24時間後(1日目)、及び96時間後(4日目)における排水中の汚泥量を以下の手順で測定した。   1 L of wastewater containing sludge to be treated (activated sludge treatment tank water of a food factory) was placed in a 1 L glass beaker, and any of the above-mentioned materials was added thereto. The amount of addition was 1 ml for Example Material 1 and Example Material 2, and 1 g for Comparative Example Material. Then, the suspended suspension (Solid Suspension, SS) in the wastewater was completely suspended by aeration and stirring, and culturing was performed at a water temperature of 25 ° C for 4 days. As a control, aeration and agitation were also performed for 4 days under the same conditions for 1 L of the wastewater to which no material was added. The amount of sludge in the wastewater at the start of the culture (day 0), after 24 hours (day 1), and after 96 hours (day 4) was measured by the following procedure.

すなわち、前記ビーカー内の排水を撹拌して汚泥を均一に懸濁させた状態で、該排水の一部を試料として採取し、該試料を予め質量を量っておいたフィルター(孔径1 μmのガラス繊維濾紙)で濾過した。そして、フィルター上に残った物質を高温で乾燥させてから全重量を量り、次の式により排水1 Lあたりの乾燥汚泥重量(MLSS[mg/L])を算出した。なお、MLSS(Mixed Liquor Suspended Solids)は、活性汚泥処理における曝気槽内の汚泥混合液の浮遊物質を意味しており、以下の式においてaは乾燥後のフィルター及び該フィルター上の物質の質量[mg]、bはフィルターの質量[mg]である。
MLSS[mg/L]=((a-b)÷試料量[ml])×1000
That is, in a state where the wastewater in the beaker is stirred and the sludge is uniformly suspended, a part of the wastewater is collected as a sample, and the sample is weighed in advance by a filter (pore size: 1 μm). (Glass fiber filter paper). Then, the substance remaining on the filter was dried at a high temperature and then weighed, and the weight of dry sludge (MLSS [mg / L]) per liter of wastewater was calculated by the following equation. Note that MLSS (Mixed Liquor Suspended Solids) means a suspended substance of a sludge mixture in an aeration tank in activated sludge treatment. In the following equation, a represents the mass of a dried filter and a substance on the filter [ mg] and b are the mass [mg] of the filter.
MLSS [mg / L] = ((ab) ÷ sample amount [ml]) x 1000

上記測定の結果を表8及び図5に示す。なお、表8中の「汚泥分解量」は1日目又は4日目の汚泥量と0日目の汚泥量との差を意味している。また、「汚泥分解率」は((4日目の汚泥量−0日目の汚泥量)÷0日目の汚泥量)×100を意味している。   The results of the above measurements are shown in Table 8 and FIG. The “sludge decomposition amount” in Table 8 means the difference between the sludge amount on the first or fourth day and the sludge amount on the zeroth day. The “sludge decomposition rate” means ((sludge amount on day 4−sludge amount on day 0) / sludge amount on day 0) × 100.

Figure 0006675714
Figure 0006675714

一般に、標準活性汚泥法を用いた処理施設における汚泥発生量は1日あたり約200 mg/Lといわれており、そのうち約半分の100 mg/Lが余剰汚泥になるとされている。これに対し、上記の試験例において微生物資材を添加しなかった排水、すなわち通気撹拌のみを行った排水における汚泥の減少量は、表8に示す通り4日間で1 Lあたり150 mg、1日あたりに換算すると37.5 mg/Lであった。これは1日に生成される余剰汚泥の量を下回るため、通気撹拌を行っただけでは処理槽内の汚泥は増加し続けることになる。これが標準活性汚泥法における余剰汚泥発生の原因である。比較例資材では、4日間で1 Lあたり370mg(1日あたり92.5mg/L)であり、依然として分解力は満足するものではない。一方、実施例資材1を添加した排水における汚泥の減少量は4日間で1 Lあたり660 mg(1日にあたり165 mg/L)、実施例資材2を添加した排水における汚泥の減少量は4日間で1Lあたり710 mg(1日あたり177.5 mg/L)であり、上記1日に生成される余剰汚泥の量(100 mg/L)を上回った。このことから、本発明に係る微生物資材の添加により処理槽内における余剰汚泥の増加を抑えることが可能であると考えられる。また、上記の表8及び図5から明らかなように、実施例資材1又は実施例資材2を添加した排水では、比較例資材を添加した排水よりも高い汚泥減少効果が得られることが確認された。   In general, the amount of sludge generated in a treatment facility using the standard activated sludge method is said to be about 200 mg / L per day, and about half of that amount, 100 mg / L, is considered to be excess sludge. On the other hand, in the above test example, the amount of sludge reduction in the wastewater to which no microbial material was added, that is, the wastewater subjected to only aeration and agitation, was 150 mg per liter over 4 days, as shown in Table 8, per day. Converted to 37.5 mg / L. Since this is less than the amount of excess sludge generated in one day, sludge in the treatment tank continues to increase only by aeration and stirring. This is the cause of excess sludge generation in the standard activated sludge method. The material for the comparative example was 370 mg / L (92.5 mg / L / day) for 4 days, and the decomposition power was still unsatisfactory. On the other hand, the amount of sludge reduction in wastewater to which Example Material 1 was added was 660 mg / L (165 mg / L per day) in 4 days, and the amount of sludge in wastewater to which Example Material 2 was added was 4 days. At 710 mg / L (177.5 mg / L / day), which exceeded the amount of excess sludge (100 mg / L) produced on the day. From this, it is considered that it is possible to suppress the increase of the excess sludge in the treatment tank by adding the microbial material according to the present invention. Further, as is clear from Table 8 and FIG. 5, it is confirmed that the wastewater to which the example material 1 or the example material 2 is added can obtain a higher sludge reduction effect than the wastewater to which the comparative example material is added. Was.

(試験例3)
更に、MBR法による排水処理に対する本発明に係る微生物資材の有用性を確認した。本試験例では、処理対象の汚泥を含む排水として長野県の個人住宅に設置されたMBR処理方式の浄化槽から採取した排水を使用した。
該排水1 Lに上記試験例2と同様の「実施例資材2」を1 ml添加し、試験例2と同様にエアレーションと撹拌を行って25℃で4日間培養を行った。また、比較例として微生物資材を添加しない排水1 Lについても同様にエアレーションと撹拌を行った。
(Test Example 3)
Furthermore, the usefulness of the microorganism material according to the present invention for wastewater treatment by the MBR method was confirmed. In this test example, wastewater collected from an MBR treatment type septic tank installed in a private house in Nagano Prefecture was used as wastewater containing sludge to be treated.
1 ml of the wastewater was added with 1 ml of "Example material 2" similar to that in Test Example 2 above, and aerated and stirred as in Test Example 2 and cultured at 25 ° C for 4 days. As a comparative example, aeration and agitation were similarly performed for 1 L of wastewater to which no microbial material was added.

培養開始時(0日目)から4日目における汚泥量(MLSS)の推移を図6に示す。なお、汚泥量の測定は上記試験例2と同様の方法で行った。同図に示すように実施例資材1を添加したものでは、微生物資材を添加しなかったものに比べて、汚泥量が大きく減少していた。なお、MBR法では汚泥量が15,000 mg/Lを超えると処理水と汚泥を分離するためのフィルターが目詰まりする危険性が出てくるが、実施例資材1の添加により、当初約16,000mg/Lであった汚泥量が1日で危険値である15,000 mg/L以下に低下し、4日目には13,100 mg/Lと危険値を大きく下回ることが確認された。   FIG. 6 shows a change in the amount of sludge (MLSS) from the start of the culture (day 0) to the fourth day. The measurement of the amount of sludge was performed in the same manner as in Test Example 2 described above. As shown in the figure, in the case of adding the example material 1, the amount of sludge was greatly reduced as compared with the case where the microbial material was not added. In the MBR method, if the amount of sludge exceeds 15,000 mg / L, there is a risk that the filter for separating the treated water and sludge may become clogged. It was confirmed that the amount of sludge which had been L decreased to 15,000 mg / L or less which is a dangerous value in one day, and was 13,100 mg / L, which was much lower than the dangerous value on the fourth day.

Claims (2)

エキシグオバクテリウム・エスピー(Exiguobacterium sp.)Z153-2株(受託番号NITE P-02409)若しくは、エキシグオバクテリウム・アセチリカム(Exiguobacterium acetylicum)Z153-3株(受託番号NITE P-02410)、又はその両方を主成分として含有することを特徴とする汚泥減容微生物資材。 Exiguobacterium sp. Z153-2 strain (Accession number NITE P-02409) or Exiguobacterium acetylicum ( Exiguobacterium acetylicum ) Z153-3 strain (Accession number NITE P-02410) A sludge-reducing microbial material characterized by containing both as main components. 活性汚泥にエキシグオバクテリウム・エスピー(Exiguobacterium sp.)Z153-2株(受託番号NITE P-02409)若しくは、エキシグオバクテリウム・アセチリカム(Exiguobacterium acetylicum)Z153-3株(受託番号NITE P-02410)、又はその両方を主成分として含有する汚泥減容微生物資材を添加することにより余剰汚泥を減容化することを特徴とする余剰汚泥の減容化方法。 Exiguobacterium sp. Strain Z153-2 (Accession number NITE P-02409) or Exiguobacterium acetylicum Z153-3 strain (Accession number NITE P-02410) Or a method for reducing excess sludge volume by adding a sludge volume-reducing microbial material containing both or both as main components.
JP2017021092A 2017-02-08 2017-02-08 Sludge volume reduction method for microbial material and excess sludge Expired - Fee Related JP6675714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017021092A JP6675714B2 (en) 2017-02-08 2017-02-08 Sludge volume reduction method for microbial material and excess sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021092A JP6675714B2 (en) 2017-02-08 2017-02-08 Sludge volume reduction method for microbial material and excess sludge

Publications (2)

Publication Number Publication Date
JP2018126085A JP2018126085A (en) 2018-08-16
JP6675714B2 true JP6675714B2 (en) 2020-04-01

Family

ID=63171540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021092A Expired - Fee Related JP6675714B2 (en) 2017-02-08 2017-02-08 Sludge volume reduction method for microbial material and excess sludge

Country Status (1)

Country Link
JP (1) JP6675714B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109294961B (en) * 2018-11-30 2021-07-27 中国热带农业科学院广州实验站 Biocontrol strain PNC25 for preventing and treating litchi downy blight and application thereof
CN111304110B (en) * 2019-11-12 2021-05-25 青岛科技大学 Protease-producing deep-sea micro bacillus mutant strain and application thereof
WO2021193581A1 (en) * 2020-03-24 2021-09-30 三菱ケミカル株式会社 Method for treating drainage water

Also Published As

Publication number Publication date
JP2018126085A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP4807799B2 (en) Method for treating waste liquid containing fat, alpha starch and beta starch
JP6675714B2 (en) Sludge volume reduction method for microbial material and excess sludge
Ho et al. Degrading high-strength phenol using aerobic granular sludge
Lee et al. Effect of alkaline protease-producing Exiguobacterium sp. YS1 inoculation on the solubilization and bacterial community of waste activated sludge
TW202012616A (en) Bacterium degrading microorganism, microbial preparation, and method and device for degrading microorganism
Hailei et al. Removal of phenol in phenolic resin wastewater by a novel biomaterial: the Phanerochaete chrysosporium pellet containing chlamydospore-like cells
WO2021132036A1 (en) Bacterium for degrading sludge, bacterium degrading microorganism, microbial preparation and method and device for degrading sludge
Kumar et al. Degradation potential of free and immobilized cells of white rot fungus Phanerochaete chrysosporium on synthetic dyes
Massalha et al. The effect of anaerobic biomass drying and exposure to air on their recovery and evolution
JP2006230332A (en) New microorganism and method for treating organic sludge therewith
CN106834165B (en) Paracoccus capable of degrading penicillin, cell fraction and composition thereof
Grekova-Vasileva et al. Isolation and characterisation of microbial strain AZO29 capable of azo dye decolourization
JP5334527B2 (en) Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism
Jałowiecki et al. Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach
JP4088690B2 (en) New microorganisms and methods for removing arsenic by microorganisms
JP5219050B2 (en) Oil-degrading bacteria and oil-degrading agents
JP2006180706A (en) New polyvinyl alcohol-degrading bacterium
JP4807800B2 (en) Treatment method for waste liquid containing β starch
ARIFFIN et al. Biodegradation of methylene blue by bacteria strains isolated from contaminated soil
JP6218264B2 (en) Degradation method of digested sludge
KR100878612B1 (en) Thermomonas gslyso-1 strain and microbial preparation containing the same for treating excess sludge
RU2663798C2 (en) Method of purification of wastewater from the oil refining and petrochemical manufacturing productions from benzene
Kim et al. Application of a thermophilic aerobic digestion process to industrial waste activated sludge treatment
Neelam et al. Characterization and potential applications of Halovibrio Variabilis MLA3 (a heterotrophic bacterium) isolated from a saline-alkaline lake of Rajasthan, India
KR20020009059A (en) A Novel Bacillus cereus IBN-H4 for Decomposing TMAH, and Method for Waste-water Treatment using the Strain

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190927

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 6675714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees