JP5334527B2 - Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism - Google Patents

Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism Download PDF

Info

Publication number
JP5334527B2
JP5334527B2 JP2008277019A JP2008277019A JP5334527B2 JP 5334527 B2 JP5334527 B2 JP 5334527B2 JP 2008277019 A JP2008277019 A JP 2008277019A JP 2008277019 A JP2008277019 A JP 2008277019A JP 5334527 B2 JP5334527 B2 JP 5334527B2
Authority
JP
Japan
Prior art keywords
wastewater treatment
wastewater
treatment apparatus
phosphorus
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008277019A
Other languages
Japanese (ja)
Other versions
JP2010104251A (en
Inventor
章夫 黒田
隆一 廣田
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2008277019A priority Critical patent/JP5334527B2/en
Publication of JP2010104251A publication Critical patent/JP2010104251A/en
Application granted granted Critical
Publication of JP5334527B2 publication Critical patent/JP5334527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば廃水に含まれる、リン成分を菌体内に蓄積することができる新規微生物に関し、さらに当該新規微生物を用いた廃水処理方法及び廃水処理装置に関する。   The present invention relates to a novel microorganism that can accumulate, for example, a phosphorus component contained in wastewater, and further relates to a wastewater treatment method and a wastewater treatment apparatus using the novel microorganism.

リンは動植物の成長に欠かせない元素であるが、水中の濃度が高くなってくると水域の富栄養化を招くことになる。特に廃水中に含まれるリン成分としては、例えば、正リン酸(オルトリン酸)、ポリリン酸、リン酸塩、リン酸エステル、リンタンパク質、グリセロリン酸、リン脂質等が挙げられる。廃水中のリン成分が過剰となると、水の富栄養化による植物プランクトンの著しい増殖を招くおそれがある。   Phosphorus is an indispensable element for the growth of animals and plants, but when the concentration in water increases, it will lead to eutrophication of the water area. Particularly, examples of the phosphorus component contained in the wastewater include orthophosphoric acid (orthophosphoric acid), polyphosphoric acid, phosphate, phosphate ester, phosphoprotein, glycerophosphoric acid, phospholipid, and the like. If the phosphorus component in the wastewater is excessive, phytoplankton may grow significantly due to water eutrophication.

従来、廃水中のリン成分を除去する方法(脱リン処理方法)としては、凝集剤を添加する方法、晶析脱リン法、好気-嫌気活性汚泥法が知られている(特許文献1)。   Conventionally, as a method for removing phosphorus components in wastewater (dephosphorization method), a method of adding a flocculant, a crystallization dephosphorization method, and an aerobic-anaerobic activated sludge method are known (Patent Document 1). .

凝集剤添加法は、アルミニウムイオン、鉄(III)イオン等の酸化金属陽イオンが正リン酸と反応して難溶性のリン酸塩を生成することを利用し、硫酸アルミニウム等の凝集剤を排水に混和して、難溶性リン酸塩から形成されるフロック(生物由来のフロックを含む)を沈殿分離するものである。この方法では5〜20%程度余剰汚泥の増加が認められる。このため、リン成分を多量に含む余剰汚泥を大量投棄することとなり、環境保全の見地からは、好ましい方法とは言えない。   The flocculant addition method uses the fact that metal oxide cations such as aluminum ions and iron (III) ions react with normal phosphoric acid to form poorly soluble phosphate, and drains flocculants such as aluminum sulfate. In this method, flocs formed from poorly soluble phosphate (including biological flocs) are separated by precipitation. In this method, an increase in excess sludge of about 5 to 20% is recognized. Therefore, a large amount of excess sludge containing a large amount of phosphorus component is discarded, which is not a preferable method from the viewpoint of environmental conservation.

晶析脱リン法は、正リン酸とカルシウムイオンとの反応に基づくものであり、余剰汚泥の増加を伴わない点では好ましいが、アパタイト晶析のために必要な条件(例えば、前処理による炭酸イオン等の晶析妨害物質の除去、pH調整、温度調整等)を厳密にコントロールする必要があり、適用が限定される。また、処理コストも高くなるため、大規模な処理には好ましいとは言えない。   The crystallization dephosphorization method is based on the reaction between orthophosphoric acid and calcium ions, and is preferable in that it does not involve an increase in excess sludge, but the conditions necessary for apatite crystallization (for example, carbonation by pretreatment). The removal of crystallization interfering substances such as ions, pH adjustment, temperature adjustment, etc.) must be strictly controlled, and its application is limited. In addition, since the processing cost is high, it is not preferable for large-scale processing.

好気−嫌気活性汚泥法は、嫌気状態でエネルギー獲得のためにポリリン酸を正リン酸として放出した微生物が、好気状態で正リン酸を過剰摂取・代謝後ポリリン酸として蓄積することを利用した方法である。これは、排水を嫌気槽、好気槽及び沈殿池における反復処理に付して、余剰汚泥にリン成分を内包させ、処理排水中のリン成分を除去するものである。   The aerobic-anaerobic activated sludge method utilizes the fact that microorganisms that have released polyphosphoric acid as normal phosphoric acid to gain energy in anaerobic conditions accumulate polyphosphoric acid after overdose and metabolism in the aerobic state. It is the method. In this method, waste water is subjected to repeated treatment in an anaerobic tank, an aerobic tank, and a sedimentation basin, and a phosphorus component is included in excess sludge to remove the phosphorus component in the treated waste water.

すなわち、リン蓄積能を有する微生物を利用して、廃水中に含まれるリン成分を除去するといった技術自体は知られているものの、リン蓄積能、言い換えればリン成分の除去能の点で十分とは言えなかった。   That is, although the technology itself that removes the phosphorus component contained in the wastewater using a microorganism having phosphorus accumulation ability is known, it is sufficient in terms of the phosphorus accumulation ability, in other words, the phosphorus component removal ability. I could not say.

一方、生物的な反応も含めて一般的には、温度が高いと反応速度は速くなる。したがって、微生物を利用して廃水中のリン成分を除去する際、高温条件で行うことができれば反応速度の上昇を期待することができる。しかしながら、従来公知のリン蓄積能を有する微生物としては、常温(例えば、37℃程度)の温度条件で廃水中のリン成分を蓄積するものしか知られていない。   On the other hand, in general, including biological reactions, the reaction rate increases at higher temperatures. Therefore, when removing the phosphorus component in wastewater using microorganisms, an increase in reaction rate can be expected if it can be performed under high temperature conditions. However, conventionally known microorganisms having phosphorus storage ability are only known to accumulate phosphorus components in wastewater under normal temperature conditions (for example, about 37 ° C.).

特開平9−267099号公報Japanese Patent Laid-Open No. 9-267099

そこで、本発明は、上述したような実状に鑑み、比較的高温条件において、廃水等に含まれるリン成分を蓄積できる新規な微生物を提供することを目的とし、更に、当該微生物を用いた廃水処理装置及び廃水処理方法を提供することを目的とする。   Therefore, in view of the actual situation as described above, the present invention has an object to provide a novel microorganism capable of accumulating phosphorus components contained in wastewater or the like under relatively high temperature conditions, and further, wastewater treatment using the microorganism. An object is to provide an apparatus and a wastewater treatment method.

上述した目的を達成するため、本発明者等は、広島県東広島市の廃水処理場設備から採取した活性汚泥及び広島大学キャンパス内から採取した土壌サンプルを分離源として目的の特性を有する微生物を単離、同定すべく鋭意検討した結果、従来公知の微生物には分類されない新規微生物を単離、同定することができた。本発明は、これら新規微生物が有するリン蓄積能に基づいてなされたものである。単離、同定した新規微生物は従来公知の微生物には分類されない。   In order to achieve the above-described object, the present inventors have selected microorganisms having the desired characteristics using activated sludge collected from a wastewater treatment plant facility in Higashihiroshima City, Hiroshima Prefecture and soil samples collected from the Hiroshima University campus as separation sources. As a result of intensive investigations for isolation and identification, it was possible to isolate and identify a novel microorganism that was not classified as a conventionally known microorganism. The present invention has been made based on the phosphorus accumulating ability of these novel microorganisms. New microorganisms isolated and identified are not classified as conventionally known microorganisms.

本発明に係る新規微生物は、ウレイバチルス・サーモフィルス(Ureibacillus thermophilus)に属し、50〜60℃の条件下でポリリン酸を菌体内に蓄積する能力を有する。本発明者らが単離、同定した新規微生物は、以下の表1〜3のいずれかに記載された菌学的性質を有する。   The novel microorganism according to the present invention belongs to Ureibacillus thermophilus and has the ability to accumulate polyphosphoric acid in the cells under conditions of 50 to 60 ° C. The novel microorganisms isolated and identified by the present inventors have the mycological properties described in any of Tables 1 to 3 below.

Figure 0005334527
Figure 0005334527

Figure 0005334527
Figure 0005334527

Figure 0005334527
Figure 0005334527

本発明者らが単離、同定した新規微生物に関して16S rRNAをコードする遺伝子(以下、16S rDNAと称する)の塩基配列を決定した。その塩基配列を配列番号1に示す。配列番号1に示す塩基配列をもとにデータベース(GenBank/DDBJ/EMBL)及びホモロジー検索ソフト(BLAST)を用いてホモロジー検索したところ、配列番号1に示す塩基配列は“Ureibacillus thermophilus HC148 (Accession No. DQ348072)”として登録された塩基配列と最も高い相同性(99.8%)を示した。   The nucleotide sequence of a gene encoding 16S rRNA (hereinafter referred to as 16S rDNA) was determined for a novel microorganism isolated and identified by the present inventors. The base sequence is shown in SEQ ID NO: 1. When the homology search was performed using the database (GenBank / DDBJ / EMBL) and homology search software (BLAST) based on the base sequence shown in SEQ ID NO: 1, the base sequence shown in SEQ ID NO: 1 was “Ureibacillus thermophilus HC148 (Accession No. DQ348072) ”showed the highest homology (99.8%) with the nucleotide sequence registered.

以上の菌学的性質及び16S rDNAの塩基配列に基づく知見から、本発明に係る新規微生物はUreibacillus thermophilusに属する新規な菌株に分類された。本発明に係る新規微生物は、HTP-01と命名し、独立行政法人産業技術総合研究所 特許生物寄託センター(〒305-8566茨城県つくば市東1-1-1中央第6)に2008年7月10日に受託番号FERM P-21602として寄託した。   From the above bacteriological properties and knowledge based on the base sequence of 16S rDNA, the novel microorganism according to the present invention was classified as a novel strain belonging to Ureibacillus thermophilus. The new microorganism according to the present invention was named HTP-01, and it was established in July 2008 in the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Chuo 6-1, 1-1-1 Higashi 1-1-1, Tsukuba, Ibaraki Prefecture). Deposited as FERM P-21602 on the 10th.

一方、本発明に係る廃水処理方法及び廃水処理装置は、上述した本発明に係る微生物を利用して廃水に含まれる臨席分を高温条件下で除去するものである。本発明に係る廃水処理方法及び廃水処理装置は、上述した微生物を使用することによって、従来のリン蓄積能を有する微生物を用いた方法では除去できなかった、リン成分を高温条件下で除去することができる。また、本発明に係る廃水処理方法及び廃水処理装置は、高温条件の廃水を上述した微生物で処理することができる。   On the other hand, the wastewater treatment method and the wastewater treatment apparatus according to the present invention are for removing the present portion contained in the wastewater under high temperature conditions using the microorganisms according to the present invention described above. The wastewater treatment method and the wastewater treatment apparatus according to the present invention can remove phosphorus components under high temperature conditions, which could not be removed by the conventional method using microorganisms having phosphorus accumulation ability, by using the above-described microorganisms. Can do. Moreover, the wastewater treatment method and wastewater treatment apparatus according to the present invention can treat wastewater under high temperature conditions with the above-described microorganisms.

本発明によれば、廃水等に含まれるリン成分を除去することができる新規な微生物を提供することができる。特に、本発明に係る新規な微生物は、高温条件下においてもリン成分を除去することができる。本発明に係る新規な微生物を利用することによって、廃水等に含まれるリン成分を除去することができる廃水処理方法及び廃水処理装置を提供することができる。これら廃水処理方法及び廃水処理装置においては、処理対象の廃水温度を高温条件とすることができるため、リン除去効率に優れるとともに装置のコンパクト化、低コスト化を実現することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the novel microorganisms which can remove the phosphorus component contained in waste water etc. can be provided. In particular, the novel microorganism according to the present invention can remove phosphorus components even under high temperature conditions. By utilizing the novel microorganism according to the present invention, it is possible to provide a wastewater treatment method and a wastewater treatment apparatus that can remove phosphorus components contained in wastewater and the like. In these wastewater treatment methods and wastewater treatment apparatuses, the temperature of the wastewater to be treated can be set to a high temperature condition, so that it is possible to achieve excellent phosphorus removal efficiency and downsizing and cost reduction of the apparatus.

以下、本発明を詳細に説明する。
本発明に係る新規微生物は、ウレイバチルス・サーモフィルス(Ureibacillus thermophilus)に属し、高温条件(例えば50〜60℃)においてリン成分を菌体内に蓄積する能力を有している。本発明に係る新規微生物は、5%NaCl条件下で生育せず、ゼラチンを加水分解する点において、ウレイバチルス・サーモフィルス(Ureibacillus thermophilus)に属する微生物として公知のUreibacillus thermophilus HC148 (Accession No. DQ348072)とは異なっている。
Hereinafter, the present invention will be described in detail.
The novel microorganism according to the present invention belongs to Ureibacillus thermophilus and has the ability to accumulate a phosphorus component in the microbial cells under high temperature conditions (for example, 50 to 60 ° C.). The novel microorganism according to the present invention does not grow under 5% NaCl conditions, but hydrolyzes gelatin, so that Ureibacillus thermophilus HC148 (Accession No. DQ348072) known as a microorganism belonging to Ureibacillus thermophilus Is different.

言い換えれば、本発明に係る新規微生物は、高温条件(例えば50〜60℃)においてリン成分を菌体内に蓄積する能力を有し、5%NaCl条件下で生育せず、ゼラチンを加水分解する能力を有するウレイバチルス・サーモフィルス(Ureibacillus thermophilus)であると言える。このような特徴的な性質を有する本発明に係る新規微生物は、例えば、下水処理場の嫌気層の活性汚泥、田畑、河川水・底土等の環境から単離することができる。具体的な手法としては、先ず、上記各種環境から採取したサンプルを、高温条件下で培養し、リン蓄積能の有無を基準に選択を行う。ここで、サンプルは、嫌気的条件で保管することが好ましい。また、対象の微生物についてリン蓄積能を検討する際には、従来公知の手法、すなわち、リン成分が菌体内にポリリン酸として蓄積されることから、4,6-diamino-2-phenylindole(DAPI)を用いて菌体内のポリリン酸を染色し、黄色の強い蛍光を測定することで評価することができる。   In other words, the novel microorganism according to the present invention has the ability to accumulate a phosphorus component in the microbial cells under high temperature conditions (for example, 50 to 60 ° C.), does not grow under 5% NaCl conditions, and can hydrolyze gelatin. It can be said that this is Ureibacillus thermophilus. The novel microorganism according to the present invention having such characteristic properties can be isolated from the environment such as activated sludge, field, river water, and bottom soil of an anaerobic layer of a sewage treatment plant. As a specific method, first, samples collected from the above various environments are cultured under high temperature conditions, and selection is performed based on the presence or absence of phosphorus accumulating ability. Here, the sample is preferably stored under anaerobic conditions. In addition, when examining the phosphorus accumulation ability of the target microorganism, since the phosphorus component is accumulated as polyphosphoric acid in the bacterial body, 4,6-diamino-2-phenylindole (DAPI) It can be evaluated by staining polyphosphoric acid in the microbial cells using and measuring strong yellow fluorescence.

なお、具体的に、本発明においては、広島県東広島市田口の汚水処理場から採取した活性汚泥及び広島大学内キャンパス東広島市鏡山公園内から採取した土壌サンプルから本発明に係る新規微生物を単離し、HTP-01と命名し、独立行政法人産業技術総合研究所 特許生物寄託センター(〒305-8566茨城県つくば市東1-1-1中央第6)に2008年7月10日に受託番号FERM P-21602として寄託している。この寄託菌株の菌学的性質を下記表4〜6に示す。   Specifically, in the present invention, the novel microorganisms according to the present invention are obtained from activated sludge collected from a sewage treatment plant in Higashihiroshima City, Hiroshima Prefecture and a soil sample collected from Kagamiyama Park in Higashihiroshima City, Hiroshima University Campus. It was isolated and named HTP-01, and the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (Central 6th, 1-1-1 Higashi 1-1-1, Tsukuba City, Ibaraki Prefecture, 305-8566) was commissioned on July 10, 2008. Deposited as FERM P-21602. The mycological properties of this deposited strain are shown in Tables 4-6 below.

Figure 0005334527
Figure 0005334527

Figure 0005334527
Figure 0005334527

Figure 0005334527
Figure 0005334527

また、当該寄託菌株の16S rDNAの塩基配列を配列番号1に示す。
なお、本発明に係る新規微生物は、受託番号FERM P-21602で特定される寄託菌株に限定されず、当該寄託菌株と同じ菌株に分類される他の微生物も含むものである。例えば、本発明に係る新規微生物は、上記表1〜3に示す菌学的性質を有し、高温条件(例えば50〜60℃)においてリン成分を菌体内に蓄積する能力を有するウレイバチルス・サーモフィルスを含んでいる。また、本発明に係る新規微生物は、配列番号1に示す塩基配列に対して99.8%を超える相同性を有し、高温条件(例えば50〜60℃)においてリン成分を菌体内に蓄積する能力を有するウレイバチルス・サーモフィルスを含んでいる。
The base sequence of 16S rDNA of the deposited strain is shown in SEQ ID NO: 1.
The novel microorganism according to the present invention is not limited to the deposited strain specified by the deposit number FERM P-21602, and includes other microorganisms classified into the same strain as the deposited strain. For example, the novel microorganism according to the present invention has the bacteriological properties shown in Tables 1 to 3 above, and has the ability to accumulate phosphorus components in the microbial cells under high temperature conditions (for example, 50 to 60 ° C.). Contains filth. Further, the novel microorganism according to the present invention has a homology exceeding 99.8% with respect to the base sequence shown in SEQ ID NO: 1, and has an ability to accumulate a phosphorus component in the microbial cells under high temperature conditions (eg, 50 to 60 ° C.). Contains ureibacillus thermophilus.

以上で説明した本発明に係る新規微生物は、高温条件においてリン成分を菌体内に蓄積できるといった特徴と、リン成分の蓄積能が非常に優れるといった特徴を併有している。ここで、リン蓄積能は、上述したDAPIを利用した方法によって評価することができる。特に、本発明に係る新規微生物は、具体的には、定常期において、100 nmol/mg proteinのリン酸を蓄積することができる。この蓄積量は、遺伝子操作をしていない細菌においては非常に高い値といえる。さらに、本発明に係る新規微生物は、その生育と共にポリリン酸を蓄積することができる。例えば、大腸菌はアミノ酸飢餓時にポリリン酸を蓄積することができるのと比較すると、異なる特徴と言える。このことから、本発明に係る新規微生物は、廃水に含まれるリン成分を除去するに際して、アミノ酸飢餓条件とする必要がないため有利であるといえる。   The novel microorganism according to the present invention described above has both a feature that it can accumulate a phosphorus component in a microbial cell under a high temperature condition and a feature that it is very excellent in the ability to accumulate a phosphorus component. Here, the phosphorus accumulating ability can be evaluated by the above-described method using DAPI. In particular, the novel microorganism according to the present invention can specifically accumulate 100 nmol / mg protein phosphate in the stationary phase. This accumulated amount can be said to be a very high value in bacteria that have not been genetically manipulated. Furthermore, the novel microorganism according to the present invention can accumulate polyphosphoric acid along with its growth. For example, E. coli can be said to have different characteristics compared to the ability to accumulate polyphosphate during amino acid starvation. From this, it can be said that the novel microorganism according to the present invention is advantageous because it does not need to be in an amino acid starvation condition when removing the phosphorus component contained in the wastewater.

本発明に係る新規微生物を用いることで、新規な廃水処理方法及び廃水処理装置を構築することができる。すなわち、上記微生物を利用して処理対象の廃水に含まれるリン成分を除去するのであれば、処理ステップ、装置構成の相違に拘わらず全て本発明に係る廃水処理方法及び廃水処理装置に含まれる。廃水中に含まれるリン成分としては、例えば、正リン酸(オルトリン酸)、ポリリン酸、リン酸塩、リン酸エステル、リンタンパク質、グリセロリン酸、リン脂質等が挙げられる。   By using the novel microorganism according to the present invention, a novel wastewater treatment method and wastewater treatment apparatus can be constructed. That is, as long as the phosphorus component contained in the wastewater to be treated is removed using the microorganisms, they are all included in the wastewater treatment method and wastewater treatment apparatus according to the present invention regardless of differences in treatment steps and apparatus configuration. Examples of the phosphorus component contained in the wastewater include orthophosphoric acid (orthophosphoric acid), polyphosphoric acid, phosphate, phosphate ester, phosphoprotein, glycerophosphoric acid, and phospholipid.

廃水処理装置としては、例えば、図1に示すように、本発明に係る新規微生物による脱リンを行う脱リン槽1と、廃水中に含まれる固形分と液体とを分離する固液分離槽2とを備える。また、廃水処理装置には、脱リン槽1に対して熱を供給するコージェネレーション装置3を備える。コージェネレーション装置3とは、一つのエネルギーから複数のエネルギーを取り出すシステムであり、例えば、エンジン、タービン及び/又は燃料電池(FC)等を挙げることができる。これらエンジン、タービン及び/又は燃料電池(FC)等のコージェネレーション装置3は、電気エネルギーの他に排熱回収による熱エネルギーを生じる。図1に示す廃水処理装置においては、コージェネレーション装置3で生じた熱エネルギーを脱リン槽1内の廃液に供給するような構成となっている。なお、加温のための熱源はボイラを用いてもよく、また、コージェネレーションからの熱量が、脱リン槽1の加温のための熱量より少ない場合は、付属のボイラ等で不足分の加熱を行うことも可能である。   As a wastewater treatment apparatus, for example, as shown in FIG. 1, a dephosphorization tank 1 that performs dephosphorization by a novel microorganism according to the present invention, and a solid-liquid separation tank 2 that separates solids and liquids contained in wastewater. With. Further, the wastewater treatment apparatus includes a cogeneration apparatus 3 that supplies heat to the dephosphorization tank 1. The cogeneration apparatus 3 is a system that extracts a plurality of energies from one energy, and examples thereof include an engine, a turbine, and / or a fuel cell (FC). These engine, turbine, and / or fuel cell (FC) cogeneration apparatus 3 generates thermal energy by exhaust heat recovery in addition to electrical energy. The wastewater treatment apparatus shown in FIG. 1 is configured to supply thermal energy generated in the cogeneration apparatus 3 to the waste liquid in the dephosphorization tank 1. Note that a boiler may be used as a heat source for heating, and when the amount of heat from the cogeneration is less than the amount of heat for heating the dephosphorization tank 1, a deficient heating is performed with an attached boiler or the like. It is also possible to perform.

図1に示す廃水処理装置においては、先ず、脱リン槽1に処理対象の廃水を供給し、その後、固液分離槽2で廃水に含まれる固形分と液体とを分離する。脱リン槽1においては、上述した新規微生物により、廃水中に含まれるリン成分を除去する反応が進行する。したがって、固液分離槽2を経て分離された固形分には、廃水に含まれていたリン成分を蓄積した本発明に係る式微生物が含まれ、固液分離槽2を経て分離された固形分には、リン成分が除去された廃水が含まれることとなる。   In the wastewater treatment apparatus shown in FIG. 1, first, wastewater to be treated is supplied to the dephosphorization tank 1, and then the solid and liquid contained in the wastewater are separated in the solid-liquid separation tank 2. In the dephosphorization tank 1, the reaction for removing the phosphorus component contained in the wastewater proceeds by the above-described new microorganism. Therefore, the solid content separated through the solid-liquid separation tank 2 contains the formula microorganism according to the present invention in which the phosphorus component contained in the wastewater is accumulated, and the solid content separated through the solid-liquid separation tank 2 This includes waste water from which the phosphorus component has been removed.

図1に示す廃水処理装置では、都市ガス等を燃料としたコージェネレーション装置3からの熱エネルギーが脱リン槽1に供給され、脱リン槽1内の廃液を上述した高温条件とする。本発明に係る廃水処理装置においては、従来と比較して高温条件下で脱リン反応を行うことができるため、優れた反応効率を達成することができる。したがって、本発明に係る廃水処理装置は、脱リン槽1の小型化することも可能であり、低コスト化することができる。さらに、高温条件では、他の微生物の増殖が抑制されるため、廃水内の汚染といった不都合を回避することができる。   In the wastewater treatment apparatus shown in FIG. 1, the thermal energy from the cogeneration apparatus 3 using city gas or the like as fuel is supplied to the dephosphorization tank 1, and the waste liquid in the dephosphorization tank 1 is set to the above-described high temperature condition. In the wastewater treatment apparatus according to the present invention, since the dephosphorization reaction can be performed under a high temperature condition as compared with the conventional case, excellent reaction efficiency can be achieved. Therefore, the wastewater treatment apparatus according to the present invention can reduce the size of the dephosphorization tank 1 and can reduce the cost. Furthermore, since the growth of other microorganisms is suppressed under high temperature conditions, inconveniences such as contamination in wastewater can be avoided.

なお、本発明に係る廃水処理装置は、図1に示す構成に限定されず、例えば図2に示すように、固液分離槽2で分離した固形分に含まれるリン成分を回収するリン回収装置を有する構成であっても良い。図2に示す廃水処理装置によれば、廃水中に含まれるリン成分を本発明に係る新規微生物の菌体内に蓄積せしめることで廃水を浄化するとともに、蓄積したリン成分を回収することによりリンの有効利用を図ることができる。なお、廃水中のリン成分は、ポリリン酸のかたちで菌体内に蓄積されるため、菌体を破砕することで固形分としてポリリン酸を分離することができる。   Note that the wastewater treatment apparatus according to the present invention is not limited to the configuration shown in FIG. 1. For example, as shown in FIG. 2, the phosphorus recovery apparatus that recovers the phosphorus component contained in the solid content separated in the solid-liquid separation tank 2. The structure which has this may be sufficient. According to the wastewater treatment apparatus shown in FIG. 2, the wastewater is purified by accumulating the phosphorus component contained in the wastewater in the cells of the novel microorganism according to the present invention, and the phosphorus component is recovered by collecting the accumulated phosphorus component. Effective use can be achieved. In addition, since the phosphorus component in wastewater accumulates in a microbial cell in the form of polyphosphoric acid, polyphosphoric acid can be isolate | separated as solid content by crushing a microbial cell.

本発明に係る廃水処理装置及び廃水処理方法においては、特に、脱リン槽1内の温度が50〜60℃といった高温条件下で処理している。このため、本発明に係る廃水処理装置及び廃水処理方法では、周辺環境から混入する微生物のほとんどは増殖できず、開放系とした場合であっても純粋培養に近いプロセスを実現することが可能である。   In the wastewater treatment apparatus and the wastewater treatment method according to the present invention, in particular, the treatment is performed under a high temperature condition such that the temperature in the dephosphorization tank 1 is 50 to 60 ° C. For this reason, in the wastewater treatment apparatus and the wastewater treatment method according to the present invention, most of the microorganisms mixed from the surrounding environment cannot grow, and even in an open system, it is possible to realize a process close to pure culture. is there.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。
〔実施例1〕新規微生物の単離、同定
(1)環境試料からの微生物単離
活性汚泥サンプルは広島県東広島市廃水処理設備の活性汚泥を用いた。超音波処理を数秒間行って凝集体を分解し、10〜107倍程度の希釈系列を作り2×YT寒天培地に塗布した。2×YT寒天培地の組成は、トリプトン:16g、酵母エキス:10g、NaCl:5g、ゲランガム:15g、蒸留水:1Lとした。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limited to a following example.
[Example 1] Isolation and identification of new microorganisms (1) Isolation of microorganisms from environmental samples The activated sludge sample was activated sludge from a wastewater treatment facility in Higashihiroshima City, Hiroshima Prefecture. Decomposing the agglomerates by performing a few seconds sonication was applied to 2 × YT agar medium to make a dilution series of approximately 10 to 10 7 times. The composition of the 2 × YT agar medium was tryptone: 16 g, yeast extract: 10 g, NaCl: 5 g, gellan gum: 15 g, and distilled water: 1 L.

土壌サンプルは、広島大学キャンパス内から採取した。サンプルを滅菌水で懸濁し、超音波処理を数秒間行って凝集体を分解し、10〜107倍程度の希釈系列を作り、2×YT寒天培地に塗布した。各培地を24時間60度で培養し、好熱菌を単離した。 Soil samples were collected from the Hiroshima University campus. Samples were suspended in sterile water, to decompose the agglomerates by performing a few seconds sonication, making a dilution series of approximately 10 to 10 7 times, was applied to 2 × YT agar medium. Each medium was cultured at 60 ° C. for 24 hours to isolate thermophilic bacteria.

(2)DAPI染色を指標としたポリリン酸蓄積菌のスクリーニング
環境試料から得られた高温菌を、12時間60℃で培養した。培養液1mlを、遠心分離(15,000rpm×3min)して菌体を沈殿させた後、1mlの0.8%NaClで洗浄し、1mlの0.8%NaClに再懸濁した。
(2) Screening for polyphosphate accumulating bacteria using DAPI staining as an indicator Thermophilic bacteria obtained from environmental samples were cultured at 60 ° C. for 12 hours. 1 ml of the culture solution was centrifuged (15,000 rpm × 3 min) to precipitate cells, washed with 1 ml of 0.8% NaCl, and resuspended in 1 ml of 0.8% NaCl.

この溶液を0.8%NaClで10倍希釈した。菌体濃度が高い場合は適宜希釈した。4’,6-diamino-2-phenylindole(DAPI)をサンプルに対して終濃度10、20、30μg/mlの濃度になるように混合した。サンプルによっては染色されやすい菌や、染色されにくい菌があったため、DAPIの濃度を3段階に分けた。冷暗室で緩やかに攪拌しながら2時間置いて染色を行った。   This solution was diluted 10-fold with 0.8% NaCl. When the bacterial cell concentration was high, it was diluted appropriately. 4 ', 6-diamino-2-phenylindole (DAPI) was mixed with the sample so that the final concentrations were 10, 20, and 30 μg / ml. Depending on the sample, there were bacteria that were easily stained and bacteria that were difficult to stain, so the DAPI concentration was divided into three levels. Staining was performed for 2 hours with gentle stirring in a cool dark room.

蛍光顕微鏡(BX-40、オリンパス社製)を用いて観察した。ポリリン酸を蓄積している菌体内には黄色のポリリン酸の顆粒の存在が確認できる。黄色の蛍光を指標に、蛍光強度の強いものをポリリン酸蓄積菌として選抜した。   Observation was performed using a fluorescence microscope (BX-40, Olympus). The presence of yellow polyphosphoric acid granules can be confirmed in the cells that accumulate polyphosphoric acid. Using yellow fluorescence as an index, those having strong fluorescence intensity were selected as polyphosphate-accumulating bacteria.

(3)ポリリン酸の定量
菌体からのポリリン酸の抽出
菌体培養液1mlを遠心分離(15,000rpm×5min)して菌体を集菌した。沈殿した菌体ペレットに350μlのGITC溶液(4M guanidine isothiocyanate、50mM Tris-HCl、pH7.4)を加えて、90℃、2分間保温した。さらに超音波処理を3分間行って菌体を溶解した。さらに90℃で2分間保温し、30μlの10% SDS(ドデシル硫酸ナトリウム)と300μlの99.5%エタノールを加え、よく混合した後、90℃で2分間保温した。
(3) Determination of polyphosphoric acid
Extraction of polyphosphoric acid from bacterial cells 1 ml of the bacterial cell culture solution was centrifuged (15,000 rpm × 5 min) to collect the bacterial cells. 350 μl of GITC solution (4M guanidine isothiocyanate, 50 mM Tris-HCl, pH 7.4) was added to the precipitated cell pellet, and the mixture was incubated at 90 ° C. for 2 minutes. Furthermore, ultrasonic treatment was performed for 3 minutes to dissolve the cells. The mixture was further incubated at 90 ° C. for 2 minutes, 30 μl of 10% SDS (sodium dodecyl sulfate) and 300 μl of 99.5% ethanol were added, mixed well, and then incubated at 90 ° C. for 2 minutes.

サンプル溶液に3μlのグラスミルク(Gene Clean III KIT)を加え、良く混合した後、室温になるまで数分間置いた。遠心分離(15,000rpm×10sec)にてグラスミルクを沈殿させ、300μlのNEW WASH液(Gene Clean III KIT)で2回洗浄を行った。   3 μl of glass milk (Gene Clean III KIT) was added to the sample solution, mixed well, and allowed to reach room temperature for several minutes. Glass milk was precipitated by centrifugation (15,000 rpm × 10 sec) and washed twice with 300 μl of NEW WASH solution (Gene Clean III KIT).

50μlのnuclease溶液(50mM Tris pH7.4、10mM MgCl2、20μg/ml DNase/RNase)を加えて混合し、37℃で15分間保温して核酸を完全に分解した。 50 μl of nuclease solution (50 mM Tris pH 7.4, 10 mM MgCl 2 , 20 μg / ml DNase / RNase) was added and mixed, and incubated at 37 ° C. for 15 minutes to completely decompose the nucleic acid.

サンプル溶液に150μlのGITC溶液と150μlの99.5%エタノールを加えて混合し、遠心分離してグラスミルクを沈殿させた後、200μlのNEW WASH液で2回洗浄を行った。   The sample solution was mixed with 150 μl of GITC solution and 150 μl of 99.5% ethanol, centrifuged to precipitate glass milk, and then washed twice with 200 μl of NEW WASH solution.

沈殿に100μlの蒸留水を加えて混合し、90℃で2分間保温した後に遠心分離(15,000rpm×4min)を行い、上清をポリリン酸溶液として分取して後の測定に用いた。   100 μl of distilled water was added to the precipitate and mixed, and the mixture was kept at 90 ° C. for 2 minutes, then centrifuged (15,000 rpm × 4 min), and the supernatant was collected as a polyphosphoric acid solution and used for subsequent measurements.

ポリリン酸量の測定
ポリリン酸の定量はポリリン酸キナーゼ(PPK)を用いてATPに変換し、ATP量として測定した。菌体から調製したポリリン酸溶液4μlに0.5mM ADP溶液2μl、PPK(15μg/ml)1μlおよび3.3×PPK 緩衝液(50 mM HEPES-KOH、40mM(NH4)2SO4、4 mM MgCl2、pH7.2)3μlを加えて、37℃で1時間保温し、ポリリン酸をATPに変換した。
Measurement of the amount of polyphosphate Polyphosphate was quantified by converting to ATP using polyphosphate kinase (PPK) and measuring the amount of ATP. 4 μl of polyphosphate solution prepared from bacterial cells, 2 μl of 0.5 mM ADP solution, 1 μl of PPK (15 μg / ml) and 3.3 × PPK buffer (50 mM HEPES-KOH, 40 mM (NH 4 ) 2 SO 4 , 4 mM MgCl 2 , 3 μl of pH 7.2) was added, and the mixture was incubated at 37 ° C. for 1 hour to convert polyphosphoric acid to ATP.

サンプル5μlにルシフェラーゼ溶液40μl(ATPバイオルミネッセンスキットCLS II、 Roche社製、Cat#.1699695)を加え、直ちにマイクロプレートリーダーを用いて蛍光値として測定した。   40 μl of luciferase solution (ATP bioluminescence kit CLS II, manufactured by Roche, Cat # .1699695) was added to 5 μl of the sample, and the fluorescence value was immediately measured using a microplate reader.

(4)ポリリン酸蓄積菌の同定
ポリリン酸の蓄積量が多かった株について菌株の同定を行った。菌株の同定は、種間でよく保存されている16S rRNAをコードしている塩基配列をデータベース上で比較する方法をとった。また、形態観察及び生理・生化学試験を行い、当該株の帰属分類群を決定した。
(4) Identification of polyphosphate-accumulating bacteria Strains were identified for strains that accumulated a large amount of polyphosphate. For identification of the strain, a method was used in which a base sequence encoding 16S rRNA well conserved among species was compared on a database. In addition, morphological observation and physiological / biochemical tests were performed to determine the belonging taxon of the strain.

ゲノムDNA抽出に使用した試薬Reagents used for genomic DNA extraction

Figure 0005334527
Figure 0005334527

ゲノムDNAの抽出
目的とする菌を、12時間、60度で培養し、ペレットにした。567μlのTEを添加し、ピペッティングによってよく懸濁した。30μlの10%SDSと3μlの20mg/mlプロティナーゼKを加え、軽くvortexしてから37度で1時間インキュベートした。5MのNaClを100 ml加え、vortexしてよく混ぜた。CTAB/NaCl溶液を80μl加えてよく混ぜ、65度で10分間インキュベートした。ほぼ等量(700μl程度)のCIを加え、20秒間vortexしてよく混ぜて均一なエマルジョンにし、15,000rpmで5分間、室温で遠心した。遠心後、白い界面が現れた。界面部分をとらないように水層を新しいチューブに移した。ほぼ等量(700μl)のPCIを加え、20秒間vortexしてよく混ぜて均一なエマルジョンにし、再び15,000rpmで5分間、室温で遠心した。上層を新しいチューブに移した。イソプロパノールを0.6容(450μl程度)加え、白いひも状のDNAがはっきり見えるようになるまでチューブをひっくり返して混ぜた。室温で2-10分間静置し、15,000rpmで10-15分間、室温で遠心してDNAを沈殿させた。10μlのTE bufferに溶解させ、10mg/mlのRNase solutionを1μl加え、37度で1時間程度インキュベートした。等量(100μl)のPCIを加え、20秒間vortexして均一なエマルジョンにし、15,000rpmで15秒間、室温で遠心した。上層を新しいチューブに移し、下層に再度100μlのTEを足してvortex、15,000rpmで15秒間遠心し、上層を先にとったものに加えた。この上層200μlに、3M酢酸ナトリウム溶液を20μl、100%エタノールを500μl加えて、よく混ぜた後、室温で2-10分間放置した。15,000rpmで10-15分間遠心し、DNAをペレットにし、上清を除き、70%エタノールを1ml加え、軽く混ぜてDNAを洗浄した。15,000rpmで5分間遠心して再度沈殿させ、上清を取り除き、真空デシケータで、ペレットを乾燥させた。100μlのTEに溶解させ、260nmの吸光度を測定して濃度を決定するとともに、電気泳動によって得られたDNAの分子量をチェックした。
Bacteria targeted for the extraction of genomic DNA were cultured at 60 degrees for 12 hours and pelleted. 567 μl TE was added and well suspended by pipetting. 30 μl of 10% SDS and 3 μl of 20 mg / ml proteinase K were added, lightly vortexed and incubated at 37 degrees for 1 hour. 100 ml of 5M NaCl was added and mixed well by vortexing. 80 μl of CTAB / NaCl solution was added and mixed well, and incubated at 65 degrees for 10 minutes. Approximately equal volume (about 700 μl) of CI was added, vortexed for 20 seconds and mixed well to obtain a uniform emulsion, and centrifuged at 15,000 rpm for 5 minutes at room temperature. A white interface appeared after centrifugation. The aqueous layer was transferred to a new tube so as not to take the interface part. An approximately equal volume (700 μl) of PCI was added, vortexed for 20 seconds, mixed well to make a uniform emulsion, and centrifuged again at 15,000 rpm for 5 minutes at room temperature. The upper layer was transferred to a new tube. 0.6 volume (about 450 μl) of isopropanol was added, and the tube was turned over until the white string-like DNA was clearly visible. The mixture was allowed to stand at room temperature for 2-10 minutes, and centrifuged at 15,000 rpm for 10-15 minutes at room temperature to precipitate DNA. After dissolving in 10 μl of TE buffer, 1 μl of 10 mg / ml RNase solution was added and incubated at 37 degrees for about 1 hour. An equal volume (100 μl) of PCI was added, vortexed for 20 seconds to make a uniform emulsion, and centrifuged at 15,000 rpm for 15 seconds at room temperature. The upper layer was transferred to a new tube, 100 μl of TE was added again to the lower layer, and the mixture was centrifuged at vortex at 15,000 rpm for 15 seconds, and the upper layer was added to the previous one. 20 μl of 3M sodium acetate solution and 500 μl of 100% ethanol were added to 200 μl of this upper layer, mixed well, and then allowed to stand at room temperature for 2-10 minutes. After centrifugation at 15,000 rpm for 10-15 minutes, the DNA was pelleted, the supernatant was removed, 1 ml of 70% ethanol was added, and lightly mixed to wash the DNA. The mixture was centrifuged at 15,000 rpm for 5 minutes to precipitate again, the supernatant was removed, and the pellet was dried with a vacuum desiccator. It was dissolved in 100 μl of TE, the absorbance was measured at 260 nm, the concentration was determined, and the molecular weight of the DNA obtained by electrophoresis was checked.

PCRによる16s rDNA領域の増幅とDNA塩基配列決定
目的とする菌をNutrient agar培地(Oxoid社製)を用いて45℃で24時間培養し、培養した菌体からDNAを抽出し、16s rDNA領域をPCRにより増幅し、その後、配列決定を行った。具体的に、DNA抽出にはInstaGene Matrix(Bio Rad社製)を添付のプロトコールに従って使用した。PCRは、PrimeSTAR HS DNA Polymerase(タカラバイオ社製)を添付のプロトコールに従って使用した。サイクルシークエンスには、BigDye Terminator v3.1 Cycle Sequencing Kit(アプライドバイオシステムス社製)を添付のプロトコールに従って使用した。使用したプライマーは、「遺伝子解析法 16s rRNA遺伝子の塩基配列決定法、日本放線菌学会編、放線菌の分類と同定88-117pp、日本学会事務センター(2001)」に開示された9F、339F、785F、1099F、536R、802R、1242R及び1510Rを使用した。シークエンスはABI PRISM 3100 Genetic Analyzer System(アプライドバイオシステムス社製)を添付のプロトコールに従って使用した。配列決定はChromasPro 1.4(Technelysium Pty社製)をを添付のプロトコールに従って使用した。
Amplification of 16s rDNA region by PCR and determination of DNA sequence The target bacteria were cultured for 24 hours at 45 ° C in Nutrient agar medium (Oxoid). DNA was extracted from the cultured cells, and the 16s rDNA region was Amplification by PCR was followed by sequencing. Specifically, InstaGene Matrix (Bio Rad) was used for DNA extraction according to the attached protocol. For PCR, PrimeSTAR HS DNA Polymerase (manufactured by Takara Bio Inc.) was used according to the attached protocol. For cycle sequencing, BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) was used according to the attached protocol. The primers used were 9F, 339F, disclosed in “Gene analysis method 16s rRNA gene base sequencing method, edited by Japanese Society for Actinomycetes, classification and identification of actinomycetes 88-117pp, Japan Society for Business Administration (2001)”, 785F, 1099F, 536R, 802R, 1242R and 1510R were used. The sequence used ABI PRISM 3100 Genetic Analyzer System (Applied Biosystems) according to the attached protocol. For sequencing, ChromasPro 1.4 (Technelysium Pty) was used according to the attached protocol.

得られた16s rDNA領域の塩基配列に基づいて相同性検索及び簡易分子系統解析を行った。ソフトウェアとしてはアポロン2.0(テクノスルガ・ラボ社製)を使用し、データベースとしてはアポロンDB-BA3.0及び国際塩基配列データベース(GenBank/DDBJ/EMBL)を使用した。   Based on the base sequence of the obtained 16s rDNA region, homology search and simple molecular phylogenetic analysis were performed. Apollon 2.0 (manufactured by Techno Suruga Laboratories) was used as software, and Apollon DB-BA3.0 and an international nucleotide sequence database (GenBank / DDBJ / EMBL) were used as databases.

形態観察及び生理・生化学試験
光学顕微鏡による形態観察及びBARROW et al., "Cowan and Steel's Manual for the Identification of Medical Bacteria" 3rd edition. 1993. Canibridge University Pressに記載された方法に基づき、カタラーゼ反応、オキシダーゼ反応、ブドウ糖からの酸/ガス産生、ブドウ糖の酸化/発酵(O/F)について試験を行った。
生理・生化学試験にはAPI50CHB(BioMerieux社製)を使用した。
Morphological observation and physiological / biochemical test Morphological observation by optical microscope and BARROW et al., "Cowan and Steel's Manual for the Identification of Medical Bacteria" 3rd edition. 1993. Catalase reaction based on the method described in Canibridge University Press, Tests were conducted for oxidase reaction, acid / gas production from glucose, and glucose oxidation / fermentation (O / F).
API50CHB (manufactured by BioMerieux) was used for physiological and biochemical tests.

(5)実験結果
環境試料中からのポリリン酸蓄積高温菌のスクリーニング
環境試料の懸濁液を2xYTプレートにプレーティングし、60度で培養したところ、活性汚泥サンプルでは102-104倍希釈、土壌試料では10-103倍希釈低度で高温菌のシングルコロニーを得ることが出来た。得られた高温菌を2xYTに植菌し、60℃で培養し、DAPI染色したものを蛍光顕微鏡で観察し、黄色の蛍光を示標にポリリン酸蓄積菌の単離を行った。活性汚泥、土壌から得られた高温菌204コロニーについて試験を行った。その結果、試験した204サンプルのうち黄色の蛍光が観察されたのは22サンプルであった。このうち2株が非常に強い黄色蛍光を示し、5株が比較的強い黄色蛍光を示し、他15株が弱い黄色蛍光を示した。再現性試験をこれらについて行ったところ、試験毎に蛍光強度が変化するものが多く見られ再現性が得られないものがあった。これは、ポリリン酸蓄積が培養条件の違いや細胞の増殖ステージによって変化していることを示している可能性があり、安定的なリン酸の回収システムに使用するには不向きであると考えた。そこで、毎回安定して黄色の蛍光が観察される菌株をポリリン酸高蓄積株の候補株として選択した。
(5) Experimental results
Screening for polyphosphate-accumulating thermophilic bacteria from environmental samples Plate the suspension of environmental samples on a 2xYT plate and incubate at 60 degrees, diluting 10 2 -10 4 times for activated sludge samples, 10- 10 for soil samples 10 A single colony of thermophilic bacteria could be obtained at a 3- fold dilution. The obtained thermophilic bacteria were inoculated into 2 × YT, cultured at 60 ° C., and DAPI-stained ones were observed with a fluorescence microscope, and polyphosphate-accumulating bacteria were isolated using yellow fluorescence as an indicator. Tests were performed on 204 colonies of thermophilic bacteria obtained from activated sludge and soil. As a result, of the 204 samples tested, yellow samples were observed in 22 samples. Of these, 2 strains showed very strong yellow fluorescence, 5 strains showed relatively strong yellow fluorescence, and 15 other strains showed weak yellow fluorescence. When a reproducibility test was conducted on these, there were many cases in which the fluorescence intensity changed from one test to another, and there were some in which reproducibility could not be obtained. This may indicate that polyphosphate accumulation changes depending on the culture conditions and cell growth stage, and was considered unsuitable for use in a stable phosphate recovery system. . Therefore, a strain in which yellow fluorescence was observed stably every time was selected as a candidate strain of a polyphosphate high accumulation strain.

ポリリン酸蓄積高温菌候補株のポリリン酸蓄積量の測定
安定してポリリン酸を蓄積して黄色の蛍光を発する株が、どれくらいの量のポリリン酸を蓄積しているかを、ポリリン酸測定を行って調べた。供試株を60℃で培養し、継時的にサンプリングを行い、OD600の値とポリリン酸量を測定した。その結果を図3に示す。図3から判るように、供試株は対数増殖期中期あたりからポリリン酸蓄積量が増加し始め、定常期に一定になった。その値は約100nmol/mg proteinに達した。この蓄積量は、遺伝子操作をしていないバクテリアでは非常に高い値である。供試株は生育と共にポリリン酸を蓄積した。これは大腸菌がアミノ酸飢餓時にポリリン酸を蓄積するのとは、異なる挙動であり興味深い。また、リン酸回収の観点からは、特別な培養条件にする必要がないという点で、利点があると考えられた。
Measurement of polyphosphate accumulation amount of candidate strains of polyphosphate-accumulating thermobacteria Measure the amount of polyphosphate accumulated by the strain that stably accumulates polyphosphate and emits yellow fluorescence. Examined. The test strain was cultured at 60 ° C., sampled over time, and the value of OD600 and the amount of polyphosphoric acid were measured. The result is shown in FIG. As can be seen from FIG. 3, the amount of polyphosphate accumulated in the test strain started to increase from the middle of the logarithmic growth phase and became constant in the stationary phase. Its value reached about 100 nmol / mg protein. This accumulation amount is very high in bacteria that have not been genetically manipulated. The test strain accumulated polyphosphoric acid with growth. This is interesting because E. coli does not accumulate polyphosphate during amino acid starvation. Further, from the viewpoint of phosphate recovery, it was considered that there was an advantage in that it was not necessary to use special culture conditions.

一方、供試株の至適培養温度を検討したところ、50℃および60℃で生育したが、37℃、70℃では生育できなかった。また、このときのポリリン酸の蓄積量を測定したところ、50℃より60℃の方が多くポリリン酸を蓄積することが分かった(図4)。   On the other hand, when the optimum culture temperature of the test strain was examined, it grew at 50 ° C. and 60 ° C., but could not grow at 37 ° C. and 70 ° C. Further, when the amount of polyphosphoric acid accumulated at this time was measured, it was found that polyphosphoric acid accumulated more at 60 ° C. than at 50 ° C. (FIG. 4).

Figure 0005334527
Figure 0005334527

ポリリン酸高蓄積候補株16s rDNAの塩基配列解析
供試株の16s rDNA領域の塩基配列を決定した結果を配列番号1に示した。また、生理・生化学試験の結果を表9〜11に示した。
SEQ ID NO: 1 shows the result of determining the base sequence of the 16s rDNA region of the test strain 16s rDNA . The results of physiological and biochemical tests are shown in Tables 9-11.

Figure 0005334527
Figure 0005334527

Figure 0005334527
Figure 0005334527

Figure 0005334527
Figure 0005334527

BLASTをもちいたアポロンDB-BA3.0に対する相同性検索の結果、供試菌株の16S rDNA塩基配列はUreibacillusおよびBacillus等に由来の16S rDNAに対し高い相同性を示し、U.suwonensis 6T19株(KIM et al., Ureibacillus suwonensis sp. nov., isolated from cotton waste composts. Int. J. Syst. Evol. Microbiol., 2006, 56, 663-666)の16S rDNAに対し相同率98.7%の最も高い相同性を示した。GenBank/DDBJ/EMBLに対する相同性検索の結果においても、供試菌株の16S rDNAはUreibacillus由来の16S rDNAに対し高い相同性を示し、基準株ではU. thermophilus HC148株(WEON et al., Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., isolated from livestock-manure composts. Int. J. Syst. Evol. Microbiol., 2007, 57, 2908-2911)の16S rDNAに対し相同率99.8%、U. composti HC145株(WEON et al., Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., isolated from livestock-manure composts. Int. J. Syst. Evol. Microbiol., 2007, 57, 2908-2911)の16S rDNAに対し相同率98.3%の高い相同性を示した。供試菌株の16S rDNAとアポロンDB-BA3.0に対する相同性検索上位10株の16S rDNAにU. thermophilus HC148株およびU. composti HC145株16S rDNAを加えて行った簡易分子系統解析の結果、SIID6225はUreibacillusの既知種全5種が形成するクラスター内に含まれ、その内のU. thermophilusの16S rDNAとクラスターを形成し、さらにU. thermophilusと同一の分子系統的位置を示した(図5)。   As a result of homology search for Apollon DB-BA3.0 using BLAST, the 16S rDNA nucleotide sequence of the test strain showed high homology to 16S rDNA derived from Ureibacillus and Bacillus etc., and U. suwonensis 6T19 strain (KIM et al., Ureibacillus suwonensis sp. nov., isolated from cotton waste composts. Int. J. Syst. Evol. Microbiol., 2006, 56, 663-666) with the highest homology of 98.7%. showed that. As a result of homology search against GenBank / DDBJ / EMBL, the 16S rDNA of the test strain showed high homology to 16S rDNA derived from Ureibacillus, and the reference strain was U. thermophilus HC148 strain (WEON et al., Ureibacillus composti). nov. and Ureibacillus thermophilus sp. nov., isolated from livestock-manure composts. Int. J. Syst. Evol. Microbiol., 2007, 57, 2908-2911), homology 99.8%, U. composti HC145 (WEON et al., Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., isolated from livestock-manure composts. Int. J. Syst. Evol. Microbiol., 2007, 57, 2908-2911) A high homology with 98.3% homology to 16S rDNA was shown. As a result of a simple molecular phylogenetic analysis performed by adding U. thermophilus HC148 strain and U. composti HC145 strain 16S rDNA to 16S rDNA of the top 10 strains of 16S rDNA of the test strain and Apollon DB-BA3.0. Is contained in a cluster formed by all five known species of Ureibacillus, forms a cluster with 16S rDNA of U. thermophilus, and shows the same molecular systematic position as U. thermophilus (Fig. 5) .

以上のことから、供試菌株はUreibacillusに含まれ、U. thermophilusに帰属する可能性が高いと考えられた。両者の16S rDNA配列間には3塩基の相違が確認されたが、このうちの2塩基はプライマー領域であり、残りの1塩基は供試菌株における混合塩基であることから、これらの相違点を両者の明確な差として捉えることは不適切であると考えられた。よって、両者の16S rDNA配列はほぼ一致することから、16S rDNA塩基配列解析の結果からは、供試菌株をU. thermophilusに帰属する菌株と推定した。   Based on the above, it was considered that the test strain was included in Ureibacillus and likely to belong to U. thermophilus. A difference of 3 bases between the 16S rDNA sequences was confirmed, but 2 of these were primer regions and the remaining 1 base was a mixed base in the test strain. It was considered inappropriate to regard it as a clear difference between the two. Therefore, since both 16S rDNA sequences are substantially the same, the test strain was estimated to be a strain belonging to U. thermophilus from the results of 16S rDNA nucleotide sequence analysis.

形態観察及び生理・生化学試験の結果、供試菌株は45℃および好気条件下で良好な生育を示し、運動性を有するグラム陰性桿菌で円形の芽胞形成が認めらたが、芽胞による菌体の膨張は認められなかった。また、カタラーゼ反応およびオキシダーゼ反応は共に陽性を示した。これらの性状は、16S rDNA塩基配列解析の結果において帰属が示唆されたUreibacillusの一般性状と一致すると考えられた。生理・生化学試験としてAPI試験を行なった結果、供試菌株はグリセロール、リボースおよびソルボースなどを酸化し、D-アラビノース、グルコースおよびフラクトースなどを酸化せず、ゼラチンを加水分解し、ウレアーゼ活性を示さなかった。また、追加試験の結果、供試菌株は嫌気条件下で生育せず、35℃および65℃で生育し、5%NaClで生育せず、カゼインおよびでんぷんを加水分解し無かった。これらの性状は16S rDNA塩基配列解析の結果において近縁性が示唆されたU. thermophilusの性状と一致する点は多いが、5%NaClで生育せず、ゼラチンを加水分解することはU. thermophilusの性状とは若干異なっていた。   As a result of morphological observation and physiological and biochemical tests, the test strain showed good growth at 45 ° C and aerobic conditions. Gram-negative bacilli with motility showed circular spore formation. Body swelling was not observed. Catalase reaction and oxidase reaction were both positive. These properties were considered to be consistent with the general properties of Ureibacillus whose assignment was suggested in the results of 16S rDNA nucleotide sequence analysis. As a result of API tests as physiological and biochemical tests, the test strains oxidize glycerol, ribose, sorbose, etc., do not oxidize D-arabinose, glucose, fructose, etc., hydrolyze gelatin, exhibit urease activity There wasn't. As a result of the additional test, the test strain did not grow under anaerobic conditions, grew at 35 ° C. and 65 ° C., did not grow at 5% NaCl, and did not hydrolyze casein and starch. Although these properties are consistent with the properties of U. thermophilus, which was suggested to be related in the results of 16S rDNA nucleotide sequence analysis, it does not grow on 5% NaCl, and hydrolysis of gelatin is not possible with U. thermophilus. The properties were slightly different.

以上のことから、供試菌株は属のレベルにおいてUreibacillusに含まれ、U. thermophilusに属すると判断された。しかしなから、U. thermophilusに属する公知株とも微生物として相違していることから、供試菌株はU. thermophilusに属する新規菌株であると判断された。   From the above, it was determined that the test strain was included in Ureibacillus at the genus level and belonged to U. thermophilus. However, since it was different as a microorganism from known strains belonging to U. thermophilus, it was determined that the test strain was a new strain belonging to U. thermophilus.

本実施例で単離・同定されたリン成分蓄積能を有するU. thermophilusの新規菌株をHTP-01と命名し、独立行政法人産業技術総合研究所 特許生物寄託センター(〒305-8566茨城県つくば市東1-1-1中央第6)に2008年7月10日に受託番号FERM P-21602として寄託した。   A new strain of U. thermophilus isolated and identified in this example and capable of accumulating phosphorus components was named HTP-01, and the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Tsukuba, Ibaraki, 305-8566) Deposited on July 10, 2008 as deposit number FERM P-21602 at City East 1-1-1 Central No. 6).

本発明を適用した廃水処理装置の一例を示すブロック図である。It is a block diagram which shows an example of the waste water treatment apparatus to which this invention is applied. 本発明を適用した廃水処理装置の一例を示すブロック図である。It is a block diagram which shows an example of the waste water treatment apparatus to which this invention is applied. 供試菌株の生育曲線及びリン蓄積量を示す特性図であるIt is a characteristic view which shows the growth curve and phosphorus accumulation amount of a test strain. 供試菌株の50℃又は60℃におけるリン蓄積量を示す特性図である。It is a characteristic figure which shows the phosphorus accumulation amount in 50 degreeC or 60 degreeC of a test strain. 供試菌株(HTP-01株)及び近縁種を含む系統樹図である。It is a phylogenetic tree including a test strain (HTP-01 strain) and related species.

符号の説明Explanation of symbols

1…脱リン槽、2…固液分離槽、3…コージェネレーション装置、4…リン回収装置 DESCRIPTION OF SYMBOLS 1 ... Dephosphorization tank, 2 ... Solid-liquid separation tank, 3 ... Cogeneration apparatus, 4 ... Phosphorus collection | recovery apparatus

Claims (8)

ウレイバチルス・サーモフィルス(Ureibacillus thermophilus)に属し、50〜60℃の条件下でポリリン酸を菌体内に蓄積する能力を有し、受託番号FERM P-21602である微生物。 Belongs to the Ureibachirusu-thermophilus (Ureibacillus thermophilus), polyphosphoric acid under the conditions of 50~60 ℃ possess the ability to accumulated in the cells, microorganisms which are accession number FERM P-21602. リン成分を含む廃水に請求項記載の微生物を接触させる工程を含む廃水処理方法。 A wastewater treatment method comprising a step of bringing the microorganism according to claim 1 into contact with wastewater containing a phosphorus component. 上記廃水を50〜60℃とすることを特徴とする請求項記載の廃水処理方法。 The wastewater treatment method according to claim 2, wherein the wastewater is set to 50 to 60 ° C. 上記微生物を接触させた後、廃液中に含まれるリン成分を蓄積した微生物を分離し、分離後の微生物からリン成分を回収する工程を更に含む、請求項記載の廃水処理方法。 The wastewater treatment method according to claim 2 , further comprising a step of separating the microorganism that has accumulated the phosphorus component contained in the waste liquid after contacting the microorganism and recovering the phosphorus component from the separated microorganism. 硝酸イオンを含む廃水に請求項記載の微生物を接触させる脱リン槽を備える廃水処理装置。 A wastewater treatment apparatus comprising a dephosphorization tank for bringing the microorganism according to claim 1 into contact with wastewater containing nitrate ions. 上記廃水の温度を所望の温度に制御する温度制御手段を更に備える、請求項記載の廃水処理装置。 The wastewater treatment apparatus according to claim 5 , further comprising temperature control means for controlling the temperature of the wastewater to a desired temperature. 上記温度制御手段は、脱リン槽における廃水の温度を50〜60℃に制御することを特徴とする請求項記載の廃水処理装置。 The waste water treatment apparatus according to claim 6 , wherein the temperature control means controls the temperature of the waste water in the dephosphorization tank to 50 to 60 ° C. 上記脱リン槽に接続され、廃液中に含まれるリン成分を蓄積した微生物を分離、回収する装置を更に備えることを特徴とする請求項記載の廃水処理装置。 The wastewater treatment apparatus according to claim 5 , further comprising a device connected to the dephosphorization tank and configured to separate and collect microorganisms that accumulate phosphorus components contained in the waste liquid.
JP2008277019A 2008-10-28 2008-10-28 Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism Active JP5334527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277019A JP5334527B2 (en) 2008-10-28 2008-10-28 Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277019A JP5334527B2 (en) 2008-10-28 2008-10-28 Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism

Publications (2)

Publication Number Publication Date
JP2010104251A JP2010104251A (en) 2010-05-13
JP5334527B2 true JP5334527B2 (en) 2013-11-06

Family

ID=42294334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277019A Active JP5334527B2 (en) 2008-10-28 2008-10-28 Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism

Country Status (1)

Country Link
JP (1) JP5334527B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367439B2 (en) * 2009-04-16 2013-12-11 株式会社ロッシュ Recycled water and sludge treatment method.
CN112703934A (en) * 2021-01-25 2021-04-27 兰考县丰驰农业科技有限公司 Method for stewing greenhouse at high temperature
CN115820513B (en) * 2022-12-26 2024-04-05 施可丰化工股份有限公司 Microbial agent for preventing and treating soil-borne diseases and preparation method thereof

Also Published As

Publication number Publication date
JP2010104251A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
Tay et al. Presence of anaerobic Bacteroides in aerobically grown microbial granules
Hedi et al. Studies on the biodiversity of halophilic microorganisms isolated from El-Djerid Salt Lake (Tunisia) under aerobic conditions
Khiyami et al. Thermo-aerobic bacteria from geothermal springs in Saudi Arabia
JP5334527B2 (en) Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism
Zarparvar et al. Isolation and identification of culturable halophilic bacteria with producing hydrolytic enzyme from Incheh Broun hypersaline wetland in Iran
Asy’ari et al. Isolation and identification of halostable lipase producing bacteria from the Bledug Kuwu mud crater located at Purwodadi-Grobogan, Central Java, Indonesia
JPWO2020067555A1 (en) Microbial decomposition bacteria, microbial preparations, microbial decomposition methods and decomposition equipment
JP6675714B2 (en) Sludge volume reduction method for microbial material and excess sludge
JP2010226959A (en) New microorganism, method for treating waste water with the microorganism and waste water-treating apparatus
Ibrahim et al. Isolation and identification of alkaline protease producing alkaliphilic bacteria from an Egyptian Soda Lake
JP4610374B2 (en) Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism
CN112940971A (en) Delftia sp for regulating quorum sensing quenching and separation method and application thereof
JP5899048B2 (en) Microorganism forming gold nanoparticles and method of forming gold nanoparticles using the same
CN109423456B (en) Azotobacter chroococcum as well as identification method and application thereof
JP4088690B2 (en) New microorganisms and methods for removing arsenic by microorganisms
Ziembinska et al. Comparison of ammonia-oxidizing bacterial community structure in membrane-assisted bioreactors using PCR-DGGE and FISH
JP2012139216A (en) New microorganism, and waste water disposal method and waste water disposal apparatus using the new microorganism
Kulichevskaya et al. A novel filamentous planctomycete of the Isosphaera-Singulisphaera group isolated from a Sphagnum peat bog
Mahmoud et al. Characterization and molecular identification of unknown bacteria isolated from outlet of Arab El Madabegh sewage treatment plant in Assiut City, Egypt
Sutrisno et al. Isolation and identification of lipid-degrading bacteria from fish (Sardinella longiceps) canning wastewater
SUTAMI et al. A salt tolerant Sphingosinicella microcystinivorans A3 isolated from soil contaminated with mercury in traditional gold mining of Jendi Village, Wonogiri District, Indonesia
Gupta et al. Isolation and identification of a novel, cold active lipase producing psychrophilic bacterium Pseudomonas vancouverensis
Toh et al. Enzymatic Screening and Genotypic Characterization of Thermophilic Bacteria from the Hot Springs of Sarawak, Malaysia
Manikandan et al. Screening and Characterization of Protease Producing Halophilic Bacteria from Saltpan Area Vedaranyam, Tamil Nadu
Al-Daraghi et al. Isolation and Identification of lipA Gene Producing Pseudomonas aeruginosa from Industrial Wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5334527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250