JP4610374B2 - Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism - Google Patents

Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism Download PDF

Info

Publication number
JP4610374B2
JP4610374B2 JP2005058879A JP2005058879A JP4610374B2 JP 4610374 B2 JP4610374 B2 JP 4610374B2 JP 2005058879 A JP2005058879 A JP 2005058879A JP 2005058879 A JP2005058879 A JP 2005058879A JP 4610374 B2 JP4610374 B2 JP 4610374B2
Authority
JP
Japan
Prior art keywords
wastewater treatment
denitrification
treatment apparatus
wastewater
tdn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005058879A
Other languages
Japanese (ja)
Other versions
JP2006238794A (en
Inventor
徹 松井
寿二 天野
俊雄 大森
健一 岩田
将大 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2005058879A priority Critical patent/JP4610374B2/en
Publication of JP2006238794A publication Critical patent/JP2006238794A/en
Application granted granted Critical
Publication of JP4610374B2 publication Critical patent/JP4610374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Description

本発明は、例えば廃水に含まれる硝酸イオンを基質として窒素ガスを生成する新規微生物に関し、さらに当該新規微生物を用いた廃水処理方法及び廃水処理装置に関する。   The present invention relates to a novel microorganism that generates nitrogen gas using, for example, nitrate ions contained in wastewater as a substrate, and further relates to a wastewater treatment method and a wastewater treatment apparatus using the novel microorganism.

例えば廃水に含まれる硝酸イオンは、水環境における富栄養化問題の原因の一つであり、閉鎖海域等における総量規制が課せられている物質である。水環境に含まれる硝酸イオンは、一般的に、微生物による脱窒により窒素ガスにまで還元し除去される。より詳細には、廃水等に含まれるアンモニウムイオンを好気状態で硝酸イオン及び/又は亜硝酸イオン等に酸化し、続いて嫌気状態で窒素ガスまで還元する。   For example, nitrate ions contained in wastewater are one of the causes of eutrophication problems in the water environment, and are substances that are subject to total amount regulations in closed sea areas. The nitrate ions contained in the water environment are generally reduced to nitrogen gas and removed by denitrification by microorganisms. More specifically, ammonium ions contained in waste water or the like are oxidized to nitrate ions and / or nitrite ions in an aerobic state, and subsequently reduced to nitrogen gas in an anaerobic state.

しかしながら、従来、脱窒能を有する微生物に関する研究報告としては、20〜30℃の常温で生育する微生物によるものが殆どであり、高温条件では亜硝酸イオンを基質とする微生物しか報告されていない(非特許文献1)。高温条件では、気体である窒素ガスの水への溶解度が低下するため、より効果的な脱窒反応が期待される。非特許文献1の研究では高温菌であるBacillus属細菌を用いて培養10-20時間で1mmol(50ppm)の亜硝酸が消費され、0.4-0.5mmolの亜酸化窒素が生成されている(ほぼ定量的な反応)。培養温度は60℃である。   However, conventionally, most research reports on microorganisms having denitrification ability are those by microorganisms that grow at room temperature of 20-30 ° C., and only microorganisms that use nitrite ions as substrates at high temperature conditions have been reported ( Non-patent document 1). Under high temperature conditions, the solubility of nitrogen gas, which is a gas, in water is reduced, so that a more effective denitrification reaction is expected. In the research of Non-Patent Document 1, 1 mmol (50 ppm) of nitrous acid was consumed in 10-20 hours of cultivation using Bacillus genus bacteria, which are thermophilic bacteria, and 0.4-0.5 mmol of nitrous oxide was produced (almost quantitative). Reaction). The culture temperature is 60 ° C.

しかしながら、この研究において基質とする亜硝酸は硝酸から生ずる中間生成物であるため、廃水等の脱窒を目的とする場合には、従来の微生物では十分な効果を期待することができない。すなわち、現状では高温条件下での効率的な脱窒技術は存在していない。   However, since nitrous acid as a substrate in this research is an intermediate product generated from nitric acid, a sufficient effect cannot be expected with conventional microorganisms for the purpose of denitrification of wastewater and the like. That is, at present, there is no efficient denitrification technique under high temperature conditions.

N.Gokceら、Applied and Environmental Microbiology, Vol.55, No.4, p.1023-1025, 1989N. Gokce et al., Applied and Environmental Microbiology, Vol.55, No.4, p.1023-1025, 1989

そこで、本発明は、上述したような実状に鑑み、廃水等に含まれる硝酸イオンを基質として脱窒を行うことができる新規な微生物、特に、中程度高温条件下で脱窒を行うことのできる新規な微生物を提供することを目的とし、更に、当該微生物を用いた廃水処理装置及び廃水処理方法を提供することを目的とする。   Therefore, in view of the above situation, the present invention is a novel microorganism capable of performing denitrification using nitrate ions contained in wastewater or the like as a substrate, and in particular, can be denitrified under moderately high temperature conditions. It aims at providing a novel microorganism, and also aims at providing the waste-water-treatment apparatus and waste-water-treatment method using the said microorganism.

上述した目的を達成するため、本発明者等は、土壌、河川或いは活性汚泥を分離源として目的の特性を有する微生物を単離、同定すべく鋭意検討した結果、従来公知の微生物には分類されない、複数の新規微生物を単離、同定することができた。本発明は、これら新規微生物が有する硝酸イオンを基質として脱窒を行うことができるといった知見に基づいてなされたものである。単離、同定した新規微生物は、全て同一の新種に属すると考えられ、従来公知の種には分類されない。   In order to achieve the above-mentioned object, the present inventors have conducted intensive studies to isolate and identify microorganisms having the desired characteristics using soil, rivers, or activated sludge as a separation source, and as a result, they are not classified as conventionally known microorganisms. Several new microorganisms could be isolated and identified. The present invention has been made based on the knowledge that denitrification can be performed using nitrate ions of these novel microorganisms as substrates. The new microorganisms isolated and identified are all considered to belong to the same new species, and are not classified into conventionally known species.

本発明に係る新規微生物は、ジオバチルス(Geobacillus)属に属し、37〜60℃で生育し、硝酸イオンを基質として窒素ガスを生成する能力を有する。本発明者らが単離、同定した新規微生物のうちTDN-01、TDN-02及びTDN-03は、以下の表1〜3のいずれかに記載された菌学的性質を有する。   The novel microorganism according to the present invention belongs to the genus Geobacillus, grows at 37 to 60 ° C., and has the ability to generate nitrogen gas using nitrate ions as a substrate. Among the novel microorganisms isolated and identified by the present inventors, TDN-01, TDN-02 and TDN-03 have the mycological properties described in any of Tables 1 to 3 below.

Figure 0004610374
Figure 0004610374

Figure 0004610374
Figure 0004610374

Figure 0004610374
本発明者らが単離、同定した複数の新規微生物のうち、5種類の微生物(それぞれ、TDN-01、TDN-02、TDN-03、TDN-04及びTDN-05と命名した)に関して16S rRNAをコードする遺伝子(以下、16S rDNAと称する)の塩基配列を決定した。TDN-01の16S rDNAの塩基配列を配列番号1に示し、TDN-02の16S rDNAの塩基配列を配列番号2に示し、TDN-03の16S rDNAの塩基配列を配列番号3に示し、TDN-04の16S rDNAの塩基配列を配列番号4に示し、TDN-05の16S rDNAの塩基配列を配列番号5に示す。
Figure 0004610374
Among a plurality of novel microorganisms isolated and identified by the present inventors, 16S rRNA for 5 types of microorganisms (named TDN-01, TDN-02, TDN-03, TDN-04 and TDN-05, respectively) The base sequence of the gene encoding the gene (hereinafter referred to as 16S rDNA) was determined. The base sequence of 16S rDNA of TDN-01 is shown in SEQ ID NO: 1, the base sequence of 16S rDNA of TDN-02 is shown in SEQ ID NO: 2, the base sequence of 16S rDNA of TDN-03 is shown in SEQ ID NO: 3, and TDN- The base sequence of 16S rDNA of 04 is shown in SEQ ID NO: 4, and the base sequence of 16S rDNA of TDN-05 is shown in SEQ ID NO: 5.

これら配列番号1〜5に示す塩基配列をもとにデータベース(GenBank/DDBJ/EMBL)及びホモロジー検索ソフト(BLAST)を用いてホモロジー検索したところ、配列番号1〜5全てにおいて、“Geobacillus kaue strain BGSC W9A78 16S ribosomal RNA gene”として登録された塩基配列と最も高い相同性(97〜99%)を示し、続いて“Geobacillus uzenensis strain BGSC 92A2 16S ribosomal RNA gene”登録された塩基配列と高い相同性(97〜99%)を示した。しかしながら、配列番号1〜5に示す塩基配列の全てにおいて、99.8%以上の相同性を示す、在来の微生物は存在しなかった。   When homology search was performed using the database (GenBank / DDBJ / EMBL) and homology search software (BLAST) based on these nucleotide sequences shown in SEQ ID NOs: 1 to 5, in all of SEQ ID NOs: 1 to 5, “Geobacillus kaue strain BGSC It shows the highest homology (97-99%) with the nucleotide sequence registered as “W9A78 16S ribosomal RNA gene”, followed by the high homology with the nucleotide sequence registered as “Geobacillus uzenensis strain BGSC 92A2 16S ribosomal RNA gene” (97 ~ 99%). However, there were no conventional microorganisms showing homology of 99.8% or more in all the base sequences shown in SEQ ID NOs: 1 to 5.

以上の菌学的性質を、バージーズ・マニュアル・オブ・システマティック・バクテリオロジー(Bergey's Manual of Systematic Bacteriology)、第2巻(1986)に照らし、また、16S rDNAの塩基配列解析の結果に基づいて本発明に係る新規微生物の分類学的位置を調べたところ、これら新規微生物はGeobacillus属に属する新種に分類された。   The present invention is based on the above bacteriological properties in light of the Bergey's Manual of Systematic Bacteriology, Volume 2 (1986), and based on the results of 16S rDNA sequence analysis. When the taxonomic position of the new microorganisms was examined, these new microorganisms were classified into new species belonging to the genus Geobacillus.

新種に属する新規微生物のうちTDN-01、TDN-02及びTDN-03については、独立行政法人産業技術総合研究所 特許生物寄託センター(〒305-8566茨城県つくば市東1-1-1中央第6)に2005年2月18日に、それぞれ受領番号FERM AP-20412、FERM AP-20413及びFERM AP-20414として寄託した。   Among the new microorganisms belonging to the new species, TDN-01, TDN-02 and TDN-03 are registered with the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Chuo 1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture, 305-8566) ) On February 18, 2005 as deposit numbers FERM AP-20412, FERM AP-20413 and FERM AP-20414, respectively.

特に、本発明に係る微生物は、中程度高温条件下において硝酸イオンを基質としてN2ガスを生成する能力を有している。ここで、中程度高温条件下とは、処理対象の廃水温度が37〜60℃、好ましくは50〜60℃である。 In particular, the microorganism according to the present invention has the ability to generate N 2 gas using nitrate ions as a substrate under moderately high temperature conditions. Here, the moderately high temperature condition means that the waste water temperature to be treated is 37 to 60 ° C, preferably 50 to 60 ° C.

一方、本発明に係る廃水処理方法及び廃水処理装置は、上述した本発明に係る微生物を利用して廃水に含まれる硝酸イオンを中程度高温条件下で除去するものである。本発明に係る廃水処理方法及び廃水処理装置は、上述した微生物を使用することによって、従来の脱窒細菌を用いた方法では除去できなかった硝酸イオンを中程度高温条件下で除去することができる。また、本発明に係る廃水処理方法及び廃水処理装置は、中程度高温条件の廃水を、上述した微生物で処理することができる。   On the other hand, the wastewater treatment method and wastewater treatment apparatus according to the present invention remove nitrate ions contained in wastewater under moderately high temperature conditions using the microorganisms according to the present invention described above. The wastewater treatment method and the wastewater treatment apparatus according to the present invention can remove nitrate ions, which could not be removed by the conventional method using denitrifying bacteria, under moderately high temperature conditions by using the above-described microorganisms. . In addition, the wastewater treatment method and the wastewater treatment apparatus according to the present invention can treat wastewater of moderately high temperature conditions with the above-described microorganisms.

本発明によれば、廃水等に含まれる硝酸イオンを基質として脱窒することができる新規な微生物を提供することができる。特に、本発明に係る新規な微生物は、中程度高温条件下においても硝酸イオンを基質として脱窒することができる。本発明に係る新規な微生物を利用することによって、廃水等に含まれる窒素成分を除去することができる廃水処理方法及び廃水処理装置を提供することができる。これら廃水処理方法及び廃水処理装置においては、処理対象の廃水温度を中程度高温条件とすることができるため、脱窒効率に優れるとともに低コスト化を実現することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the novel microorganisms which can denitrify using the nitrate ion contained in waste water etc. as a substrate can be provided. In particular, the novel microorganism according to the present invention can be denitrified using nitrate ions as a substrate even under moderately high temperature conditions. By utilizing the novel microorganism according to the present invention, it is possible to provide a wastewater treatment method and a wastewater treatment apparatus that can remove nitrogen components contained in wastewater and the like. In these wastewater treatment methods and wastewater treatment apparatuses, the temperature of the wastewater to be treated can be set to a moderately high temperature condition, so that it is possible to achieve excellent denitrification efficiency and cost reduction.

以下、本発明を詳細に説明する。
本発明に係る新規微生物は、ジオバチルス(Geobacillus)属に属し、硝酸イオンを基質としてN2ガスを生成する能力を有している。本発明に係る新規微生物は、Geobacillus kaue及びGeobacillus uzenensisとは異なる、ジオバチルス属の新種に分類される。本発明に係る新規微生物は、中程度高温条件下、すなわち処理対象の溶液の温度が37〜60℃、好ましくは50〜60℃で、硝酸イオンを基質としてN2ガスを生成する能力を発現することができる。
Hereinafter, the present invention will be described in detail.
The novel microorganism according to the present invention belongs to the genus Geobacillus and has an ability to generate N 2 gas using nitrate ions as a substrate. The novel microorganism according to the present invention is classified into a new species of the genus Geobacillus, which is different from Geobacillus kaue and Geobacillus uzenensis. The novel microorganism according to the present invention exhibits the ability to generate N 2 gas using nitrate ions as a substrate under moderately high temperature conditions, that is, the temperature of the solution to be treated is 37 to 60 ° C., preferably 50 to 60 ° C. be able to.

当該新種に属する微生物は、例えば、下水処理場の嫌気層の活性汚泥、田畑、河川水・底土等の環境から単離することができる。具体的な手法としては、先ず、上記各種環境から採取したサンプルを、中程度高温条件下で培養し、脱窒能の有無を基準に選択を行う。ここで、サンプルは、嫌気的条件で保管することが好ましい。また、対象の微生物について脱窒能を検討する際には、従来公知の手法、すなわち、培養液中の硝酸及び亜硝酸の濃度低下をモニターする方法を適用することができる。例えば、硝酸及び亜硝酸の検出には、Griess-romijn(GR)試薬を用いることができる。GR試薬にはGriess-romijn nitrate試薬とGriess-romijn nitrite試薬があり、それぞれ硝酸と亜硝酸を検出することができる。より具体的には、培養液を遠心分離(例えば15000rpm、15分間、室温)し、上清を試験管に回収してGR nitrate試薬またはGR nitrite試薬を少量入れて混合後、静置して色の変化を観察することで、培養液中の硝酸イオンまたは亜硝酸イオンを検出することができる。硝酸イオン及び亜硝酸イオンの量により、溶液は透明から薄桃、濃い赤色に呈色する。   Microorganisms belonging to the new species can be isolated from the environment such as activated sludge, fields, river water, and bottom soil of anaerobic layers in sewage treatment plants. As a specific method, first, samples collected from the above various environments are cultured under moderately high temperature conditions, and selection is made based on the presence or absence of denitrification ability. Here, the sample is preferably stored under anaerobic conditions. Moreover, when examining the denitrification ability of the target microorganism, a conventionally known method, that is, a method of monitoring a decrease in the concentration of nitric acid and nitrous acid in the culture solution can be applied. For example, Griess-romijn (GR) reagent can be used for detection of nitric acid and nitrous acid. The GR reagent includes Griess-romijn nitrate reagent and Griess-romijn nitrite reagent, which can detect nitric acid and nitrous acid, respectively. More specifically, the culture solution is centrifuged (for example, 15000 rpm, 15 minutes, room temperature), the supernatant is collected in a test tube, a small amount of GR nitrate reagent or GR nitrite reagent is added and mixed, and then left to stand for color. By observing this change, nitrate ions or nitrite ions in the culture medium can be detected. Depending on the amount of nitrate and nitrite ions, the solution turns from clear to light pink and dark red.

本発明に係る微生物を用いることで、新規な廃水処理方法及び廃水処理装置を構築することができる。すなわち、上記微生物を利用して処理対象の廃水を脱窒するものであれば、処理ステップ、装置構成の相違に拘わらず全て本発明に係る廃水処理方法及び廃水処理装置に含まれる。   By using the microorganism according to the present invention, a novel wastewater treatment method and wastewater treatment apparatus can be constructed. That is, as long as the waste water to be treated is denitrified using the above-mentioned microorganisms, all are included in the waste water treatment method and the waste water treatment apparatus according to the present invention regardless of differences in treatment steps and apparatus configurations.

廃水処理装置としては、例えば、図1に示すように、本発明に係る微生物による脱窒を行う脱窒槽1と、硝化槽2と、脱窒槽1に対して熱を供給するコージェネレーション装置3と、脱窒槽1で脱窒した結果として生じた窒素ガスを除去するための曝気槽4とを備える。コージェネレーション装置3とは、一つのエネルギーから複数のエネルギーを取り出すシステムであり、例えば、エンジン、タービン及び/又は燃料電池(FC)等を挙げることができる。これらエンジン、タービン及び/又は燃料電池(FC)等のコージェネレーション装置3は、電気エネルギーの他に排熱回収による熱エネルギーを生じる。図1に示す廃水処理装置においては、コージェネレーション装置3で生じた熱エネルギーを脱窒槽1内の廃液に供給するような構成となっている。なお、コージェネレーションからの熱量が、脱窒槽の加温のための熱量より少ない場合は、付属のボイラ等で不足分の加熱を行うことも可能である。   As a wastewater treatment apparatus, for example, as shown in FIG. 1, a denitrification tank 1 that performs denitrification by microorganisms according to the present invention, a nitrification tank 2, and a cogeneration apparatus 3 that supplies heat to the denitrification tank 1 And an aeration tank 4 for removing nitrogen gas generated as a result of denitrification in the denitrification tank 1. The cogeneration apparatus 3 is a system that extracts a plurality of energies from one energy, and examples thereof include an engine, a turbine, and / or a fuel cell (FC). These engine, turbine, and / or fuel cell (FC) cogeneration apparatus 3 generates thermal energy by exhaust heat recovery in addition to electrical energy. The wastewater treatment apparatus shown in FIG. 1 is configured to supply the thermal energy generated in the cogeneration apparatus 3 to the waste liquid in the denitrification tank 1. In addition, when the amount of heat from the cogeneration is less than the amount of heat for heating the denitrification tank, it is also possible to perform the shortage heating with an attached boiler or the like.

図1に示す廃水処理装置においては、先ず、硝化槽2に処理対象の廃水を供給し、その後、硝化槽2で廃水に対して空気を導入して廃水中のアンモニウムイオンを硝酸イオンに硝化する。具体的には、硝化槽2内部では、好気的条件下で硝化能を有する微生物により硝化反応が進行する。硝化能を有する微生物としては、特に種を限定するものではなく、アンモニア性の窒素を硝酸イオンへと消化する硝酸化成菌であれば良い。一例としては、アンモニアから亜硝酸への酸化、及び亜硝酸から硝酸への酸化は、Nitrosomonas属細菌、Nitrobacter属細菌、Nitrococcus属細菌等を利用して行うことができる(大森俊雄編著、環境微生物学、p25-28、昭晃堂、2000年)。アンモニウムイオンを硝酸イオンに硝化した後の廃水は、硝化槽2から脱窒槽1に供給される。   In the wastewater treatment apparatus shown in FIG. 1, first, wastewater to be treated is supplied to the nitrification tank 2, and then air is introduced into the wastewater in the nitrification tank 2 to nitrify ammonium ions in the wastewater into nitrate ions. . Specifically, in the nitrification tank 2, the nitrification reaction proceeds by microorganisms having nitrification ability under aerobic conditions. The microorganism having nitrification ability is not particularly limited as long as it is a nitrifying bacterium capable of digesting ammoniacal nitrogen into nitrate ions. As an example, the oxidation of ammonia to nitrous acid and the oxidation of nitrous acid to nitric acid can be performed using Nitrosomonas bacteria, Nitrobacter bacteria, Nitrococcus bacteria, etc. (Edited by Toshio Omori, Environmental Microbiology) , P. 25-28, Shosodo, 2000). Waste water after nitrifying ammonium ions into nitrate ions is supplied from the nitrification tank 2 to the denitrification tank 1.

次に、脱窒槽1において、上述した新規微生物により、廃水中に含まれる硝酸イオンを基質とする脱窒反応を進行させる。図1に示す廃水処理装置では、都市ガス等を燃料としたコージェネレーション装置3からの熱エネルギーが脱窒槽1に供給され、脱窒槽1内の廃液を中程度高温条件とする。脱窒槽1では、中程度高温条件下で廃水中に含まれる硝酸イオンを基質として脱窒反応を実行することができる。   Next, in the denitrification tank 1, the denitrification reaction using nitrate ions contained in the wastewater as a substrate is advanced by the above-described novel microorganisms. In the wastewater treatment apparatus shown in FIG. 1, heat energy from the cogeneration apparatus 3 using city gas or the like as fuel is supplied to the denitrification tank 1, and the waste liquid in the denitrification tank 1 is set to a medium high temperature condition. In the denitrification tank 1, a denitrification reaction can be performed using nitrate ions contained in wastewater as a substrate under moderately high temperature conditions.

本発明に係る廃水処理装置においては、従来と比較して高温条件下で脱窒反応を行うことができるため、優れた反応効率を達成することができる。したがって、本発明に係る廃水処理装置は、脱窒槽1の小型化することも可能であり、低コスト化することができる。さらに、高温ではガス成分の溶解度が低下することから、脱窒反応の結果として生ずる窒素ガスを効率よく除去することができる。   In the wastewater treatment apparatus according to the present invention, since the denitrification reaction can be performed under a higher temperature condition than in the prior art, an excellent reaction efficiency can be achieved. Therefore, the wastewater treatment apparatus according to the present invention can reduce the size of the denitrification tank 1 and can reduce the cost. Furthermore, since the solubility of the gas component decreases at a high temperature, nitrogen gas generated as a result of the denitrification reaction can be efficiently removed.

なお、本発明に係る廃水処理装置は、図1に示す構成に限定されず、例えば図2に示すように、コージェネレーション装置3からの熱エネルギーを、硝化槽2に導入する空気にも与えるような構成を有していてもよい。図2に示す廃水処理装置においても、コージェネレーション装置3からの熱エネルギーによって、硝化槽2内の廃液を中程度高温条件とすることができる。その結果、図2に示す廃液処理装置でも、同様に、脱窒槽1では、中程度高温条件下で廃水中に含まれる硝酸イオンを基質として脱窒反応を実行することができる。図2に示す廃液処理装置は、空気の加温を行うため硝化槽2の温度低下を抑制することができるため、硝化槽2の反応効率を高められるとともに、脱窒槽1の流入部の温度低下を抑制することが可能になる。   The wastewater treatment apparatus according to the present invention is not limited to the configuration shown in FIG. 1, and for example, as shown in FIG. 2, the heat energy from the cogeneration apparatus 3 is also given to the air introduced into the nitrification tank 2. You may have the structure. Also in the wastewater treatment apparatus shown in FIG. 2, the waste liquid in the nitrification tank 2 can be brought to a medium high temperature condition by the thermal energy from the cogeneration apparatus 3. As a result, in the waste liquid treatment apparatus shown in FIG. 2, similarly, in the denitrification tank 1, the denitrification reaction can be executed using nitrate ions contained in the wastewater as a substrate under moderately high temperature conditions. The waste liquid treatment apparatus shown in FIG. 2 can suppress the temperature drop of the nitrification tank 2 because it warms the air, so that the reaction efficiency of the nitrification tank 2 can be increased and the temperature drop of the inflow portion of the denitrification tank 1 can be achieved. Can be suppressed.

また、本発明に係る廃液処理装置は、廃液の温度を制御する手段としてコージェネレーション装置3を有するものに限定されず、例えば図3及び4に示すように、廃液の温度を制御する手段としてボイラ5を有するような構成であってもよい。図3又は4に示す廃液処理装置でも、同様に、脱窒槽1では、中程度高温条件下で廃水中に含まれる硝酸イオンを基質として脱窒反応を実行することができる。   In addition, the waste liquid treatment apparatus according to the present invention is not limited to the one having the cogeneration apparatus 3 as a means for controlling the temperature of the waste liquid. For example, as shown in FIGS. 3 and 4, the boiler is a means for controlling the temperature of the waste liquid. 5 may be sufficient. Similarly, in the waste liquid treatment apparatus shown in FIG. 3 or 4, in the denitrification tank 1, the denitrification reaction can be performed using nitrate ions contained in the wastewater as a substrate under moderately high temperature conditions.

さらに、本発明に係る廃液処理装置をメタン発酵の廃液(消化残渣液)の処理に使用する場合は、図5及び6に示すような構成をとるのが望ましい。メタン発酵槽6と、メタン発酵槽6に接続された固液分離装置7とを更に備え、メタン発酵槽6で生成したメタン等のバイオガスをコージェネレーション装置3或いはボイラ5に供給する。メタン発酵槽6でメタン発酵したした後の廃液(消化液残渣)は、固液分離装置7での処理が行われ、分離された液分が硝化槽2に供給される。図5及び6に示す廃液処理装置においては、固液分離装置7の手前に貯留槽を設けても良い。また、必要に応じて、固液分離装置7は省略することもできる。図5及び6に示す廃液処理装置においては、コージェネレーション装置3或いはボイラ5の駆動に必要な燃料の少なくとも一部をメタン発酵槽6で生成したバイオガスで賄うことができる。なお、コージェネレーション装置3或いはボイラ5の駆動に必要な燃料としては、メタン発酵槽6で生成したバイオガスに加えて都市ガス等を混合して供給しても良い。図5及び6に示す廃液処理装置においても、同様に、脱窒槽1では、中程度高温条件下で廃水中に含まれる硝酸イオンを基質として脱窒反応を実行することができる。メタン発酵においては、中温〜高温(35〜60℃)で発酵が行われるため、廃水(消化液残渣)の温度が高く、図5及び6に示す廃液処理装置では、図1〜4の排水処理装置に比べ、脱窒槽1へ供給すべき熱量は低減する。なお、図5及び6に示す装置は、図2及び図4と同様に硝化槽2へ供給する空気を加熱しても良い。   Furthermore, when the waste liquid treatment apparatus according to the present invention is used for the treatment of waste liquid (digestion residue liquid) of methane fermentation, it is desirable to take a configuration as shown in FIGS. A methane fermentation tank 6 and a solid-liquid separator 7 connected to the methane fermentation tank 6 are further provided, and biogas such as methane generated in the methane fermentation tank 6 is supplied to the cogeneration apparatus 3 or the boiler 5. The waste liquid (digested liquid residue) after methane fermentation in the methane fermentation tank 6 is processed in the solid-liquid separator 7, and the separated liquid is supplied to the nitrification tank 2. In the waste liquid treatment apparatus shown in FIGS. 5 and 6, a storage tank may be provided before the solid-liquid separation apparatus 7. Moreover, the solid-liquid separation apparatus 7 can also be abbreviate | omitted as needed. In the waste liquid treatment apparatus shown in FIGS. 5 and 6, at least a part of the fuel necessary for driving the cogeneration apparatus 3 or the boiler 5 can be covered with biogas generated in the methane fermentation tank 6. In addition, as fuel required for the drive of the cogeneration apparatus 3 or the boiler 5, in addition to the biogas produced | generated with the methane fermentation tank 6, you may supply city gas etc. in mixture. Similarly, in the waste liquid treatment apparatus shown in FIGS. 5 and 6, in the denitrification tank 1, the denitrification reaction can be performed using nitrate ions contained in the wastewater as a substrate under moderately high temperature conditions. In methane fermentation, since the fermentation is performed at a medium temperature to a high temperature (35 to 60 ° C.), the temperature of the waste water (digested liquid residue) is high. In the waste liquid treatment apparatus shown in FIGS. Compared with the apparatus, the amount of heat to be supplied to the denitrification tank 1 is reduced. The apparatus shown in FIGS. 5 and 6 may heat the air supplied to the nitrification tank 2 as in FIGS. 2 and 4.

以上、説明した廃水処理装置及び廃水処理方法は、開放系(実験室内のような閉鎖系に対して)で行われる微生物プロセスとすることができる。一般的に開放系で微生物プロセスを実施した場合には、常に周辺環境から多くの微生物が混入し、その廃水処理装置内の環境に応じた微生物生態系が形成される。また、この微生物生態系は比較的安定ながら緩やかに変遷を続けている。   The wastewater treatment apparatus and the wastewater treatment method described above can be a microbial process performed in an open system (for a closed system such as a laboratory). In general, when a microbial process is performed in an open system, many microorganisms are always mixed from the surrounding environment, and a microbial ecosystem corresponding to the environment in the wastewater treatment apparatus is formed. In addition, this microbial ecosystem continues to change gradually while being relatively stable.

本発明に係る廃水処理装置及び廃水処理方法においては、特に、脱窒槽1内の温度が37〜60℃、好ましくは50〜60℃といった中程度高温条件下で処理している。このため、本発明に係る廃水処理装置及び廃水処理方法では、周辺環境から混入する微生物のほとんどは増殖できず、開放系とした場合であっても純粋培養に近いプロセスを実現することが可能である。   In the wastewater treatment apparatus and the wastewater treatment method according to the present invention, the treatment is performed particularly under moderately high temperature conditions such that the temperature in the denitrification tank 1 is 37 to 60 ° C, preferably 50 to 60 ° C. For this reason, in the wastewater treatment apparatus and the wastewater treatment method according to the present invention, most of the microorganisms mixed from the surrounding environment cannot grow, and even in an open system, it is possible to realize a process close to pure culture. is there.

また、本発明に係る廃水処理装置及び廃水処理方法においては、脱窒槽1内の温度が37〜60℃、好ましくは50〜60℃といった中程度高温条件下で処理していることで、脱窒槽1内における気体の水への溶解度を低くすることができる。従って、嫌気条件で行う脱窒においては、脱窒槽1内の溶存酸素濃度の低下が期待でき、嫌気条件をより作りやすくなる。また、脱窒槽1内に発生する窒素ガスの溶解度も常温に比べてより低くなるため、反応性生物である窒素ガスが系外に放出されることで、反応の平衡がより窒素ガス生成に傾くことになる。   Moreover, in the waste water treatment apparatus and waste water treatment method according to the present invention, the temperature in the denitrification tank 1 is 37 to 60 ° C, preferably 50 to 60 ° C. The solubility of gas in water in 1 can be lowered. Therefore, in denitrification performed under anaerobic conditions, a decrease in the dissolved oxygen concentration in the denitrification tank 1 can be expected, and it becomes easier to create anaerobic conditions. Further, since the solubility of nitrogen gas generated in the denitrification tank 1 is lower than that at room temperature, the reaction equilibrium is more inclined to generate nitrogen gas by releasing nitrogen gas, which is a reactive organism, out of the system. It will be.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limited to a following example.

〔実施例1〕新規微生物の単離、同定
培養条件
微生物の分離源として、下水処理場の嫌気層の活性汚泥、さいたま市内の田畑、河川水・底土等を用いて集積培養による脱窒菌の単離を試みた。用いた微生物分離源は以下の通りである。
土壌:さいたま市内の田畑土壌約50ヶ所
河川水・底土:芝川および生活排水路6ヶ所
活性汚泥:西部第2下水処理場嫌気槽
[Example 1] Isolation and identification of novel microorganisms
A separation source culture conditions microorganism, attempted activated sludge anaerobic layer of sewage treatment plants, Saitama city fields, the isolation of the denitrifying bacteria according enrichment culture using river water-subsoil like. The microorganism separation sources used are as follows.
Soil: About 50 field farm soils in Saitama City River water / sediment: Shiba River and 6 domestic drainage channels Activated sludge: Anaerobic tank in the western second sewage treatment plant

土壌は採取後直ちにチャック付きビニール袋に入れて密閉し、2−3日中に使用した。河川水、底土、活性汚泥はペットボトル等を用いて容量ぎりぎりまで採取し、なるべく空気に触れないようにした。さらにアスコルビン酸を少量添加し、2−3日中に使用するか、使用時まで冷蔵保存した。脱窒反応は嫌気的な条件で起こるため、サンプルの採取と保存においては酸素に触れることがないように注意した。   The soil was sealed in a plastic bag with a chuck immediately after collection, and used within 2-3 days. River water, bottom soil, and activated sludge were collected to the limit of capacity using PET bottles, etc., and kept away from air as much as possible. Further, a small amount of ascorbic acid was added and used during 2-3 days or stored refrigerated until use. Since denitrification occurs under anaerobic conditions, care was taken not to touch oxygen during sample collection and storage.

培地の組成は表4に示した。脱窒反応では微生物が生育するための炭素源が必要である。本実験では炭素源としてコハク酸を用いた。   The composition of the medium is shown in Table 4. The denitrification reaction requires a carbon source for the growth of microorganisms. In this experiment, succinic acid was used as a carbon source.

Figure 0004610374
Figure 0004610374

微生物の取得には500ml容枝付き三角フラスコ又は100m1容褐色バイアル瓶を用いた。500ml容枝付き三角フラスコには400mlの培地を作成・分注後、微生物源を添加した。ブチルゴム栓等で密閉し、アルゴンガスを用いて気相を置換して嫌気状態にして培養を行った。培養は120rpm、30℃あるいは60℃の条件で2日−1週間振とう下にて行った。菌体の生育が認められた培養液については、硝酸イオン、亜硝酸イオンをGriess-romijn試薬で検出した。脱窒反応の認められたサンプルは新たな培地に植継ぎ、再び2日−1週間の培養を行った。   A 500 ml Erlenmeyer flask with a branch or a 100 ml brown vial was used for obtaining microorganisms. In a 500 ml Erlenmeyer flask with a branch, 400 ml of medium was prepared and dispensed, and then a microorganism source was added. The cells were sealed with a butyl rubber stopper or the like and cultured in an anaerobic state by replacing the gas phase with argon gas. The culture was performed under shaking at 120 rpm, 30 ° C. or 60 ° C. for 2 days to 1 week. For the culture solution in which the growth of the cells was observed, nitrate ions and nitrite ions were detected with Griess-romijn reagent. The sample in which the denitrification reaction was observed was transferred to a new medium, and cultured again for 2 days to 1 week.

100ml容褐色バイアル瓶には70mlの培地を作成し、ダーラム管と微生物源を添加した。ダーラム管を入れると微生物が生産するガスを捕集して観察することができる。ブチルゴム栓等で密閉し、アルゴンガスを用いて気相を置換して嫌気状態にした。30℃あるいは60℃の恒温槽で2日−1週間静置培養を行った。菌体の生育が認められた培養液については、硝酸イオン、亜硝酸イオンをGriess-romijn試薬で検出した。脱窒反応の認められたサンプルは新たな培地に植継ぎ、再び2日−1週間の培養を行った。   In a 100 ml brown vial, 70 ml of medium was prepared, and a Durham tube and a microorganism source were added. When the Durham tube is inserted, gas produced by microorganisms can be collected and observed. It was sealed with a butyl rubber stopper or the like, and the gas phase was replaced with argon gas to make it anaerobic. Static culture was performed for 2 days to 1 week in a thermostatic bath at 30 ° C or 60 ° C. For the culture solution in which the growth of the cells was observed, nitrate ions and nitrite ions were detected with Griess-romijn reagent. The sample in which the denitrification reaction was observed was transferred to a new medium, and cultured again for 2 days to 1 week.

分析方法
硝酸イオンと亜硝酸イオンの検出にはGriess-romijn(GR)試薬を用いた。GR試薬にはGriess-romijn nitrate試薬とGriess-romijn nitrite試薬があり、それぞれ硝酸と亜硝酸を検出するのに用いる。各イオンの量により透明から薄桃、濃い赤色に呈色する。培養液を遠心分離(15000rpm、15分間、室温)し、上清を試験管に回収してGR nitrate試薬またはGR nitrite試薬を少量入れて混合後、静置して色の変化を観察した。
Analytical method Griess-romijn (GR) reagent was used to detect nitrate and nitrite ions. The GR reagent includes Griess-romijn nitrate reagent and Griess-romijn nitrite reagent, which are used to detect nitric acid and nitrous acid, respectively. Depending on the amount of each ion, the color changes from transparent to light peach and dark red. The culture solution was centrifuged (15000 rpm, 15 minutes, room temperature), and the supernatant was collected in a test tube, mixed with a small amount of GR nitrate reagent or GR nitrite reagent, and allowed to stand to observe the color change.

実験結果
30℃で菌体生育が認められたサンプルについて、GR試薬による硝酸と亜硝酸の検出を行った。培地には硝酸が添加されているので、脱窒が進めば硝酸は減少する。また硝酸が亜硝酸に還元されるのみの反応では亜硝酸も検出される。脱窒が進んだ場合には硝酸(−)かつ亜硝酸(−)が観察される。結果を表5にまとめた。
Experimental result
Nitric acid and nitrous acid were detected with the GR reagent for the samples in which cell growth was observed at 30 ° C. Since nitric acid is added to the medium, nitric acid decreases as denitrification proceeds. Nitrous acid is also detected in reactions where nitric acid is only reduced to nitrous acid. When denitrification progresses, nitric acid (-) and nitrous acid (-) are observed. The results are summarized in Table 5.

Figure 0004610374
Figure 0004610374

表5から判るように、No.2−4のサンプルに脱窒能が認められ、特にNo.2とNo.4には強い脱窒能が期待された。   As can be seen from Table 5, denitrification ability was observed in the samples No. 2-4, and strong denitrification ability was particularly expected for No. 2 and No. 4.

次に、60℃で菌体生育が認められ、ガスの発生も認められたサンプルについて検討した。すなわち、ダーラム管内に気体が捕集されているか、培地の表面に泡が発生しているサンプルについて、GR試薬による硝酸と亜硝酸の検出を行った。結果を表6に示した。   Next, samples in which cell growth was observed at 60 ° C. and generation of gas were also examined. That is, nitric acid and nitrous acid were detected with the GR reagent for a sample in which gas was collected in the Durham tube or bubbles were generated on the surface of the medium. The results are shown in Table 6.

Figure 0004610374
Figure 0004610374

表6から判るように、No.5−7のサンプルに脱窒能が認められ、特にNo.5には強い脱窒能が期待された。またNo.2−4はやや弱いながらも脱窒を行っている可能性があった。   As can be seen from Table 6, the sample No. 5-7 was found to have a denitrification ability, and particularly No. 5 was expected to have a strong denitrification ability. Moreover, although No.2-4 was a little weak, there was a possibility of performing denitrification.

微生物の単離は希釈平板培養法を用いた。BM培地にGellum gumを7%添加して平板固体培地を作成した。脱窒反応が確認されている混合微生物系を滅菌水にて適宜希釈して、固体平板培地に塗沫後、60℃で嫌気的に培養を行った。   Microorganisms were isolated using a dilution plate culture method. A plate solid medium was prepared by adding 7% of Gellum gum to the BM medium. The mixed microorganism system in which denitrification reaction was confirmed was appropriately diluted with sterilized water, smeared on a solid plate medium, and then anaerobically cultured at 60 ° C.

次に、脱窒能が認められたサンプルから以下のようにして脱窒能を有する微生物を単離した。具体的には、先ず、数日間、固体平板培地を観察して、コロニー(1つの細胞より増殖したと考えられる微生物の集団。通常、直径数mmの円形状として観察される)形成が見られたものから、順次コロニーを採取して、新鮮な培地に植菌して保存用サンプルとした。   Next, microorganisms having denitrification ability were isolated from the samples in which denitrification ability was recognized as follows. Specifically, first, a solid plate medium was observed for several days, and colony formation (a group of microorganisms thought to have grown from a single cell. Usually observed as a circular shape with a diameter of several millimeters) was observed. Colonies were sequentially collected from the seeds, inoculated into a fresh medium, and used as storage samples.

保存したサンプルは再度液体培養に供し、60℃での脱窒反応の有無を硝酸からのガス発生を指標に確認した。脱窒反応が確認されたサンプルは再度、滅菌水にて適宜希釈して、固体平板培地に塗沫後、60℃で嫌気的に培養を行った。肉眼観察によって単一細菌であることを確認し、再度コロニーを採取して、新鮮な培地に植菌して保存用サンプルとした。この一連の操作を数回繰り返して、脱窒活性の安定した純粋な微生物サンプルを得た。   The stored sample was again subjected to liquid culture, and the presence or absence of a denitrification reaction at 60 ° C. was confirmed using gas generation from nitric acid as an indicator. The sample in which the denitrification reaction was confirmed was again diluted appropriately with sterilized water, smeared on a solid plate medium, and then anaerobically cultured at 60 ° C. It was confirmed by macroscopic observation that it was a single bacterium, colonies were collected again, inoculated into a fresh medium, and used as a preservation sample. This series of operations was repeated several times to obtain a pure microbial sample with stable denitrification activity.

以上の実験から、60℃の温度条件で安定的に生育し、硝酸から窒素ガスを生成する能力を有する微生物を5菌株取得した。各々をTDN-01株からTDN-05株とした。脱窒活性が安定し、比較的高かったTDN-01株、TDN-02株及びTDN-03株の3菌株は、独立行政法人産業技術総合研究所 特許生物寄託センター(〒305-8566茨城県つくば市東1-1-1中央第6)に2005年2月18日に、それぞれ受領番号FERM AP-20412、FERM AP-20413及びFERM AP-20414として寄託した。   From the above experiments, five strains of microorganisms that grow stably at a temperature of 60 ° C. and have the ability to generate nitrogen gas from nitric acid were obtained. Each was changed from TDN-01 strain to TDN-05 strain. Three strains, TDN-01, TDN-02 and TDN-03, which have stable denitrification activity and are relatively high, are the National Institute of Advanced Industrial Science and Technology patent biological deposit center (Tsukuba, Ibaraki, 305-8566) Deposited on February 18, 2005 as receipt numbers FERM AP-20412, FERM AP-20413, and FERM AP-20414, respectively, on the city center 1-1-1 No. 6).

また、これらTDN-01株からTDN-05株のゲノムDNAを抽出して、16S-rDNAの塩基配列を決定した。16S-rDNAの塩基配列の決定(シークエンス)方法は、「微生物学実験法(杉山ら編、講談社、1999年)」のp180-183およびp239-244に記載してある一般的なジデオキシ法を基本とした。この方法は目的とする微生物の16S-rDNAをポリメラーゼ連鎖反応(PCR)によって増幅しながら、ジデオキシヌクレオチド三リン酸の添加によってランダムな長さを有するDNA断片を取得し、これをシークエンスするものである。
PCRに用いたプライマーは表7に示した。
In addition, genomic DNA of TDN-05 strain was extracted from these TDN-01 strains, and the base sequence of 16S-rDNA was determined. The 16S-rDNA base sequence determination method is based on the general dideoxy method described in p180-183 and p239-244 of "Microbiology Experimental Method (Sugiyama et al., Kodansha, 1999)". It was. In this method, a 16S-rDNA of a target microorganism is amplified by polymerase chain reaction (PCR), a DNA fragment having a random length is obtained by addition of dideoxynucleotide triphosphate, and this is sequenced. .
The primers used for PCR are shown in Table 7.

Figure 0004610374
Figure 0004610374

上記プライマー及びゲノムDNAを含む反応液を、96℃で30秒処理した後、96℃で30秒、50℃で5秒及び60℃で2分からなるサイクルを25サイクル処理し、その後、60℃で2分処理した。反応後は反応液は4℃で保存した。得られたDNA断片の配列決定は、自動シークエンス装置(ABI PRISMTM 310NT Genetic Analyzer)にて行った。上記複数のプライマーを用いたシークエンスデータを繋ぎ合わせて、約500塩基対(大腸菌の16S-rDNAにおける5‘側より10番目から500番目付近)のデータとした。   The reaction solution containing the above primer and genomic DNA was treated at 96 ° C. for 30 seconds, followed by 25 cycles of 96 ° C. for 30 seconds, 50 ° C. for 5 seconds and 60 ° C. for 2 minutes, and then at 60 ° C. Treated for 2 minutes. After the reaction, the reaction solution was stored at 4 ° C. The obtained DNA fragment was sequenced with an automatic sequencer (ABI PRISM ™ 310NT Genetic Analyzer). Sequence data using the above-mentioned plurality of primers were connected to obtain data of about 500 base pairs (10th to 500th positions from the 5 'side in 16S-rDNA of E. coli).

以上により決定した、TDN-01株の16S rDNAの塩基配列を配列番号1に示し、TDN-02株の16S rDNAの塩基配列を配列番号2に示し、TDN-03株の16S rDNAの塩基配列を配列番号3に示し、TDN-04株の16S rDNAの塩基配列を配列番号4に示し、TDN-05株の16S rDNAの塩基配列を配列番号5に示した。   The base sequence of 16S rDNA of TDN-01 strain determined as described above is shown in SEQ ID NO: 1, the base sequence of 16S rDNA of TDN-02 strain is shown in SEQ ID NO: 2, and the base sequence of 16S rDNA of TDN-03 strain is shown. The base sequence of 16S rDNA of TDN-04 strain is shown in SEQ ID NO: 4, and the base sequence of 16S rDNA of TDN-05 strain is shown in SEQ ID NO: 5.

これら配列番号1〜5に示す塩基配列をもとにデータベース(GenBank/DDBJ/EMBL)及びホモロジー検索ソフト(BLAST)を用いてホモロジー検索したところ、いずれも相同性97-99%でGeobasillus属細菌に類縁と判断された。TDN-01株からTDN-05株の16S-rDNAの部分塩基配列に基づいて各菌株間の相同性を計算したところ、96-99%の相同性を示した。近縁種との系統樹図を作成した結果を図7に示す。系統樹図からは、TDN-01株、TDN-02株およびTDN-03株は他のGeobasillus属細菌と明らかに別のグループ(クラスター)を形成しており、さらに他のGeobasillus属細菌のクラスターとの分岐が根(各分岐が1つになる場所)に近い。このことはTDN-01株、TDN-02株およびTDN-03株が分子進化的には早い時期(年代としてはより古い時期)に分岐したことを示している。従って、これらTDN-01株、TDN-02株およびTDN-03株は、Geobasillus属に属する新属であると結論付けられた。なお、一般的に16S-rDNAで99.8%以上の相同性を有するものが同一の種であると考えられている(杉山ら編、新版微生物学実験法、p241-242、講談社サイエンティフィク、1999年)。   A homology search using the database (GenBank / DDBJ / EMBL) and homology search software (BLAST) based on these nucleotide sequences shown in SEQ ID NOs: 1 to 5, both of which are 97-99% homologous to the genus Geobasillus. It was judged to be related. The homology between each strain was calculated based on the partial nucleotide sequence of 16S-rDNA from TDN-01 strain to TDN-05 strain, and showed 96-99% homology. FIG. 7 shows the result of creating a phylogenetic tree with related species. From the phylogenetic tree, the TDN-01, TDN-02, and TDN-03 strains clearly form another group (cluster) with other Geobasillus bacteria, and other Geobasillus bacteria clusters. The branch of is close to the root (where each branch becomes one). This indicates that the TDN-01, TDN-02 and TDN-03 strains diverged early in terms of molecular evolution. Therefore, it was concluded that these TDN-01 strain, TDN-02 strain and TDN-03 strain are new genera belonging to the genus Geobasillus. In addition, it is generally considered that 16S-rDNA having a homology of 99.8% or more is the same species (edited by Sugiyama et al., New Microbiology Experimental Method, p241-242, Kodansha Scientific, 1999 Year).

本発明を適用した廃水処理装置の一例を示すブロック図である。It is a block diagram which shows an example of the waste water treatment apparatus to which this invention is applied. 本発明を適用した廃水処理装置の一例を示すブロック図である。It is a block diagram which shows an example of the waste water treatment apparatus to which this invention is applied. 本発明を適用した廃水処理装置の一例を示すブロック図である。It is a block diagram which shows an example of the waste water treatment apparatus to which this invention is applied. 本発明を適用した廃水処理装置の一例を示すブロック図である。It is a block diagram which shows an example of the waste water treatment apparatus to which this invention is applied. 本発明を適用した廃水処理装置の一例を示すブロック図である。It is a block diagram which shows an example of the waste water treatment apparatus to which this invention is applied. 本発明を適用した廃水処理装置の一例を示すブロック図である。It is a block diagram which shows an example of the waste water treatment apparatus to which this invention is applied. TDN-01株、TDN-02株並びにTDN-03株及び近縁種を含む系統樹図である。It is a phylogenetic tree including TDN-01 strain, TDN-02 strain, TDN-03 strain and related species.

符号の説明Explanation of symbols

1…脱窒槽、2…硝化槽、3…コージェネレーション装置、4…曝気槽、5…ボイラ、6…メタン発酵槽、7…固液分離装置 DESCRIPTION OF SYMBOLS 1 ... Denitrification tank, 2 ... Nitrification tank, 3 ... Cogeneration apparatus, 4 ... Aeration tank, 5 ... Boiler, 6 ... Methane fermentation tank, 7 ... Solid-liquid separation apparatus

Claims (9)

ジオバチルス(Geobacillus)属に属し、硝酸イオンを基質としてN2ガスを生成する能力を有する、受託番号FERM P-20412、FERM P-20413及びFERM P-20414からなる群から選ばれる少なくとも1種であり、以下の表1〜3のいずれかに記載された菌学的性質を有する微生物。
Figure 0004610374
Figure 0004610374
Figure 0004610374
It belongs to the genus Geobacillus and has the ability to generate N 2 gas using nitrate ions as a substrate . Microorganisms having mycological properties described in any of Tables 1 to 3 below .
Figure 0004610374
Figure 0004610374
Figure 0004610374
37〜60℃の条件下において、硝酸イオンを基質としてN2ガスを生成する能力を有する請求項1記載の微生物。 The microorganism according to claim 1, which has an ability to produce N 2 gas using nitrate ions as a substrate under conditions of 37 to 60 ° C. 硝酸イオンを含む廃水に請求項1又は2記載の微生物を接触させる工程を含む廃水処理方法。 A wastewater treatment method comprising a step of bringing the microorganism according to claim 1 or 2 into contact with wastewater containing nitrate ions. 上記廃水を37〜60℃とすることを特徴とする請求項3記載の廃水処理方法。 The wastewater treatment method according to claim 3 , wherein the wastewater is set to 37 to 60 ° C. 上記微生物を接触させた後、廃液中に含まれる窒素ガスを除去する工程を更に含む、請求項3記載の廃水処理方法。 The wastewater treatment method according to claim 3 , further comprising the step of removing nitrogen gas contained in the waste liquid after contacting the microorganism. 硝酸イオンを含む廃水に請求項1又は2記載の微生物を接触させる脱窒槽を備える廃水処理装置。 A wastewater treatment apparatus comprising a denitrification tank for bringing the microorganism according to claim 1 or 2 into contact with wastewater containing nitrate ions. 上記廃水の温度を所望の温度に制御する温度制御手段を更に備える、請求項6記載の廃水処理装置。 The wastewater treatment apparatus according to claim 6 , further comprising temperature control means for controlling the temperature of the wastewater to a desired temperature. 上記温度制御手段は、脱窒槽における廃水の温度を37〜60℃に制御することを特徴とする請求項7記載の廃水処理装置。 The waste water treatment apparatus according to claim 7 , wherein the temperature control means controls the temperature of waste water in the denitrification tank to 37 to 60 ° C. 上記温度制御手段は、上記脱窒槽及び/又は上記脱窒槽に接続された硝化槽内の温度を制御することを特徴とする請求項7記載の廃水処理装置。 The waste water treatment apparatus according to claim 7 , wherein the temperature control means controls the temperature in the denitrification tank and / or the nitrification tank connected to the denitrification tank.
JP2005058879A 2005-03-03 2005-03-03 Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism Expired - Fee Related JP4610374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058879A JP4610374B2 (en) 2005-03-03 2005-03-03 Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058879A JP4610374B2 (en) 2005-03-03 2005-03-03 Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism

Publications (2)

Publication Number Publication Date
JP2006238794A JP2006238794A (en) 2006-09-14
JP4610374B2 true JP4610374B2 (en) 2011-01-12

Family

ID=37045814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058879A Expired - Fee Related JP4610374B2 (en) 2005-03-03 2005-03-03 Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism

Country Status (1)

Country Link
JP (1) JP4610374B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415504B (en) 2006-03-31 2015-04-01 丰田自动车株式会社 Method of treating biomass, compost, mulching material for livestock and agent for treating biomass
JP2009208007A (en) * 2008-03-04 2009-09-17 Tokyo Gas Co Ltd Method and apparatus for treating wastewater
KR101203486B1 (en) 2008-06-05 2012-11-21 한경대학교 산학협력단 Novel Geobacillus thermodenitrificance SG-01 having Nitrates-eliminating function and method using the same
CN106904752A (en) * 2017-05-03 2017-06-30 天津市拉贝尔实验室设备有限公司 A kind of efficient water prosthetic device of changeable gear
WO2021112349A1 (en) * 2019-12-06 2021-06-10 동의대학교 산학협력단 Microbial preparation for decomposing organic wastes comprising novel geobacillus sp. strain and excipient

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969543A (en) * 1972-11-02 1974-07-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969543A (en) * 1972-11-02 1974-07-05

Also Published As

Publication number Publication date
JP2006238794A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
Yang et al. Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11
Wang et al. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment
Zhong et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration
Pan et al. The more important role of archaea than bacteria in nitrification of wastewater treatment plants in cold season despite their numerical relationships
Hu et al. Nitrogen removal by a nitritation-anammox bioreactor at low temperature
Bovio et al. Preliminary analysis of Chloroflexi populations in full‐scale UASB methanogenic reactors
Liu et al. Heterotrophic nitrogen removal by Acinetobacter sp. Y1 isolated from coke plant wastewater
Huang et al. C2/C3 fatty acid stress on anammox consortia dominated by Candidatus Jettenia asiatica
Ryu et al. A comprehensive study on algal–bacterial communities shift during thiocyanate degradation in a microalga-mediated process
Mertoglu et al. Evaluation of in situ ammonia removal in an aerated landfill bioreactor
CN111534449B (en) Aerobic denitrifying pseudomonas and culture method and application thereof
Chi et al. Start up of anammox process with activated sludge treating high ammonium industrial wastewaters as a favorable seeding sludge source
Arooj et al. Sludge characteristics in anaerobic SBR system producing hydrogen gas
De Vrieze et al. The microbiome as engineering tool: Manufacturing and trading between microorganisms
JP4610374B2 (en) Novel microorganism, wastewater treatment method and wastewater treatment apparatus using the novel microorganism
Wei et al. Isolation and characterization of a purple non-sulfur photosynthetic bacterium Rhodopseudomonas faecalis strain A from swine sewage wastewater
Wang et al. Effects of NH4+-N and NO2−-N on carbon fixation in an anaerobic ammonium oxidation reactor
Molina-Munoz et al. Effect of the concentration of suspended solids on the enzymatic activities and biodiversity of a submerged membrane bioreactor for aerobic treatment of domestic wastewater
Xing et al. Using cold-adapted river-bottom sediment as seed sludge for sulfur-based autotrophic denitrification operated at mesophilic and psychrophilic temperatures
Syutsubo et al. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process
Wagner et al. Microbial life in terrestrial permafrost: Methanogenesis and nitrification in gelisols as potentials for exobiological process
WO2007069899A1 (en) Anaerobic oxidation of methane and denitrification
Lin et al. Isolation and characterization of a new heterotrophic nitrifying Bacillus sp. strain
Liu et al. Combined process of urea nitrogen removal in anaerobic Anammox co-culture reactor
Kambara et al. Environmental factors affecting the community of methane-oxidizing bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees