JP2011240328A - Method for treating object to be treated using microorganism - Google Patents

Method for treating object to be treated using microorganism Download PDF

Info

Publication number
JP2011240328A
JP2011240328A JP2011010515A JP2011010515A JP2011240328A JP 2011240328 A JP2011240328 A JP 2011240328A JP 2011010515 A JP2011010515 A JP 2011010515A JP 2011010515 A JP2011010515 A JP 2011010515A JP 2011240328 A JP2011240328 A JP 2011240328A
Authority
JP
Japan
Prior art keywords
genus
bed
microorganism belonging
treatment
target object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011010515A
Other languages
Japanese (ja)
Inventor
Kenji Ito
憲次 井藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA FURNITURE Co Ltd
Original Assignee
KANAGAWA FURNITURE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA FURNITURE Co Ltd filed Critical KANAGAWA FURNITURE Co Ltd
Priority to JP2011010515A priority Critical patent/JP2011240328A/en
Publication of JP2011240328A publication Critical patent/JP2011240328A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To provide a simple and effective decomposition method etc. of an object to be treated, such as sewage sludge, using microorganisms by a simple operation.SOLUTION: The method for treating an object to be treated includes: adding and mixing the object to be treated into a bacterial bed containing microorganisms belonging to the genus Bacillus, Ureibacillus and Brevibacillus; and decomposing organic matter contained in the object to be treated by the microorganisms. There is also provided a method for reducing the water content of the object to be treated using heat generated by the fermentation by the microorganisms in the bacterial bed.

Description

本発明は、微生物を利用した下水汚泥などの処理対象物の分解処理(消化消滅)方法等に関する。   The present invention relates to a method of decomposing (digesting and extinguishing) a processing object such as sewage sludge using microorganisms.

現在、多くの自治体等においては、終末処理場から排出される下水汚泥を焼却処理している。しかしながら、下水汚泥を含む有機性廃棄物の焼却処哩は地球温暖化効果ガスの排出等環境に対する負荷が大きく処理方法の見直しが求められている。 At present, many local governments incinerate sewage sludge discharged from final treatment plants. However, incineration treatment of organic waste containing sewage sludge has a large environmental load such as emission of global warming effect gas, and a review of the treatment method is required.

このような有機性廃棄物の焼却処哩に代わる方法として、近年、微生物を利用する処理技術が研究開発されている。この方法によれば、既存の化石燃料による焼却処分よりも地球温暖化効果ガスの排出を抑制することができるため、「地球環境に対する負荷が最も少ない有機性廃棄物処理技術」として注目されている。 In recent years, treatment techniques using microorganisms have been researched and developed as an alternative to incineration of organic waste. According to this method, emission of global warming effect gas can be suppressed more than incineration with existing fossil fuels, so it is attracting attention as “organic waste treatment technology with the least burden on the global environment”. .

又、近年、バイオテクノロジーの急速な進歩に伴い、微細藻を有効利用する様々な試みがなされており、実用化された技術も多く見られる。例えば、実現性の高いバイオテクノロジー領域の1つは、微細藻類が産生する機能性物質の利用を目指す、医薬品、生理活性物質、及び機能性食材の医療・健康に関する領域である。2つ目の領域は、主として微細藻類そのものを利用するものであり、草食性家畜や二枚貝のための飼料や環境浄化を目的とした農・水・環境バイオ技術に関わる領域である。更に、微細藻類を工業生産の手段として利用しようとする、バイオマス資源、バイオ燃料をはじめとする工業バイオ技術の領域を挙げることが出来る。   In recent years, with the rapid progress of biotechnology, various attempts have been made to effectively use microalgae, and many techniques have been put to practical use. For example, one of the highly feasible biotechnology fields is the medical / health area of pharmaceuticals, physiologically active substances, and functional foods that aims to use functional substances produced by microalgae. The second area mainly uses microalgae itself, and is related to agriculture, water and environmental biotechnology for the purpose of herbivorous livestock and bivalve feed and environmental purification. Furthermore, the area | region of industrial biotechnology including biomass resources and biofuel which is going to utilize a micro algae as a means of industrial production can be mentioned.

特に、微細藻エネルギー産業は、光合成による二酸化炭素消費量が微細藻は他の植物よりもはるかに大きいこと、微細藻は海水・汚水で育成可能であること、食料生育困難な場所で培養可能であり限界的土地利用を促進すること、エネルギー抽出後の微細藻活用による食料生産増大が可能であること、流通網整備に大規模投資が必要なく迅速な普及が可能であること、及び、食料産業を中心に幅広い雇用創出力が期待できること、等の点から、非常に注目されている。 In particular, the microalgae energy industry has a high carbon dioxide consumption by photosynthesis that microalgae are much larger than other plants, microalgae can be grown in seawater and sewage, and can be cultured in places where food is difficult to grow. Promote marginal land use, increase food production by utilizing microalgae after energy extraction, enable rapid diffusion without the need for large-scale investment in distribution network development, and the food industry It is attracting a great deal of attention because it can be expected to generate a wide range of job creation power.

特開2007−44604号公報JP 2007-44604 A 特開2008−36593号公報JP 2008-36593 A 特開2008−126169号公報JP 2008-126169 A 特開2009−125636号公報JP 2009-125636 A

特許文献1には、有機物質及び固形性成分を含む被処理水を最初沈殿池にて固形性成分を沈殿分離するとともに、活性汚泥処理装置で生物処理した後、沈殿池で固液分離を行なう活性汚泥処理方法において、前記活性汚泥処理装置に流入させる被処理水中の生物化学的酸素要求量のうち、該被処理水中の固形性成分に由来する生物化学的酸素要求量が、前記被処理水中の全生物化学的酸素要求量に対して60%以上となる状態で、被処理水を前記活性汚泥処理装置2へ流入させることを特徴とする活性汚泥処理方法が記載されている。 In Patent Document 1, the water to be treated containing an organic substance and a solid component is first separated and separated in a sedimentation basin, and biologically treated in an activated sludge treatment apparatus, and then subjected to solid-liquid separation in the sedimentation basin. In the activated sludge treatment method, the biochemical oxygen demand derived from solid components in the treated water out of the biochemical oxygen demand in the treated water flowing into the activated sludge treatment apparatus is the treated water. The activated sludge treatment method is characterized in that the water to be treated is caused to flow into the activated sludge treatment apparatus 2 in a state of 60% or more of the total biochemical oxygen demand.

特許文献2には、配合菌数の割合が好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群をオカラに混合し、40℃〜200℃の温度にて24時間〜72時間一次発酵させ、更に、これに配合菌数の割合が好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群を混合し、40℃〜200℃の温度にて24時間〜48時間二次発酵させることにより下水汚泥処理用の発酵資材を製造し、処理すべき下水汚泥1000重量部を発酵槽内に投入し、これに水分調整材を加えて含水率を45〜55%となし、前記発酵資材1〜2重量部を加えて混合し、続いて、発酵槽内の温度を60℃〜200℃に加温し、発酵槽内に空気を注入し、発酵槽内を連続的に攪拌することにより下水汚泥を発酵処理することを特徴とする下水汚泥の処理方法が記載されている。 In Patent Document 2, an effective microorganism group consisting of 55% aerobic bacteria group and 45% anaerobic bacteria group is mixed in okara, and the ratio of the number of mixed bacteria is 24 to 72 hours at a temperature of 40 ° C to 200 ° C. First time fermentation, and further mixed with an effective microorganism group consisting of 55% aerobic bacteria group and 45% anaerobic bacteria group, and 24 hours at a temperature of 40 ° C to 200 ° C. Fermentation material for sewage sludge treatment is produced by secondary fermentation for 48 hours, 1000 parts by weight of sewage sludge to be treated is put into the fermentor, and moisture content is added to this to make the moisture content 45 to 55%. Then, 1-2 parts by weight of the fermentation material is added and mixed, and then the temperature in the fermenter is heated to 60 ° C. to 200 ° C., air is injected into the fermenter, and the inside of the fermenter is continuous. Of sewage sludge characterized by fermenting sewage sludge by mechanical stirring The law has been described.

特許文献3には、排水を、管渠と中継ポンプ場とを介して下水処理場に送って生物処理する下水処理方法であって、前記管渠内に前記排水中の有機物を分解する機能を有する微生物を含む微生物製剤を前記中継ポンプ場から投入し、前記中継ポンプ場から前記下水処理場までの前記管渠内において、前記微生物製剤から生じた微生物により、前記有機物の少なくとも一部を分解することを特徴とする下水処理方法が記載されている。前記微生物の例として、グラム陰性菌、又は、グラム陽性菌とグラム陰性菌とを含んだ固体微生物製剤が記載され、好適例として、バチルス属特に、バチルス・トヨイ菌が挙げられている。 Patent Document 3 discloses a sewage treatment method in which wastewater is sent to a sewage treatment plant via a pipe culvert and a relay pump station, and has a function of decomposing organic matter in the effluent in the pipe culm. A microorganism preparation containing microorganisms is introduced from the relay pump station, and at least a part of the organic matter is decomposed by the microorganisms generated from the microorganism preparation in the pipe tube from the relay pump station to the sewage treatment plant. A sewage treatment method characterized in that is described. Examples of the microorganisms include gram-negative bacteria, or solid microbial preparations containing gram-positive and gram-negative bacteria, and preferable examples include the genus Bacillus, particularly Bacillus toyoi.

特許文献4には、下水処理、し尿処理、食品加工工程によって生じる残渣処理などを、微生物による生物処理を行い、生物処理の後に汚泥の脱水・乾燥処理を行う汚泥処理方法であって、脱水・乾燥処理を行う前に、微生物を死滅させる微生物死滅処理を行うことを特徴とする汚泥処理方法が記載されている。 Patent Document 4 discloses a sludge treatment method that performs biological treatment with microorganisms such as sewage treatment, human waste treatment, and residue treatment caused by a food processing process, and performs dehydration and drying treatment of sludge after biological treatment. A sludge treatment method is described in which a microorganism killing process for killing microorganisms is performed before the drying process.

本発明者は、特定の微生物の組み合わせからなる菌床を終末処理場から排出される下水汚泥、更には、食品工場等の産業現場から排出される残渣及び一般家庭から排出される生ごみ等に添加混合することによって、簡便で、且つ、極めて高い分解率でこれらを分解消滅処理することが可能であることを見出し、本発明に至った。 The inventor of the present invention uses a microbial bed composed of a combination of specific microorganisms for sewage sludge discharged from a final treatment plant, and further, residues discharged from industrial sites such as food factories and garbage discharged from ordinary households. By adding and mixing, it was found that these can be easily decomposed and extinguished at an extremely high decomposition rate, and the present invention has been achieved.

更に、上記菌床内の微生物による発酵に伴い発生する熱によって、この菌床を添加混合した対象物(組成物)の水分含量が有意に減少させることが可能であることを見出し本発明を完成した。 Furthermore, the present inventors have found that the water content of the object (composition) to which the fungal bed is added and mixed can be significantly reduced by the heat generated by the fermentation by the microorganisms in the fungal bed. did.

本発明は、Bacillus属に属する微生物、Ureibacillus属に属する微生物、及びBrevibacillus属に属する微生物を含む菌床に下水汚泥等の処理対象物を添加混合し、該処理対象物中に含まれる有機物を該微生物により分解することから成る、下水汚泥等の処理方法に係るものである。 The present invention adds a treatment object such as sewage sludge to a bed containing microorganisms belonging to the genus Bacillus, microorganisms belonging to the genus Ureibacillus, and microorganisms belonging to the genus Brevibacillus, and the organic matter contained in the treatment object The present invention relates to a treatment method for sewage sludge and the like, which consists of decomposition by microorganisms.

更に、本発明は、上記菌床を処理対象物(組成物)添加混合し、該菌床内の微生物による発酵に伴い発生する熱によって、該対象物の水分含量を減少させる方法にも係るものである。   Furthermore, the present invention also relates to a method of adding the above-mentioned fungal bed to the treatment object (composition) and mixing, and reducing the water content of the object by heat generated by fermentation by microorganisms in the fungus bed. It is.

本発明方法によれば、極めて簡便な操作によって、下水汚泥などの処理対象物中に含まれる有機物のほぼ100%が分解処理されることが実証された。更に、処理対象物中の水分含有率を有意に減少することが出来、処理後の水の蒸発処理に必要とされる化石燃料を削減することにも効果がある。 According to the method of the present invention, it has been proved that almost 100% of organic substances contained in a processing object such as sewage sludge is decomposed by a very simple operation. Furthermore, the water content in the object to be treated can be significantly reduced, and it is effective in reducing the fossil fuel required for the evaporation process of the treated water.

本発明方法によって処理することができる処理対象物の代表例として、下水汚泥並びに食品工場等の産業現場から排出される残渣及び一般家庭から排出される生ごみ等の微生物のより分解可能な有機物を含有する各種の廃棄物・排出物を上げることが出来る。 As representative examples of treatment objects that can be treated by the method of the present invention, sewage sludge, residues discharged from industrial sites such as food factories, and more degradable organic substances such as garbage discharged from general households are collected. Various kinds of waste and waste can be raised.

下水汚泥は、例えば、下水の終末末処理場等から排出されるものであり、通常、80〜90重量%程度の水分の他に各種の分解可能な有機物を含んでおり、pHは7〜9程度の範囲である。   The sewage sludge is discharged from, for example, a terminal treatment plant of sewage, and usually contains various decomposable organic substances in addition to about 80 to 90% by weight of water, and has a pH of 7 to 9 The range of the degree.

又、本発明方法における菌床内の微生物による発酵に伴い発生する熱によって、処理対象物の水分含量を顕著に減少させることが出来る。従って、この方法における処理対象物としては、例えば、天然資源(天然物)、バイオマス及び微細藻の各種生物の培養物等の水分含量が多い(例えば、50重量%以上、50重量%〜98重量%)ものを挙げることが出来る。   In addition, the water content of the object to be treated can be significantly reduced by the heat generated with the fermentation by the microorganisms in the bacterial bed in the method of the present invention. Therefore, as processing objects in this method, for example, natural resources (natural products), biomass, and cultures of various organisms such as microalgae have a high water content (for example, 50 wt% or more, 50 wt% to 98 wt%). %).

微細藻類(マイクロアルジェ:microalgae)は単細胞生物であり、別名、植物プランクトンとも呼ばれる。葉緑素(クロロフィル;Chlorophyll)を持ち、光合成によって大気中の二酸化炭素(CO2)を固定化し酸素(O2)を産生する。現在、海洋のみならず淡水系(湖、池、川)にも繁殖し、その種類は10万種類におよぶ。代表的な種として、例えば、クロレラ、スピルリナ、デュナリエラ及びユーグレナ等を挙げることが出来る。 Microalgae (microalgae) are unicellular organisms, also called phytoplankton. It has chlorophyll (Chlorophyll), and fixes carbon dioxide (CO 2 ) in the atmosphere by photosynthesis to produce oxygen (O 2 ). Currently, it breeds not only in the ocean but also in freshwater systems (lakes, ponds, rivers), and there are 100,000 types. Representative species include, for example, chlorella, spirulina, Dunaliella and Euglena.

微細藻は食品との競合が無く、経済的に実施可能なバイオマスとして、近年、急速に注目されている。微細藻類の増殖・生長のためには、基本的に二酸化炭素、ミネラルおよび光を要求し、デンプンを必要としない。これらの微細藻類を培養することにより、バイオ燃料を調達する方法が考えられている。微細藻類から得られるバイオ燃料は化学構造上ディーゼル油に類似しているので、製油施設や貯蔵施設などのインフラは既存のディーゼルのものが流用できると考えられる。このような微細藻類から作られるバイオ燃料は、植物油やセルロース原料から作られるバイオ燃料と区別するために、最近ではphotosynthetic biofuels(光合成バイオ燃料)あるいはalgal biofuels(藻類由来バイオ燃料)とも呼ばれている。 In recent years, microalgae have attracted rapid attention as an economically viable biomass that does not compete with food. For the growth and growth of microalgae, it basically requires carbon dioxide, minerals and light, and does not require starch. A method for procuring biofuel by culturing these microalgae has been considered. Biofuel obtained from microalgae is similar to diesel oil in terms of chemical structure, so it is considered that infrastructure such as refineries and storage facilities can be used from existing diesel. Biofuels made from such microalgae are also recently called photosynthetic biofuels or algal biofuels (algal biofuels) to distinguish them from biofuels made from vegetable oils and cellulose raw materials .

或いは、培養した微細藻類自体を燃料資材として火力発電等に活用する技術も開発が進められている。元々、数億年前の海洋に繁栄した微細藻類が産生した油脂成分が海底に蓄積されたものを石油として利用しているわけである。   Alternatively, a technique for utilizing the cultured microalgae itself as a fuel material for thermal power generation is being developed. Originally, the oil and fat components produced by microalgae that prospered in the ocean several hundred million years ago are used as oil.

微細藻等は水溶系で培養されるために、これらの培養物に水分含量は非常に高い。従って、これら培養物を上記のバイオ燃料又は燃料資源として利用する場合には、それらの製造工程において、例えば、微細藻等が産生する炭化水素などの有効成分の抽出工程等の前に、培養物の水分含量を減少させることが必要となる。本発明方法によれば、菌床内の微生物による発酵に伴い発生する熱によってこのような製造工程において培養物の水分含量を減少させることが可能となる。この場合に、微生物は菌床に含まれている各種成分を栄養源として利用して発酵することができるので、処理対象物自体は微生物によって栄養源として利用される必要はない。従って、本発明方法において添加する菌床の量を適宜調整することによって、微細藻等に含まれている有効成分の分解・消失を実質的に抑えることが可能である。その結果、本発明方法によって、微細藻等のバイオ燃料又は燃料資源としての有用性が損なわれることはない。 Since microalgae and the like are cultured in an aqueous system, these cultures have a very high water content. Therefore, when these cultures are used as the above biofuels or fuel resources, in the production process thereof, for example, before the extraction process of active ingredients such as hydrocarbons produced by microalgae, etc. It is necessary to reduce the water content of According to the method of the present invention, it is possible to reduce the water content of the culture in such a production process by the heat generated with fermentation by microorganisms in the fungus bed. In this case, since microorganisms can be fermented using various components contained in the fungus bed as nutrient sources, the treatment object itself does not need to be used as a nutrient source by the microorganisms. Therefore, by appropriately adjusting the amount of fungal bed added in the method of the present invention, it is possible to substantially suppress the decomposition / disappearance of active ingredients contained in microalgae and the like. As a result, the utility of the present invention as a biofuel such as microalgae or a fuel resource is not impaired.

本発明に係る方法において使用する菌床には、以下の実施例に示すような、細菌分離で得られたコロニー検体の簡易形態観察及び16S rDNAの部分塩基配列解析、並びに、検体に含まれる微生物群集を対象としたPCR-DGGE(PCR Denaturing Gradinet Gel Electrophoresis)及びRT-PCR-DGGEによって、Bacillus coagulans及びBacillus licheniformis等の Bacillus属に属する微生物、Ureibacillus suwonensis若しくはこれに近縁の種等の Ureibacillus属に属する微生物、及び、Brevibacillus thermoruber 等のBrevibacillus属に属する微生物が含まれていることを特徴とする。これらのいずれも常在菌で、バイオセーフティレベル(a)はレベル1で、 「ヒトに疾病を起こし、或いは動物に獣医学的に重要な疾患を起こす可能性のないもの(日和見感染を含む)一日本細菌学会バイオセーフティ指針-」と判定された。 The fungus bed used in the method according to the present invention includes simple morphology observation of colony specimens obtained by bacterial isolation, analysis of 16S rDNA partial base sequences, and microorganisms contained in the specimens, as shown in the following examples. By PCR-DGGE (PCR Denaturing Gradinet Gel Electrophoresis) and RT-PCR-DGGE for communities, microorganisms belonging to the genus Bacillus such as Bacillus coagulans and Bacillus licheniformis, Ureibacillus suwonensis, or related species such as Ureibacillus genus It is characterized by containing microorganisms belonging to the genus Brevibacillus such as Brevibacillus thermoruber. All of these are resident bacteria, and the biosafety level (a) is level 1. “Anything that may cause disease in humans or veterinary diseases in animals (including opportunistic infections) It was judged as “Biosafety Guidelines for Japanese Bacteria Society”.

菌床は更に、Tepidimicrobium 属に属する微生物及び/又はPelotomaculum属に属する微生物を含むこともある。 The fungus bed may further contain microorganisms belonging to the genus Tepidimicrobium and / or microorganisms belonging to the genus Pelotomaculum.

尚、菌床は、例えば、本発明方法を実施する場所周辺で採取した土壌に、菜種油搾り滓、木炭、米ぬか、バーク、バカス、糖廃密、及び、干草等の適当な資材、更に、必要に応じて、戻し菌床(本発明方法で以前に使用した菌床の一部)に水分調整用水として、例えば、上水道水、湧水又は海水等の天然水を適宜加えて調製することが出来る。更に、菌床の分解処理能力が低下したような場合には、上記の資材を適宜、添加してその能力を回復されることができる。   In addition, the fungus bed is, for example, suitable materials such as rapeseed oil squeezed rice cake, charcoal, rice bran, bark, bacus, sugar condensate, and hay on the soil collected around the place where the method of the present invention is carried out Depending on the condition, it can be prepared by appropriately adding natural water such as tap water, spring water or seawater to the return fungus bed (part of the fungus bed previously used in the method of the present invention) as water for water adjustment. . Furthermore, when the decomposition treatment ability of the fungus bed is lowered, the ability can be recovered by adding the above materials as appropriate.

尚、本発明方法で使用する菌床には、その作製に使用した土壌等に由来する、その他の微生物が含まれていても良い。又、菌床に含まれる上記の各種微生物の含有割合はその作製に使用した土壌の種類等の各種条件によって変動し、特に制限はない。 The fungus bed used in the method of the present invention may contain other microorganisms derived from the soil used for the production. Moreover, the content rate of said various microorganisms contained in a microbial bed changes with various conditions, such as the kind of soil used for the production, and there is no restriction | limiting in particular.

処理中における菌床と添加された処理対象物との容積比は、方法の目的、処理対象物の種類・水分含量等に応じて、当業者が適切な範囲を選択し、維持することが出来る。例えば、好適範囲として、処理中における菌床と添加された処理対象物との容積比が10:1〜60:1、特に、45:1〜55:1を挙げることが出来る。 The volume ratio between the bacterial bed and the added treatment object during treatment can be selected and maintained by a person skilled in the art depending on the purpose of the method, the type of the treatment object, the moisture content, etc. . For example, as a suitable range, the volume ratio between the fungus bed during treatment and the added treatment target can be 10: 1 to 60: 1, particularly 45: 1 to 55: 1.

本発明方法の目的、処理対象物の種類・水分含量等に応じて、菌床と添加された処理対象物との容積比が上記の範囲となるように、通常、下水汚泥を複数回に分けて、適当な間隔、例えば、1日〜数日毎に菌床に添加し、ショベルローダー等の適当な手段を用いて菌床と良く混和(混合)して、その間は静置しておくことが出来る。或いは、当業者に公知の任意の攪拌装置を利用して、本発明方法の実施期間中、菌床と処理対象物とを常時、攪拌・混合することも可能である。   In general, the sewage sludge is divided into multiple times so that the volume ratio between the fungus bed and the added treatment target falls within the above range according to the purpose of the method of the present invention, the type of the treatment target, the moisture content, etc. Add to the bed at appropriate intervals, for example, every day to several days, mix well with the bed using an appropriate means such as a shovel loader, and leave it in the meantime. I can do it. Alternatively, it is also possible to always stir and mix the fungus bed and the object to be treated during the execution of the method of the present invention using any stirring device known to those skilled in the art.

処理対象物及び菌床の種類、並びに外部環境等にもよるが、通常、本発明方法における菌床と処理対象物との混合物の含水率は50重量%以上、例えば、50重量%〜75重量%程度、菌床と処理対象物との混合物の温度(品温)は25〜75℃(表面から30cmの深さで測定)、pHは5.5〜9.0である。 Although depending on the type of treatment object and fungus bed, external environment, etc., the water content of the mixture of the fungus bed and treatment object in the method of the present invention is usually 50% by weight or more, for example, 50% to 75% by weight. The temperature (article temperature) of the mixture of the fungus bed and the treatment target is about 25 to 75 ° C. (measured at a depth of 30 cm from the surface), and the pH is 5.5 to 9.0.

尚、本発明方法において、微生物による発酵作用によって排出される発酵臭や嫌気状態で発生するアンモニア等に対する防臭対策は特に必要としないが、消臭が必要な場合は適当な消臭剤(例えば、プロバイオテイクス・ウオーター(PBW):(株)カナガワファニチュア製:乳酸菌、バチルス菌及び酵母菌を含む)プロを菌床や床面に散布すると消臭できる。 In addition, in the method of the present invention, there is no particular need for deodorizing measures against fermentation odor discharged by fermentation by microorganisms or ammonia generated in an anaerobic state, but when deodorization is necessary, an appropriate deodorant (for example, Probiotics Water (PBW): Manufactured by Kanagawa Furniture Co., Ltd. (including lactic acid bacteria, Bacillus bacteria, and yeast) Propellants can be deodorized by spraying them on the bacterial bed or floor.

以下の実施例を参照しつつ、本発明を詳述する。尚、実施例は本発明の一態様であり、本発明の技術的範囲は実施例に記載に限定されるものでない。   The present invention will be described in detail with reference to the following examples. In addition, an Example is one aspect | mode of this invention, and the technical scope of this invention is not limited to description to an Example.

実証試験
1.実験方法
有橡性廃棄物分解菌群を橡息させた菌床(株)17.04 m3 (ll,155.2kg)を用意し、それを8.52 m3 (5, 577.6kg)に二分割し、その菌床に奄美市の下水汚泥0.15 m3/日を1日おきに投入し、ショベルローダーにて菌床と良く混和した後、48時間静置し、菌床の品温、含水率、pH(水素イオン濃度)を計測し、菌床の消化消滅処理状況を観測した。実験の前後で菌床の菌叢解析と菌床成分分析を行い、その相違も検証した。
Demonstration test Experimental method Prepare 17.04 m 3 (ll, 155.2 kg), which is a habitat of the microbial waste decomposing bacteria group, and divide it into 8.52 m 3 (5, 577.6 kg). Put 0.15 m 3 / day of sewage sludge in Amami City every other day in the fungus bed, mix well with the fungus bed with an excavator loader, and let it stand for 48 hours. The product temperature, moisture content, pH ( (Hydrogen ion concentration) was measured, and the digestion and extinction status of the fungus bed was observed. The bacterial flora analysis and bacterial bed component analysis were performed before and after the experiment, and the difference was also verified.

2.実験場所
鹿児島県奄美市名瀬仲勝482番地8 奄美市営亀作団地鉄筋倉庫内(約150 m2)
2. Experiment place: 482 Nase Nakakatsu, Amami City, Kagoshima Prefecture 8 In the Amami City Kamesaku Complex Reinforcement Warehouse (about 150 m 2 )

3.試料(下水汚泥)提供者
鹿児島県奄美市名瀬長浜523 名瀬終末処理場
3. Sample (sewage sludge) provider 523 Nase Nagahama, Amami-shi, Kagoshima Nase terminal treatment plant

4.検査機関
菌床成分分析:財団法人千葉県環境財団 千葉県知事登録519号
千葉県千葉市中央区中央港1-11-1電話048-246-2078
証明書番号 BA21-14-1号 BA21-49-1号
菌叢解析:株式会社テクノスルガ・ラボ
静岡県静岡市清水区長崎330番 電話054-349-6211
4). Bacterial bed component analysis of inspection organization: Chiba Prefectural Environmental Foundation Chiba Prefectural Governor Registration No. 519 1-11-1 Chuo-ku, Chuo-ku, Chiba
Certificate No. BA21-14-1 BA21-49-1 Bacterial Flora Analysis: Technosuruga Lab Co., Ltd. 330, Nagasaki, Shimizu-ku, Shizuoka, Japan

5.実験期間と内容
期間:平成21年8月20日〜10月31日
8月20日〜25日
土着菌採取(実験場近所の仲勝県有林内)
8月21日
菌床覚醒 戻し菌床2m3、木炭0.25 m3、菜種油絞り滓0.25 m3、米ぬか0.05 m3、プロバイオテイクス・ウオーター(PBW):(株)カナガワファニチュア製0.02 m3、糖廃蜜0.02 m3、水0. 02 m3、を使用して菌床を二組用意して覚醒作業を行った。
8月25日
菌床大量培養 覚醒された菌床2.55 m3、戻し菌床3 m3 、菜種油絞り滓0.5 m3、木炭0.25 m3、バーク2 m3 (大和村産)、焼酎廃液0.02 m3 (奄美市産)、バカス(瀬戸内町産) ・干草(実験場周辺で刈取り)、PW 0.02 m3、海水0.02 m3 (名瀬港にて取水) 、水0.7 m3俺美市大熊)、及び、土着菌0.01 m3 (実験場近所で採取)を混合して、二組の菌床を大量培養した。
9月1日
実験開始 菌床をA 及びBの二組に分け、菌床Aに下水汚泥0.15 m3投入した後、ローダーにて混和後、明後日の午前10時(48時間後)まで静置した。翌日2日は菌床Bに投入し、明々後日の午前10時まで静置した。以降、この操作を交互に繰り返した。
10月7日
台風18号の影響で作業中断し、試験期間を1日延長した。
10月21日
菌床Bに下水汚泥投入して終了した。累計でA及びB双方に3.75 m3(両方の合計7.5 m3)を投入したことになる。
10月22日
28日まで菌床をクールダウンさせた。
10月28日
菌床容積汁測、 15.735 m3 (9,445.8kg) L.0.I. (Lost of Ignition:灼熱減量法)にて計量したところ水分48.1% (4,543.4kg)、粗灰分24.4% (2,333.2kg)及び有機物27.2% (2,569.2kg)となっていた。
10月31日
実証試験終了
5). Experiment period and content period: August 20 to October 31, 2009
August 20-25 :
Indigenous bacteria collection (Nakakatsu Prefectural Forest near the experimental site)
August 21 :
Mushroom bed awake back bacteria bed 2m 3, charcoal 0.25 m 3, rapeseed marc 0.25 m 3, rice bran 0.05 m 3, probiotics TAKES Water (PBW) :( Ltd.) Kanagawa Furniture made 0.02 m 3, Tohaimitsu 0.02 m 3. Two sets of fungi beds were prepared using 0.02 m 3 of water and awakening work was performed.
August 25 :
Mass bed culture Awakened bed 2.55 m 3 , Back bed 3 m 3 , Rape seed squeezed 0.5 m 3 , Charcoal 0.25 m 3 , Bark 2 m 3 (from Yamato Village), Shochu waste solution 0.02 m 3 (Amami City) ), Bacus (produced in Setouchi Town), hay (cutting around the experimental area), PW 0.02 m 3 , seawater 0.02 m 3 (taken at Nase Port), water 0.7 m 3 Ome City Okuma), and indigenous bacteria 0.01 m 3 (collected in the vicinity of the experimental site) was mixed, and two sets of bacterial beds were cultured in large quantities.
September 1 :
Start of experiment The fungus bed was divided into two sets of A and B, 0.15 m 3 of sewage sludge was added to the fungus bed A, mixed with a loader, and allowed to stand until 10:00 am (48 hours later) tomorrow. The next day, 2 days, it was put into the fungus bed B, and it was allowed to stand until 10 am. Thereafter, this operation was repeated alternately.
October 7 :
The work was suspended due to the influence of Typhoon No. 18, and the test period was extended by one day.
October 21 :
The sewage sludge was thrown into the fungus bed B and finished. A total of 3.75 m 3 was added to both A and B (7.5 m 3 in total for both).
October 22 :
The bacteria bed was allowed to cool down until 28th.
October 28 :
Bacteria bed volume measurement, 15.735 m 3 (9,445.8 kg) L.0.I. (Lost of Ignition), moisture 48.1% (4,543.4 kg), crude ash 24.4% (2,333.2 kg) Organic matter was 27.2% (2,569.2kg).
October 31 :
End of verification test

有機物分解率
以下の表1に示すように、上記の分解処理によって、消化消滅処理のエネルギー源となる有機物は下水汚泥に含まれる有機物(937.5kg)だけでは不足し、菌床の有機物も1,067.4kgも利用して7,500kgの下水汚泥を処理したことがわかる。更に、微生物による下水汚泥の分解処理に伴い、下水汚泥に含まれていた水分含有率(83.1%)が処理最終の菌床の水分含有率(48.1%)まで減少した。
Organic matter decomposition rate :
As shown in Table 1 below, due to the above-described decomposition treatment, the organic matter that is the energy source for digestion and extinction treatment is not enough for the organic matter (937.5 kg) contained in the sewage sludge, and the organic matter in the fungus bed is also used as 1,067.4 kg 7500 kg of sewage sludge was treated. Furthermore, with the decomposition treatment of sewage sludge by microorganisms, the water content (83.1%) contained in the sewage sludge decreased to the water content (48.1%) of the final fungus bed.

Figure 2011240328
Figure 2011240328

菌床量の測定方法
(a) 菌床・下水汚泥から四分法により試料を採取。
(b) 1lの計量カップで、l当たりの質量を計測しその平均を出す。
(c) ショベルローダーのバケット(250l/杯)と、 10 lバケツ、 1 l計量カップにて、菌床の容積を計測。
(d) b x cにて総質量を計測した。
Method for measuring the amount of fungus bed
(a) Collect samples from the fungus bed and sewage sludge by the quadrant method.
(b) With a 1 l measuring cup, measure the mass per l and average it.
(c) Measure the bed volume with a shovel loader bucket (250 l / cup), 10 l bucket, and 1 l measuring cup.
(d) The total mass was measured with bxc.

菌床・下水汚泥の組成計測方法
(a) 菌床・下水汚泥から四分法により試料から5g採取。
(b) aを赤外線水分計にかけ水分率を出し、そのまま乾物量を計測。さらに乾物をL.0.I.にて処理し、残涯を粗灰分として計量。
(c) 乾物量から粗灰分を減じたものを有機物量として計量。
(d) それぞれ計算された百分率を菌床量、下水汚泥量に乗じ水分含量、有機物量、及び粗灰分量を計算した。
Method for measuring composition of fungus bed and sewage sludge
(a) Collect 5g from the sample from the fungus bed and sewage sludge by the quadrant method.
(b) Apply a to the infrared moisture meter to obtain the moisture content, and measure the dry matter as it is. Further, dry matter is treated with L.0.I. and the remaining life is measured as crude ash.
(c) Weighed dry matter minus crude ash as organic matter.
(d) The calculated percentages were multiplied by the amount of fungus bed and the amount of sewage sludge to calculate the water content, the amount of organic matter, and the amount of crude ash.

L.0.I.の残渡を「灰分」とせずに取乱としたのは、その計測方法が簡易的方法にて処理したためである。本微生物処理技術で灰分を消化消滅処理することは不可能であり、灰分が増加した場合には、消滅処理が不可能になることは理論上予想されるが、平成10年9月から平成21年10月までの7次に渡る実験中菌床の分解能力に目立った衰退は未だ見られなかった。 The reason why the remainder of L.0.I. was not disturbed without “ash” was because the measurement method was processed by a simple method. It is impossible to digest and extinguish ash with this microorganism treatment technology. If ash increases, it is theoretically expected that ash will not be extinguished. There was still no noticeable decline in the ability to decompose the fungus bed during the seven experiments until October of the year.

下水汚泥処理前後における菌床成分分析
以下の表2に菌床の下水汚混処理前後における菌床成分分析結果を示す。菌床A 及びBともに鉛・批素で土壌分析による環境基準値を超えている。燐に関しては菌床Aで2.2%減少、菌床Bで0.6%増加している。その他24項目については増加が見られるものの基準値以下、全く増減なし、又は検出されなかった。
Bacterial bed component analysis before and after sewage sludge treatment :
Table 2 below shows the results of analysis of the fungal bed components before and after the sewage contamination treatment. Bacteria beds A and B are both lead and chlorine and exceed the environmental standard values by soil analysis. As for phosphorus, the bacterial bed A decreased by 2.2% and the bacterial bed B increased by 0.6%. For the other 24 items, although there was an increase, it was below the reference value, no increase or decrease, or no detection.

Figure 2011240328
Figure 2011240328

環境基準値は土壌成分分析のものを流用した。試料の採取は実験前:平成21年6月5日、実験後:平成21年10月28月である。分析機関: (財)千葉県環境財団。 The environmental standard value was diverted from the soil component analysis. Samples were collected before the experiment: June 5, 2009 and after the experiment: October 28, 2009. Analysis organization: Chiba Environmental Foundation.

下水汚泥処理時における菌床温度、含水率及びpH
菌床と下水汚泥との容積混合比を実測で56.6 : 1(菌床8.52 m3 :下水汚泥0.15 m3)としたため菌床の下水汚泥(平均含水率83.1%)投入中の含水率は,菌床Aで平均46.4%、最高51.9%及び最低38.3%、菌床Bでは平均48.5%、最高56.7%及び最低42.4%とであった。
Bacterial bed temperature, water content and pH during sewage sludge treatment :
In measuring the volumetric mixing ratio of the mushroom bed and sewage sludge 56.6: 1 (bacteria bed 8.52 m 3: Sewage Sludge 0.15 m 3) and mushroom bed sewage sludge for the (average water content 83.1%) water content in the turned on, Bacteria bed A averaged 46.4%, maximum 51.9% and minimum 38.3%, Bacteria bed B averaged 48.5%, maximum 56.7% and minimum 42.4%.

菌床の品温(表面から30cmの深さ地点)は、菌床Aで平均56.6℃、最高70℃及び最低28.3℃であり、菌床Bで平均55.1℃、最高70.3℃及び最低27.8℃だった。上記の実証試験では菌床と下水汚泥の容積混合比を56.6 : 1としたために、汚泥投入時の菌床切替し方法によって静置期間中の最高品温が投入して最初の計測時に検出され、以降、徐々に低下し静置終了時に最低品温になったケースが、菌床A 及び Bとも3回(Aでは、 408-454時間67-59.6℃、888-934時間48.9-48.7℃、1296-1342時間45.1-42.5℃の3回、 Bでは720-766時間43-42.6℃ 768-814時間46.9-40.7℃、 1,176-1,222時間58.3-44.9℃の3回)で、有機性廃棄物分解菌群の実証試験では初めて観測された。 The average temperature of the fungus bed (30 cm deep from the surface) is 56.6 ° C, 70 ° C and 28.3 ° C on average for the fungus bed A, and 55.1 ° C, 70.3 ° C and 27.8 ° C on average for the fungus bed B. It was. In the above demonstration test, the volume mixing ratio of the fungus bed and sewage sludge was 56.6: 1, so the maximum product temperature during the stationary period was input and detected at the first measurement by switching the fungus bed at the time of sludge addition. After that, the case where the temperature gradually decreased and reached the lowest product temperature at the end of standing was 3 times for both B and A (B, 408-454 hours 67-59.6 ° C, 888-934 hours 48.9-48.7 ° C, 1296-1342 hours 3 times at 45.1-42.5 ° C, B for 720-766 hours 43-42.6 ° C 768-814 hours 46.9-40.7 ° C, 1,176-1,222 hours 58.3-44.9 ° C 3 times) It was observed for the first time in a fungal demonstration test.

菌床のpH(水素イオン濃度)は、菌床A平均8.1、最高8.9及び最低6.7であり、菌床B平均7.6、最高8.2、最低5.9だった。これらの値は、好気性菌群が活発に活動するアルカリ領域の中に概ねおさまっていた。尚、菌床のpHに下水汚泥の累積投入量がどのような影響を与えるかを調査したところ、A 及びBともその影響はほとんど見られなかった。 The pH (hydrogen ion concentration) of the microbial bed was microbial bed A average 8.1, maximum 8.9, and minimum 6.7, and microbial bed B average 7.6, maximum 8.2, and minimum 5.9. These values were generally within the alkaline region where aerobic bacteria were actively active. In addition, when the effect of the cumulative input of sewage sludge on the pH of the fungus bed was investigated, there was almost no effect on either A or B.

下水汚泥の含水率は、平均83.1%、最高85.4%及び最低77.1%だった。pHは平均8.1、最高8.8及び最低7.5だった。累積投入量と含水率の関係でもpH同様ほとんど影響が見られなかった。下水汚泥には高分子系の凝集剤が添加されているためにストックヤードに静置していても瀝汁が浸出することはなかった。実験終了後の菌床に凝集剤の結晶と思われるガラス様の物質が散見された。 The water content of sewage sludge averaged 83.1%, maximum 85.4% and minimum 77.1%. The pH averaged 8.1, maximum 8.8 and minimum 7.5. Similar to pH, there was almost no effect on the relationship between the cumulative input and the water content. Since sewage sludge was added with a polymer-based flocculant, no soup was leached even when left in the stockyard. A glass-like substance that seems to be a crystal of the flocculant was found in the fungus bed after the experiment.

地球温暖化ガスの二酸化炭素換算収支
(1)焼却した場合に排出されると推定される二酸化炭素換算量(削減量)
(下水汚泥焼却量)×(二酸化炭素排出量数値)=二酸化炭素換算排出量kg-CO2
7,500kg x 0.84kg-CO2 =6,300 kg-CO2
(2)二酸化炭素排出量(ショベルローダー燃料として軽油使用分)
1日1l、61日間使用で61lの軽油を使用。軽油の排出係数2.6
(軽油使用量)×(排出係数)= 二酸化炭素換算排出量kg-CO2
61l X 2.6 = 158.6kg-CO2
(3)二酸化炭素換算排出削減量
(排出二酸化炭素換算排出量)−(二酸化炭素換算削減量)=(二酸化炭素換算削減量)
158.6kg-CO2 − 6,300 kg-CO2 =−6,141.4 kg-CO2
Carbon dioxide equivalent balance of global warming gas :
(1) Carbon dioxide equivalent amount (reduced amount) estimated to be discharged when incinerated
(Sewage sludge incineration amount) x (carbon dioxide emission numerical value) = carbon dioxide equivalent emission kg-CO 2
7,500kg x 0.84kg-CO 2 = 6,300 kg-CO 2
(2) Carbon dioxide emissions (light oil used as excavator loader fuel)
1l per day, 61l of light oil is used for 61 days. Light oil emission factor 2.6
(Light oil consumption) x (Emission factor) = Carbon dioxide equivalent emission kg-CO 2
61l X 2.6 = 158.6kg-CO 2
(3) CO2 emission reduction (CO2 emission)-(CO2 emission reduction) = (CO2 emission reduction)
158.6kg-CO 2 − 6,300 kg-CO 2 = −6,141.4 kg-CO 2

この削減量は名瀬クリーンセンター年間排出量(25,589トン焼却)21,494.76トンC02
の0. 0286%に相当する。また、同様の計算から現在焼却している下水汚泥全量(1,191トン平成20年度実績を微生物処理した場合、その削減量は、(焼却された下水汚泥量)×(二酸化炭素排出数値)=(二酸化炭素換算排出量トン-CO2):1,191トン × 0.84トン-CO2 = 1,000.44トン-CO2と推計できる。これは、クリーンセンターから排出する二酸化炭素換算排出量の(焼却処理量25,589トン、二酸化炭素排出量21,494.76トン-CO2)の4.65%と推計される。
This reduction is Nase Clean Center annual emissions (25,589 tons incineration) 21,494.76 tons C02
Equivalent to 0.0286% of In addition, from the same calculation, the total amount of sewage sludge currently incinerated (if 1,191 tons of FY2008 results were treated with microorganisms, the reduction amount was (incinerated sewage sludge amount) x (carbon dioxide emission value) = (dioxide dioxide Carbon equivalent emissions tons-CO 2 ): 1,191 tons × 0.84 tons-CO 2 = 1,000.44 tons-CO 2. This is equivalent to the carbon dioxide equivalent emissions from the clean center (incineration amount of 25,589 tons, carbon dioxide It is estimated to be 4.65% of carbon emissions 21,494.76 tons-CO 2 ).

このような消化消滅処理をした下水汚泥(7,500kg、有機物含有量937.5kg)は、その生成過程で大気中の二酸化炭素を吸収しているので、下水汚泥自体を焼却してもカーボンオフセットとして、その分は除外される。したがって焼却過程で排出される地球温暖化効果ガスは、下水汚泥に含まれる窒素に由来する一酸化二窒素(N20)と補助燃料である化石燃料の使用に伴う二酸化炭素換算量が計算される。 Sewage sludge (7,500 kg, organic matter content 937.5 kg) that has been digested and extinguished as such absorbs carbon dioxide in the atmosphere during its production process, so even if the sewage sludge itself is incinerated, as a carbon offset, That amount is excluded. Therefore, the global warming effect gas emitted during the incineration process is calculated as the amount of carbon dioxide equivalent due to the use of dinitrogen monoxide (N 2 0) derived from nitrogen contained in sewage sludge and fossil fuel as auxiliary fuel. The

尚、菌床に含まれる無機成分に関して、菌床A及びBそれぞれ実験開始前と終了後の菌床成分を土壌の環境基準分析項目(26項目)の分析と、全リンの含有試験を実施した。その結果、菌床Aでは、カドミウム、砒素、総水銀、フッ素及びホウ素の含量に増加が見られ、一方、菌床Bでは、鉛、砒素、及びフッ素の含量に増加が見られた。リンは菌床Aで4.7%から2.5%とマイナス2.2%、菌床Bでは3.1%から3.7%と0.6%増加していた(財団法人千葉県環境財団調べ)。 In addition, regarding the inorganic components contained in the fungus bed, the fungus bed components before and after the start of the fungus beds A and B were subjected to analysis of soil environmental standard analysis items (26 items) and total phosphorus content test. . As a result, the fungus bed A showed an increase in the contents of cadmium, arsenic, total mercury, fluorine and boron, while the fungus bed B showed an increase in the contents of lead, arsenic and fluorine. Phosphorus increased from 4.7% to 2.5% in Fungus Bed A, minus 2.2%, and in B, B increased from 3.1% to 3.7%, 0.6% (according to Chiba Environmental Foundation).

使用した測定機器
(1−1)品温・外気温:THERMODAC EF (江藤電気(株)にて自動計測。熱伝対センサー18本を用意し、1時間ごとに計測。
(1−2)外気温・試験場内気温:熱伝対センサー2本を地上150cmの位置になるよう設置。
(1−3)菌床品温:支柱に菌床表面から30, 60, 100 cmの位置に熱伝対センサー固定したものを18本用意し、菌床に挿入。この他に品温測定用として堆肥センサー(MC-K7108 Φ8x900mm(株)佐藤計量製作所)を使用した。
(2)含水率・粗灰分:赤外線水分計FD-600((株)ケット科学研究所、加熱乾燥・質量測定方式)
菌床は試料5gを110℃、20分で測定。粗灰分は試料5gを110℃、20分で含水率を測定した後、残った乾物の質量を測定し、それをL.0.I. (灼熱減量法)で残睦を粗灰分として計量。
(3)pH: TEST PAPERS UNIVERSAL pHl-14 KAAGAT LTDを使用。菌床:水=1:5
(4)菌床・下水汚泥容積測定:菌床は、ショベルローダー(三菱製、 WS210)のバケット容積すりきり一杯250 l、プラスチック製バケツ一杯10 l、計量カップ1 lで計測。
Measuring equipment used :
(1-1) Product temperature / outside temperature: THERMMODAC EF (automatically measured by Eto Electric Co., Ltd.) 18 thermocouple sensors are prepared and measured every hour.
(1-2) Outside temperature / Inside temperature: Install two thermocouple sensors at 150cm above the ground.
(1-3) Bacterial bed product temperature: Eighteen thermocouple sensors fixed on the support at 30, 60, 100 cm from the surface of the fungus bed are inserted into the fungus bed. In addition to this, a compost sensor (MC-K7108 Φ8 × 900mm Co., Ltd., Sato Weighing Mfg. Co., Ltd.) was used for product temperature measurement.
(2) Moisture content / crude ash: Infrared moisture meter FD-600 (Kett Science Laboratory, Heating Drying / Mass Measurement System)
The fungus bed was measured for 5 g of sample at 110 ° C for 20 minutes. For the crude ash, the moisture content of a 5g sample was measured at 110 ° C for 20 minutes, and then the mass of the remaining dry matter was measured. The residue was measured as crude ash with L.0.I.
(3) pH: Use TEST PAPERS UNIVERSAL pHl-14 KAAGAT LTD. Bacteria bed: Water = 1: 5
(4) Bacteria bed and sewage sludge volume measurement: The fungus bed was measured with a shovel loader (Mitsubishi, WS210) bucket volume squeeze 250 l, a plastic bucket 10 l, and a measuring cup 1 l.

菌床に含まれる微生物の同定
まず、以下の方法で各検体に含まれている微生物(芽胞菌)を分離した。
検体:
検体1:7861-03(最活性時の菌床Bから採取)
検体2:7861-04(菌床Aから採取)
検体3:7861-05(菌床Bから採取)
Identification of microorganisms contained in fungus bed First, microorganisms (spore bacteria) contained in each specimen were separated by the following method.
Sample:
Specimen 1: 7861-03 (collected from fungus bed B at maximum activity)
Sample 2: 7861-04 (collected from fungus bed A)
Specimen 3: 7861-05 (collected from fungus bed B)

1.前処理
・懸濁液の調整:検体1gを生理食塩水10 mlに懸濁
・加熱処理:懸濁液を80℃,15分間加熱。
1. Pretreatment / Suspension adjustment: 1 g of sample is suspended in 10 ml of physiological saline / heat treatment: The suspension is heated at 80 ° C. for 15 minutes.

2.分離
・培地:Nutrient agar (Oxford, Hampshire, England)+寒天
・培養温度:55℃
・培養時間:1日
・分離方法:塗抹平板法、0.1 ml表面塗抹(土壌生物研究会 編;新編土壌微生物学実験、養賢堂、1992;微生物の分離法、R&Dプラニング、1986)
・塗抹枚数:1枚
・その他の条件:好気培養
2. Isolation / medium: Nutrient agar (Oxford, Hampshire, England) + agar, culture temperature: 55 ° C
・ Culture time: 1 day ・ Separation method: smear plate method, 0.1 ml surface smear (Edited by Soil Biology Society; New Soil Microbiology Experiment, Yokendo, 1992; Microbial Separation Method, R & D Planning, 1986)
・ Number of smears: 1 ・ Other conditions: Aerobic culture

3.簡易コロニー形態観察
(1)グラム染色:フェイバーG「ニッスイ」(日水製薬、東京)
(2)光学顕微鏡:BX50F4(オリンパス、東京)
(3)実体顕微鏡:SZH10 (オリンパス、東京)
3. Simple colony morphology observation (1) Gram staining: Faber G "Nissui" (Nissui Pharmaceutical, Tokyo)
(2) Optical microscope: BX50F4 (Olympus, Tokyo)
(3) Stereo microscope: SZH10 (Olympus, Tokyo)

4.16S rDNA-500
抽出からサイクルシークエンスまでの操作は以下の各プロトコールに基づき実施した。
・DNA抽出:InstaGene Matrix (BIO RAD, CA, USA)
・PCR:PrimerSTAR HS DNA Polymerase (タカラバイオ、滋賀)
・サイクルシークエンス:BigDye Terminator v 3.1 Cycle Sequencing Kit (Applied Biosystems, CA, USA)
・使用プライマー:PCR(9F, 926R)、シークエンス(9F, 536R)
・シークエンス:ABI PRISM 3130 xl Genetic Analyzer System (Applied Biosystems, CA, USA)
・配列決定:ChromasPro 1.4 (Technelysium, Pty Ltd., Tewantin, AUS)
・相同性検索及び簡易分子系統解析ソフトウェア:アポロン2.0 (テクノスルガ・ラボ、静岡)
・相同性検索及び簡易分子系統解析データベース:アポロンDB-BA 5.0 (テクノスルガ・ラボ、静岡)国際塩基配列データベース(GenBank/DDBJ/EMBL)
4. 16S rDNA-500
The operations from extraction to cycle sequence were performed based on the following protocols.
・ DNA extraction: InstaGene Matrix (BIO RAD, CA, USA)
・ PCR: PrimerSTAR HS DNA Polymerase (Takara Bio, Shiga)
Cycle sequence: BigDye Terminator v 3.1 Cycle Sequencing Kit (Applied Biosystems, CA, USA)
・ Primers used: PCR (9F, 926R), Sequence (9F, 536R)
・ Sequence: ABI PRISM 3130 xl Genetic Analyzer System (Applied Biosystems, CA, USA)
・ Sequencing: ChromasPro 1.4 (Technelysium, Pty Ltd., Tewantin, AUS)
・ Homology search and simple molecular phylogenetic analysis software: Apollon 2.0 (Techno Suruga Lab, Shizuoka)
・ Homology search and simple molecular phylogenetic analysis database: Apollon DB-BA 5.0 (Techno Suruga Lab, Shizuoka) International nucleotide sequence database (GenBank / DDBJ / EMBL)

検体:SIID 7861-03-B1(検体1由来のコロニーの一つ)
簡易形態観察の結果、 SIID7861-03-Blはグラム染色陽性、好気条件下での生育性を示す有芽胞梓菌(0.9-1.0 x 2.0-5.0μm)でNutrient agar平板培地上でのコロニー色は淡黄色を呈した。
BLASTをもちいたアポロンDB-BA 5.0に対する相同性検索の結果、 SIID7861-03-Bl の16S rDNA部分配列は、 Bacillus属の16S rDNAに対し高い相同性を示し、 B.coagulans (SKERMAN (V.B.D.), McGOWAN (V.) and SNEATH (P.H.A.) (editors): Approved Lists of Bacterial Names. Int. J. Syst. Bacteriol., 1980, 30, 225-420)ATCC 7050株の16S rDNAに対し、相同率98.9%の最も高い相同性を示した。
GenBank/DDBJ/EMBLに対する相同性検索の結果においても、 SIID7861103-Blの16S rDNAは、 Bacillus属の16S rDNAに対し高い相同性を示し、基準株では、 B.coagulans ATCC 7050株の16SrDNAに対し、相同率98.9%の高い相同性を示した。
SIID7861-03-Blの16SrDNAとアポロンDB-BA5.0に対する相同性検索上位10株の16S rDNAをもちいて行った簡易分子系統解析の結果、 SIID7861-03-Blは、 Bacillus属の菌種の16S rDNAで形成されるクラスター内に含まれることが判明した。又、検体はB.coagulansの16SrDNAとクラスターを形成し、両者は同一の分子系統学的位置を示した。
以上のことから、 SIID7861-03-BlはBacillus属に含まれ、 B.coagulansに帰属する菌株であると推定された。
Specimen: SIID 7861-03-B1 (one of the colonies derived from Specimen 1)
As a result of simple morphological observation, SIID7861-03-Bl is positive for Gram staining and is a spore-forming bacilli (0.9-1.0 x 2.0-5.0μm) that shows viability under aerobic conditions. Colony color on Nutrient agar plate medium Had a pale yellow color.
As a result of homology search for Apollon DB-BA 5.0 using BLAST, the 16S rDNA partial sequence of SIID7861-03-Bl showed high homology to 16S rDNA of the genus Bacillus, and B. coagulans (SKERMAN (VBD), McGOWAN (V.) and SNEATH (PHA) (editors): Approved Lists of Bacterial Names. Int. J. Syst. Bacteriol., 1980, 30, 225-420) 98.9% homology to ATCC 7050 16S rDNA Showed the highest homology.
Also in the results of homology search against GenBank / DDBJ / EMBL, 16S rDNA of SIID7861103-Bl shows high homology to 16S rDNA of Bacillus genus, and in the reference strain, 16S rDNA of B. coagulans ATCC 7050 strain, It showed high homology with a homology rate of 98.9%.
As a result of a simple molecular phylogenetic analysis using 16S rDNA of 16S rDNA of SIID7861-03-Bl and 16S rDNA of the top 10 homology search for Apollon DB-BA5.0, SIID7861-03-Bl is 16S of Bacillus sp. It was found to be contained within a cluster formed of rDNA. The specimen also clustered with 16S rDNA of B. coagulans, and both showed the same molecular phylogenetic position.
From the above, it was estimated that SIID7861-03-Bl is contained in the genus Bacillus and belongs to B. coagulans.

検体:SIID 7861-03-B2(検体1由来のコロニーの一つ)
簡易形態観察の結果、SIID7861-03-B2はグラム染色陽性、好気条件下での生育性を示す梓菌(0.7-0.8 x 1.5-2.0μm)でNutrient agar平板培地上でのコロニー色は淡黄色を呈した。
BLASTをもちいたアポロンDBIBA 5.0に対する相同性検索の結果、SIID7861-03-B2の16S rDNA部分配列は、Ureibacillus属の16S rDNAに対し高い相同性を示し、U. suwonensis(KIM (B.Y.) LEE (S.Y.), WEON (H.Y), KWON (S.W.), GO(S.J.), PARK(Y.K), SCHUMANN(P.) and FRITZE(D.): Ureibacillus suwonesis sp. Nov., isolated from cotton waste composts. Int. J. Syst. Evol. Microbiol., 2006, 56, 663-666)6T19株の16S rDNAに対し、相同率99.4%の最も高い相同性を示した。
DDBJ/EMBLに対する相同性検索の結果においても、SIID7861-03-B2の16S rDNAはUreibacillus属の16S rDNAに対し高い相同性を示し、基準株ではU.suwonensis 6T19株の16SrDNAに対し、相同率99.4%の最も高い相同性を示した。
SIID7861-03-B2の16S rDNAとアポロンDBIBA5.0に対する相同性検索上位10株の16S rDNAをもちいて行った簡易分子系統解析の結果、SIID7861-03-B2は、 UneibacilIus属の菌種の16SrDNAで形成されるクラスター内に含まれることが判明した。又、検体はU.suwonensisの16SrDNAとクラスターを形成し、近縁であることが示された。しかしながら、SllD7861-03-B2 とU.suwonesis の16SrDNA部分配列間では1塩基が明確に異なっている。
以上のことから、 SIID7861-03-B2はUreibacillus属に含まれ、 U.suwonesisに帰属するか、又は、これと近縁なUreibacillus sp.とすることが妥当である。
Specimen: SIID 7861-03-B2 (one of the colonies derived from Specimen 1)
As a result of simple morphological observation, SIID7861-03-B2 is Gram-staining-positive, a koji mold (0.7-0.8 x 1.5-2.0μm) that shows viability under aerobic conditions, and the colony color on Nutrient agar plate medium is light It was yellow.
As a result of homology search for APOLON DBIBA 5.0 using BLAST, 16S rDNA partial sequence of SIID7861-03-B2 showed high homology to 16S rDNA of Ureibacillus genus, and U. suwonensis (KIM (BY) LEE (SY ), WEON (HY), KWON (SW), GO (SJ), PARK (YK), SCHUMANN (P.) And FRITZE (D.): Ureibacillus suwonesis sp. Nov., isolated from cotton waste composts. Int. J Syst. Evol. Microbiol., 2006, 56, 663-666) It showed the highest homology with 99.4% homology to 16S rDNA of 6T19 strain.
Also in the results of homology search for DDBJ / EMBL, 16S rDNA of SIID7861-03-B2 showed high homology to 16S rDNA of Ureibacillus genus, and the reference strain was 99.4% homologous to 16S rDNA of U. suwonensis 6T19 strain. % Showed the highest homology.
As a result of simple molecular phylogenetic analysis using 16S rDNA of SIID7861-03-B2 and 16S rDNA of the top 10 homology search for Apollon DBIBA5.0, SIID7861-03-B2 is a 16S rDNA of the genus UneibacilIus. It was found to be contained within the cluster formed. The specimen also formed a cluster with U. suwonensis 16S rDNA and was shown to be closely related. However, one base is clearly different between the SllD7861-03-B2 and U.suwonesis 16S rDNA partial sequences.
Based on the above, it is appropriate that SIID7861-03-B2 is included in the genus Ureibacillus and belongs to U. suwonesis or is closely related to Ureibacillus sp.

検体:SIID 7861-04-B1(検体2由来のコロニー)
簡易形態観察の結果、SIID7861-04-Blはグラム染色不定、好気条件下での生育性を示す梓菌(0.8-0.9 x 1.5-2.5μm)で、Nutrient agar平板培地上でのコロニー色はクリーム色を呈した。
BLASTをもちいたアポロンDB-BA 5.0に対する相同性検索の結果、SIID7861-04-Blの16S rDNA部分配列は、 Bacillus属の16S rDNAに対し高い相同性を示し、 B. licheniformis DSM 13株の16S rDNAに対し相同率99.6%の最も高い相同性を示した。
GenBank/DDBJ/EMBLに対する相同性検索の結果においては、SIID7861-04-Blの16S rDNAは、 Bacillus属の16S rDNAに対し高い相同性を示し、基準株では、 B.licheniformis ATCC 14580株及びDSM 13株の16SrDNAに対し、相同率99.6%の最も高い相同性を示した。
SIID7861-04-Blの16S rDNAとアポロンDB-BA5.0に対する相同性検索上位10株の16S rDNAをもちいて行った簡易分子系統解析の結果、SIID7861-04-Blは、 B.licheniformis, B.aerius及びB. stratosphericusの16S rDNAで形成されるクラスター内に含まれることが判明した。又、検体はB. licheniformisの16SrDNAと同一の分子系統学的位置を示し、他の2種との間には距離の存在が認められた。
以上のことから、SIID7861-04-Blは、 Bacillus属に含まれ、 B. licheniformisに帰属する菌株と推定された。
Specimen: SIID 7861-04-B1 (Colony derived from Specimen 2)
As a result of simple morphological observation, SIID7861-04-Bl is a gonococcus (0.8-0.9 x 1.5-2.5μm) that shows growth stability under aerobic conditions, and the colony color on the Nutrient agar plate medium is It had a cream color.
As a result of homology search against Apollon DB-BA 5.0 using BLAST, the 16S rDNA partial sequence of SIID7861-04-Bl shows high homology to 16S rDNA of Bacillus genus, and 16S rDNA of B. licheniformis DSM 13 strain On the other hand, it showed the highest homology with a homology rate of 99.6%.
As a result of homology search against GenBank / DDBJ / EMBL, 16S rDNA of SIID7861-04-Bl showed high homology to 16S rDNA of Bacillus genus, and B. licheniformis ATCC 14580 strain and DSM 13 It showed the highest homology with the homology of 99.6% for the strain 16SrDNA.
As a result of simple molecular phylogenetic analysis using 16S rDNA of 16S rDNA of SIID7861-04-Bl and 16S rDNA of the top 10 homology search for Apollon DB-BA5.0, SIID7861-04-Bl was obtained from B. licheniformis, B. It was found to be contained in clusters formed by 16S rDNA of aerius and B. stratosphericus. The specimen showed the same molecular phylogenetic position as B. licheniformis 16S rDNA, and there was a distance between the other two species.
From the above, SIID7861-04-Bl was estimated to be a strain belonging to the genus Bacillus and belonging to B. licheniformis.

検体:SIID 7861-05-B1(検体3由来のコロニー)
簡易形態観察の結果、SIID7861-05-Blはグラム染色不定、好気条件下での生育性を示す梓菌(0.8-1.0 x 2.0-4.0μm)でNutrient agar平板培地上でのコロニー色は淡黄色を呈した。
BLASTをもちいたアポロンDB-BA5.0に対する相同性検索の結果、SIID7861-05-Blの16S rDNA部分配列はBrevibacillus属の16S rDNAに対し高い相同性を示し、B. Thermoruber (SHIDA (O.), TAKAGI(H.), KADOWAKI (K.) and KOMAGATA (K.): Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol., 1996, 46, 939-946)DSM 7064株の16S rDNAに対し、相同率99.2%の最も高い相同性を示した。
GenBank/DDBJ/EMBLに対する相同性検索の結果においても、SIID7861-05-Blの16S rDNAはBrevibacillus属の16S rDNAに対し高い相同性を示し、基準株ではB. Thermoruber (SKERMAN (V.B.D.), McGOWAN (V.) and SNEATH (P.H.A.) (editors): Approved Lists of Bactarial Names. Int. J. Syst. Bacteriol., 1980, 30, 225-420) DSM 7064株の16SrDNAに対し相同率99.2%の高い相同性を示しましたが、基準株に由来する16S rDNAは検索されなかった。
SllD7861-05-Blの16SrDNAとアポロンDB-BA5・0に対する相同性検索上位10株の16S rDNAをもちいて行った簡易分子系統解析の結果、SllD7861-05-Blは、Brevibacillus属の菌種の16S rDNAで形成されるクラスター内に含まれることが判明した。又、検体はB.thermoruberの16SrDNAとクラスターを形成し、近縁であることが示された。しかしながら、SllD7861-05-Bl とB. thermoruber の16SrDNA部分配列間では3塩基が明確に異なっている。
以上のことから、 SIID7861-05lBlはBrevibacillus属に含まれ、B. thermoruberに帰属するか、又は、又は、これと近縁なBrevibacillus sp.とすることが妥当である。
Specimen: SIID 7861-05-B1 (Colony derived from specimen 3)
As a result of simple morphological observation, SIID7861-05-Bl is gram-stained, gonococci (0.8-1.0 x 2.0-4.0μm) showing viability under aerobic conditions, and the colony color on Nutrient agar plate medium is light It was yellow.
As a result of homology search for Apollon DB-BA5.0 using BLAST, the 16S rDNA partial sequence of SIID7861-05-Bl showed high homology to Brevibacillus genus 16S rDNA, and B. Thermoruber (SHIDA (O.) , TAKAGI (H.), KADOWAKI (K.) and KOMAGATA (K.): Proposal for two new genera, Brevibacillus gen. Nov. And Aneurinibacillus gen. Nov. Int. J. Syst. Bacteriol., 1996, 46, 939 -946) It showed the highest homology of 99.2% with 16S rDNA of DSM 7064 strain.
As a result of homology search against GenBank / DDBJ / EMBL, 16S rDNA of SIID7861-05-Bl showed high homology to 16S rDNA of the genus Brevibacillus, and B. Thermoruber (SKERMAN (VBD), McGOWAN ( (V.) and SNEATH (PHA) (editors): Approved Lists of Bactarial Names. Int. J. Syst. Bacteriol., 1980, 30, 225-420) High homology of 99.2% with 16S rDNA of DSM 7064 strain However, 16S rDNA derived from the reference strain was not searched.
As a result of a simple molecular phylogenetic analysis using 16S rDNA of the top 10 strains of homology search for 16S rDNA of SllD7861-05-Bl and Apollon DB-BA5 ・ 0, SllD7861-05-Bl was found to be 16S of Brevibacillus species It was found to be contained within a cluster formed of rDNA. In addition, the sample formed a cluster with B. thermoruber 16S rDNA, indicating that it was closely related. However, 3 bases are clearly different between SllD7861-05-Bl and B. thermoruber 16S rDNA partial sequences.
From the above, it is appropriate that SIID7861-05lBl is included in the genus Brevibacillus and belongs to B. thermoruber or is closely related to Brevibacillus sp.

PCR-DGGE 及びRT-PCT-DGGE解析
以下の要領で、上記の検体に含まれる微生物群集のDNAに関して、PCR-DGGE及びRT-PCR-DGGEを用いて解析した。
(1)DNA抽出
・抽出方法:ISOIL for Beads Beating (ニッポンジーン、東京)
(2)RNA抽出
・抽出方法:RNA Power Soil Total RNA Isolation Kit (MO-BIO, USA)
(3)PCR
・使用プライマー:GC-341f-534r (Muyzer G., et al., Appl. Environ. Microbiol., 1993, 59, 695-700) (200bp 増幅用)
・PCR条件:Touch Down 法(上記Muyzer G., et al.)
・PCR予備試験:DNA量2.5 ng及び10 ngについて検討
(4)RT-PCR
・逆転写反応使用プライマー:907r (Ishi K., et al., J. Gen. Appl.Microbiol., 2000, 46, 85-93)
・RT-PCR使用プライマー:GC-341f-534r
・RT-PCR条件:同上
・RT-PCR予備試験:同上
(5)DGGE
・DGGE装置:DcodeDGGEコンプリートシステム(BIO RAD,CA,USA)
・変性剤濃度勾配:25%→65%
・ポリアクリルアミドゲル濃度:8%
・泳動条件:電圧100V、 12時間泳動
・DGGEマーカー:DGGE Marker I (ニッポンジーン,東京)
PCR-DGGE and RT-PCT-DGGE analysis :
In the following manner, the DNA of the microbial community contained in the sample was analyzed using PCR-DGGE and RT-PCR-DGGE.
(1) DNA extraction / extraction method: ISOIL for Beads Beating (Nippon Gene, Tokyo)
(2) RNA extraction and extraction method: RNA Power Soil Total RNA Isolation Kit (MO-BIO, USA)
(3) PCR
・ Primer used: GC-341f-534r (Muyzer G., et al., Appl. Environ. Microbiol., 1993, 59, 695-700) (for 200bp amplification)
PCR conditions: Touch Down method (Muyzer G., et al. Above)
・ PCR preliminary test: Examination of DNA amount 2.5 ng and 10 ng (4) RT-PCR
-Reverse transcription reaction primer: 907r (Ishi K., et al., J. Gen. Appl. Microbiol., 2000, 46, 85-93)
-RT-PCR primer: GC-341f-534r
・ RT-PCR conditions: Same as above ・ RT-PCR preliminary test: Same as above (5) DGGE
・ DGGE equipment: DcodeDGGE complete system (BIO RAD, CA, USA)
・ Denaturer concentration gradient: 25% → 65%
・ Polyacrylamide gel concentration: 8%
・ Electrophoretic conditions: Voltage 100V, 12 hours ・ DGGE marker: DGGE Marker I (Nippon Gene, Tokyo)

以上のPCR-DGGE RT-PCT-DGGEで各検体から得られたバンドに関して国際塩基配列データベースBLAST検索を行った結果、上記の菌床には、Bacillus coagulans及びBacillus licheniformis等の Bacillus属に属する微生物、Ureibacillus suwonensis若しくはこれに近縁の種等の Ureibacillus属に属する微生物、及び、Brevibacillus thermoruber 等のBrevibacillus属に属する微生物が含まれていることが確認され、更に、Tepidimicrobium 属に属する微生物及び/又はPelotomaculum属に属する微生物が含まれることが示された。   As a result of performing an international base sequence database BLAST search for the bands obtained from each sample by PCR-DGGE RT-PCT-DGGE, the above-mentioned fungus bed contains microorganisms belonging to the genus Bacillus such as Bacillus coagulans and Bacillus licheniformis, It is confirmed that microorganisms belonging to the genus Ureibacillus such as Ureibacillus suwonensis or related species, and microorganisms belonging to the genus Brevibacillus such as Brevibacillus thermoruber are included, and microorganisms belonging to the genus Tepidimicrobium and / or Pelotomaculum genus It was shown that microorganisms belonging to

本発明方法によって、上記の実証試験で示されたように、二酸化炭素の排出量を削減することが出来る。下水汚泥等は最終的には焼却処分されるが、本発明方法によって下水汚泥等中の有機物が分解・処理され、更には、水分含量が有意に減少するので、焼却量を削減することが出来、その結果、自治体等の焼却施設の耐用年数を伸ばすことが可能となる。更に、焼却処分後の焼却灰からリン等の各種の有用な成分を回収・再利用することも可能である。 By the method of the present invention, the carbon dioxide emission can be reduced as shown in the above demonstration test. Sewage sludge is finally incinerated, but organic matter in the sewage sludge is decomposed and treated by the method of the present invention, and the water content is significantly reduced, so the amount of incineration can be reduced. As a result, it is possible to extend the useful life of incineration facilities such as local governments. Further, various useful components such as phosphorus can be recovered and reused from the incinerated ash after incineration.

又、本発明方法は、微細藻等の各種バイオマスを原料としたバイオ燃料及び燃料資材等の工業生産工程における脱水処理等に有効に利用することが出来る。   In addition, the method of the present invention can be effectively used for dehydration in an industrial production process of biofuels and fuel materials using various biomass such as microalgae as raw materials.

Claims (13)

Bacillus属に属する微生物、Ureibacillus属に属する微生物、及びBrevibacillus属に属する微生物を含む菌床に処理対象物を添加混合し、処理対象物中に含まれる有機物を該微生物により分解することから成る、処理対象物を処理する方法。 A treatment comprising adding a treatment object to a fungus bed containing a microorganism belonging to the genus Bacillus, a microorganism belonging to the genus Ureibacillus, and a microorganism belonging to the genus Brevibacillus, and decomposing the organic matter contained in the treatment object by the microorganism. A method of processing an object. Bacillus属に属する微生物、Ureibacillus属に属する微生物、及びBrevibacillus属に属する微生物を含む菌床に処理対象物を添加混合した後、静置しておくことから成る、請求項1記載の方法。 The method according to claim 1, comprising adding a treatment target to a bacterial bed containing a microorganism belonging to the genus Bacillus, a microorganism belonging to the genus Ureibacillus, and a microorganism belonging to the genus Brevibacillus, and then allowing to stand still. 処理対象物が下水汚泥である、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the object to be treated is sewage sludge. Bacillus属に属する微生物、Ureibacillus属に属する微生物、及びBrevibacillus属に属する微生物を含む菌床を処理対象物に添加混合し、該菌床内の微生物による発酵に伴い発生する熱によって、該処理対象物の水分含量を減少させる方法。 A bacterial bed containing a microorganism belonging to the genus Bacillus, a microorganism belonging to the genus Ureibacillus, and a microorganism belonging to the genus Brevibacillus is added to and mixed with the object to be treated, and the object to be treated is generated by heat generated by fermentation by the microorganisms in the bacteria bed. A method for reducing the water content of food. 処理対象物がバイオマスである、請求項4記載の方法。 The method of Claim 4 that a process target object is biomass. バイオマスが微細藻の培養物である、請求項5記載の方法。 6. The method of claim 5, wherein the biomass is a culture of microalgae. Bacillus属に属する微生物がBacillus coagulans若しくはBacillus licheniformis、及び/又は、Ureibacillus属に属する微生物がUreibacillus suwonensis若しくはこれに近縁の種、及び/又は、Brevibacillus属に属する微生物がBrevibacillus thermoruberである、請求項1〜6のいずれか一項に記載の方法。 The microorganism belonging to the genus Bacillus is Bacillus coagulans or Bacillus licheniformis and / or the microorganism belonging to the genus Ureibacillus is Ureibacillus suwonensis or a closely related species, and / or the microorganism belonging to the genus Brevibacillus is Brevibacillus thermoruber. The method as described in any one of -6. 菌床が更に、Tepidimicrobium 属に属する微生物及び/又はPelotomaculum属に属する微生物を含む、請求項7記載の方法。 The method according to claim 7, wherein the fungal bed further comprises a microorganism belonging to the genus Tepidimicrobium and / or a microorganism belonging to the genus Pelotomaculum. 処理中における菌床と添加された処理対象物との容積比が10:1〜60:1である、請求項1〜8のいずれか一項に記載の方法。 The method as described in any one of Claims 1-8 whose volume ratio of the microbial bed in a process and the added process target object is 10: 1-60: 1. 処理対象物を複数回に分けて1〜数日毎に菌床に添加混合する、請求項1〜9のいずれか一項に記載の方法。   The method as described in any one of Claims 1-9 which divides a process target object into multiple times and adds and mixes to a microbial bed every 1 to several days. 処理対象物の分解処理中における、菌床と処理対象物との混合物の含水率が50〜75重量%である、請求項1〜10のいずれか一項に記載の方法。 The method as described in any one of Claims 1-10 whose moisture content of the mixture of a microbial bed and a process target object is 50 to 75 weight% in the decomposition process of a process target object. 処理対象物の分解処理中における、菌床と処理対象物との混合物の温度が25〜75℃(表面から30cmの深さで測定)である、請求項1〜11のいずれか一項に記載の方法。 The temperature of the mixture of a fungus bed and a processing target object during the decomposition process of the processing target object is 25 to 75 ° C (measured at a depth of 30 cm from the surface). the method of. 処理対象物の分解処理中における、菌床と処理対象物との混合物のpHが5.5〜9.0である、請求項1〜12のいずれか一項に記載の方法。 The method as described in any one of Claims 1-12 whose pH of the mixture of a microbial bed and a process target object in the decomposition process of a process target object is 5.5-9.0.
JP2011010515A 2010-04-23 2011-01-21 Method for treating object to be treated using microorganism Pending JP2011240328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010515A JP2011240328A (en) 2010-04-23 2011-01-21 Method for treating object to be treated using microorganism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010099465 2010-04-23
JP2010099465 2010-04-23
JP2011010515A JP2011240328A (en) 2010-04-23 2011-01-21 Method for treating object to be treated using microorganism

Publications (1)

Publication Number Publication Date
JP2011240328A true JP2011240328A (en) 2011-12-01

Family

ID=45407541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010515A Pending JP2011240328A (en) 2010-04-23 2011-01-21 Method for treating object to be treated using microorganism

Country Status (1)

Country Link
JP (1) JP2011240328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853964B1 (en) 2017-11-23 2018-05-02 (주) 참좋은환경 Microbial agent for food waste treatment
CN112456745A (en) * 2020-12-24 2021-03-09 河南省科学院化学研究所有限公司 Method for drying and treating domestic sludge by aerobic microorganisms and application thereof
CN112520965A (en) * 2020-12-24 2021-03-19 河南省科学院化学研究所有限公司 Method for aerobic drying treatment of papermaking sludge by using recyclable bacterial bed and application of method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853964B1 (en) 2017-11-23 2018-05-02 (주) 참좋은환경 Microbial agent for food waste treatment
CN112456745A (en) * 2020-12-24 2021-03-09 河南省科学院化学研究所有限公司 Method for drying and treating domestic sludge by aerobic microorganisms and application thereof
CN112520965A (en) * 2020-12-24 2021-03-19 河南省科学院化学研究所有限公司 Method for aerobic drying treatment of papermaking sludge by using recyclable bacterial bed and application of method
CN112520965B (en) * 2020-12-24 2023-08-22 河南省科学院化学研究所有限公司 Method for treating papermaking sludge by aerobic drying of recyclable fungus bed and application of method
CN112456745B (en) * 2020-12-24 2023-08-22 河南省科学院化学研究所有限公司 Method for drying domestic sludge by aerobic microorganisms and application thereof

Similar Documents

Publication Publication Date Title
Dao et al. Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria
De-Bashan et al. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater
Zhou et al. Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater
Lakaniemi et al. Growth of Chlorella vulgaris and associated bacteria in photobioreactors
Gani et al. Extraction of hydrocarbons from freshwater green microalgae (Botryococcus sp.) biomass after phycoremediation of domestic wastewater
CN103602616B (en) Bacillus amyloliquefaciens Y10 and application thereof
Gong et al. Enhancement of anaerobic digestion effluent treatment by microalgae immobilization: Characterized by fluorescence excitation-emission matrix coupled with parallel factor analysis in the photobioreactor
RU2518349C1 (en) STRAIN OF Rhodococcus sp-DESTRUCTOR OF PETROLEUM HYDROCARBONS
Liu et al. Amino acids hydrolyzed from animal carcasses are a good additive for the production of bio-organic fertilizer
JP2019156695A (en) Composting treatment accelerator and method for producing compost
Ferro et al. Growth performance and nutrient removal of a Chlorella vulgaris-Rhizobium sp. co-culture during mixotrophic feed-batch cultivation in synthetic wastewater
Shaker et al. Treating urban wastewater: Nutrient removal by using immobilized green algae in batch cultures
Luo et al. Using co-occurrence network to explore the effects of bio-augmentation on the microalgae-based wastewater treatment process
Barreiro-Vescovo et al. Characterization of communities in a microalgae-bacteria system treating domestic wastewater reveals dominance of phototrophic and pigmented bacteria
CN110387339B (en) Ochrobactrum intermedium B522 and application thereof
JPWO2020009097A1 (en) Decontamination methods and materials used for environments contaminated by petroleum-related substances
Carraro et al. Microalgae bioremediation and CO2 fixation of industrial wastewater
JP4947672B2 (en) Novel microorganism and method for producing compost using the same
Santhosh et al. Lab-scale degradation of leather industry effluent and its reduction by Chlorella sp. SRD3 and Oscillatoria sp. SRD2: a bioremediation approach
Cheirsilp et al. Phytoremediation of secondary effluent from palm oil mill by using oleaginous microalgae for integrated lipid production and pollutant removal
Marjakangas et al. Lipid production by eukaryotic microorganisms isolated from palm oil mill effluent
JP2011240328A (en) Method for treating object to be treated using microorganism
Forough et al. Application of Saccharomyces cerevisiae isolated from industrial effluent for zinc biosorption and zinc-enriched SCP production for human and animal
Elleuch et al. A new practical approach for the biological treatment of a mixture of cheese whey and white wastewaters using Kefir grains
Iskandar et al. Molecular systematic and phylogenetic analysis of indigenous bacterial isolates with potential as bioremediation agent based on 16S rRNA gene analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616