JP6217928B2 - Lead acid battery and positive electrode plate thereof - Google Patents

Lead acid battery and positive electrode plate thereof Download PDF

Info

Publication number
JP6217928B2
JP6217928B2 JP2014065679A JP2014065679A JP6217928B2 JP 6217928 B2 JP6217928 B2 JP 6217928B2 JP 2014065679 A JP2014065679 A JP 2014065679A JP 2014065679 A JP2014065679 A JP 2014065679A JP 6217928 B2 JP6217928 B2 JP 6217928B2
Authority
JP
Japan
Prior art keywords
positive electrode
lead
active material
electrode material
composite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014065679A
Other languages
Japanese (ja)
Other versions
JP2015191691A (en
Inventor
貴聡 河上
貴聡 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2014065679A priority Critical patent/JP6217928B2/en
Publication of JP2015191691A publication Critical patent/JP2015191691A/en
Application granted granted Critical
Publication of JP6217928B2 publication Critical patent/JP6217928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、正極電極材料がSb元素を含有する鉛蓄電池とその正極板とに関する。   The present invention relates to a lead-acid battery whose positive electrode material contains Sb element and a positive electrode plate thereof.

鉛蓄電池の正極電極材料に、Sb元素を含有させることが知られている(特許文献1 特開2013-140678)。そして正極電極材料中のSb元素に関して、以下のことが知られている。
・ Sb元素は正極電極材料の粒子間の結合強度を高める。これによって、正極電極材料の軟化・脱落を抑制できる。
・ Sb元素は正極での自己放電を増し、また負極へ拡散して水素過電圧を低下させる。
It is known that a positive electrode material of a lead storage battery contains an Sb element (Patent Document 1 JP 2013-140678 A). As for the Sb element in the positive electrode material, the following is known.
-Sb element increases the bond strength between particles of the positive electrode material. Thereby, the softening / dropping of the positive electrode material can be suppressed.
• Sb element increases self-discharge at the positive electrode and diffuses to the negative electrode to reduce hydrogen overvoltage.

特開2013-140678JP2013-140678

発明者は以下の可能性を検討した。鉛酸化物のコアをSb等の鉛とは異種の元素の偏析層で被覆した複合粒子を、正極電極材料に加えると、以下の作用が期待できる。
・ 鉛蓄電池の使用開始時には異種の元素は偏析層に偏在するので、異種金属元素の正極電極材料への悪影響を小さくできる。
・ 使用開始後に、異種の元素は偏析層から正極電極材料全体へ徐々に拡散し、正極電極材料粒子間の結合を強化する、等の作用を発揮する。
・ コアの鉛酸化物は偏析層によりシールドされて、化成後まで起電反応にあまり関与しない。しかし、充放電サイクル中にSbを例とした異種の元素が拡散するにつれて、コアの鉛酸化物が起電反応に寄与する割合が増し、放電容量の低下を遅らせる。
The inventor examined the following possibilities. When composite particles in which a lead oxide core is coated with a segregation layer of an element different from lead such as Sb are added to the positive electrode material, the following effects can be expected.
-Since the different elements are unevenly distributed in the segregation layer at the start of use of the lead storage battery, the adverse effect of the different metal elements on the positive electrode material can be reduced.
-After the start of use, dissimilar elements gradually diffuse from the segregation layer to the entire positive electrode material, and exert effects such as strengthening the bond between the positive electrode material particles.
・ The lead oxide of the core is shielded by the segregation layer and does not participate much in the electromotive reaction until after the chemical conversion. However, as the dissimilar elements such as Sb diffuse during the charge / discharge cycle, the proportion of the lead oxide in the core that contributes to the electromotive reaction increases, and the decrease in the discharge capacity is delayed.

発明者は、鉛酸化物のコアをSb等の異種金属元素の偏析層が被覆する、多層構造の複合粒子を生成することに成功した。この複合粒子を含む正極電極材料を用いると、
・ 使用による放電容量の低下が遅く、
・ 使用による正極電極材料の強度の低下が遅く、
・ 低密度の正極電極材料でも、正極電極材料の脱落を抑制できる、
ことを見出した。
The inventor succeeded in producing a composite particle having a multilayer structure in which a lead oxide core is covered with a segregation layer of a different metal element such as Sb. When using a positive electrode material containing these composite particles,
・ The discharge capacity declines slowly due to use.
・ The decrease in strength of the positive electrode material due to use is slow,
・ Even with low-density positive electrode material, it is possible to suppress the loss of positive electrode material
I found out.

この発明の課題は、鉛酸化物のコアを鉛とは異種の元素が偏析する偏析層が被覆する複合粒子により、鉛蓄電池及びその正極板の性能を向上させることにある。   An object of the present invention is to improve the performance of a lead storage battery and its positive electrode plate by composite particles in which a lead oxide core is coated with a segregation layer in which an element different from lead is segregated.

この発明は、鉛酸化物(PbO2)を主成分とする正極電極材料と集電体とを有する正極板と、負極板と、電解液とを有する鉛蓄電池において、正極電極材料が、鉛酸化物のコアが鉛とは異種の金属元素が偏析している偏析層により覆われている複合粒子を含んでいることを特徴とする。 The present invention relates to a lead-acid battery having a positive electrode plate having a positive electrode material mainly composed of lead oxide (PbO 2 ) and a current collector, a negative electrode plate, and an electrolyte, wherein the positive electrode material is lead acid The compound core includes composite particles covered with a segregation layer in which a metal element different from lead is segregated.

この発明はまた、鉛酸化物を主成分とする正極電極材料と集電体とを有する、鉛蓄電池用の正極板において、正極電極材料が、鉛酸化物のコアが鉛とは異種の金属元素が偏析している偏析層により覆われている複合粒子を含んでいることを特徴とする。   The present invention also provides a positive electrode plate for a lead-acid battery having a positive electrode material mainly composed of lead oxide and a current collector, wherein the positive electrode material is a metal element whose lead oxide core is different from lead It contains composite particles covered with a segregating layer in which segregates.

この発明の複合粒子を正極電極材料に含有させると、異種の金属元素が最初から正極電極材料中に均一に分布している場合と異なり、使用中に異種の金属元素が徐々に正極電極材料中に拡散して機能を発揮する。このため、例えば鉛蓄電池の使用開始後の正極板の性能低下を遅らせることができ、また例えば使用開始時での異種金属元素の弊害を小さくすることができる。コアの鉛酸化物は、偏析層に被覆されている間は、起電反応への関与が制限され、鉛蓄電池の使用を開始した後に徐々に起電反応への関与が強まる。このため新たな正極活物質を使用開始後に追加したのと同様の現象が生じ、鉛蓄電池の寿命性能を向上させる。なお正極電極材料の全量が、この発明の複合粒子で構成される必要はない。複合粒子以外の通常の正極電極材料が使用開始時の鉛蓄電池の性能を支え、この発明の複合粒子が使用開始後に徐々に作用を発揮する。従って、この発明の複合粒子と通常の正極電極材料との双方を、正極電極材料が含むことが好ましい。   When the composite particles of the present invention are contained in the positive electrode material, the different metal elements are gradually contained in the positive electrode material during use, unlike the case where the different metal elements are uniformly distributed in the positive electrode material from the beginning. It spreads to show its function. For this reason, for example, the performance deterioration of the positive electrode plate after the start of use of the lead-acid battery can be delayed, and for example, the adverse effect of the dissimilar metal element at the start of use can be reduced. As long as the lead oxide of the core is coated on the segregation layer, the participation in the electromotive reaction is limited, and the participation in the electromotive reaction gradually increases after the use of the lead storage battery is started. For this reason, the same phenomenon as when a new positive electrode active material is added after the start of use occurs, and the life performance of the lead storage battery is improved. The total amount of the positive electrode material need not be composed of the composite particles of the present invention. A normal positive electrode material other than the composite particles supports the performance of the lead-acid battery at the start of use, and the composite particles of the present invention gradually exert an effect after the start of use. Therefore, the positive electrode material preferably includes both the composite particles of the present invention and the normal positive electrode material.

異種金属元素がSbのとき、正極電極材料中のSbの濃度は、0.02mass%以上で0.5mass%以下とする。この発明の複合粒子の作用は、偏析層中の異種金属元素の濃度、偏析層の厚さ、偏析層の緻密さ、後記の殻の有無、等の影響を受け、上記の濃度範囲は絶対的なものではない。   When the dissimilar metal element is Sb, the concentration of Sb in the positive electrode material is 0.02 mass% or more and 0.5 mass% or less. The effect of the composite particles of the present invention is influenced by the concentration of different metal elements in the segregation layer, the thickness of the segregation layer, the density of the segregation layer, the presence or absence of the shell described later, and the above concentration range is absolute. Not something.

また好ましくは、複合粒子の少なくとも一部の粒子において、異種の金属元素が偏析していない鉛酸化物の層(殻)により、偏析層が覆われている。鉛酸化物の殻は、当初から起電反応に関与し、かつ偏析層の消滅を遅らせる。即ち、殻により、偏析層の異種金属元素が作用し始める時期を遅らせることができる。殻が充分に厚い場合、複合粒子のみの正極電極材料も可能である。   Preferably, in at least some of the composite particles, the segregation layer is covered with a lead oxide layer (shell) from which a different metal element is not segregated. The lead oxide shell is involved in the electromotive reaction from the beginning, and delays the disappearance of the segregation layer. That is, the shell can delay the time when the different metal element of the segregation layer starts to act. When the shell is sufficiently thick, a positive electrode material made only of composite particles is also possible.

Sbは正極電極材料の強度の低下を遅らせ、これによって正極電極材料の脱落を抑制する。また正極電極材料の粒子間の結合を強化でき、かつ脱落を減らせるので、放電容量の低下を遅らせる。同様の理由で、低密度の正極電極材料を使用する場合に、耐久性を向上させる。低密度の正極電極材料にこの発明を適用すると、鉛蓄電池の軽量化、及び正極電極材料の利用率の向上、等の効果も得られる。   Sb delays the decrease in the strength of the positive electrode material, thereby suppressing the falling off of the positive electrode material. Moreover, since the bond between the particles of the positive electrode material can be strengthened and the dropout can be reduced, the reduction in the discharge capacity is delayed. For the same reason, durability is improved when a low-density positive electrode material is used. When this invention is applied to a low-density positive electrode material, effects such as a reduction in the weight of the lead-acid battery and an improvement in the utilization factor of the positive electrode material can be obtained.

この発明は、鉛酸化物のコアとSb等の偏析層とを有する複合粒子を用いる点に特徴が有り、正極電極材料中のSb元素の含有量は任意である。Sb偏析層の効果はSb濃度と共に増し、Sb金属に換算した正極電極材料中の濃度で、0.02mass%以上、例えば0.04mass%以上、特に0.06mass%以上で顕著になる。またSb元素の濃度が金属換算で0.5mass%を超えると、自己放電の増加等のSbの弊害が表れることがある。このため正極電極材料中のSb含有量は、好ましくは0.02mass%以上で0.5mass%以下、より好ましくは0.04mass%以上で0.5mass%以下、特に好ましくは0.06mass%以上で0.5mass%以下、最も好ましくは0.1mass%以上で0.5mass%以下とする。なおSbの偏析層を酸化鉛の殻で被覆すると、正極電極材料中へのSb元素の拡散をさらに遅らせることができる。従って上記の上限は絶対的なものではない。この明細書では、Sb含有量を金属Sbに換算して示し、Sb:Sb2O3の質量比は約1:1.2である。 The present invention is characterized in that composite particles having a lead oxide core and a segregation layer such as Sb are used, and the content of the Sb element in the positive electrode material is arbitrary. The effect of the Sb segregation layer increases with the Sb concentration, and becomes significant when the concentration in the positive electrode material converted to Sb metal is 0.02 mass% or more, such as 0.04 mass% or more, and particularly 0.06 mass% or more. Further, when the concentration of Sb element exceeds 0.5 mass% in terms of metal, adverse effects of Sb such as an increase in self-discharge may appear. For this reason, the Sb content in the positive electrode material is preferably 0.02 mass% or more and 0.5 mass% or less, more preferably 0.04 mass% or more and 0.5 mass% or less, particularly preferably 0.06 mass% or more and 0.5 mass% or less, Most preferably, it is 0.1 mass% or more and 0.5 mass% or less. If the Sb segregation layer is covered with a lead oxide shell, the diffusion of the Sb element into the positive electrode material can be further delayed. Therefore, the above upper limit is not absolute. In this specification, Sb content is shown in terms of metal Sb, and the mass ratio of Sb: Sb 2 O 3 is about 1: 1.2.

Sb元素、存在形態はおそらくSbの化合物、の偏析層を設けると、正極電極材料の強度低下を遅らせることができるので、低密度の電極材料を用いることができる。そして正極電極材料の密度は、好ましくは3.1g/cm3以上で5.0g/cm3以下とし、より好ましくは3.1g/cm3以上で4.6g/cm3以下とする。この発明では、3.1g/cm3〜4.0g/cm3等の低密度な正極電極材料でも、正極板から脱落する電極材料を少なくできる。公知のように、低密度な正極電極材料は質量当たりの容量が大きい。この明細書では、PbO2を主とし、Sb元素等の添加物を含有させたものを正極電極材料といい、金属Pbを主とし、カーボン、硫酸バリウム、合成繊維、リグニン等の添加物を含有させたものを負極電極材料という。以下の実施例では電極材料を活物質という。 The provision of a segregation layer of Sb element, presumably in the form of Sb, can slow down the strength of the positive electrode material, so that a low-density electrode material can be used. The density of the positive electrode material is preferably 3.1 g / cm 3 or more and 5.0 g / cm 3 or less, more preferably 3.1 g / cm 3 or more and 4.6 g / cm 3 or less. In the present invention, even in low-density positive electrode material such as 3.1g / cm 3 ~4.0g / cm 3 , can be reduced electrode material from falling off the positive electrode plate. As is well known, a low-density positive electrode material has a large capacity per mass. In this specification, PbO 2 is mainly used as a positive electrode material containing an additive such as Sb element, and metal Pb is mainly used as an additive such as carbon, barium sulfate, synthetic fiber and lignin. This is called a negative electrode material. In the following examples, the electrode material is referred to as an active material.

実施例の鉛蓄電池での、未化成の正極活物質(正極電極材料)の構造を示す電子顕微鏡写真Electron micrograph showing the structure of an unformed positive electrode active material (positive electrode material) in the lead storage battery of the example. 実施例の鉛蓄電池での、化成済みの正極活物質の構造を示す電子顕微鏡写真Electron micrograph showing the structure of the formed positive electrode active material in the lead storage battery of the example 実施例の鉛蓄電池での、正極活物質の構造を示す電子顕微鏡写真The electron micrograph which shows the structure of the positive electrode active material in the lead acid battery of an Example 鉛蓄電池の正極活物質中の元素分布を示す、EPMA写真EPMA photo showing element distribution in the positive electrode active material of lead-acid battery

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

正極活物質(正極電極材料)の調製
ボールミル法、ハーディング法、バートン・ポット法等の適宜の方法により、鉛粉を調製する。鉛粉は鉛丹等を含んでいても良く、合成繊維等の補強剤、及びカーボン等の添加物を含んでいても良い。鉛粉にSb2O3粉体の形でSb元素を添加した。金属Sbの粉体、Sb2O5等の他の酸化物の粉体、あるいはSb2O2SO4、Sb2(SO4)3等の酸化物以外の化合物として、Sb元素を含有させても良い。鉛粉との質量比が4:1となる量の硫酸を鉛粉に加えて混練し、ペースト化した。通常のペーストに比べて硫酸過剰なので、鉛粉は硫酸に均一に分散せず、鉛粉が凝集してダマ状になる部分と、硫酸が主で鉛粉濃度が低い液状部分とが生じた。
Preparation of positive electrode active material (positive electrode material) Lead powder is prepared by an appropriate method such as a ball mill method, a harding method, or a Burton pot method. The lead powder may contain lead or the like, and may contain a reinforcing agent such as synthetic fiber and an additive such as carbon. Sb element was added to the lead powder in the form of Sb 2 O 3 powder. Metal Sb powder, powders of other oxides such as Sb 2 O 5 , or compounds other than oxides such as Sb 2 O 2 SO 4 and Sb 2 (SO 4 ) 3 , containing Sb element Also good. An amount of sulfuric acid having a mass ratio of 4: 1 with the lead powder was added to the lead powder and kneaded to form a paste. Since the sulfuric acid was excessive as compared with the normal paste, the lead powder was not uniformly dispersed in the sulfuric acid, and the lead powder was agglomerated and formed into lumps, and the liquid portion was mainly composed of sulfuric acid and the lead powder concentration was low.

硫酸量(硫酸自体と水との合計質量)は、20℃における比重が1.02〜1.10の希硫酸の時、鉛粉の質量を1として、例えば0.3以上0.5以下が好ましい。添加したSb元素はダマ状になった鉛粉粒子を取り囲むように偏析することにより、複合粒子を形成すると考えられる。Sb元素を含有させた鉛粉ペーストから、フィルタプレス等により過剰の水分を濾別した後、芯金を包むガラス繊維チューブに充填し、乾燥と熟成とを施して、未化成の正極板とした。なお芯金はPb-Sb-As系合金としたが、組成は任意である。   The amount of sulfuric acid (total mass of sulfuric acid itself and water) is preferably 0.3 or more and 0.5 or less, for example, when the mass of lead powder is 1 when the specific gravity at 20 ° C. is 1.02 to 1.10. The added Sb element is considered to form composite particles by segregating so as to surround the lead powder particles that have become lumpy. From the lead powder paste containing Sb element, excess water is filtered off with a filter press, etc., then filled into a glass fiber tube that wraps the cored bar, dried and aged to obtain an unformed positive electrode plate . The core metal is a Pb—Sb—As alloy, but the composition is arbitrary.

ペーストの密度は充填の容易さと、正極活物質の密度に影響する。そこで、
・ 前記のように、硫酸を濾別し適当な密度に調整した後に充填する、
・ 硫酸の濾別と、充填とを同時に行う、
・ 複合粒子を含まない通常のペーストと練合する、
ことにより、ペーストの密度を調整でき、これによって化成後の正極活物質の密度も調整できる。また最後の手法では、Sb濃度の調整も同時に行える。
The density of the paste affects the ease of filling and the density of the positive electrode active material. there,
As described above, the sulfuric acid is filtered off and adjusted to an appropriate density, and then packed.
・ Filtering and filling sulfuric acid at the same time.
・ Kneading with ordinary paste without composite particles,
Thereby, the density of a paste can be adjusted and the density of the positive electrode active material after chemical conversion can also be adjusted by this. In the last method, the Sb concentration can be adjusted simultaneously.

複合粒子とそれ以外の鉛粉粒子との割合を調整するには、例えば上記のようにして複合粒子を高濃度に含む鉛粉ペーストを作成すると共に、定法により複合粒子以外の鉛粉ペーストを作成し、これらを混合すればよい。また添加するSb量を制御することにより、正極活物質中のSb元素の濃度を、Sb金属換算で、0mass%から0.84mass%の範囲で変化させた。また定法に従った硫酸量で正極活物質ペーストを作成し、Sb元素を偏析させずに、均一に分布させた正極活物質を調製した。さらに充填時の正極活物質ペーストの密度を変えて、正極活物質の密度を変化させた。   To adjust the ratio of composite particles and other lead powder particles, for example, create a lead powder paste containing composite particles at a high concentration as described above, and create a lead powder paste other than composite particles by a regular method. These may be mixed. Further, by controlling the amount of Sb added, the concentration of the Sb element in the positive electrode active material was changed in the range of 0 mass% to 0.84 mass% in terms of Sb metal. Further, a positive electrode active material paste was prepared with a sulfuric acid amount according to a conventional method, and a positive electrode active material distributed uniformly without segregating Sb element was prepared. Further, the density of the positive electrode active material was changed by changing the density of the positive electrode active material paste at the time of filling.

鉛蓄電池の製造
Sb元素を添加していない鉛粉にカーボン、硫酸バリウム、リグニン、及び合成繊維補強剤を加え、鉛粉との質量比が1:0.2の硫酸でペースト化し、未化成の負極活物質ペーストとした。負極活物質の組成は任意である。負極活物質ペーストをPb-Sb系の格子(組成は任意である)から成る集電体に充填し、乾燥と熟成とを施して未化成の負極板とし、未化成の正極板と共に電槽に収容し、希硫酸を加えて電槽化成を行い、クラッド式の鉛蓄電池(2V-165Ah/5hR)とした。
Manufacture of lead-acid batteries
Carbon, barium sulfate, lignin, and a synthetic fiber reinforcing agent are added to lead powder to which no Sb element is added, and paste is formed with sulfuric acid having a mass ratio of 1: 0.2 to lead powder to obtain an unformed negative electrode active material paste. . The composition of the negative electrode active material is arbitrary. The negative electrode active material paste is filled in a current collector composed of a Pb-Sb lattice (composition is optional), dried and aged to form an unformed negative electrode plate, and the unformed positive electrode plate together with the unformed positive electrode plate. It was housed and a dilute sulfuric acid was added to form a battery case to obtain a clad lead acid battery (2V-165Ah / 5hR).

負極活物質の組成、正極活物質及び負極活物質の化成条件等は任意で、クラッド式に代えてペースト式の鉛蓄電池としても良く、またVRLA式か液式か等は任意である。この発明の特徴は、Sb等の異種金属元素の偏析層により、酸化鉛のコアが被覆されている複合粒子を用いる点に有り、他の点は適宜に変更できる。偏析層はコアを完全に覆っている必要はなく、例えば画像上でC字状に見える偏析層のように、一部を除いてコアを覆っているものでも良い。   The composition of the negative electrode active material, the formation conditions of the positive electrode active material and the negative electrode active material are arbitrary, and a paste type lead-acid battery may be used instead of the clad type, and whether it is a VRLA type or a liquid type is arbitrary. The feature of the present invention resides in the use of composite particles in which a lead oxide core is coated with a segregation layer of a different metal element such as Sb, and other points can be changed as appropriate. The segregation layer does not need to completely cover the core. For example, the segregation layer may cover the core except for a part thereof, such as a segregation layer that looks C-shaped on the image.

複合粒子
図1〜図3に、Sb元素の偏析層がある複合粒子を含む、正極活物質の断面での電子顕微鏡写真を示す。図1は未化成の正極活物質の断面を示し、明るい円形のコアと、コアを被覆する暗い被覆層とを有する複合粒子が見えている。図2は既化成の正極活物質の断面を示し、明るい円形のコアを暗い被覆層が被覆する複合粒子が見えている。図2の複合粒子では、被覆層が明るい酸化鉛の層(殻)で被覆されているものが多い。図1,図2では、構造が明瞭な複合粒子を選んでマーキングしたが、これ以外にも暗い被覆層によりコアが覆われている粒子が多数見える。
Composite Particles FIGS. 1 to 3 show electron micrographs in a cross section of a positive electrode active material including composite particles having a segregation layer of Sb element. FIG. 1 shows a cross section of an unformed positive electrode active material, in which a composite particle having a bright circular core and a dark coating layer covering the core is visible. FIG. 2 shows a cross-section of the preformed positive electrode active material, and composite particles in which a bright circular core is covered with a dark coating layer can be seen. In many of the composite particles shown in FIG. 2, the coating layer is coated with a bright lead oxide layer (shell). In FIG. 1 and FIG. 2, composite particles having a clear structure are selected and marked. However, many particles having a core covered with a dark coating layer can be seen.

図3は化成後の正極活物質の断面を示し、密なPbO2から成るコアと、その周囲の暗い被覆層(Sb元素の偏析層)と、被覆層を覆う密なPbO2から成る殻とが見える。なお図1〜図3では倍率は85倍である。 FIG. 3 shows a cross section of the positive electrode active material after chemical conversion, a core made of dense PbO 2 , a dark coating layer (Sb segregation layer of Sb element) around the core, and a shell made of dense PbO 2 covering the coating layer. Can be seen. 1 to 3, the magnification is 85 times.

図4は、EPMAにより測定した、Pb元素とS元素、及びSb元素の分布を示す。図の左の列はSb無添加、中央の列は正極活物質中のSb濃度(この例ではSb2O3換算)が0.2mass%、右側の列は正極活物質中のSb2O3換算の濃度が0.7mass%である。中央の列と右側の列では、Sbが高濃度に存在する被覆層が見え、その内側にPbのコアが見える。 FIG. 4 shows the distribution of Pb element, S element, and Sb element measured by EPMA. The left column of the figure shows no Sb added, the central column shows 0.2 mass% of Sb concentration in the positive electrode active material (in this example, Sb 2 O 3 conversion), and the right column shows Sb 2 O 3 conversion in the positive electrode active material The concentration of is 0.7 mass%. In the middle row and the right row, a coating layer with a high concentration of Sb can be seen, and the Pb core can be seen inside.

測定法
複合粒子の観察法、Sb濃度の測定法、等を示す。複合粒子は正極板の断面を電子顕微鏡で観察することにより確認でき、Sbの偏析層、鉛酸化物(主としてPbO2)のコアはEPMAにより観察できる。複合粒子では使用と共に偏析層が分解するので、使用開始前、あるいは開始直後等に、観察することが好ましい。Sb濃度を測定するには、必要であれば充電した後に、正極板から活物質を分離し、水洗と乾燥とにより硫酸を除き、活物質の乾燥重量を測定する。次いで原子吸光やICPにより、例えば標準試料と比較することにより、Sb濃度を測定する。水洗と乾燥とを施した正極活物質に対し、例えば水銀圧入法により求めた細孔容積から、正極活物質の密度が求まる。
Measurement method The observation method of composite particles, the measurement method of Sb concentration, etc. The composite particles can be confirmed by observing the cross section of the positive electrode plate with an electron microscope, and the segregation layer of Sb and the core of lead oxide (mainly PbO 2 ) can be observed by EPMA. In the case of composite particles, the segregation layer decomposes with use, and therefore it is preferable to observe the composite particles before use or immediately after the use. To measure the Sb concentration, after charging, if necessary, the active material is separated from the positive electrode plate, the sulfuric acid is removed by washing with water and drying, and the dry weight of the active material is measured. Next, the Sb concentration is measured by atomic absorption or ICP, for example, by comparison with a standard sample. For the positive electrode active material that has been washed and dried, the density of the positive electrode active material is determined from the pore volume determined by, for example, a mercury intrusion method.

鉛蓄電池の性能
鉛蓄電池の放電性能を測定した。次いで、30℃の環境下で放電が0.25CA(41.25A)×3h(DOD75%)で、充電が0.18CA(29.7A)×5h(120%)であるサイクル寿命試験を行い、1200サイクル後に0.2CA(33A)の放電容量を測定した。また容量試験の後に電池を解体し、1200サイクル後の正極活物質の強度と活物質の脱落量とを測定した。
Performance of lead-acid battery The discharge performance of the lead-acid battery was measured. Next, in a 30 ° C environment, a cycle life test was conducted with a discharge of 0.25CA (41.25A) x 3h (DOD75%) and a charge of 0.18CA (29.7A) x 5h (120%). The discharge capacity of CA (33A) was measured. In addition, the battery was disassembled after the capacity test, and the strength of the positive electrode active material and the amount of the active material dropped after 1200 cycles were measured.

表1〜表5に、鉛蓄電池の放置性能および電池寿命性能を示す。なおSbは定法により均一に添加する場合と複合粒子を用いて添加する場合の2つの方法で添加し、表1〜表4に示した正極活物質の密度は3.3g/cm3とした。複合粒子を用いて添加する場合、Sb濃度を0.02mass%以上0.5mass%以下、好ましくは0.04mass%以上0.5mass%以下、特に0.06mass%以上0.5mass%以下とすることにより、鉛蓄電池が長寿命化することが分かった。 Tables 1 to 5 show the storage performance and battery life performance of the lead storage battery. In addition, Sb was added by two methods of adding uniformly by a conventional method and adding using composite particles, and the density of the positive electrode active material shown in Tables 1 to 4 was 3.3 g / cm 3 . When adding using composite particles, the lead storage battery is long by making the Sb concentration 0.02 mass% or more and 0.5 mass% or less, preferably 0.04 mass% or more and 0.5 mass% or less, particularly 0.06 mass% or more and 0.5 mass% or less. It was found that the service life was extended.

表2の寿命試験後の活物質強度は、複合粒子を生成させずにSbを均一に添加した場合と、複合粒子中にSbを偏析させた場合との、サイクル寿命試験の前後での正極活物質強度を示す。なお正極活物質強度は、正極板に任意の大きさの円柱状の棒(例えばφ1mm)を活物質に押し当て、突き抜けるもしくは亀裂が入るまでに要した最大の力を示す。Sbの偏析層がある複合粒子を用いると、正極活物質の強度の低下を遅くすることができた。なお実施例と同じ濃度(Sb:0.17%)で、Sbを均一に分布させると、初期から強度が低かった。   The active material strength after the life test in Table 2 shows the positive electrode activity before and after the cycle life test in the case where Sb is uniformly added without generating composite particles and in the case where Sb is segregated in the composite particles. Indicates material strength. The positive electrode active material strength indicates the maximum force required until a cylindrical bar (for example, φ1 mm) of an arbitrary size is pressed against the positive electrode plate against the active material and penetrated or cracked. When composite particles having an Sb segregation layer were used, the decrease in the strength of the positive electrode active material could be delayed. When Sb was uniformly distributed at the same concentration as in the example (Sb: 0.17%), the strength was low from the beginning.

表3は、Sb添加量と、脱落した正極活物質量との関係を示す。Sbの添加量は金属換算である。なお正極活物質の脱落量は、寿命サイクル試験を行う際に、電槽底部に溜まった沈殿物と、負極板に付着し還元された析出物を集めて水洗の後、乾燥して質量を測定した。Sbの偏析層のある複合粒子を用いると、正極活物質の脱落量が減少するので、正極活物質の密度を低下させることができる。また表3より、Sb含有量の増加と共に脱落量を減らすことができたが、ただし、表1に示したように、Sb含有量には特性上の上限がある。   Table 3 shows the relationship between the amount of Sb added and the amount of the positive electrode active material that had fallen off. The amount of Sb added is metal equivalent. The amount of the positive electrode active material falling off was measured by collecting the precipitate accumulated at the bottom of the battery case and the reduced deposit adhering to the negative electrode plate, washing with water, drying, and mass when performing the life cycle test. did. When composite particles having an Sb segregation layer are used, the amount of the positive electrode active material falling off decreases, so that the density of the positive electrode active material can be reduced. From Table 3, the dropout amount could be reduced as the Sb content increased. However, as shown in Table 1, the Sb content has a characteristic upper limit.

表4は、Sbを均一に添加した時と、Sbを偏折させた複合粒子として添加した時との、寿命試験終期(1200サイクル後)の5時間率容量比を示している。なお表4、表5では、添加物のSbがなく活物質密度が3.80g/cm3の従来品を1として、5時間率容量比を示した。いずれのSb添加量においても、Sbを均一に添加した場合よりも複合粒子にSbを偏折させた場合の方が、寿命性能が更に向上した。 Table 4 shows the 5 hour rate capacity ratio at the end of the life test (after 1200 cycles) when Sb is uniformly added and when Sb is added as a deviated composite particle. In Tables 4 and 5, the 5-hour rate capacity ratio is shown with a conventional product having no active material Sb and an active material density of 3.80 g / cm 3 as 1. In any amount of Sb added, the life performance was further improved in the case where Sb was deflected in the composite particles than in the case where Sb was uniformly added.

表5は、活物質密度と添加剤の添加方法と寿命試験終期の容量との関係を示したものである。Sb無添加の場合には、3.10g/cm3以下の低密度の極板で顕著な容量低下が確認され、比較ができなかった。Sbを均一に添加したものでは、密度3.10g/cm3の時に寿命終期の容量は従来品の7割程度に低下していた。これに対して実施例のSb複合粒子添加の場合には、密度3.10g/cm3の時にも寿命終期まで容量を維持できていた。密度が3.10g/cm3よりも低い場合、および5.0g/cm3よりも高い場合は、Sb添加の効果は見られなかった。 Table 5 shows the relationship between the active material density, the additive addition method, and the capacity at the end of the life test. When Sb was not added, a significant decrease in capacity was confirmed with a low density electrode plate of 3.10 g / cm 3 or less, and comparison was not possible. In the case where Sb was uniformly added, the capacity at the end of life decreased to about 70% of the conventional product when the density was 3.10 g / cm 3 . On the other hand, in the case of the Sb composite particle addition of the example, the capacity could be maintained until the end of the life even when the density was 3.10 g / cm 3 . When the density was lower than 3.10 g / cm 3 and higher than 5.0 g / cm 3 , the effect of adding Sb was not observed.

表1〜表5の結果は、以下の作用を示唆している。
・ Sbは偏析層から徐々に放出される。このためSbの均一添加との差が生じる。
・ 偏析層から周囲の正極活物質中に拡散したSbは、正極活物質粒子間の結合を強化し、正極活物質の脱落量を減らす。
・ 偏析層からSbが周囲に拡散すると、コアの酸化鉛の起電反応への関与が強まる。このことと正極活物質の脱落を抑制できていることとの相乗効果により、放電容量の低下を小さくできる。
The results in Tables 1 to 5 suggest the following effects.
• Sb is gradually released from the segregation layer. For this reason, a difference from the uniform addition of Sb occurs.
-Sb diffused from the segregation layer into the surrounding positive electrode active material strengthens the bond between the positive electrode active material particles and reduces the amount of the positive electrode active material falling off.
・ When Sb diffuses from the segregation layer to the surroundings, the core lead oxide is more involved in the electromotive reaction. A reduction in discharge capacity can be reduced by a synergistic effect between this fact and the ability to prevent the positive electrode active material from falling off.

Claims (5)

鉛酸化物を主成分とする正極電極材料と集電体とを有する正極板と、負極板と、電解液とを有する鉛蓄電池において、
前記正極電極材料は、鉛酸化物のコアが、Sbが偏析している偏析層により覆われている複合粒子を含んでいることを特徴とする、鉛蓄電池。
In a lead storage battery having a positive electrode plate having a positive electrode material mainly composed of lead oxide and a current collector, a negative electrode plate, and an electrolyte solution,
The lead-acid battery, wherein the positive electrode material contains composite particles in which a lead oxide core is covered with a segregation layer in which Sb is segregated.
前記複合粒子の少なくとも一部の粒子において、前記Sbが偏析していない鉛酸化物の層により、前記偏析層が覆われていることを特徴とする、請求項1の鉛蓄電池。 The lead storage battery according to claim 1, wherein the segregation layer is covered with a lead oxide layer in which the Sb is not segregated in at least some of the composite particles. 正極電極材料が、Sb金属に換算して、Sbを0.02mass%以上で0.5mass%以下含有していることを特徴とする、請求項1または2の鉛蓄電池。 The lead acid battery according to claim 1 or 2 , wherein the positive electrode material contains 0.02 mass% or more and 0.5 mass% or less of Sb in terms of Sb metal. 正極電極材料の密度が、3.1g/cm3以上で5.0g/cm3以下であることを特徴とする、請求項1〜3のいずれかの鉛蓄電池。 The lead acid battery according to claim 1, wherein the density of the positive electrode material is 3.1 g / cm 3 or more and 5.0 g / cm 3 or less. 鉛酸化物を主成分とする正極電極材料と集電体とを有する、鉛蓄電池用の正極板であって、
前記正極電極材料が、鉛酸化物のコアが、Sbが偏析している偏析層により覆われている複合粒子を含んでいることを特徴とする、鉛蓄電池用の正極板。
A positive electrode plate for a lead storage battery having a positive electrode material mainly composed of lead oxide and a current collector,
The positive electrode plate for a lead-acid battery, wherein the positive electrode material includes composite particles in which a lead oxide core is covered with a segregation layer in which Sb is segregated.
JP2014065679A 2014-03-27 2014-03-27 Lead acid battery and positive electrode plate thereof Active JP6217928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014065679A JP6217928B2 (en) 2014-03-27 2014-03-27 Lead acid battery and positive electrode plate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065679A JP6217928B2 (en) 2014-03-27 2014-03-27 Lead acid battery and positive electrode plate thereof

Publications (2)

Publication Number Publication Date
JP2015191691A JP2015191691A (en) 2015-11-02
JP6217928B2 true JP6217928B2 (en) 2017-10-25

Family

ID=54426054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065679A Active JP6217928B2 (en) 2014-03-27 2014-03-27 Lead acid battery and positive electrode plate thereof

Country Status (1)

Country Link
JP (1) JP6217928B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202477B1 (en) * 2016-04-21 2017-09-27 株式会社Gsユアサ Lead acid battery
JPWO2022137700A1 (en) * 2020-12-21 2022-06-30

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161660A (en) * 1985-01-09 1986-07-22 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH01183067A (en) * 1988-01-12 1989-07-20 Japan Storage Battery Co Ltd Electrode for lead-acid battery

Also Published As

Publication number Publication date
JP2015191691A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6015427B2 (en) Negative electrode plate for lead acid battery and method for producing the same
CN107949937A (en) Oxidized black and the application for lead-acid battery
JP2008098009A (en) Cathode plate for lead-acid battery
JP6906072B2 (en) Method for producing cobalt compound-coated nickel hydroxide particles and cobalt compound-coated nickel hydroxide particles
JP6217928B2 (en) Lead acid battery and positive electrode plate thereof
JP5532245B2 (en) Lead-acid battery and method for manufacturing the same
JP2010225408A (en) Lead storage battery
JP6060909B2 (en) Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
JP2009016256A (en) Lead-acid battery
JP6701600B2 (en) Lead acid battery
JP5780106B2 (en) Lead-acid battery and method for manufacturing the same
JP2003142085A (en) Lead-acid battery
JP2005044759A (en) Lead-acid storage battery and manufacturing method of the same
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP2016119294A (en) Lead-acid battery
JP4186197B2 (en) Positive electrode plate for lead acid battery
WO2019021690A1 (en) Lead acid storage battery
JP3505972B2 (en) Lead-acid battery and method of manufacturing lead-acid battery
JP5787181B2 (en) Lead acid battery
JP3646462B2 (en) Method for producing active material for lead-acid battery
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPS6028171A (en) Manufacture of paste type pole plate for lead storage battery
JPS60216451A (en) Electrode for lead storage battery
JPS5923469A (en) Anode plate for lead-acid battery and its manufacture
JPS59177864A (en) Electrode material for lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6217928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150