JP6217125B2 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP6217125B2
JP6217125B2 JP2013098813A JP2013098813A JP6217125B2 JP 6217125 B2 JP6217125 B2 JP 6217125B2 JP 2013098813 A JP2013098813 A JP 2013098813A JP 2013098813 A JP2013098813 A JP 2013098813A JP 6217125 B2 JP6217125 B2 JP 6217125B2
Authority
JP
Japan
Prior art keywords
downshift
speed
clutch
engine
automatic transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013098813A
Other languages
English (en)
Other versions
JP2014218168A (ja
Inventor
史博 山中
史博 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013098813A priority Critical patent/JP6217125B2/ja
Publication of JP2014218168A publication Critical patent/JP2014218168A/ja
Application granted granted Critical
Publication of JP6217125B2 publication Critical patent/JP6217125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、エンジンおよび電動モータを動力源とし、電動モータのみにより走行する電気走行モード(EVモード)と、電動モータおよびエンジンにより走行するハイブリッド走行モード(HEVモード)とを選択可能なハイブリッド車両の制御装置に関する。
このようなハイブリッド車両としては従来、例えば特許文献1に記載のようなものが知られている。このハイブリッド車両は、電動モータによる走行中にエンジン始動とダウンシフトを同時に実行することで、運転性を向上している。
特開2007−261498号公報
しかしながら、特許文献1に記載の技術にあっては、例えば、エンジン始動時に、運転者がさらにアクセルペダルを踏み込むことでダウンシフトが複数回要求される場合、最初のダウンシフトが完了してから次のダウンシフトを実行すると、運転者が要求する加速度を出力するまでの応答性を確保することが困難であった。
本発明は上記課題に着目し、EVモードで走行中に、エンジン始動要求と複数回のダウンシフト要求がなされた場合、加速度の応答性を確保可能なハイブリッド車両の制御装置を提供することを目的とする。
この目的のため、本発明によるハイブリッド車両の制御装置は、電気自動車モードからハイブリッドモードへの切り替えのためにエンジンクラッチを締結してエンジンを始動するエンジン始動制御を実行中、有段式自動変速機内の第1締結要素の締結容量を低下させて第1のダウンシフトを行っているときに、更に有段式自動変速機内の第2締結要素の締結容量を低下させる第2のダウンシフトが要求されたときは、第1のダウンシフトによりギヤ比が変化している状態であっても、第2締結要素の締結容量を第1締結要素の締結容量よりも低くして第2のダウンシフトを開始することとした。
よって、第1のダウンシフトの終了を待つことなく第2のダウンシフトを実行することで、所望の変速段に素早く移行することができ、運転者の意図に沿った加速応答性が得られる。また、第2のダウンシフトを行うときは第2締結要素の締結容量を第1締結要素の締結容量よりも低くしているため、第1のダウンシフトと第2のダウンシフトとが同時に行われることに伴うショックを第2締結要素において吸収することができ、変速ショックを回避できる。
実施例1のハイブリッド車両を示す全体システム図である。 実施例1のハイブリッド車両の制御構成を表すブロック図である。 実施例1の目標駆動力マップである。 実施例1に搭載される自動変速機ATの構成を表すスケルトン図である。 実施例1の自動変速機ATでの前進7速後退1速の締結作動表を示す図である。 実施例1の自動変速機ATに用いる変速線及び走行モードが設定された変速マップである。 実施例1のエンジン始動中におけるダウンシフト制御処理を表すフローチャートである。 実施例1のエンジン始動中におけるダウンシフト制御処理を表すタイムチャートである。 実施例1の自動変速機において第5速,第4速及び第3速の状態を表す共線図である。
〔実施例1〕
まず、ハイブリッド車両の駆動系構成を説明する。図1は実施例1のエンジン始動制御装置が適用された後輪駆動によるハイブリッド車両を示す全体システム図である。実施例1におけるハイブリッド車の駆動系は、図1に示すように、エンジンEと、第1クラッチCL1と、モータジェネレータMGと、第2クラッチCL2と、自動変速機ATと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。尚、FLは左前輪、FRは右前輪である。
エンジンEは、例えばガソリンエンジンであり、後述するエンジンコントローラ1からの制御指令に基づいて、スロットルバルブのバルブ開度等が制御される。尚、エンジン出力軸にはフライホイールFWが設けられている。
第1クラッチCL1は、エンジンEとモータジェネレータMGとの間に介装されたクラッチであり、後述する第1クラッチコントローラ5からの制御指令に基づいて、第1クラッチ油圧ユニット6により作り出された制御油圧により作動し、スリップ締結を含み締結・開放が制御される。
モータジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータジェネレータであり、後述するモータコントローラ2からの制御指令に基づいて、インバータ3により作り出された三相交流を印加することにより制御される。このモータジェネレータMGは、バッテリ4からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この状態を「力行」と呼ぶ)、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ4を充電することもできる(以下、この動作状態を「回生」と呼ぶ)。尚、このモータジェネレータMGのロータは、図外のダンパーを介して自動変速機ATの入力軸に連結されている。
第2クラッチCL2は、モータジェネレータMGと左右後輪RL,RRとの間に介装されたクラッチであり、後述するATコントローラ7からの制御指令に基づいて、第2クラッチ油圧ユニット8により作り出された制御油圧により、スリップ締結を含み締結・開放が制御される。
自動変速機ATは、前進7速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える変速機であり、第2クラッチCL2は、専用クラッチとして新たに追加したものではなく、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用している。
そして、自動変速機ATの出力軸は、車両駆動軸としてのプロペラシャフトPS、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。尚、前記第1クラッチCL1と第2クラッチCL2には、例えば、比例ソレノイドで油流量および油圧を連続的に制御できる湿式多板クラッチを用いている。
このハイブリッド駆動系には、第1クラッチCL1の締結・開放状態に応じて3つの走行モードを有する。第1走行モードは、第1クラッチCL1の開放状態で、モータジェネレータMGの動力のみを動力源として走行するモータ使用走行モードとしての電気自動車走行モード(以下、「EV走行モード」と略称する。)である。第2走行モードは、第1クラッチCL1の締結状態で、エンジンEを動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と略称する。)である。第3走行モードは、第1クラッチCL1の締結状態で第2クラッチCL2をスリップ制御させ、エンジンEを動力源に含みながら走行するエンジン使用スリップ走行モード(以下、「WSC走行モード」と略称する。)である。このモードは、特にバッテリSOCが低いときやエンジン水温が低いときに、クリープ走行を達成可能なモードである。尚、EV走行モードからHEV走行モードに遷移するときは、第1クラッチCL1を締結し、モータジェネレータMGのトルクを用いてエンジン始動を行う。
上記「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを有する。「エンジン走行モード」は、エンジンEのみを動力源として駆動輪を動かす。「モータアシスト走行モード」は、エンジンEとモータジェネレータMGの2つを動力源として駆動輪を動かす。「走行発電モード」は、エンジンEを動力源として駆動輪RR,RLを動かすと同時に、モータジェネレータMGを発電機として機能させる。
定速運転時や加速運転時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる。また、減速運転時は、制動エネルギを回生してモータジェネレータMGにより発電し、バッテリ4の充電のために使用する。また、更なるモードとして、車両停止時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる発電モードを有する。
次に、ハイブリッド車両の制御系を説明する。実施例1におけるハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ1と、モータコントローラ2と、インバータ3と、バッテリ4と、第1クラッチコントローラ5と、第1クラッチ油圧ユニット6と、ATコントローラ7と、第2クラッチ油圧ユニット8と、ブレーキコントローラ9と、統合コントローラ10と、を有して構成されている。尚、エンジンコントローラ1と、モータコントローラ2と、第1クラッチコントローラ5と、ATコントローラ7と、ブレーキコントローラ9と、統合コントローラ10とは、互いの情報交換が可能なCAN通信線11を介して接続されている。
エンジンコントローラ1は、エンジン回転数センサ12からのエンジン回転数情報を入力し、統合コントローラ10からの目標エンジントルク指令等に応じ、エンジン動作点(Ne:エンジン回転数,Te:エンジントルク)を制御する指令を、例えば、図外のスロットルバルブアクチュエータへ出力する。尚、エンジン回転数Ne等の情報は、CAN通信線11を介して統合コントローラ10へ供給される。
モータコントローラ2は、モータジェネレータMGのロータ回転位置を検出するレゾルバ13からの情報を入力し、統合コントローラ10からの目標モータジェネレータトルク指令等に応じ、モータジェネレータMGのモータ動作点(Nm:モータジェネレータ回転数,Tm:モータジェネレータトルク)を制御する指令をインバータ3へ出力する。尚、このモータコントローラ2では、バッテリ4の充電状態を表すバッテリSOCを監視していて、バッテリSOC情報は、モータジェネレータMGの制御情報に用いると共に、CAN通信線11を介して統合コントローラ10へ供給される。
第1クラッチコントローラ5は、第1クラッチ油圧センサ14と第1クラッチストロークセンサ15からのセンサ情報を入力し、統合コントローラ10からの第1クラッチ制御指令に応じ、第1クラッチCL1の締結・開放を制御する指令を第1クラッチ油圧ユニット6に出力する。尚、第1クラッチストロークC1Sの情報は、CAN通信線11を介して統合コントローラ10へ供給する。
ATコントローラ7は、アクセル開度センサ16と車速センサ17と第2クラッチ油圧センサ18と運転者の操作するシフトレバーの位置に応じた信号を出力するインヒビタスイッチからのセンサ情報を入力し、統合コントローラ10からの第2クラッチ制御指令に応じ、第2クラッチCL2の締結・開放を制御する指令をAT油圧コントロールバルブ内の第2クラッチ油圧ユニット8に出力する。尚、アクセルペダル開度APOと車速VSPとインヒビタスイッチの情報は、CAN通信線11を介して統合コントローラ10へ供給する。
ブレーキコントローラ9は、4輪の各車輪速を検出する車輪速センサ19とブレーキストロークセンサ20からのセンサ情報を入力し、例えば、ブレーキ踏み込み制動時、ブレーキストロークBSから求められる要求制動力に対し回生制動力だけでは不足する場合、その不足分を機械制動力(摩擦ブレーキによる制動力)で補うように、統合コントローラ10からの回生協調制御指令に基づいて回生協調ブレーキ制御を行う。
統合コントローラ10は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担うもので、モータ回転数Nmを検出するモータ回転数センサ21と、第2クラッチ出力回転数N2outを検出する第2クラッチ出力回転数センサ22と、第2クラッチ伝達トルク容量TCL2を検出する第2クラッチトルクセンサ23と、ブレーキ油圧センサ24と、第2クラッチCL2の温度を検知する温度センサ10aと、前後加速度を検出するGセンサ10bからの情報およびCAN通信線11を介して得られた情報を入力する。また、統合コントローラ10は、エンジンコントローラ1への制御指令によるエンジンEの動作制御と、モータコントローラ2への制御指令によるモータジェネレータMGの動作制御と、第1クラッチコントローラ5への制御指令による第1クラッチCL1の締結・開放制御と、ATコントローラ7への制御指令による第2クラッチCL2の締結・開放制御と、を行う。
以下に、図2に示すブロック図を用いて、実施例1の統合コントローラ10にて演算される制御を説明する。例えば、この演算は、制御周期10msec毎に統合コントローラ10で演算される。統合コントローラ10は、目標駆動力演算部100と、モード選択部200と、目標充放電演算部300と、動作点指令部400と、変速制御部500と、を有する。
目標駆動力演算部100では、図3に示す目標駆動力マップを用いて、アクセルペダル開度APOと車速VSPとから、目標駆動力tFoOを演算する。モード選択部200は、図6に示す変速線図に設定されたモード領域に示すように、車速とアクセルペダル開度に基づいて走行モードを選択する。モード領域としては、EV走行モードと、WSC走行モードと、HEV走行モードとを有し、アクセルペダル開度APOと車速VSPとから目標モードを演算する。但し、EV走行モードが選択されていたとしても、バッテリSOCが所定値以下であれば、強制的に「HEV走行モード」もしくは「WSC走行モード」を目標モードとする。目標充放電演算部300では、予め設定された目標充放電量マップを用いて、バッテリSOCから目標充放電電力tPを演算する。
動作点指令部400では、アクセルペダル開度APOと、目標駆動力tFoOと、目標モードと、車速VSPと、目標充放電電力tPとから、これらの動作点到達目標として、過渡的な目標エンジントルクと目標モータジェネレータトルクと目標第2クラッチ締結容量と自動変速機ATの目標変速段と第1クラッチCL1の伝達トルク容量指令である第1クラッチソレノイド電流指令を演算する。また、動作点指令部400には、EV走行モードからHEV走行モードに遷移するときに、第1クラッチCL1を締結してエンジンEを始動するエンジン始動制御部401が設けられている。
変速制御部500では、シフトマップに示すシフトスケジュールに沿って、目標第2クラッチ締結容量と目標変速段を達成するように自動変速機AT内のソレノイドバルブを駆動制御する。図6は実施例1のシフトマップを表す図である。シフトマップは、車速VSPとアクセルペダル開度APOに基づいて予め目標変速段が設定されたものである。図6中の実線がアップシフト線であり、点線がダウンシフト線であり、現在の車速とアクセルペダル開度によって決定される運転点の移動に応じて適宜変速段が決定される。
次に、自動変速機の構成について説明する。図4は実施例1に搭載される自動変速機ATの構成を表すスケルトン図である。入力軸Input側から軸方向出力軸Output側に向けて、第1遊星ギヤセットGS1(第1遊星ギヤG1,第2遊星ギヤG2),第2遊星ギヤセットGS2(第3遊星ギヤG3及び第4遊星ギヤG4)の順に配置されている。また、摩擦締結要素として複数のクラッチC1,C2,C3及びブレーキB1,B2,B3,B4が配置されている。また、複数のワンウェイクラッチF1,F2が配置されている。
第1遊星ギヤG1は、第1サンギヤS1と、第1リングギヤR1と、両ギヤS1,R1に噛み合う第1ピニオンP1を支持する第1キャリヤPC1と、を有するシングルピニオン型遊星ギヤである。第2遊星ギヤG2は、第2サンギヤS2と、第2リングギヤR2と、両ギヤS2,R2に噛み合う第2ピニオンP2を支持する第2キャリヤPC2と、を有するシングルピニオン型遊星ギヤである。第3遊星ギヤG3は、第3サンギヤS3と、第3リングギヤR3と、両ギヤS3,R3に噛み合う第3ピニオンP3を支持する第3キャリヤPC3と、を有するシングルピニオン型遊星ギヤである。第4遊星ギヤG4は、第4サンギヤS4と、第4リングギヤR4と、両ギヤS4,R4に噛み合う第4ピニオンP4を支持する第4キャリヤPC4と、を有するシングルピニオン型遊星ギヤである。
入力軸Inputは、第2リングギヤR2に連結され、エンジンEからの回転駆動力を、トルクコンバータTC等を介して入力する。出力軸Outputは、第3キャリヤPC3に連結され、出力回転駆動力を図外のファイナルギヤ等を介して駆動輪に伝達する。第1連結メンバM1は、第1リングギヤR1と第2キャリヤPC2と第4リングギヤR4とを一体的に連結するメンバである。第2連結メンバM2は、第3リングギヤR3と第4キャリヤPC4とを一体的に連結するメンバである。第3連結メンバM3は、第1サンギヤS1と第2サンギヤS2とを一体的に連結するメンバである。
第1遊星ギヤセットGS1は、第1遊星ギヤG1と第2遊星ギヤG2とを、第1連結メンバM1と第3連結メンバM3により連結して構成し、4つの回転要素から構成している。また、第2遊星ギヤセットGS2は、第3遊星ギヤG3と第4遊星ギヤG4とを、第2連結メンバM2により連結して5つの回転要素から構成している。第1遊星ギヤセットGS1は、入力軸Inputから第2リングギヤR2に入力されるトルク入力経路を有する。第1遊星ギヤセットGS1に入力されたトルクは、第1連結メンバM1から第2遊星ギヤセットGS2に出力される。第2遊星ギヤセットGS2は、入力軸Inputから第2連結メンバM2に入力されるトルク入力経路と、第1連結メンバM1から第4リングギヤR4に入力されるトルク入力経路を有する。第2遊星ギヤセットGS2に入力されたトルクは、第3キャリヤPC3から出力軸Outputに出力される。
尚、H&LRクラッチC3が解放され、第3サンギヤS3よりも第4サンギヤS4の回転数が大きい時は、第3サンギヤS3と第4サンギヤS4は独立した回転数を発生する。よって、第3遊星ギヤG3と第4遊星ギヤG4が第2連結メンバM2を介して接続された構成となり、それぞれの遊星ギヤが独立したギヤ比を達成する。
インプットクラッチC1は、入力軸Inputと第2連結メンバM2とを選択的に断接するクラッチである。ダイレクトクラッチC2は、第4サンギヤS4と第4キャリヤPC4とを選択的に断接するクラッチである。H&LRクラッチC3は、第3サンギヤS3と第4サンギヤS4とを選択的に断接するクラッチである。尚、第3サンギヤS3と第4サンギヤの間には、第2ワンウェイクラッチF2が配置されている。フロントブレーキB1は、第1キャリヤPC1の回転を選択的に停止させるブレーキである。また、第1ワンウェイクラッチF1は、フロントブレーキB1と並列に配置されている。ローブレーキB2は、第3サンギヤS3の回転を選択的に停止させるブレーキである。2346ブレーキB3は、第3連結メンバM3(第1サンギヤS1及び第2サンギヤS2)の回転を選択的に停止させるブレーキである。リバースブレーキB4は、第4キャリヤPC4の回転を選択的に停止させるブレーキである。
図5は実施例1の自動変速機ATでの前進7速後退1速の締結作動表を示す図である。図5中、○は該当するクラッチもしくはブレーキの締結を表し、空白は解放を示す。また、(○)はエンジンブレーキ作用時にのみ締結することを示す。また、実施例1では、第2クラッチCL2として自動変速機AT内の締結要素を流用しており、図5中、太い実線で囲まれた締結要素が第2クラッチCL2となる。
図6は実施例1の自動変速機ATに用いる変速線及び走行モードが設定された変速マップである。図6の実線はアップシフト線、点線はダウンシフト線であり、ハッチング領域のうち、低アクセル開度域に設定された領域はEV走行モード領域であり、低車速領域であって、かつ、アクセル開度が高めに設定された領域はWSC走行モード領域である。それ以外のハッチングが無い領域はHEV走行モード領域である。図6に示すように、変速線はアクセル開度方向で見ると複数の変速段が重なるように設定されているため、車速がほぼ一定であっても、アクセルペダルの踏み込みにより複数回のダウンシフト要求が行われる。
ここで、図6のEV走行モード領域において5速で走行している状態を例に説明する。低アクセル開度域においてEV走行モードで走行しているときに、アクセルペダルを踏み込んだ場合、EV走行モードからHEV走行モードにモード切替が行われ、エンジン始動を行うとともに、ダウンシフトが要求される。一般に、自動変速機は、現在の変速段を達成している解放側締結要素を解放し、次の変速段を達成する締結側締結要素を締結することで、制御を安定させて変速ショック等を回避している。よって、複数回のダウンシフト要求が来たとしても、まず、最初のダウンシフトを行い、そのダウンシフトが終了してから次のダウンシフトを行うことが一般的である。しかし、運転者の要求駆動力に応じた変速段を達成するまでに時間がかかると、加速応答性を確保できないという問題がある。そこで、実施例1では、エンジン始動中の第1のダウンシフト中に、更に第2のダウンシフト要求があった場合は、第1のダウンシフトが終了しているか否かにかかわらず第2のダウンシフトを行うこととした。
このとき、スリップ状態となる締結要素が通常の変速時よりも多くなるため、制御性が困難となる問題がある。そこで、第2のダウンシフト時に解放される解放側締結要素の締結容量(以下、第2締結容量)を第1のダウンシフト時に解放される解放側締結要素の締結容量(以下、第1締結容量)よりも小さくなるように制御することとした。これにより、仮に第1のダウンシフトにおいて締結容量制御が十分に制御されなかった場合であっても、第2締結容量が低いため、モータジェネレータMG側もしくは駆動輪側にトルク変動が出力されることがなく、安定した変速状態を達成できる。
図7は実施例1のエンジン始動中におけるダウンシフト制御処理を表すフローチャートである。ここでは、第5速から第4速へのダウンシフト中に、更に第3速へのダウンシフト要求が行われた際の制御内容を示す。
ステップS1では、モータジェネレータMGの最終目標回転数を第4速時目標回転数に設定し、モータジェネレータMGを回転数制御する。これにより、第4速へのダウンシフトを素早く達成する。
ステップS2では、2346ブレーキB3の締結制御を開始するとともに、インプットクラッチC1の解放制御を開始する。
ステップS3では、エンジン始動制御が終了したか否かを判断し、終了した場合は本制御フローを終了し、終了していない場合はステップS4へ進む。
ステップS4では、更に第3速へのダウンシフト要求があったか否かを判断し、ダウンシフト要求があった場合はステップS5に進み、それ以外の場合はステップS1へ進む。言い換えると、第4速へのダウンシフトを実行中であっても、第3速へのダウンシフトを開始する。
ステップS5では、モータジェネレータMGの最終目標回転数を第3速時目標回転数に設定し、モータジェネレータMGを回転数制御する。これにより、第3速へのダウンシフトを素早く達成する。
ステップS6では、ローブレーキB2の締結制御、H&LRクラッチC3の解放制御をおこなう。このとき、H&LRクラッチC3の締結容量がインプットクラッチC1の締結容量よりも小さくなるように制御する。これにより、第4速へのダウンシフトにおける締結ショック等が駆動輪等に伝達されることを回避する。
ステップS7では、エンジン始動制御が終了したか否かを判断し、終了した場合は本制御フローを終了し、終了していない場合はステップS5に戻る。
図8は実施例1のエンジン始動中におけるダウンシフト制御処理を表すタイムチャートである。このタイムチャートは、最初の走行状態として、EV走行モード、自動変速機ATが第5速で走行している状態である。
時刻t1において、運転者がアクセルペダルを踏み込むと、EV走行モードからHEV走行モードへの切り替え要求が出力されることでエンジン始動制御が開始される。さらに、第5速から第4速へのダウンシフト要求が出力されるため、モータジェネレータMGの目標回転数が4速時目標回転数にセットされ、2346ブレーキB3の締結制御が開始されると共に、インプットクラッチC1の解放制御が開始される。尚、2346ブレーキB3及びインプットクラッチC1の両方の締結容量が低い状態であるため、加速度は小さくなる。
時刻t2において、エンジン始動中、かつ、5→4ダウンシフト中に、更に第3速へのダウンシフト要求がなされると、第4速へのダウンシフトが完了する前であっても、モータジェネレータMGの目標回転数を3速時目標回転数にセットし、ローブレーキB2の締結制御及びH&LRクラッチC3の解放制御を開始する。このとき、H&LRクラッチC3の締結容量がインプットクラッチC1の締結容量よりも小さくなるように制御する。
その後、第3速へのダウンシフトを実行中に、第4速へのダウンシフトに伴う2346ブレーキB3の締結容量を完全締結状態とし、インプットクラッチC1の締結容量を完全開放状態とする。そして、エンジン始動が完了し、モータジェネレータMGの回転数が3速時目標回転数に到達すると、ローブレーキB2を完全締結し、H&LRクラッチC3を完全解放することで変速を完了する。
図9は実施例1の自動変速機において第5速,第4速及び第3速の状態を表す共線図である。1点鎖線で示す第5速では、減速比として1が設定されているため、入力回転数INと出力回転数OUTとが同じ回転数として設定される。この状態から、出力回転数を固定した状態で2346ブレーキB3の締結及びインプットクラッチC1を解放すると、入力回転数INが上昇して(図9中の5→4速へ変速中の線を参照)第4速を達成する。第5速から第4速への変速中に第3速へのダウンシフト要求があるときは、H&LRクラッチC3の締結容量をインプットクラッチC1の締結容量よりも小さくして、第3速へのダウンシフトを開始する(図9の3速へ変速中の線を参照)ため、仮に、2346ブレーキB3の締結状態やインプットクラッチC1の解放状態が不安定であったとしても、H&LRクラッチC3がスリップすることで駆動輪に変速ショックが伝達されることなく、安定した素早い変速を達成できる。
以上説明したように、実施例1にあっては下記に列挙する作用効果が得られる。
(1)エンジンEとモータジェネレータMG(電動機)との間に介装された第1クラッチCL1(エンジンクラッチ)と、
モータジェネレータMGと駆動輪RR,RLとの間に介装された自動変速機AT(有段式自動変速機)と、
エンジンEを用いて走行するHEV走行モード(ハイブリッドモード)と、モータジェネレータMGのみを用いて走行するEV走行モード(電気自動車モード)とを走行状態に応じて切り替えるとともに、自動変速機ATの変速段を制御する統合コントローラ10(制御手段)と、
を備え、
統合コントローラ10は、EV走行モードからHEV走行モードへの切り替えのために第1クラッチを締結してエンジンEを始動するエンジン始動制御を実行中、自動変速機AT内のインプットクラッチC1(第1締結要素)の締結容量を低下させて第5速から第4速へのダウンシフト(第1のダウンシフト)を行っているときに、更に自動変速機AT内のH&LRクラッチC3(第2締結要素)の締結容量を低下させる第3速へのダウンシフト(第2のダウンシフト)が要求されたときは、第5速から第4速へのダウンシフトの状態にかかわらずH&LRクラッチC3の締結容量をインプットクラッチC1の締結容量よりも低くして第3速へのダウンシフトを開始することを特徴とするハイブリッド車両の制御装置。
よって、第5速から第4速へのダウンシフトの終了を待つことなく第3速へのダウンシフトを実行することで、所望の変速段に素早く移行することができ、運転者の意図に沿った加速応答性が得られる。また、第3速へのダウンシフトを行うときはH&LRクラッチC3の締結容量をインプットクラッチC1の締結容量よりも低くしているため、第5速から第4速へのダウンシフトと第3速へのダウンシフトとが同時に行われることに伴うショックをH&LRクラッチC3において吸収することができ、変速ショックを回避できる。
(2)統合コントローラ10は、第5速から第4速へのダウンシフト中はモータジェネレータMGを4速時目標回転数(第1のダウンシフト後のギヤ比に応じた第1目標回転数)となるように回転数制御し、第3速へのダウンシフトが要求されたときは、4速時目標回転数に代えて3速時目標回転数(第2のダウンシフト後のギヤ比に応じた第2目標回転数)となるように回転数制御することを特徴とするハイブリッド車両の制御装置。
よって、自動変速機ATの入力側の回転数をダウンシフト後に達成すべき回転数に素早く収束することができるため、より早く運転者の加速要求に対応できる。
以上、本発明を実施例に基づいて説明したが、第5速から第4速へのダウンシフト中の第3速へのダウンシフトに限らず、他の変速段から連続変速要求があった場合には、同様に適用可能である。すなわち、連続してダウンシフトが要求される場合には、最初のダウンシフトで解放される締結要素よりも後のダウンシフトで解放される締結要素の締結容量を低下させておくことで、トルクヒューズとして機能させることができ、安定した変速を達成できる。
10 統合コントローラ
16 アクセル開度センサ
17 車速センサ
21 モータ回転数センサ
AT 自動変速機
B1 フロントブレーキ
B2 ローブレーキ
B3 2346ブレーキ
B4 リバースブレーキ
C1 インプットクラッチ
C2 ダイレクトクラッチ
C3 H&LRクラッチ
CL1 第1クラッチ
CL2 第2クラッチ
E エンジン
MG モータジェネレータ
RR,RL 駆動輪

Claims (2)

  1. エンジンと電動機との間に介装されたエンジンクラッチと、
    前記電動機と駆動輪との間に介装された有段式自動変速機と、
    前記エンジンを用いて走行するハイブリッドモードと、前記電動機のみを用いて走行する電気自動車モードとを走行状態に応じて切り替えるとともに、前記有段式自動変速機の変速段を制御する制御手段と、
    を備え、
    前記制御手段は、前記電気自動車モードから前記ハイブリッドモードへの切り替えのために前記エンジンクラッチを締結して前記エンジンを始動するエンジン始動制御を実行中、前記有段式自動変速機内の第1締結要素の締結容量を低下させて第1のダウンシフトを行っているときに、更に前記有段式自動変速機内の第2締結要素の締結容量を低下させる第2のダウンシフトが要求されたときは、前記第1のダウンシフトによりギヤ比が変化している状態であっても、前記第2締結要素の締結容量を前記第1締結要素の締結容量よりも低くして前記第2のダウンシフトを開始することを特徴とするハイブリッド車両の制御装置。
  2. 請求項1に記載のハイブリッド車両の制御装置において、
    前記制御手段は、前記第1のダウンシフト中は前記電動機を前記第1のダウンシフト後のギヤ比に応じた第1目標回転数となるように回転数制御し、前記第2のダウンシフトが要求されたときは、前記第1目標回転数に代えて前記第2のダウンシフト後のギヤ比に応じた第2目標回転数となるように回転数制御することを特徴とするハイブリッド車両の制御装置。
JP2013098813A 2013-05-08 2013-05-08 ハイブリッド車両の制御装置 Active JP6217125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098813A JP6217125B2 (ja) 2013-05-08 2013-05-08 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098813A JP6217125B2 (ja) 2013-05-08 2013-05-08 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2014218168A JP2014218168A (ja) 2014-11-20
JP6217125B2 true JP6217125B2 (ja) 2017-10-25

Family

ID=51937061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098813A Active JP6217125B2 (ja) 2013-05-08 2013-05-08 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP6217125B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10300908B2 (en) * 2015-03-31 2019-05-28 Aisin Aw Co., Ltd. Control device for starting an internal combustion engine during a shifting operation
WO2016159120A1 (ja) * 2015-03-31 2016-10-06 アイシン・エィ・ダブリュ株式会社 制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9415965D0 (en) * 1994-08-06 1994-09-28 Eaton Corp Continuous selection control for semi-automatic mechanical transmission
JPH09296861A (ja) * 1996-05-02 1997-11-18 Toyota Motor Corp 自動変速機の制御装置
JP4297081B2 (ja) * 2005-05-11 2009-07-15 トヨタ自動車株式会社 車両用自動変速機の変速制御装置
JP2007261498A (ja) * 2006-03-29 2007-10-11 Nissan Motor Co Ltd ハイブリッド車両の伝動状態切り替え制御装置
JP5076516B2 (ja) * 2007-01-24 2012-11-21 日産自動車株式会社 ハイブリッド車両の変速時モード切り替え制御装置

Also Published As

Publication number Publication date
JP2014218168A (ja) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5465197B2 (ja) ハイブリッド車両の制御装置
JP4341611B2 (ja) ハイブリッド車両のエンジン再始動制御装置
JP4973119B2 (ja) 車両の制御装置
JP4341610B2 (ja) ハイブリッド車両のエンジン再始動制御装置
JP5401999B2 (ja) 車両のトラクション制御装置
JP5012227B2 (ja) ハイブリッド車両の制御装置
JP2007297014A (ja) ハイブリッド車両の伝動状態切り替え制御装置
JP2007314097A (ja) ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2007261498A (ja) ハイブリッド車両の伝動状態切り替え制御装置
JP5501269B2 (ja) ハイブリッド車両の制御装置
JP2010143363A (ja) ハイブリッド車両の制御装置
JP5035228B2 (ja) 電動車両の制御装置
JP5413008B2 (ja) ハイブリッド車両の制御装置
JP5141369B2 (ja) ハイブリッド車両の制御装置
JP6217125B2 (ja) ハイブリッド車両の制御装置
JP5104061B2 (ja) 車両の変速制御装置
JP5251484B2 (ja) ハイブリッド車両の制御装置
JP6212936B2 (ja) ハイブリッド車両の制御装置
JP5338958B2 (ja) ハイブリッド車両の制御装置
JP2012091561A (ja) ハイブリッド車両の制御装置
JP6004026B2 (ja) 電動車両の制御装置
JP5338332B2 (ja) ハイブリッド車両の制御装置
JP5527159B2 (ja) ハイブリッド車両の制御装置
JP5590204B2 (ja) 車両のトラクション制御装置
JP5636872B2 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R151 Written notification of patent or utility model registration

Ref document number: 6217125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151