JP6214475B2 - 顕微鏡システム、較正方法、及び、高さ測定方法 - Google Patents

顕微鏡システム、較正方法、及び、高さ測定方法 Download PDF

Info

Publication number
JP6214475B2
JP6214475B2 JP2014123524A JP2014123524A JP6214475B2 JP 6214475 B2 JP6214475 B2 JP 6214475B2 JP 2014123524 A JP2014123524 A JP 2014123524A JP 2014123524 A JP2014123524 A JP 2014123524A JP 6214475 B2 JP6214475 B2 JP 6214475B2
Authority
JP
Japan
Prior art keywords
height
microscope
correction value
sample
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014123524A
Other languages
English (en)
Other versions
JP2016003919A (ja
Inventor
一大 菅
一大 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2014123524A priority Critical patent/JP6214475B2/ja
Publication of JP2016003919A publication Critical patent/JP2016003919A/ja
Application granted granted Critical
Publication of JP6214475B2 publication Critical patent/JP6214475B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、高さ測定可能な光学顕微鏡と走査型プローブ顕微鏡とを備える顕微鏡システム、その較正方法及び高さ測定方法に関する。
原子間力顕微鏡(Atomic Force Microscope、以降、AFMと記す)に代表される走査型プローブ顕微鏡(Scanning Probe Microscope、以降、SPMと記す)は、探針と試料の間に働く様々な物理量を画像化する顕微鏡であり、例えば、試料の高さ測定などに用いられる。
SPMは、一般にピエゾ素子などの微小な駆動が可能な駆動素子を用いて、試料と探針の間の距離を変化させるが、この駆動素子はヒステリシスを有している。このため、正確な高さ情報を得るために、SPMでは、キャリブレーション(較正)が行われるのが通常である。SPMの較正に関連する技術は、例えば、特許文献1から特許文献5に記載されている。
特許文献1には、ピエゾ素子とは別の駆動手段であるZステージで探針が設けられたカンチレバーを変位させて、カンチレバーの変位量(即ち、試料の高さ)を測定することで、ピエゾ素子を備える測定器を較正する技術が記載されている。また、特許文献2から特許文献5には、較正に用いる標準試料に関する技術が記載されている。
特開2008−224587号公報 特開2010−78582号公報 特開2004−37325号公報 特開2006−64459号公報 特開平8−233836号公報
特許文献1から特許文献5に記載される技術では、較正時に試料が探針で走査される。このため、測定前に試料を傷つけてしまう可能性がある。
さらに、特許文献1に記載される技術では、較正のために探針で試料が2度走査される。また、特許文献2から特許文献5に記載される技術では、較正が必要となる度に測定対象である試料と標準試料の交換が生じる。このため、いずれの文献に記載された技術を用いた場合であっても、較正作業に手間がかかり、測定者は決して小さくない負担を強いられることになる。
以上のような実情を踏まえ、本発明は、試料を傷つけることなく、容易に走査型プローブ顕微鏡を較正する技術を提供することを課題とする。
本発明の一態様は、共焦点顕微鏡または白色干渉顕微鏡と走査型プローブ顕微鏡を備える顕微鏡装置と、前記共焦点顕微鏡または前記白色干渉顕微鏡での高さ測定により得られる前記試料の第1の高さ情報と、前記走査型プローブ顕微鏡での高さ測定により生じる測定誤差を補正するための予め取得された補正値であって対象物の高さ毎の補正値とに基づいて、前記走査型プローブ顕微鏡での高さ測定で使用される補正値を決定する演算装置と、を備える顕微鏡システムを提供する。
本発明の別の態様は、共焦点顕微鏡または白色干渉顕微鏡と走査型プローブ顕微鏡を備える顕微鏡装置の較正方法であって、前記共焦点顕微鏡または前記白色干渉顕微鏡で試料の高さを測定し、前記共焦点顕微鏡または前記白色干渉顕微鏡での高さ測定により得られる前記試料の第1の高さ情報と、前記走査型プローブ顕微鏡での高さ測定により生じる測定誤差を補正するための予め取得された補正値であって対象物の高さ毎の補正値とに基づいて、前記走査型プローブ顕微鏡での高さ測定で使用される補正値を決定する較正方法を提供する。
本発明の更に別の態様は、共焦点顕微鏡または白色干渉顕微鏡と走査型プローブ顕微鏡を備える顕微鏡装置の高さ測定方法であって、前記共焦点顕微鏡または前記白色干渉顕微鏡で試料の高さを測定し、前記共焦点顕微鏡または前記白色干渉顕微鏡での高さ測定により得られる前記試料の第1の高さ情報と、前記走査型プローブ顕微鏡での高さ測定により生じる測定誤差を補正するための予め取得された補正値であって対象物の高さ毎の補正値とに基づいて、前記走査型プローブ顕微鏡での高さ測定で使用される補正値を決定し、決定した前記補正値を使用して前記走査型プローブ顕微鏡で前記試料の高さを測定して、前記試料の高さを算出する高さ測定方法を提供する。
本発明によれば、試料を傷つけることなく、容易に走査型プローブ顕微鏡を較正する技術を提供することができる。
実施例1に係る顕微鏡システムの構成を例示した図である。 実施例1に係る光学顕微鏡の構成を例示した図である。 実施例1に係るSPMの構成を例示した図である。 実施例1に係る演算装置の構成を例示した図である。 実施例1に係る顕微鏡システムで行われる事前準備処理を示すフローチャートである。 実施例1に係る顕微鏡システムで行われる試料の高さ測定処理を示すフローチャートである。 実施例2に係る顕微鏡システムで行われる試料の高さ測定処理を示すフローチャートである。 実施例3に係る顕微鏡システムで行われる試料の高さ測定処理を示すフローチャートである。
図1は、本実施例に係る顕微鏡システム100の構成を例示した図である。顕微鏡システム100は、顕微鏡装置400と、複数のコントローラ(コントローラ500、SPMコントローラ600)と、演算装置700と、モニタ800と、入力装置900とを備えている。
顕微鏡装置400は、それぞれ試料の高さ測定が可能な光学顕微鏡200とSPM300とを単一の装置内に備える複合型顕微鏡装置である。SPM300は、光学顕微鏡200のレボルバ201に装着されている。光学顕微鏡200は、コントローラ500によって制御され、SPM300は、SPMコントローラ600によって制御される。
演算装置700は、ステージ203上に配置された試料Sの高さを算出する装置であり、試料Sの高さは、光学顕微鏡200とSPM300での高さ測定により得られる試料Sの高さ情報に基づいて算出される。
モニタ800は、例えば、液晶ディスプレイ装置、有機ELディスプレイ装置、CRTディスプレイ装置である。入力装置900は、例えば、マウスやキーボードなどである。入力装置900は、モニタ800の画面上に配置されたタッチセンサであってもよい。
以上のように構成された顕微鏡システム100は、光学顕微鏡200で試料Sの高さを測定し、その結果に基づいてSPM300を較正することで、試料Sの高さをSPM300で高精度に測定することができる。
以下では、図2を参照しながら、光学顕微鏡200について詳細に説明する。光学顕微鏡200は、試料Sの明視野観察と共焦点観察が可能な顕微鏡装置であり、それぞれの観察法で、試料Sの高さを測定し高さ情報を取得することができる。
光学顕微鏡200は、レーザ光源204と、偏光ビームスプリッタ(以降、PBSと記す)205、試料Sを走査する光走査部206、1/4λ板207、試料Sに光を照射する対物レンズ202、結像レンズ208、ピンホール板209、光検出器210、AD変換器211、レボルバ201(図1参照)、ステージ203(図1参照)、白色光源212、結像レンズ213、及び、CCDカメラ214を備えている。
図1に示すレボルバ201は、対物レンズ202を切り替える手段であるとともに、対物レンズ202と試料Sとの間の相対距離を変化させるZ位置変更手段でもある。また、ステージ203は、試料Sを対物レンズ202に対して対物レンズ202の光軸と直交する方向に移動させるXY位置変更手段である。なお、レボルバ201の代わりにステージ203がZ位置変更手段として機能してもよい。
レーザ光源204から出射したレーザ光は、例えば、単波長のレーザ光であり、PBS205を透過した後、光走査部206に入射する。光走査部206は、例えばガルバノミラーである。光走査部206で偏向されたレーザ光は、1/4λ板207で直線偏光から円偏光に変換された後に、レボルバ201に装着されている対物レンズ202を経由して試料Sへ照射される。
光学顕微鏡200では、光走査部206は対物レンズ202の瞳位置と光学的に共役な位置又はその近傍に配置されている。このため、光走査部206がレーザ光を偏向させることで、レーザ光の集光位置が対物レンズ202の焦点面上をXY方向に移動し、これによって、試料Sがレーザ光で二次元に走査される。
ここで、光走査部206による二次元走査と、レボルバ201の回転駆動により光学顕微鏡200の光路上に配置される対物レンズ202の切替と、対物レンズ202の光軸方向(Z方向)へのレボルバ201(又はステージ203)の駆動と、対物レンズ202の光軸と直交する方向(XY方向)へのステージ203の駆動は、コントローラ500によって制御される。なお、光走査部206による二次元走査の手法としては、例えば、共焦点顕微鏡で一般的に使用されている、ラスタスキャンを採用する。
試料Sの表面で反射したレーザ光(以降、反射光と記す)は、対物レンズ202を経由して入射する1/4λ板207で円偏光から直線偏光に変換された後に、光走査部206を経由してPBS205に入射する。このとき、PBS205に入射する反射光は、レーザ光源204側からPBS205に入射するレーザ光の偏光面とは直交する偏光面を有しているため、PBS205で反射して、結像レンズ208に導かれる。
結像レンズ208は、PBS205で反射した反射光を集光させる。PBS205からの反射光路上に設けられたピンホール板209には、対物レンズ202の焦点面に形成されるレーザ光の集光位置と光学的に共役な位置にピンホールが形成されている。このため、試料S表面のある部位が対物レンズ202によるレーザ光の集光位置にある場合には、この部位からの反射光は、ピンホールに集光されて当該ピンホールを通過する。その一方、試料S表面のある部位が対物レンズ202によるレーザ光の集光位置からずれている場合には、この部位からの反射光は、ピンホールに集光しないので、ピンホールを通過せず、ピンホール板209によって遮断される。
ピンホールを通過した光は、光検出器210で検出される。光検出器210は、例えば、光電子増倍管(PMT)である。光検出器210は、このピンホールを通過した光、すなわち、試料Sの表面のうち対物レンズ202によるレーザ光の集光位置に位置する部位のみからの反射光を受光し、その受光光量に応じた大きさの検出信号を、当該部位の輝度を示す輝度信号として出力する。アナログ信号であるこの輝度信号は、AD変換器211でアナログ−デジタル変換された上で、当該部位の輝度を示す輝度値情報としてコントローラ500に入力される。コントローラ500は、この輝度値情報と、光走査部206による二次元走査における走査位置の情報とに基づき、試料Sの共焦点画像データを生成する。
一方、白色光源212から出射した光(白色光)は、レボルバ201に装着されている対物レンズ202の瞳位置に集光して、その後、試料Sに照射される。これにより、ケーラー照明により試料Sが照明される。試料S表面で反射した反射光は、結像レンズ213へ入射し、結像レンズ213は、この反射光をCCD(結合素子)カメラ214の受光面に集光する。
CCDカメラ214は、対物レンズ202の焦点面と光学的に共役な位置に受光面を有するカメラである。CCDカメラ214は受光面に集光された反射光により試料Sを撮像して、試料Sの非共焦点画像データを生成する。生成された非共焦点画像データはコントローラ500に送られる。
光学顕微鏡200及びコントローラ500は、Z位置変更手段で対物レンズ202と試料Sとの間の相対距離を変化させて、Z位置毎に共焦点画像データ又は非共焦点画像データを生成することで、試料の高さ情報(以降、第1の高さ情報と記す)を取得し、演算装置700に出力する。
次に、図3を参照しながら、SPM300について詳細に説明する。SPM300は、レボルバ201に装着可能な単一のユニットとして構成されていて、レボルバ201の回転により対物レンズ202と切り替えて使用される。
SPM300は、探針301が設けられたカンチレバー302、ピエゾ素子303、レーザダイオード304、レンズ305、及び、4分割フォトダイオード306を備えている。
ピエゾ素子303は、カンチレバー302を移動させる手段であり、ステージ203に平行なXY方向にカンチレバー302を動かすピエゾ素子303aと、ステージ203に直交するZ方向にカンチレバー302を動かすピエゾ素子303bと、を含んでいる。ピエゾ素子303bは、探針301と試料Sの間の相対的な距離を変化させる駆動素子として機能する。なお、ピエゾ素子303は、SPMコントローラ600によって制御される。
レーザダイオード304、レンズ305、及び、4分割フォトダイオード306は、カンチレバー302とともに、光てこ部を構成する。レーザダイオード304から出射した光はレンズ305によりカンチレバー302に照射されて、その反射光が4分割フォトダイオード306で検出される。そして、検出結果は、SPMコントローラ600に出力される。
SPMコントローラ600は、ピエゾ素子303aにカンチレバー302をXY方向へ移動させて、探針301に試料Sを走査させることにより、試料Sの高さを測定する。このときに、SPMコントローラ600は、探針301の位置を試料Sの高さ変化に追従させるため、4分割フォトダイオード306の検出結果に対してフィードバック制御を実行する。例えば、SPMコントローラ600は、カンチレバー302の撓み量が一定になるよう、つまり、試料Sと探針301の間の距離が一定に維持されるように、ピエゾ素子303bを制御する。
SPM300及びSPMコントローラ600は、走査中にピエゾ素子303a及びピエゾ素子303bへ入力する信号に基づいて、試料Sの画像データを生成する。そして、画像データから試料Sの高さ情報(以降、第2の高さ情報と記す)を取得し、演算装置700に出力する。
次に、図4を参照しながら、演算装置700について詳細に説明する。演算装置700は、光学顕微鏡200による高さ測定によって取得された第1の高さ情報と、SPM300での高さ測定により生じる測定誤差を補正するための補正値と、に基づいて、試料Sの高さを算出する。
演算装置700は、例えば、一般的なコンピュータである。演算装置700は、図4に示すように、CPU701、メモリ702、記憶装置703、読取装置704、表示IF705、入力IF706、通信IF707を備えていて、これらはバス708により互いに接続されている。
CPU701は、メモリ702を利用して高さ測定プログラムを実行することにより、SPM300を較正し、さらに、試料Sの高さを算出する。メモリ702は、例えば半導体メモリであり、RAM領域およびROM領域を含んで構成される。
記憶装置703は、例えばハードディスク装置であり、高さ測定プログラムや後述する測定対象物の高さ毎の補正値などを格納する。なお、記憶装置703は、フラッシュメモリ等の半導体メモリであってもよい。また、記憶装置703は、外部記録装置であってもよい。
読取装置704は、CPU701の指示に従って可搬記録媒体709にアクセスする。可搬記録媒体709は、たとえば、半導体デバイス(USBメモリ等)、磁気的作用により情報が入出力される媒体(磁気ディスク等)、光学的作用により情報が入出力される媒体(CD−ROM、DVD等)などにより実現される。
表示IF705は、例えば、モニタ800へCPU701の指示に従ってデータを出力するインタフェース装置である。入力IF706は、例えば、入力装置900からデータを受信するインタフェース装置であり、ユーザからの指示を受け付ける装置である。通信IF707は、対物レンズ202の指示に従ってネットワークを介して外部機器とデータを送受信するインタフェース装置である。
なお、高さ測定プログラムは、例えば、記憶装置703に予めインストールされていてもよく、可搬記録媒体709経由又はネットワーク経由で演算装置700に提供されてもよい。
以下、本実施例に係る顕微鏡システム100で試料の高さを測定する方法について具体的に説明する。まず、任意の試料の高さを高精度に測定するために、例えば、工場から製品(顕微鏡システム)を出荷する前などに予め行われる処理(以降、事前準備処理)について、図5を参照しながら説明する。
図5に示す事前準備処理は、測定対象物の高さ毎に、SPM300での高さ測定で生じる測定誤差を補正する補正値(キャリブレーション値ともいう)を取得して、記憶する処理である。
上述したように、SPM300に用いられるピエゾ素子303にはヒステリシスが存在する。このため、ピエゾ素子303への入力(印加電圧)と駆動量が正確には比例せず、比例関係を前提にピエゾ素子303への入力から駆動量を算出すると、実際の駆動量との間で誤差が生じてしまう。その結果、ピエゾ素子303の駆動量から算出される試料の高さに測定誤差が生じてしまう。図5で取得される補正値は、これを補正するためのものである。この補正値は、SPM300での高さ測定により得られた試料の高さ情報(第2の高さ情報)を補正するものであってもよい。また、この補正値は、SPM300での高さ測定でピエゾ素子303への入力(印加電圧)を補正するものであってもよい。前者はヒステリシスに起因して測定結果に含まれる誤差を直接補正するものである。後者は測定結果自体が誤差を含まないようにヒステリシスを考慮してピエゾ素子303への入力を補正するものである。
なお、ヒステリシスに起因する測定誤差は、駆動量(つまり、高さ)に応じて変化し、その変化率も一定ではない。このため、補正値は、測定対象物の高さ毎に取得されることが望ましい。具体的には、製品の仕様として定められているSPM300の高さ方向の測定精度が保証される高さ間隔で補正値が取得されることが望ましい。
ステップS1では、補正値を算出する高さ間隔を決定する。ここでは、製品の仕様として、SPM300での高さ測定で許容される許容誤差が±3%、SPM300のヒステリシス特性が±5%/100nm、SPM300で測定し得る測定対象物の高さ限界が2μm、と定められている場合について説明する。この場合、ヒステリシスに起因する測定誤差を±3%以内に収めるためには、±3/5×100=±60nm以内の高さ間隔で補正値を算出すればよい。従って、補正値を算出する高さ間隔は、例えば、120nmに決定される。
ステップS2では、ステップS1で算出された高さ間隔だけ高さの異なる複数の標準試料を準備する。例えば、0nmから測定対象物の高さ限界である2μmまでの間で、120nmずつ高さの異なる複数の標準試料を準備する。なお、標準試料とは、原子レベルで高さが保証され、トレーサビリティが保証されている高さが既知なサンプルのことである。標準試料は、例えば、厳密に管理された環境で一元的に保管されている。
次に、ステップS2で準備した複数の標準試料から一の標準試料を選択し(ステップS3)、SPM300でその標準試料を走査して、標準試料の高さを所定の補正値を使用して測定する(ステップS4)。さらに、ステップS4での測定により算出した高さと、既知である標準試料の高さとを比較して、測定誤差を算出する(ステップS5)。その後、測定誤差が所定範囲内にあるか否かを判定する(ステップS6)。ここで、所定範囲内の値は、SPM300での高さ測定で許容される許容誤差に対して十分に小さな値である。
測定誤差が所定範囲外である場合には、ステップS4で使用される補正値を調整して(ステップS7)、ステップS4以降の処理を繰り返す。そして、測定誤差が所定範囲内に収まると、標準試料の高さとそのとき設定されている補正値を関連付けて、記憶装置703に記憶させる(ステップS8)。
その後、ステップS2で準備したすべての標準試料を測定済みか否かについて判定する(ステップS9)。そして、測定していない別の標準試料がある場合には、その別の標準試料を選択して(ステップS10)、ステップS4以降の処理を繰り返す。すべての標準試料の測定が終了すると、図5の事前準備処理が完了する。
これにより、SPM300での高さ測定により生じる測定誤差を補正するための補正値であって対象物の高さ毎の補正値が予め取得され、記憶装置703に記憶される。
次に、製品(顕微鏡システム)を出荷した後に行われる、任意の試料Sの高さを測定する処理について、図6を参照しながら説明する。なお、ここでは、SPM300での高さ測定により得られた試料の高さ情報を補正する補正値を用いる例について説明する。
顕微鏡システム100は、光学顕微鏡200で試料Sの高さを測定する(ステップS11)。ここでは、例えば、共焦点観察によって試料Sの高さが測定され、第1の高さ情報が演算装置700に出力される。
そして、演算装置700は、図5の事前準備処理により記憶装置703に予め記憶された高さ毎の補正値を記憶装置703から取得し(ステップS12)、取得した高さ毎の補正値と、ステップS11での測定により得られた第1の高さ情報に基づいて、SPM300での高さ測定で使用される補正値を決定する(ステップS13)。
具体的には、演算装置700は、例えば、記憶装置703に記憶されている対象物の高さ毎の補正値から、第1の高さ情報で特定される高さに最も近い高さと関連付けて記憶されている補正値を選択し、SPM300での高さ測定で使用される補正値として決定する。また、演算装置700は、例えば、記憶装置703に記憶されている対象物の高さ毎の補正値から補間により、第1の高さ情報で特定される高さの補正値を算出し、算出した補正値をSPM300での高さ測定で使用される補正値として決定してもよい。
その後、顕微鏡システム100は、SPM300で試料Sの高さを測定する(ステップS14)。その結果、第2の高さ情報が演算装置700に出力される。
最後に、演算装置700は、ステップS13で決定した補正値で、ステップS14での測定により得られた第2の高さ情報を補正し、試料Sの高さを算出する(ステップS15)。
顕微鏡システム100によれば、試料Sの高さに応じた補正値でSPM300が較正されるため、ピエゾ素子303が有するヒステリシスが測定に及ぼす影響を大幅に軽減して、高い精度で試料Sの高さを算出することができる。また、光学顕微鏡200で試料Sの高さを測定した結果に基づいて、容易にSPM300を較正することができる。このため、SPM300を較正するために、測定する試料毎に試料を探針301で走査する必要がないため、測定前に試料Sや探針301を傷つけることを防止することができる。また、対象物の高さ毎の補正値を取得した後は、較正に標準試料を必要としないため、標準試料の保守管理の負担も排除できる。
以上では、第2の高さ情報を補正する補正値を用いる例について説明した。つまり、SPM300での測定結果を補正することで精度の高い測定結果を得るというものである。このような補正値の代わりに、ピエゾ素子303への印加電圧を補正する補正値が用いられてもよい。つまり、SPM300への入力を補正することで精度の高い測定結果を得るというものである。この場合、ステップS14で演算装置700へ出力される第2の高さ情報は、測定誤差が補正された高さ情報である。
図7は、本実施例に係る顕微鏡システムで行われる試料の高さ測定処理を示すフローチャートである。以下、図6に示す高さ測定処理との相違点を中心に、図7に示す高さ測定処理について説明する。なお、本実施例に係る顕微鏡システムは、実行する高さ測定プログラムが異なる点を除き、顕微鏡システム100と同様である。従って、本実施例に係る顕微鏡システムの構成要素については、実施例1と同一の符号で参照する。
図7に示すステップS21からステップS23の処理は、図6に示すステップS1からステップS3の処理と同様である。演算装置700は、ステップS23で決定した補正値をモニタ800に表示させる(ステップS24)。そして、表示された補正値をSPM300での高さ測定に使用するか否かについて、顕微鏡システムの利用者からの指示を受け付ける。
利用者により入力装置900を用いて補正値を使用する指示が入力されると(ステップS25YES)、その後、微鏡システム100は、SPM300で試料Sの高さを測定する(ステップS26)。そして、演算装置700は、ステップS26で出力された第2の高さ情報をステップS23で決定した補正値で補正して、試料の高さを算出する(ステップS27)。一方、補正値を使用しない指示が入力されると(ステップS25NO)、その後、顕微鏡システム100は、SPM300で試料Sの高さを測定する(ステップS28)。そして、演算装置700は、ステップS23で決定した補正値を用いることなく、ステップS26で出力された第2の高さ情報から試料の高さを算出する(ステップS29)。
本実施例に係る顕微鏡システムによっても、実施例1に係る顕微鏡システム100と同様の効果を得ることができる。また、本実施例に係る顕微鏡システムによれば、演算装置700が決定した補正値を利用者が使用するかを決定することができる。なお、本実施例に係る顕微鏡システムは、ピエゾ素子303への印加電圧を補正する補正値が用いられてもよい点については、実施例1に係る顕微鏡システム100と同様である。
図8は、本実施例に係る顕微鏡システムで行われる試料の高さ測定処理を示すフローチャートである。以下、図6に示す高さ測定処理との相違点を中心に、図8に示す高さ測定処理について説明する。なお、本実施例に係る顕微鏡システムは、実行する高さ測定プログラムが異なる点を除き、顕微鏡システム100と同様である。従って、本実施例に係る顕微鏡システムの構成要素については、実施例1と同一の符号で参照する。
図8に示すステップS31の処理は、図6に示すステップS1の処理と同様である。
ステップS32では、演算装置700は、ステップS31での高さ測定により得られた第1の高さ情報に対応する高さが、SPM300の測定性能が保証される高さ範囲(以降、保証範囲)内にあるか否かを判定する。なお、保証範囲はSPM300の仕様により予め決定されていて、例えば、記憶装置703に記憶されている。
ステップS32での判定結果に基づき、第1の高さ情報に対応する高さが保証範囲内であると判断されると、演算装置700は、ステップS33からステップS36の処理を実行する。なお、図8に示すステップS33からステップS36の処理は、図6に示すステップS12からステップS15の処理と同様である。
一方、ステップS32での判定結果に基づき、第1の高さ情報に対応する高さが保証範囲外であると判断されると、演算装置700は、その旨をモニタ800に表示し(ステップS27)、高さ測定処理を終了する。
本実施例に係る顕微鏡システムによっても、実施例1に係る顕微鏡システム100と同様の効果を得ることができる。また、本実施例に係る顕微鏡システムによれば、測定性能が保証できない試料の高さ測定を防止することができる。このため、SPM300による無駄の測定によって試料Sや探針301が傷つくことを防止することができる。なお、本実施例に係る顕微鏡システムは、ピエゾ素子303への印加電圧を補正する補正値が用いられてもよい点については、実施例1に係る顕微鏡システム100と同様である。
上述した各実施例は、発明の理解を容易にするために具体例を示したものであり、本発明はこれらの実施例に限定されるものではない。顕微鏡システム、較正方法、及び高さ測定方法は、特許請求の範囲により規定される本発明の思想を逸脱しない範囲において、さまざまな変形、変更が可能である。
図5では、高さ毎の補正値を取得する事前準備処理の一例として、標準試料を使用する例が示されているが、高さ毎の補正値は別の方法によって取得されてもよい。例えば、光学的測長器を使用して、高さ毎の補正値を取得してもよい。この場合、ピエゾ素子303bへ入力した印加電圧毎に、カンチレバー302の移動量を測長器によって測定し、印加電圧から算出される移動量と測長器で測定した移動量とを比較することによって、高さ(移動量)毎の補正値を算出してもよい。測長器は、少なくとも特定の環境において、精度及び再現性が保証されたものであることが望ましい。
図1には、SPMコントローラ600と演算装置700とが別体として構成された例が示されているが、SPMコントローラ600が演算装置として機能してもよい。実施例1では、SPMコントローラ600とは別体の演算装置700が、補正値を決定し、決定した補正値で第2の高さ情報を補正して試料の高さを算出する例が示されている。しかしながら、これらの処理は、演算装置700ではなくSPMコントローラ600によって行われてもよい。例えば、演算装置700が決定した補正値をSPMコントローラ600に設定し、SPMコントローラ600がその補正値で第2の高さ情報を補正して試料の高さを算出してもよい。また、SPMコントローラ600が補正値を決定し、SPMコントローラ600がその補正値に基づいて試料の高さを算出してもよい。この場合、第1の高さ情報はコントローラ500からSPMコントローラ600に出力される。このように、SPMコントローラ600が演算装置700の役割を担ってもよい。さらに、図4に示す記憶装置703に高さ毎の補正値が記憶されている例を示したが、高さ毎の補正は、SPMコントローラ600内の記憶装置に記憶されていてもよい。
図2に示す光学顕微鏡200は、共焦点観察を行うことができる共焦点顕微鏡として構成されている。しかしながら、光学顕微鏡200は、高さを光学的に非接触で測定できればよく、例えば、白色干渉顕微鏡であってもよい。
実施例3には、第1の高さ情報に対応する高さがSPM300の保証範囲外の高さである場合に、モニタ800にエラーメッセージを表示する例が示されている。しかしながら、第1の高さ情報に対応する高さが保証範囲外であることを報知する報知部は、モニタ800に限られない。例えば、音声や振動で報知してもよい。
100 顕微鏡システム
200 光学顕微鏡
201 レボルバ
202 対物レンズ
203 ステージ
204 レーザ光源
205 PBS
206 光走査部
207 1/4λ板
208 結像レンズ
209 ピンホール板
210 光検出器
211 AD変換器
212 白色光源
213 結像レンズ
214 CCDカメラ
300 SPM
301 探針
302 カンチレバー
303、303a、303b ピエゾ素子
304 レーザダイオード
305 レンズ
306 4分割フォトダイオード
400 顕微鏡装置
500 コントローラ
600 SPMコントローラ
700 演算装置
701 CPU
702 メモリ
703 記憶装置
704 読取装置
705 表示IF
706 入力IF
707 通信IF
708 バス
709 可搬記録媒体
800 モニタ
900 入力装置
S 試料

Claims (9)

  1. 共焦点顕微鏡または白色干渉顕微鏡と走査型プローブ顕微鏡を備える顕微鏡装置と、
    前記共焦点顕微鏡または前記白色干渉顕微鏡での高さ測定により得られる試料の第1の高さ情報と、前記走査型プローブ顕微鏡での高さ測定により生じる測定誤差を補正するための予め取得された補正値であって対象物の高さ毎の補正値とに基づいて、前記試料に対する前記走査型プローブ顕微鏡での高さ測定で使用される補正値を決定する演算装置と、を備える
    ことを特徴とする顕微鏡システム。
  2. 請求項1に記載の顕微鏡システムにおいて、
    前記走査型プローブ顕微鏡は、前記試料を走査する探針と、前記探針と前記試料の間の相対的な距離を変化させる駆動素子と、を備え、
    前記演算装置は、前記第1の高さ情報と、前記駆動素子が有するヒステリシスと前記走査型プローブ顕微鏡での高さ測定で許容される許容誤差とに基づいて決定された高さ間隔で予め取得された対象物の高さ毎の前記補正値とに基づいて、前記走査型プローブ顕微鏡での高さ測定で使用される前記補正値を決定する
    ことを特徴とする顕微鏡システム。
  3. 請求項1又は請求項2に記載の顕微鏡システムにおいて、
    前記走査型プローブ顕微鏡での高さ測定で使用される補正値は、前記走査型プローブ顕微鏡での高さ測定により得られる前記試料の第2の高さ情報を補正する補正値である
    ことを特徴とする顕微鏡システム。
  4. 請求項2に記載の顕微鏡システムにおいて、
    前記走査型プローブ顕微鏡での高さ測定で使用される補正値は、前記走査型プローブ顕微鏡での高さ測定で前記駆動素子への入力を補正する補正値である
    ことを特徴とする顕微鏡システム。
  5. 請求項1乃至請求項4のいずれか1項に記載の顕微鏡システムにおいて、
    前記演算装置は、前記第1の高さ情報に基づいて、対象物の高さ毎の前記補正値から前記走査型プローブ顕微鏡での高さ測定で使用される前記補正値を選択する
    ことを特徴とする顕微鏡システム。
  6. 請求項1乃至請求項5のいずれか1項に記載の顕微鏡システムにおいて、さらに、
    対象物の高さ毎の前記補正値を記憶する記憶装置を備える
    ことを特徴とする顕微鏡システム。
  7. 請求項1乃至請求項6のいずれか1項に記載の顕微鏡システムにおいて、さらに、
    前記第1の高さ情報に対応する高さが前記走査型プローブ顕微鏡の測定性能が保証される高さ範囲外であることを報知する報知部を備える
    ことを特徴とする顕微鏡システム。
  8. 共焦点顕微鏡または白色干渉顕微鏡と走査型プローブ顕微鏡を備える顕微鏡装置の較正方法であって、
    前記共焦点顕微鏡または前記白色干渉顕微鏡で試料の高さを測定し、
    前記共焦点顕微鏡または前記白色干渉顕微鏡での高さ測定により得られる前記試料の第1の高さ情報と、前記走査型プローブ顕微鏡での高さ測定により生じる測定誤差を補正するための予め取得された補正値であって対象物の高さ毎の補正値とに基づいて、前記走査型プローブ顕微鏡での高さ測定で使用される補正値を決定する
    ことを特徴とする較正方法。
  9. 共焦点顕微鏡または白色干渉顕微鏡と走査型プローブ顕微鏡を備える顕微鏡装置の高さ測定方法であって、
    前記共焦点顕微鏡または前記白色干渉顕微鏡で試料の高さを測定し、
    前記共焦点顕微鏡または前記白色干渉顕微鏡での高さ測定により得られる前記試料の第1の高さ情報と、前記走査型プローブ顕微鏡での高さ測定により生じる測定誤差を補正するための予め取得された補正値であって対象物の高さ毎の補正値とに基づいて、前記走査型プローブ顕微鏡での高さ測定で使用される補正値を決定し、
    決定した前記補正値を使用して前記走査型プローブ顕微鏡で前記試料の高さを測定して、前記試料の高さを算出する
    ことを特徴とする高さ測定方法。
JP2014123524A 2014-06-16 2014-06-16 顕微鏡システム、較正方法、及び、高さ測定方法 Expired - Fee Related JP6214475B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014123524A JP6214475B2 (ja) 2014-06-16 2014-06-16 顕微鏡システム、較正方法、及び、高さ測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123524A JP6214475B2 (ja) 2014-06-16 2014-06-16 顕微鏡システム、較正方法、及び、高さ測定方法

Publications (2)

Publication Number Publication Date
JP2016003919A JP2016003919A (ja) 2016-01-12
JP6214475B2 true JP6214475B2 (ja) 2017-10-18

Family

ID=55223294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123524A Expired - Fee Related JP6214475B2 (ja) 2014-06-16 2014-06-16 顕微鏡システム、較正方法、及び、高さ測定方法

Country Status (1)

Country Link
JP (1) JP6214475B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644512A (en) * 1996-03-04 1997-07-01 Advanced Surface Microscopy, Inc. High precision calibration and feature measurement system for a scanning probe microscope
JP2002350320A (ja) * 2001-05-25 2002-12-04 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JP2007139557A (ja) * 2005-11-17 2007-06-07 Olympus Corp 複合型顕微鏡
JP5754694B2 (ja) * 2012-06-22 2015-07-29 レーザーテック株式会社 異物除去装置及び異物除去方法

Also Published As

Publication number Publication date
JP2016003919A (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5982405B2 (ja) オートフォーカス装置を有する顕微鏡及び顕微鏡でのオートフォーカス方法
US9891418B2 (en) Apparatus for imaging a sample surface
EP2977720B1 (en) A method for measuring a high accuracy height map of a test surface
JP5489392B2 (ja) 光学系評価装置、光学系評価方法および光学系評価プログラム
CN102654638B (zh) 用于校正共聚焦扫描显微镜中的图像失真的方法
US20050269495A1 (en) Compound scanning probe microscope
JP5942847B2 (ja) 高さ測定方法及び高さ測定装置
EP3422074B1 (en) Microscope and observation method
JP2010101959A (ja) 顕微鏡装置
JP6135820B2 (ja) 走査型プローブ顕微鏡
JP6363477B2 (ja) 3次元形状測定装置
JP2006023285A (ja) 複合型走査プローブ顕微鏡及び複合型走査プローブ顕微鏡のカンチレバー位置表示方法
JP4603177B2 (ja) 走査型レーザ顕微鏡
JP2013213695A (ja) 形状測定装置
JP2009293925A (ja) 光学検査装置の誤差補正装置
JP2007212305A (ja) 微小高さ測定装置及び変位計ユニット
JP4376103B2 (ja) 干渉計装置及び光干渉法
JP6214475B2 (ja) 顕微鏡システム、較正方法、及び、高さ測定方法
JP2014001966A (ja) 形状測定装置および形状測定方法
JP4812443B2 (ja) 走査型共焦点レーザ顕微鏡
US10371501B2 (en) Method for determining height information of a sample, and scanning microscope
JP2007071716A (ja) 共焦点走査型顕微鏡
JP5037432B2 (ja) 波面測定方法および装置
JP2021060311A (ja) 解析装置、解析方法、干渉測定システム、およびプログラム
US20140368635A1 (en) On-axis focus sensor and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R151 Written notification of patent or utility model registration

Ref document number: 6214475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees