JP6207431B2 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP6207431B2
JP6207431B2 JP2014047453A JP2014047453A JP6207431B2 JP 6207431 B2 JP6207431 B2 JP 6207431B2 JP 2014047453 A JP2014047453 A JP 2014047453A JP 2014047453 A JP2014047453 A JP 2014047453A JP 6207431 B2 JP6207431 B2 JP 6207431B2
Authority
JP
Japan
Prior art keywords
motor
temperature
target
current
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014047453A
Other languages
English (en)
Other versions
JP2015173516A (ja
Inventor
正晃 子守
正晃 子守
友裕 上野
友裕 上野
勇作 澁谷
勇作 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014047453A priority Critical patent/JP6207431B2/ja
Publication of JP2015173516A publication Critical patent/JP2015173516A/ja
Application granted granted Critical
Publication of JP6207431B2 publication Critical patent/JP6207431B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、モータの駆動を制御するモータ制御装置に関するものである。
従来のモータ制御装置は、モータの固着状態を解除するために、モータへの印加電圧を制御することによってトルクを発生させていた(例えば、特許文献1参照)。印加電圧の制御は、電源とモータとの間に接続されたスイッチング素子の、動作キャリア周期のオン時間(Duty比)を制御することにより行われる。
特開2008−115867号公報
しかしながら、印加電圧の制御では、モータへ供給する電流を抑制できない。そのため、各種部品の定格許容範囲で使用できるように、モータ毎に、モータの抵抗値に応じてスイッチング素子の動作キャリア周期のオン時間を調整する必要があった。さらに、モータ周囲およびモータコイル単体の温度が変化するとモータの抵抗値も変化するので、温度変化に応じてスイッチング素子の動作キャリア周期のオン時間を補正する必要があった。
上記特許文献1の制御装置は、各種部品の温度を観測していても、印加電圧を制御しているため、モータへ供給する電流が不定である。そのため、精度よくモータトルクを出力することができなかった。また、モータが過度に発熱することを防ぐために、モータトルクを最大限出力することができなかった。
このように、印加電圧の制御ではモータトルクを精度よく出力することができないので、固着状態の解除に最適なモータトルクを出力できないという課題があった。
この発明は、上記のような課題を解決するためになされたもので、モータの抵抗値および温度変化に影響されずに、モータトルクを精度よく制御するモータ制御装置を提供することを目的とする。
この発明に係るモータ制御装置は、目標Dutyに従って動作することによりモータへ電流を供給する駆動回路と、モータの回転位置に基づいてモータが固着状態か否かを判定する固着判定部と、モータまたは駆動回路の温度が閾値以下か否かを判定する温度判定部と、モータの目標速度およびモータの現在の速度に基づいてモータへ供給する目標電流を算出し、モータが固着状態の場合、モータまたは駆動回路の温度が閾値以下のときに目標電流を大きくし、当該温度が閾値より大きいときに目標電流を小さくする目標電流算出部と、目標電流算出部が算出した目標電流に基づいて目標Dutyを算出し、駆動回路に出力する目標Duty算出部とを備えるものである。
この発明によれば、モータへ供給する電流を制御するようにしたので、モータの抵抗値および温度変化に影響されずに、モータトルクを精度よく制御することができる。また、モータが固着状態の場合かつモータまたは駆動回路の温度が閾値以下の場合に、固着状態から脱出するために目標電流を大きくするようにしたので、モータまたは駆動回路の限界温度となる電流まで上昇させることができ、モータトルクを最大限出力することができる。
さらに、モータが固着状態の場合かつモータまたは駆動回路の温度が閾値より大きい場合は目標電流を小さくするようにしたので、モータまたは駆動回路の発熱を抑制することができる。
この発明の実施の形態1に係るモータ制御装置の構成を示すブロック図である。 実施の形態1に係るモータ制御装置の動作を示すフローチャートである。 この発明の実施の形態2に係るモータ制御装置の構成を示すブロック図である。 FET駆動回路(またはモータ)の温度と目標電流との関係を表すグラフである。
実施の形態1.
図1は、この発明の実施の形態1に係るモータ制御装置1の構成例を示すブロック図である。このモータ制御装置1は、電源装置2が供給する電力でモータMを駆動するものであり、モータMへ供給する電流を制御する演算部10と、演算部10により制御されてモータMへ電流を供給するFET(電界効果トランジスタ)駆動回路3と、モータMの電流を測定して演算部10に入力する電流測定回路4と、FET駆動回路3の温度を測定して演算部10に入力する温度測定回路5と、モータMの回転位置を検出して演算部10に入力する位置検出回路6とを含む。
FET駆動回路3は、演算部10から入力される目標Dutyに基づいて、ブリッジ接続された複数個のFET(不図示)を動作させ、モータMへ電流を供給する。図示例ではFETを用いてFET駆動回路3を構成したが、スイッチング素子の種類は問わない。
電流測定回路4は、FET駆動回路3からモータMへ供給される電流を測定して、演算部10に入力する。電流測定回路4の設置場所は、モータMへ供給される電流が測定可能な箇所であればよい。
温度測定回路5は、温度センサなどを含み、FET駆動回路3の温度を測定して、演算部10に入力する。
なお、図示例では、温度測定回路5がFET駆動回路3の温度を測定するが、測定対象はFET駆動回路3に限定されるものではなく、モータMの温度を測定してもよい。
位置検出回路6は、モータMの回転位置を検出して、角度情報を演算部10に入力する。
ここでの角度情報とは、モータMが1回転する360度のうちの一点を基準として、その基準からの角度を意味する。
演算部10は、不図示のCPU(Central Processing Unit)で構成されており、このCPUが内部メモリに格納されたプログラムを実行することによって、位相算出部11、位置算出部12、速度算出部13、目標速度算出部14、温度判定部15、固着判定部16、目標電流算出部17、および目標Duty算出部18としての機能を実現する。
位相算出部11は、位置検出回路6から入力された角度情報に基づいて、モータMの位相(つまり、コイルと磁石の位置関係)を算出し、目標Duty算出部18に入力する。
位置算出部12は、位置検出回路6から入力された角度情報に基づいて、モータMの位置(つまり、軸の回転位置)を算出し、速度算出部13、目標速度算出部14、および固着判定部16にそれぞれ入力する。
速度算出部13は、位置算出部12から入力されたモータMの位置に基づいて、現在のモータMの回転速度を算出し、目標電流算出部17に入力する。
目標速度算出部14は、外部から入力された目標とする位置情報と、位置算出部12から入力されたモータMの現在の位置とに基づいて、目標とする速度(以下、目標速度と呼ぶ)を算出する。
温度判定部15は、温度測定回路5から入力された温度測定値が温度閾値以下か、温度閾値より大きいかを判定し、判定結果を目標電流算出部17に入力する。
ここで、温度閾値とは、温度判定部15に予め設定されている、任意の温度である。この例では、温度測定回路5がFET駆動回路3の温度を測定するので、FET駆動回路3の部品の保証温度が温度閾値として設定されている。温度測定回路5がモータMの温度を測定する場合には、モータMの使用温度範囲の上限温度を温度閾値にすればよい。
固着判定部16は、外部から入力された目標とする位置情報と、位置算出部12から入力されたモータMの現在の位置とを比較して、位置偏差を算出する。固着判定部16は、算出した位置偏差が偏差閾値より小さいならモータMは正常に動作していると判定し、算出した位置偏差が偏差閾値以上ならモータMが固着していると判定し、判定結果を目標電流算出部17に入力する。
ここで、偏差閾値とは、モータMが固着している状態とみなす位置偏差の値であり、固着判定部16に予め設定されている。
目標電流算出部17は、目標速度算出部14から入力された目標速度と、速度算出部13から入力されたモータMの現在の速度とを比較して、モータMに供給する電流の目標値(以下、目標電流と呼ぶ)を算出する。速度から目標電流を算出する方法は、公知の技術を用いればよいので詳細な説明を省略する。
さらに、目標電流算出部17は、算出した目標電流を、温度判定部15と固着判定部16とからそれぞれ入力された判定結果に基づいて調整し、調整後の目標電流を目標Duty算出部18に入力する。目標電流の調整方法は後述する。
目標Duty算出部18は、目標電流算出部17から入力された目標電流と、位相算出部11から入力されたモータMの位相とに基づいて、FET駆動回路3のFETの目標Duty(つまり、モータ相の目標電圧)を算出し、FET駆動回路3に入力する。
次に、図2のフローチャートを用いて、モータ制御装置1の動作、特に目標電流の調整方法を説明する。
ステップST1において、目標電流算出部17が目標電流を算出する。つまり、位相算出部11がモータMの位相を算出し、位置算出部12が位相からモータMの位置を算出し、目標速度算出部14がモータMの位置と目標とする位置情報とから目標速度を算出し、目標電流算出部17が目標速度と現在の速度とから目標電流を算出する。
ステップST2において、目標Duty算出部18が目標電流から目標Dutyを算出し、FET駆動回路3が目標Dutyに従って動作することによりモータMへ電流を供給する。
ステップST3において、固着判定部16は、目標とする位置と実際のモータMの位置との偏差が、偏差閾値未満の値に収束するか確認する。位置偏差が偏差閾値より小さくなれば(ステップST3“NO”)、固着判定部16はモータMが正常に動作していると判定し、モータ制御装置1はステップST1〜ST3の処理を繰り返す。
一方、所定時間が経過しても位置偏差が偏差閾値未満の値に収束せず、または偏差閾値以上の値から変化せず、位置偏差が偏差閾値以上のままなら(ステップST3“YES”)、固着判定部16はモータMが固着状態であると判定し、判定結果を目標電流算出部17に入力する。続くステップST4において、温度判定部15が温度測定値と温度閾値を比較する。温度測定値が温度閾値より小さい場合(ステップST4“YES”)、温度判定部15は、FET駆動回路3が異常発熱していないと判定し、判定結果を目標電流算出部17に入力する。
モータMが固着状態であって、FET駆動回路3が異常発熱していない場合、目標電流算出部17は、モータMを固着状態から脱出させるために、目標電流を連続的または段階的に大きくしていく調整を行って、トルクを徐々に増大させる。具体的には、目標電流算出部17が目標電流を一段階大きくし(ステップST5)、目標Duty算出部18が調整後の目標電流から目標Dutyを算出し、FET駆動回路3がその目標Dutyに基づく電流をモータMへ供給する(ステップST6)。続いて、固着判定部16が、調整後のモータMの位置に基づいて固着状態か否かを判定する(ステップST7)。固着状態が続いている場合(ステップST7“YES”)、温度判定部15が温度を判定した後(ステップST4“YES”)、目標電流算出部17が調整後の目標電流をさらに一段階大きくし(ステップST5)、トルクを増大させる。ステップST4〜ST7の処理を繰り返すことにより、モータMのトルクが徐々に増大していき、その途中で固着状態から脱出できる。固着状態から脱出すると、位置偏差が偏差閾値より小さくなるので(ステップST7“NO”)、ステップST1〜ST3の通常制御に戻る。従って、固着状態から脱出するために必要なトルクを最小限にすることができる。
上記説明では、目標電流算出部17が、目標電流が連続的または段階的に大きくなるよう調整したが、これに限定されるものではなく、例えば一度の調整で、FET駆動回路3の異常発熱を引き起こさない程度まで目標電流を大きくしてもよい。
一方、温度測定値が温度閾値以上の場合(ステップST4“NO”)、FET駆動回路3を熱から保護するために、モータMのトルクを小さくして発熱量を減らす。具体的には、目標電流算出部17が目標電流を小さくし(ステップST8)、目標Duty算出部18が調整後の目標電流から目標Dutyを算出し、FET駆動回路3がその目標Dutyに基づく電流をモータMへ供給する(ステップST9)。このステップST8では、目標電流を0AにしてモータMを停止させてもかまわない。この調整により、FET駆動回路3の発熱量を減少させる。
なお、ステップST9の制御では、ステップST2の通常制御よりモータMのトルクが小さいので、固着状態からの脱出は難しい。そこで、例えばFET駆動回路3が冷えるまでの時間が経過した後に演算部10がモータ制御装置1をリセットして、再びステップST1から処理を開始することにより、モータMが固着状態から脱出できる。
以上より、実施の形態1によれば、モータ制御装置1は、目標Dutyに従って動作することによりモータMへ電流を供給するFET駆動回路3と、モータMの回転位置に基づいてモータMが固着状態か否かを判定する固着判定部16と、モータMまたはFET駆動回路3の温度が閾値以下か否かを判定する温度判定部15と、モータMの目標速度およびモータMの現在の速度に基づいてモータMへ供給する目標電流を算出し、モータMが固着状態の場合、モータMまたはFET駆動回路3の温度が閾値以下のときに目標電流を大きくし、当該温度が閾値より大きいときに目標電流を小さくする目標電流算出部17と、目標電流算出部17が算出した目標電流に基づいて目標Dutyを算出し、FET駆動回路3へ出力する目標Duty算出部18とを備える構成にした。
このように、モータ制御装置1は、モータMへ供給する電流を制御するので、モータMの抵抗値および温度変化に影響されずに、モータトルクを精度よく制御することができる。
また、モータMが固着状態の場合かつモータMまたはFET駆動回路3の温度が閾値以下の場合に、固着状態から脱出するために目標電流を大きくするようにしたので、モータMまたはFET駆動回路3の限界温度となる電流まで上昇させることができ、トルクを最大限出力することができる。さらに、モータMが固着状態の場合かつモータMまたはFET駆動回路3の温度が閾値より大きい場合は、目標電流を小さくするようにしたので、モータMまたはFET駆動回路3の発熱を抑制することができる。
また、実施の形態1によれば、モータ制御装置1は温度測定回路5を備え、温度測定回路5は、モータMまたはFET駆動回路3の温度を測定する構成にした。このように、温度測定回路5が、モータMまたはFET駆動回路3の温度を直接測定するので、正確な温度を容易に得ることができる。また、正確な温度に基づいて部品を熱から保護できる。
また、実施の形態1によれば、目標電流算出部17は、モータMが固着状態の場合かつモータMまたはFET駆動回路3の温度が閾値以下の場合、モータMの目標速度およびモータMの現在の速度に基づいて算出した目標電流を、連続的または段階的に大きくする構成にした。このため、モータMのトルクを徐々に上げて固着状態から脱出させることができる。また、脱出に必要なトルクを最小限にすることができる。
実施の形態2.
上記実施の形態1では、温度測定回路5を用いてFET駆動回路3またはモータMの温度を実測したが、実施の形態2では推定する。
図3は、実施の形態2に係るモータ制御装置1の構成を示すブロック図である。図3のモータ制御装置1は、温度測定回路5の代わりに、温度推定部20を備えている。また、図3のモータ制御装置1は、新たに電流推定部21を備えている。その外の構成は図1と同様であるため、同一の符号を付し説明を省略する。
図4は、FET駆動回路3(またはモータM)の温度と目標電流との関係を表すグラフの一例である。縦軸は温度、横軸は目標電流の通電時間である。FET駆動回路3(またはモータM)の温度は、目標電流が大きいほど、また、目標電流の通電時間が長いほど、高くなる。
温度推定部20は、図4に示したグラフの温度と目標電流との関係に基づいて、目標電流算出部17が算出した目標電流に対応するFET駆動回路3(またはモータM)の温度を推定し、温度推定値として温度判定部15に入力する。温度判定部15は、温度推定部20から入力された温度推定値と温度閾値とを比較して、FET駆動回路3(またはモータM)の異常発熱を判定する。
温度の推定方法は、上記の方法に限定されるものではない。
例えば、温度推定部20は、FET駆動回路3のFETに印加される電圧(または、FET駆動回路3がモータMに印加する電圧)に基づいて、FET駆動回路3(またはモータM)の温度を推定する。FET駆動回路3が有するFETの抵抗値(またはモータMの抵抗値)が既知なので、温度推定部20は抵抗値と印加電圧とから電流を求め、求めた電流に対応する温度を図4のグラフから推定する。
また例えば、温度推定部20は、FET駆動回路3が動作する目標Dutyに基づいて、FET駆動回路3(またはモータM)の温度を推定する。電源装置2の電源電圧が既知なので、温度推定部20は電源電圧と目標Dutyとから印加電圧を求め、求めた印加電圧と既知の抵抗値とから電流を求め、求めた電流に対応する温度を図4のグラフから推定する。
また例えば、温度推定部20は、温度と電流との関係を表した図4のグラフの代わりに、温度と消費電力との関係を表したグラフを用いてもよい。
温度推定部20は、グラフをテーブル化したデータを使用して温度を推定してもよいし、グラフを数式化した関数を演算して温度を推定してもよい。
上記実施の形態1では、電流測定回路4が三相それぞれの電流を測定したが、実施の形態2では、電流測定回路4が三相のうちのいずれか一相の電流を測定し、電流推定部21が当該一相の電流測定値を用いて残り二相の電流を推定する。
以上より、実施の形態2によれば、モータ制御装置1は温度推定部20を備え、温度推定部20は、目標Duty、モータMまたはFET駆動回路3に印加される電圧、およびモータMまたはFET駆動回路3に流れる電流のうちの少なくとも1つに基づいて、モータMまたはFET駆動回路3の温度を推定する構成にした。このため、温度測定回路5(図1に示す)の設置が不要となり、その分のスペース確保および価格低減が可能となる。
なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
1 モータ制御装置、2 電源装置、3 FET駆動回路、4 電流測定回路、5 温度測定回路、6 位置検出回路、10 演算部、11 位相算出部、12 位置算出部、13 速度算出部、14 目標速度算出部、15 温度判定部、16 固着判定部、17 目標電流算出部、18 目標Duty算出部、20 温度推定部、21 電流推定部、M モータ。

Claims (4)

  1. 目標Dutyに従って動作することによりモータへ電流を供給する駆動回路と、
    前記モータの回転位置に基づいて前記モータが固着状態か否かを判定する固着判定部と、
    前記モータまたは前記駆動回路の温度が閾値以下か否かを判定する温度判定部と、
    前記モータの目標速度および前記モータの現在の速度に基づいて前記モータへ供給する目標電流を算出し、前記モータが固着状態の場合、前記モータまたは前記駆動回路の温度が前記閾値以下のときに前記目標電流を大きくし、当該温度が前記閾値より大きいときに前記目標電流を小さくする目標電流算出部と、
    前記目標電流算出部が算出した前記目標電流に基づいて前記目標Dutyを算出し、前記駆動回路に出力する目標Duty算出部とを備えるモータ制御装置。
  2. 前記モータまたは前記駆動回路の温度を測定する温度測定回路を備えることを特徴とする請求項1記載のモータ制御装置。
  3. 前記目標Duty、前記モータまたは前記駆動回路に印加される電圧、および前記モータまたは前記駆動回路に流れる電流のうちの少なくとも1つに基づいて、前記モータまたは前記駆動回路の温度を推定する温度推定部を備えることを特徴とする請求項1記載のモータ制御装置。
  4. 前記目標電流算出部は、前記モータが固着状態の場合かつ前記モータまたは前記駆動回路の温度が前記閾値以下の場合、前記モータの目標速度および前記モータの現在の速度に基づいて算出した前記目標電流を、連続的または段階的に大きくすることを特徴とする請求項1から請求項3のうちのいずれか1項記載のモータ制御装置。
JP2014047453A 2014-03-11 2014-03-11 モータ制御装置 Active JP6207431B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014047453A JP6207431B2 (ja) 2014-03-11 2014-03-11 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014047453A JP6207431B2 (ja) 2014-03-11 2014-03-11 モータ制御装置

Publications (2)

Publication Number Publication Date
JP2015173516A JP2015173516A (ja) 2015-10-01
JP6207431B2 true JP6207431B2 (ja) 2017-10-04

Family

ID=54260511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014047453A Active JP6207431B2 (ja) 2014-03-11 2014-03-11 モータ制御装置

Country Status (1)

Country Link
JP (1) JP6207431B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6873293B1 (ja) * 2020-03-23 2021-05-19 三菱電機株式会社 交流回転電機の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182185A (ja) * 1994-12-21 1996-07-12 Yamaha Motor Co Ltd モータ過熱防止装置
JP2005325741A (ja) * 2004-05-13 2005-11-24 Toyota Motor Corp スロットル制御装置
JP4804100B2 (ja) * 2005-10-18 2011-10-26 三洋電機株式会社 モータ駆動装置及びその制御方法、空気調和装置
JP2007151267A (ja) * 2005-11-25 2007-06-14 Mitsuba Corp モータ駆動装置
JP2009136061A (ja) * 2007-11-29 2009-06-18 Mitsuba Corp スイッチトリラクタンスモータの制御装置

Also Published As

Publication number Publication date
JP2015173516A (ja) 2015-10-01

Similar Documents

Publication Publication Date Title
JP4501433B2 (ja) Dcモータのコイル温度推定方法およびその装置
JP4215025B2 (ja) 車両用発電制御装置
JP5639868B2 (ja) 負荷回路の保護装置
JP5868556B2 (ja) コイル温度推定方法およびモータ制御装置
US10001212B2 (en) Control system of machine tool
JP6973311B2 (ja) 処理装置
WO2021106430A1 (ja) 処理装置、及び巻線温度算出モデルの決定方法
JP4474642B2 (ja) ファン制御冷却システム
CN109983688B (zh) 无刷电动机控制装置以及无刷电动机控制方法
JP6207431B2 (ja) モータ制御装置
JP2011125130A (ja) インバータ駆動装置
KR101176010B1 (ko) 냉각팬 모터의 전압 제어 장치 및 방법
TW201925969A (zh) 溫度控制裝置及其方法
JP5455756B2 (ja) 電力変換装置
JP6550398B2 (ja) 素子を作動させるための方法および装置
JP2020202691A (ja) 直流分巻モータの制御装置及びモータユニット
JP2013219360A (ja) 放熱装置及びそれを備えた電子デバイス
CN211405910U (zh) 参数控制系统以及电机
JP5804382B2 (ja) 温度制御回路
JP2016187015A (ja) 油温推定装置
JP6297868B2 (ja) ブラシレスモータの制御装置及び制御方法
JP6344070B2 (ja) ソレノイド制御装置
JP6249226B2 (ja) ステッピングモーターの制御装置
WO2022269950A1 (ja) 電動機制御装置
US20240113650A1 (en) Temperature protection device and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6207431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250