JP6205121B2 - Visibility evaluation method for transparent substrate, positioning method for laminate, and method for manufacturing printed wiring board - Google Patents

Visibility evaluation method for transparent substrate, positioning method for laminate, and method for manufacturing printed wiring board Download PDF

Info

Publication number
JP6205121B2
JP6205121B2 JP2012250747A JP2012250747A JP6205121B2 JP 6205121 B2 JP6205121 B2 JP 6205121B2 JP 2012250747 A JP2012250747 A JP 2012250747A JP 2012250747 A JP2012250747 A JP 2012250747A JP 6205121 B2 JP6205121 B2 JP 6205121B2
Authority
JP
Japan
Prior art keywords
mark
wiring board
printed wiring
average value
lightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012250747A
Other languages
Japanese (ja)
Other versions
JP2014074706A (en
Inventor
新井 英太
英太 新井
敦史 三木
敦史 三木
康修 新井
康修 新井
嘉一郎 中室
嘉一郎 中室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012250747A priority Critical patent/JP6205121B2/en
Publication of JP2014074706A publication Critical patent/JP2014074706A/en
Application granted granted Critical
Publication of JP6205121B2 publication Critical patent/JP6205121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、透明基材の視認性評価方法、積層体の位置決め方法、及び、プリント配線板の製造方法に関する。   The present invention relates to a visibility evaluation method for a transparent substrate, a positioning method for a laminate, and a method for manufacturing a printed wiring board.

スマートフォンやタブレットPCといった小型電子機器には、配線の容易性や軽量性からフレキシブルプリント配線板(以下、FPC)が採用されている。近年、これら電子機器の高機能化により信号伝送速度の高速化が進み、FPCにおいてもインピーダンス整合が重要な要素となっている。信号容量の増加に対するインピーダンス整合の方策として、FPCのベースとなる樹脂絶縁層(例えば、ポリイミド)の厚層化が進んでいる。一方、FPCは液晶基材への接合やICチップの搭載などの加工が施されるが、この際の位置合わせは銅箔と樹脂絶縁層との積層板における銅箔をエッチングした後に残る樹脂絶縁層を透過して視認される位置決めパターンを介して行われるため、樹脂絶縁層の視認性が重要となる。   In a small electronic device such as a smartphone or a tablet PC, a flexible printed wiring board (hereinafter referred to as FPC) is adopted because of easy wiring and light weight. In recent years, with the enhancement of functions of these electronic devices, the signal transmission speed has been increased, and impedance matching has become an important factor in FPC. As a measure for impedance matching with respect to an increase in signal capacity, a resin insulation layer (for example, polyimide) serving as a base of an FPC has been increased in thickness. On the other hand, processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer The visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.

このような樹脂絶縁層の視認性の評価方法として、特許文献1では、CCDカメラによって樹脂絶縁層越しに撮影した画像を観察して評価している。また、特許文献2では、評価対象の樹脂絶縁層の水平面に対して30°をなす角度からCCDカメラで撮影した画像にテストパターンが歪んで映っているか否かを評価している。   As a method for evaluating the visibility of such a resin insulating layer, in Patent Document 1, an image taken through a resin insulating layer with a CCD camera is observed and evaluated. In Patent Document 2, it is evaluated whether or not a test pattern is distorted in an image taken by a CCD camera from an angle of 30 ° with respect to the horizontal plane of the resin insulating layer to be evaluated.

特開2003−309336号公報JP 2003-309336 A 特開2006−001056号公報JP 2006-001056 A

しかしながら、特許文献1のようにCCDカメラで観察して画像を単純に観察するものでは、視認性評価の精度には限界があり、製造ラインで実際に作製しなければ、位置合わせ等のために設けられたマークを透明基材越しに視認することが可能か否かを判断できないのが実情であり、製造コストの点で問題があった。これは特許文献2のように当該画像にテストパターンが歪んで映っているか否かを評価する方法であっても同様である。
本発明は、透明基材の視認性を効率良く正確に評価することができる透明基材の視認性評価方法、積層体の位置決め方法、及び、プリント配線板の製造方法を提供する。
However, in the case of simply observing an image by observing with a CCD camera as in Patent Document 1, there is a limit to the accuracy of the visibility evaluation. In reality, it is impossible to determine whether or not the provided mark can be visually recognized through the transparent base material, which is problematic in terms of manufacturing cost. The same applies to a method of evaluating whether or not a test pattern is distorted in the image as in Patent Document 2.
The present invention provides a visibility evaluation method for a transparent substrate, a method for positioning a laminate, and a method for producing a printed wiring board, which can efficiently and accurately evaluate the visibility of a transparent substrate.

本発明者らは鋭意研究を重ねた結果、透明基材の下にマークを設けて撮影手段で透明基材越しに撮影し、当該マーク部分の画像から得た観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線に着目し、当該明度曲線を評価することで、透明基材の視認性を透明基材の種類や透明基材の厚みの影響を受けずに、効率良く正確に評価することができることを見出した。   As a result of intensive research, the inventors have provided a mark under the transparent base material, photographed through the transparent base material with a photographing means, and a mark drawn in the observation point-lightness graph obtained from the image of the mark portion. Focusing on the brightness curve near the edge and evaluating the brightness curve, the visibility of the transparent substrate is evaluated efficiently and accurately without being affected by the type of transparent substrate and the thickness of the transparent substrate. I found that I can do it.

以上の知見を基礎として完成された本発明は一側面において、透明基材の下にマークを設けて、前記マークを前記透明基材越しに撮影手段で撮影し、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線によって前記透明基材の視認性を評価する方法であり、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いて行う透明基材の視認性を評価する方法である。   The present invention completed on the basis of the above knowledge, in one aspect, a mark is provided under the transparent substrate, the mark is photographed by the photographing means through the transparent substrate, and an image obtained by the photographing is obtained. The observation point-brightness graph is prepared by measuring the brightness at each observation point along a direction perpendicular to the direction in which the observed mark extends. In the observation point-brightness graph, from the end of the mark, the mark It is a method for evaluating the visibility of the transparent base material by a brightness curve generated over a portion having no mark, and a difference between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark This is a method for evaluating the visibility of a transparent substrate using ΔB (ΔB = Bt−Bb).

本発明の透明基材の視認性を評価する方法は一実施形態において、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上となる場合を良好と判定する。   In one embodiment, the method for evaluating the visibility of a transparent substrate according to the present invention is a difference ΔB (ΔB) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark. = Bt−Bb) is determined to be good when 40 or more.

本発明の透明基材の視認性を評価する方法は別の一実施形態において、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が50以上となる場合を良好と判定する。   In another embodiment of the method for evaluating the visibility of the transparent substrate according to the present invention, the difference ΔB between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark to the portion without the mark. A case where (ΔB = Bt−Bb) is 50 or more is determined to be good.

本発明の透明基材の視認性を評価する方法は更に別の一実施形態において、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて行う。
In still another embodiment of the method for evaluating the visibility of the transparent substrate according to the present invention, the difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark to the portion without the mark. In the observation point-brightness graph, ΔB (ΔB = Bt−Bb) and the intersection point between the lightness curve and Bt, where t1 is a value indicating the position of the intersection closest to the mark among the lightness curve and Bt intersections. In the depth range from 0.1 to Bt with respect to Bt, when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1ΔB is t2, the following equation (1) Sv defined by
Sv = (ΔB × 0.1) / (t1-t2) (1)
To do.

本発明の透明基材の視認性を評価する方法は更に別の一実施形態において、前記撮影によって得られた画像が、少なくとも一方の表面が処理された表面処理銅箔を、処理表面側から厚さ25〜50μmの透明基材の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、マークを印刷した印刷物を、露出した前記透明基材の下に敷いて、前記印刷物を前記透明基材越しに撮影手段で撮影することで得られた画像である。   In yet another embodiment of the method for evaluating the visibility of the transparent substrate according to the present invention, the image obtained by the imaging is a surface-treated copper foil having at least one surface treated with a thickness from the treated surface side. After laminating both sides of a transparent substrate having a thickness of 25 to 50 μm, the copper foils on both sides are removed by etching, and a printed matter on which a mark is printed is laid under the exposed transparent substrate, and the printed matter is It is the image obtained by image | photographing with an imaging | photography means through a transparent base material.

本発明の視認性を評価する方法は更に別の一実施形態において、前記Svが3.5以上となる場合を良好と判定する。   In still another embodiment of the method for evaluating visibility according to the present invention, a case where the Sv is 3.5 or more is determined to be good.

本発明の視認性を評価する方法は更に別の一実施形態において、前記Svが3.9以上となる場合を良好と判定する。   In still another embodiment of the method for evaluating visibility according to the present invention, a case where the Sv is 3.9 or more is determined to be good.

本発明の透明基材の視認性を評価する方法は更に別の一実施形態において、前記Svが5.0以上となる場合を良好と判定する。   In another embodiment of the method for evaluating the visibility of the transparent substrate of the present invention, the case where the Sv is 5.0 or more is determined to be good.

本発明の透明基材の視認性を評価する方法は更に別の一実施形態において、前記表面処理銅箔は、少なくとも一方の表面に粗化処理により粗化粒子が形成された表面処理銅箔である。   In yet another embodiment of the method for evaluating the visibility of the transparent substrate of the present invention, the surface-treated copper foil is a surface-treated copper foil in which roughened particles are formed on at least one surface by a roughening treatment. is there.

本発明の透明基材の視認性を評価する方法は更に別の一実施形態において、前記透明基材がポリイミド基板である。   In another embodiment of the method for evaluating the visibility of the transparent substrate of the present invention, the transparent substrate is a polyimide substrate.

本発明は更に別の一側面において、金属と樹脂との積層体の位置決めをする方法であって、前記金属と樹脂の積層体はマークを有し、前記マークを前記樹脂越しに撮影手段で撮影し、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いて行う積層体の位置決めをする方法である。   According to another aspect of the present invention, there is provided a method of positioning a laminate of metal and resin, wherein the laminate of metal and resin has a mark, and the mark is photographed by the photographing means through the resin. Then, for the image obtained by the photographing, the brightness at each observation point is measured along a direction perpendicular to the direction in which the observed mark extends, and an observation point-brightness graph is created. In this method, the laminate is positioned by using the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated over the portion where there is no mark.

本発明の積層体の位置決めをする方法は一実施形態において、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上となる場合を良好と判定する。   In one embodiment of the method for positioning a laminate according to the present invention, a difference ΔB (ΔB = Bt−) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark. A case where Bb) is 40 or more is determined to be good.

本発明の積層体の位置決めをする方法は別の一実施形態において、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が50以上となる場合を良好と判定する。   In another embodiment of the method for positioning a laminate according to the present invention, a difference ΔB (ΔB = ΔB) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark. A case where Bt−Bb) is 50 or more is determined to be good.

本発明の積層体の位置決めをする方法は更に別の一実施形態において、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と樹脂との積層体の位置決めをする。
In still another embodiment of the method for positioning a laminate according to the present invention, a difference ΔB (ΔB) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark. = Bt−Bb), and in the observation point-lightness graph, t1 is a value indicating the position of the intersection closest to the mark among the intersections of the brightness curve and Bt, and Bt is calculated from the intersection of the brightness curve and Bt. In the depth range up to 0.1ΔB as a reference, when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1ΔB is defined as t2, the following equation (1) is defined. Sv
Sv = (ΔB × 0.1) / (t1-t2) (1)
Is used to detect the position of the mark, and the laminate of the metal and the resin is positioned based on the detected position of the mark.

本発明は更に別の一側面において、絶縁樹脂板と、前記絶縁樹脂板上に設けられた回路とを有するプリント配線板の位置決めをする方法であって、前記回路を前記樹脂越しに撮影手段で撮影し、前記撮影によって得られた画像について、観察された前記回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、前記回路の端部から前記回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いてプリント配線板の位置決めをする方法である。   According to another aspect of the present invention, there is provided a method for positioning a printed wiring board having an insulating resin plate and a circuit provided on the insulating resin plate, wherein the circuit is photographed by the photographing means over the resin. Taking an image and measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed circuit is stretched for the image obtained by the shooting to produce an observation point-lightness graph, and the end of the circuit The printed wiring board is positioned using the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the lightness curve generated from the portion where the circuit is not present.

本発明のプリント配線板の位置決めをする方法は一実施形態において、前記回路の端部から前記回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて前記回路の位置を検出して、前記検出された回路の位置に基づきプリント配線板の位置決めをする。
In one embodiment of the method for positioning a printed wiring board according to the present invention, a difference ΔB (ΔB = Bt) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the circuit to a portion without the circuit. -Bb) and the observation point-lightness graph, where t1 is a value indicating the position of the intersection closest to the circuit among the intersections of the lightness curve and Bt, and Bt is used as a reference from the intersection of the lightness curve and Bt. Sv defined by the following equation (1) when the value indicating the position of the intersection closest to the circuit among the intersections of the lightness curve and 0.1ΔB in the depth range up to 0.1ΔB is t2. When,
Sv = (ΔB × 0.1) / (t1-t2) (1)
Is used to detect the position of the circuit, and the printed wiring board is positioned based on the detected position of the circuit.

本発明は更に別の一側面において、本発明のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板に部品を装着する工程を含むプリント配線板の製造方法である。   According to still another aspect of the present invention, there is provided a printed wiring board including a step of positioning a printed wiring board by the method for positioning a printed wiring board according to the present invention and mounting a component on the positioned printed wiring board. It is a manufacturing method.

本発明は更に別の一側面において、本発明のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板の位置合わせを行い、位置合わせされた前記プリント配線板に部品を装着する工程を含むプリント配線板の製造方法である。   In still another aspect of the present invention, the printed wiring board is positioned by the method for positioning a printed wiring board according to the present invention, the positioned printed wiring board is aligned, and the printed printed circuit board is aligned. It is a manufacturing method of a printed wiring board including the process of mounting parts on a wiring board.

本発明は更に別の一側面において、本発明のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板にもう一つのプリント配線板を接続する工程を含むプリント配線板の製造方法である。   According to another aspect of the present invention, there is provided a step of positioning a printed wiring board by the method for positioning a printed wiring board according to the present invention and connecting another printed wiring board to the positioned printed wiring board. It is a manufacturing method of a printed wiring board containing.

本発明は更に別の一側面において、本発明のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板の位置合わせを行い、位置合わせされた前記プリント配線板にもう一つのプリント配線板を接続する工程を含むプリント配線板の製造方法である。   In still another aspect of the present invention, the printed wiring board is positioned by the method for positioning a printed wiring board according to the present invention, the positioned printed wiring board is aligned, and the printed printed circuit board is aligned. A printed wiring board manufacturing method including a step of connecting another printed wiring board to the wiring board.

本発明によれば、透明基材の視認性を効率良く正確に評価することができる。   According to the present invention, the visibility of a transparent substrate can be evaluated efficiently and accurately.

マーク幅が約1.3mmの場合のBt及びBbを定義する模式図である。It is a schematic diagram which defines Bt and Bb in case a mark width is about 1.3 mm. マーク幅が約0.3mmの場合のBt及びBbを定義する模式図である。It is a schematic diagram which defines Bt and Bb in case a mark width is about 0.3 mm. t1及びt2及びSvを定義する模式図である。It is a schematic diagram which defines t1, t2, and Sv. マークの幅が0.1〜0.4mmの場合の明度曲線の傾き評価の際の、撮影手段の構成及び明度曲線の傾きの測定方法を表す模式図である。It is a schematic diagram showing the structure of an imaging | photography means and the measuring method of the inclination of a brightness curve in the case of the inclination evaluation of the brightness curve in case the width | variety of a mark is 0.1-0.4 mm. マークの幅が1.0〜2.0mmの場合の明度曲線の傾き評価の際の、撮影手段の構成及び明度曲線の傾きの測定方法を表す模式図である。It is a schematic diagram showing the structure of an imaging | photography means and the measuring method of the inclination of a brightness curve in the case of the inclination evaluation of the brightness curve in case the width | variety of a mark is 1.0-2.0 mm.

(透明基材の視認性評価方法)
本発明の透明基材の視認性評価方法は、透明基材の下にマークを設けて、前記マークを前記透明基材越しに撮影手段で撮影し、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線によって前記透明基材の視認性を評価する方法であり、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いて行う。
従来、製造ラインで実際に作製しなければ、位置合わせ等のために設けられたマークを透明基材越しに視認することが可能か否かを判断できず、製造コストの点で問題があった。しかしながら、本発明では、このような構成により、実験室のみでも容易に効率良く透明基材の視認性を正確に評価することが可能となる。
(Transparent substrate visibility evaluation method)
The method for evaluating the visibility of a transparent substrate according to the present invention provides a mark under the transparent substrate, images the mark with a photographing means through the transparent substrate, and observes an image obtained by the imaging. Further, the brightness at each observation point is measured along a direction perpendicular to the direction in which the mark extends, and an observation point-lightness graph is prepared. In the observation point-lightness graph, the portion where the mark is not present from the end of the mark Is a difference between a top average value Bt and a bottom average value Bb of a lightness curve generated from an end portion of the mark to a portion without the mark. = Bt-Bb).
Conventionally, unless actually produced on the production line, it was impossible to determine whether or not the marks provided for alignment etc. could be seen through the transparent base material, and there was a problem in terms of production cost . However, in the present invention, with such a configuration, it is possible to easily and efficiently evaluate the visibility of the transparent substrate easily and efficiently even in the laboratory alone.

また、本発明の透明基材の視認性評価方法は、透明基材の下にマークを設けて、前記マークを前記透明基材越しに撮影手段で撮影し、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記透明基材の視認性を評価する方法であり、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて透明基材の視認性を評価してもよい。
このような構成によれば、実験室のみでも容易に効率良く透明基材の視認性をより正確に評価することができる。
Further, the visibility evaluation method of the transparent substrate of the present invention is to provide a mark under the transparent substrate, photograph the mark with the photographing means through the transparent substrate, and for the image obtained by the photographing, The observation point-brightness graph is prepared by measuring the brightness at each observation point along a direction perpendicular to the direction in which the observed mark extends. In the observation point-brightness graph, the mark extends from the end of the mark. It is a method of evaluating the visibility of the transparent substrate by the slope of the brightness curve that occurs over a portion that does not exist, and the top average value Bt and the bottom average value Bb of the brightness curve that occurs from the end of the mark to the portion where there is no mark In the difference ΔB (ΔB = Bt−Bb) and the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is defined as t1. In the depth range from the intersection of the intensity curve and Bt to 0.1 ΔB with reference to Bt, the value indicating the position of the intersection closest to the mark among the intersections of the brightness curve and 0.1 ΔB is t2. Sv defined by the following formula (1):
Sv = (ΔB × 0.1) / (t1-t2) (1)
You may evaluate the visibility of a transparent base material using.
According to such a configuration, the visibility of the transparent substrate can be more accurately evaluated with ease and efficiency even in the laboratory alone.

さらに、本発明の透明基材の視認性評価方法は、少なくとも一方の表面が処理された表面処理銅箔を、処理表面側から厚さ25〜50μmの透明基材の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、マークを印刷した印刷物を、露出した前記透明基材の下に敷いて、前記印刷物を前記透明基材越しに撮影手段で撮影し、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記透明基材の視認性を評価する方法であり、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて行う透明基材の視認性を評価してもよい。
このような構成によれば、実験室のみでも容易に効率良く透明基材の視認性をより正確に評価することができる。
Furthermore, the visibility evaluation method of the transparent base material of the present invention is a method in which at least one surface treated surface-treated copper foil is bonded to both surfaces of a transparent base material having a thickness of 25 to 50 μm from the treated surface side. The copper foil on both sides is removed by etching, and a printed matter on which a mark is printed is laid under the exposed transparent base material, and the printed matter is photographed by photographing means through the transparent base material, and obtained by the photographing. For each image, the brightness at each observation point is measured along a direction perpendicular to the direction in which the observed mark extends, and an observation point-lightness graph is created. Is a method of evaluating the visibility of the transparent substrate by the slope of the brightness curve generated from the portion where there is no mark, the brightness curve generated from the end of the mark to the portion where there is no mark The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb and the position of the intersection closest to the mark among the intersections of the lightness curve and Bt in the observation point-lightness graph. The value shown is t1, and in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt, the position of the intersection closest to the mark is shown among the intersections of the lightness curve and 0.1ΔB. When the value is t2, Sv defined by the following equation (1):
Sv = (ΔB × 0.1) / (t1-t2) (1)
You may evaluate the visibility of the transparent base material performed using.
According to such a configuration, the visibility of the transparent substrate can be more accurately evaluated with ease and efficiency even in the laboratory alone.

本発明で評価の対象とする透明基材は特に限定されず、透明であれば、ガラス製やポリイミド等の樹脂製基材であってもよい。なお、本発明では透明とは光透過性を有することも含まれる。また、上記表面処理銅箔は、少なくとも一方の表面に粗化処理などにより粗化粒子が形成された表面処理銅箔であってもよい。また、本発明におけるマークは、紙等の印刷物に印刷された印でもよく、銅配線でもよく、目印となる印であればどのような形態であってもよい。また、マークとは印刷物であってもよく、金属であってもよく、無機物であってもよく、有機物であってもよく、目印となるものであればよい。マークは、ライン状であれば、撮影によって得られた画像について、観察されたマークを横切る方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作成するのが容易となり、好ましい。   The transparent base material to be evaluated in the present invention is not particularly limited, and may be a resin base material such as glass or polyimide as long as it is transparent. In the present invention, the term “transparent” includes light transparency. The surface-treated copper foil may be a surface-treated copper foil in which roughened particles are formed on at least one surface by a roughening treatment or the like. In addition, the mark in the present invention may be a mark printed on a printed matter such as paper, may be a copper wiring, and may take any form as long as it is a mark serving as a mark. The mark may be a printed material, a metal, an inorganic material, an organic material, or any mark. If the mark is in the form of a line, it is easy to create an observation point-lightness graph by measuring the lightness of each observation point along the direction crossing the observed mark for an image obtained by photographing. .

また、上記のSv値及びΔB値に基づいて視認性を評価する方法において、マークの端部からマークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であり、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、マークに最も近い交点の位置を示す値をt2としたときに、Svが3.5以上となる場合を良好と判定してもよい。
Svは、3.9以上、好ましくは5.0以上、より好ましくは5.5以上となる場合を視認性良好と判定するのがより好ましい。また、Svの上限は特に限定する必要はないが、例えば70以下、30以下、15以下、10以下である。
ΔB(ΔB=Bt−Bb)は、50以上であるのが好ましい。ΔBの上限は特に限定する必要は無いが、例えば100以下、あるいは80以下、あるいは70以下である。このような評価方法によれば、透明基材の視認性を効率良く、更に正確に評価することが可能となる。
Further, in the method for evaluating the visibility based on the Sv value and the ΔB value, a difference ΔB (ΔB = ΔB = ΔB) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the mark to the portion without the mark. Bt−Bb) is 40 or more, and in the observation point-brightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the brightness curve and Bt is t1, and the Bt from the intersection of the brightness curve and Bt In the depth range up to 0.1ΔB, tv is the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1ΔB, and Sv is 3.5 or more. The case may be determined to be good.
It is more preferable to determine that the visibility is good when Sv is 3.9 or more, preferably 5.0 or more, more preferably 5.5 or more. The upper limit of Sv is not particularly limited, but is, for example, 70 or less, 30 or less, 15 or less, or 10 or less.
ΔB (ΔB = Bt−Bb) is preferably 50 or more. The upper limit of ΔB is not particularly limited, but is, for example, 100 or less, 80 or less, or 70 or less. According to such an evaluation method, it becomes possible to efficiently and more accurately evaluate the visibility of the transparent substrate.

ここで、「明度曲線のトップ平均値Bt」、「明度曲線のボトム平均値Bb」、及び、後述の「t1」、「t2」、「Sv」について、図を用いて説明する。また、「明度曲線のボトム平均値Bb」については、マークの幅を大きくした(例えばマークの幅は0.7mm以上、例えば0.8mm以上、例えば5mm以下、4mm以下、例えば約1.3mmとすることができる。)としたものと、マークの幅を小さくした(例えばマークの幅は0.01mm以上、0.05mm以上、0.1mm以上、0.8mm以下、0.7mm以下、0.6mm以下、例えば0.3mmとすることができる。)としたものとでは、規定が異なっているため、それぞれの場合について説明する。
図1に、マークの幅を大きくした(約1.3mmとした)場合のBt及びBbを定義する模式図を示す。図1の「マーク」は、上記CCDカメラによる撮影で得られた画像に観察された印刷物のライン状のマーク(幅約1.3mm)を示している。当該マークに重なるように描かれた曲線が上記観察地点−明度グラフにおいて、マークの端部からマークがない部分にかけて生じる明度曲線を示している。図1に示すように、「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から100μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を示す。「明度曲線のボトム平均値Bb」は、マークの端部位置から100μm内側に入った位置から100μm間隔で11箇所測定したときの明度の平均値を示す。なお、明度の平均値を測定するための観察地点の間隔は、明度曲線の形に応じて適宜1μm〜500μmの範囲で採用することができる。観察地点の偏りを避けるため、観察地点の間隔は略等間隔であるか、等間隔であることが好ましい。なお、観察地点の間隔は略等間隔でなくても良く、等間隔でなくても良い。また、測定間隔が広いほど、特定の観察地点の影響を排除することができ、観察地点による誤差を軽減できると考える。
図2(a)及び図2(b)に、マークの幅を約0.3mmとした場合のBt及びBbを定義する模式図を示す。マークの幅を約0.3mmとした場合、図2(a)に示すようにV型の明度曲線となる場合と、図2(b)に示すように約1.3mmの場合と同様に底部を有する明度曲線となる場合がある。いずれの場合も「明度曲線のトップ平均値Bt」は、マークの幅を約1.3mmとした場合と同様に、マークの両側の端部位置から50μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を示す。一方、「明度曲線のボトム平均値Bb」は、明度曲線が図2(a)に示すようにV型となる場合は、このV字の谷の先端部における明度の最低値を示し、図2(b)の底部を有する場合は、約0.3mmの中心部の値を示す。なお、明度の平均値を測定するための観察地点の間隔は、明度曲線の形に応じて適宜1μm〜500μmの範囲で採用することができる。観察地点の偏りを避けるため、観察地点の間隔は略等間隔であるか、等間隔であることが好ましい。なお、観察地点の間隔は略等間隔でなくてもよく、等間隔でなくてもよい。また、測定間隔が広いほど、特定の観察地点の影響を排除することができ、観測地点による誤差を軽減できると考える。
図3に、t1及びt2及びSvを定義する模式図を示す。「t1(ピクセル×0.1)」は、明度曲線とBtとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。「t2(ピクセル×0.1)」は、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。このとき、t1およびt2を結ぶ線で示される明度曲線の傾きについては、y軸方向に0.1ΔB、x軸方向に(t1−t2)で計算されるSv(階調/ピクセル×0.1)で定義される。なお、横軸の1ピクセルは10μm長さに相当する。また、Svは、マークの両側を測定し、小さい値を採用する。さらに、明度曲線の形状が不安定で上記「明度曲線とBtとの交点」が複数存在する場合は、最もマークに近い交点を採用する。
撮影手段で撮影した上記画像において、マークが付されていない部分では高い明度となるが、マーク端部に到達したとたんに明度が低下する。透明基材の視認性が良好であれば、このような明度の低下状態が明確に観察される。一方、透明基材の視認性が不良であれば、明度がマーク端部付近で一気に「高」から「低」へ急に下がるのではなく、低下の状態が緩やかとなり、明度の低下状態が不明確となってしまう。
本発明はこのような知見に基づき、透明基材に対し、例えばマークを付した印刷物を下に置き、透明基材越しに撮影手段で撮影した上記マーク部分の画像から得られる観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線の傾きを評価している。より詳細には、透明基材の下にマークを設けて、前記マークを前記透明基材越しに撮影手段で撮影し、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線によって前記透明基材の視認性を評価する方法であり、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いて評価することで、正確な透明基板の視認性評価を可能としている。このような構成によれば、マークとマークで無い部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。
Here, “top average value Bt of the lightness curve”, “bottom average value Bb of the lightness curve”, and “t1”, “t2”, and “Sv” described later will be described with reference to the drawings. For the “bottom average value Bb of the lightness curve”, the width of the mark is increased (for example, the width of the mark is 0.7 mm or more, for example, 0.8 mm or more, for example, 5 mm or less, 4 mm or less, for example, about 1.3 mm). And the mark width is reduced (for example, the mark width is 0.01 mm or more, 0.05 mm or more, 0.1 mm or more, 0.8 mm or less, 0.7 mm or less, 0.00 mm or less). Since the definition is different from that of 6 mm or less, for example, 0.3 mm, each case will be described.
FIG. 1 is a schematic diagram for defining Bt and Bb when the mark width is increased (about 1.3 mm). The “mark” in FIG. 1 indicates a line-like mark (width of about 1.3 mm) of the printed matter observed in an image obtained by photographing with the CCD camera. A curve drawn so as to overlap the mark indicates a brightness curve generated from the end of the mark to a portion without the mark in the observation point-lightness graph. As shown in FIG. 1, the “top average value Bt of the lightness curve” is the average of lightness when measured at 5 locations (total 10 locations on both sides) at 30 μm intervals from positions 100 μm away from the end positions on both sides of the mark. Indicates the value. The “bottom average value Bb of the lightness curve” indicates an average value of lightness when 11 positions are measured at intervals of 100 μm from a position inside 100 μm from the end position of the mark. Note that the interval between observation points for measuring the average value of the brightness can be appropriately selected in the range of 1 μm to 500 μm depending on the shape of the brightness curve. In order to avoid the bias of the observation points, it is preferable that the intervals between the observation points are substantially equal or equal. Note that the intervals between the observation points do not have to be substantially equal and may not be equal. Further, it is considered that the wider the measurement interval, the more the influence of a specific observation point can be eliminated and the error due to the observation point can be reduced.
FIGS. 2A and 2B are schematic diagrams for defining Bt and Bb when the mark width is about 0.3 mm. When the width of the mark is about 0.3 mm, the bottom is the same as in the case of a V-shaped brightness curve as shown in FIG. 2A and the case of about 1.3 mm as shown in FIG. May result in a lightness curve having In either case, the “top average value Bt of the lightness curve” is 5 points (at both sides) at 30 μm intervals from the positions 50 μm away from the end positions on both sides of the mark, as in the case where the mark width is about 1.3 mm. The total value of brightness when measured is shown. On the other hand, the “bottom average value Bb of the lightness curve” indicates the minimum value of lightness at the tip of the V-shaped valley when the lightness curve is V-shaped as shown in FIG. When it has the bottom of (b), the value of the center part of about 0.3 mm is shown. Note that the interval between observation points for measuring the average value of the brightness can be appropriately selected in the range of 1 μm to 500 μm depending on the shape of the brightness curve. In order to avoid the bias of the observation points, it is preferable that the intervals between the observation points are substantially equal or equal. Note that the intervals between the observation points may not be substantially equal, and may not be equal. Further, it is considered that the wider the measurement interval, the more the influence of a specific observation point can be eliminated and the error due to the observation point can be reduced.
FIG. 3 is a schematic diagram that defines t1, t2, and Sv. “T1 (pixel × 0.1)” is a value indicating an intersection point closest to the line-shaped mark among intersection points of the lightness curve and Bt and a position of the intersection point (value on the horizontal axis of the observation point-lightness graph) ). “T2 (pixel × 0.1)” is the line-shaped mark among the intersections of the lightness curve and 0.1ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt. And the value (the value on the horizontal axis of the observation point-brightness graph) indicating the position of the intersection closest to. At this time, regarding the slope of the brightness curve indicated by the line connecting t1 and t2, Sv (gradation / pixel × 0.1) calculated by 0.1 ΔB in the y-axis direction and (t1−t2) in the x-axis direction. ). One pixel on the horizontal axis corresponds to a length of 10 μm. Further, Sv is measured on both sides of the mark, and a small value is adopted. Further, when the shape of the lightness curve is unstable and there are a plurality of the “intersections between the lightness curve and Bt”, the intersection closest to the mark is adopted.
In the image taken by the photographing means, the brightness is high in the portion where the mark is not attached, but the brightness decreases as soon as the end of the mark is reached. If the visibility of the transparent substrate is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility of the transparent base material is poor, the brightness does not suddenly drop from “high” to “low” in the vicinity of the edge of the mark, but the decrease state becomes gradual and the brightness decrease state is not good. It becomes clear.
Based on such knowledge, the present invention is based on the observation point-brightness graph obtained from the image of the mark portion taken by the photographing means over the transparent substrate, for example, with a printed matter with a mark placed on the transparent substrate. The inclination of the lightness curve near the edge of the mark drawn in is evaluated. More specifically, a mark is provided under the transparent base material, the mark is photographed by photographing means through the transparent base material, and an image obtained by the photographing is perpendicular to the direction in which the observed mark extends. The lightness at each observation point is measured along a certain direction to produce an observation point-lightness graph, and the transparent base is formed by a lightness curve generated from an end of the mark to a portion without the mark in the observation point-lightness graph. This is a method for evaluating the visibility of a material, using a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark. Evaluation makes it possible to accurately evaluate the visibility of the transparent substrate. According to such a configuration, the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately.

(積層体の位置決め方法)
本発明の金属と樹脂との積層体の位置決めをする方法について説明する。まず、金属と樹脂との積層体を準備する。金属と樹脂との積層体としては、樹脂に金属を貼り合わせて構成されているものであれば、特に形態は限定されない。本発明の金属と樹脂との積層体の具体例としては、本体基板と付属の回路基板と、それらを電気的に接続するために用いられる、ポリイミド等の樹脂の少なくとも一方の表面に銅等の金属配線が形成されたフレキシブルプリント基板とで構成される電子機器において、フレキシブルプリント基板を正確に位置決めして当該本体基板及び付属の回路基板の配線端部に圧着させて作製される積層体が挙げられる。すなわち、この場合であれば、積層体は、フレキシブルプリント基板及び本体基板の配線端部が圧着により貼り合わせられた積層体、或いは、フレキシブルプリント基板及び回路基板の配線端部が圧着により貼り合わせられた積層体となる。積層体は、当該金属配線の一部や別途材料で形成したマークを有している。マークの位置については、当該積層体を構成する樹脂越しにCCDカメラ等の撮影手段で撮影可能な位置であれば特に限定されない。
(Laminate positioning method)
A method for positioning the laminate of the metal and resin of the present invention will be described. First, a laminate of metal and resin is prepared. The form of the laminate of the metal and the resin is not particularly limited as long as it is configured by bonding the metal to the resin. As a specific example of the laminate of the metal and resin of the present invention, copper or the like is used on at least one surface of a resin such as polyimide, which is used to electrically connect the main body substrate and the attached circuit board, and the circuit board. In an electronic device composed of a flexible printed circuit board on which metal wiring is formed, there is a laminate produced by accurately positioning the flexible printed circuit board and crimping it to the wiring ends of the main circuit board and the attached circuit board. It is done. That is, in this case, the laminate is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding. It becomes a laminated body. The laminate has a mark formed of a part of the metal wiring and a separate material. The position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the resin constituting the laminate.

このように準備された積層体において、上述のマークを樹脂越しに撮影手段で撮影し、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と樹脂との積層体の位置決めをする。
Sv=(ΔB×0.1)/(t1−t2) (1)
また、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と樹脂との積層体の位置決めをしてもよい。
Bt、Bb、t1及びt2の定義は、上記の透明基材の視認性評価方法で説明した通りであり、このような位置決め方法によれば、マークとマークで無い部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。例えば、ΔB、或いはΔB及びSvの値が所定の値以上の場合は、マークが当該位置に存在するという判定を、位置を検出する装置が行うことが出来る。具体的には、例えば、ΔBのみで判定を行う場合はΔBが40以上のとき、或いは、ΔB値とSv値とで判定を行う場合はΔBが40以上且つSvが3.5以上のときにマークが当該位置に存在するという判定を、位置を検出する装置が行うことが出来る。このようなプリント配線板の位置決め方法を用いると、プリント配線板の位置決めをより正確に行うことが出来る。そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。なお、本発明の実施の形態に係る位置決め方法は、半田付けや異方性導電フィルム(Anisotropic Conductive Film、ACF)を介した接続、異方性導電ペースト(Anisotropic Conductive Paste、ACP)を介した接続または導電性を有する接着剤を介しての接続など公知の接続方法において一つのプリント配線板ともう一つのプリント配線板を接続する際や一つのプリント配線板に部品を装着する際にも適用することができる。
In the laminated body thus prepared, the above-mentioned mark is photographed by the photographing means through the resin, and the image obtained by the photographing is observed for each observation point along the direction perpendicular to the direction in which the observed mark extends. Is measured to produce an observation point-brightness graph, and the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark to the portion without the mark. ) Is used to detect the position of the mark, and the laminate of the metal and the resin is positioned based on the detected position of the mark.
Sv = (ΔB × 0.1) / (t1-t2) (1)
Further, for the image obtained by the photographing, the brightness at each observation point is measured along a direction perpendicular to the direction in which the observed mark extends, and an observation point-brightness graph is created. The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the lightness curve that occurs over the portion where there is no mark, and the intersection of the lightness curve and Bt in the observation point-lightness graph, The value indicating the position of the intersection closest to the mark is t1, and in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt, the intersection of the lightness curve and 0.1ΔB When the value indicating the position of the intersection closest to the mark is t2, Sv defined by the following equation (1):
Sv = (ΔB × 0.1) / (t1-t2) (1)
May be used to detect the position of the mark and position the laminate of metal and resin based on the detected position of the mark.
The definitions of Bt, Bb, t1, and t2 are as described in the above-described transparent substrate visibility evaluation method. According to such a positioning method, the boundary between the mark and the non-mark part is more clearly defined. Thus, positioning accuracy is improved, errors due to mark image recognition are reduced, and alignment can be performed more accurately. For example, when ΔB or ΔB and Sv are equal to or greater than a predetermined value, the position detection device can determine that the mark is present at the position. Specifically, for example, when the determination is made only with ΔB, ΔB is 40 or more, or when the determination is made with the ΔB value and the Sv value, when ΔB is 40 or more and Sv is 3.5 or more. A device that detects the position can determine that the mark is present at the position. If such a printed wiring board positioning method is used, the printed wiring board can be positioned more accurately. Therefore, when one printed wiring board and another printed wiring board are connected, it is considered that the connection failure is reduced and the yield is improved. In addition, the positioning method according to the embodiment of the present invention includes soldering, connection via an anisotropic conductive film (ACF), connection via an anisotropic conductive paste (ACP), and connection via an anisotropic conductive paste (Aisotropic Conductive Paste, ACP). Or, when connecting one printed wiring board and another printed wiring board in a known connection method such as connection through a conductive adhesive, or when mounting a component on one printed wiring board. be able to.

本発明のプリント配線板の位置決めをする方法は、絶縁樹脂板と、絶縁樹脂板上に設けられた回路とを有するプリント配線板の位置決めをする方法であって、回路を樹脂越しに撮影手段で撮影し、撮影によって得られた画像について、観察された回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、回路の端部から回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いて回路の位置を検出して、検出された回路の位置に基づきプリント配線板の位置決めをする。   A method for positioning a printed wiring board according to the present invention is a method for positioning a printed wiring board having an insulating resin plate and a circuit provided on the insulating resin plate, wherein the circuit is photographed through the resin. Take an image, and measure the brightness at each observation point along the direction perpendicular to the direction in which the observed circuit extends, and create an observation point-brightness graph. The position of the circuit is detected using the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the lightness curve generated over the non-existing portion, and based on the detected circuit position, the printed circuit board Position it.

また、本発明のプリント配線板の位置決めをする方法は、絶縁樹脂板と、絶縁樹脂板上に設けられた回路とを有するプリント配線板の位置決めをする方法であって、回路を前記樹脂越しに撮影手段で撮影し、撮影によって得られた画像について、観察された回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、回路の端部から回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて回路の位置を検出して、検出された回路の位置に基づきプリント配線板の位置決めをしてもよい。
このようなプリント配線板の位置決め方法を用いると、プリント配線板の位置決めをより正確に行うことが出来る。そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。
Further, the method for positioning a printed wiring board according to the present invention is a method for positioning a printed wiring board having an insulating resin plate and a circuit provided on the insulating resin plate, the circuit passing through the resin. For the image obtained by the photographing means, the brightness at each observation point is measured along the direction perpendicular to the direction in which the observed circuit extends, and an observation point-lightness graph is created, and the end of the circuit The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the lightness curve generated from the point where no circuit is present, and the intersection of the lightness curve and Bt in the observation point-lightness graph, In the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt, the value indicating the position of the intersection closest to is t1, and the circuit includes the intersection of the lightness curve and 0.1ΔB in the depth range. most A value indicating a position of an intersection are in when the t2, and Sv is defined by the following formula (1),
Sv = (ΔB × 0.1) / (t1-t2) (1)
The position of the circuit may be detected by using and the printed wiring board may be positioned based on the detected position of the circuit.
If such a printed wiring board positioning method is used, the printed wiring board can be positioned more accurately. Therefore, when one printed wiring board and another printed wiring board are connected, it is considered that the connection failure is reduced and the yield is improved.

本発明のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされたプリント配線板に部品を装着することでプリント配線板を製造してもよい。さらに、本発明の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされたプリント配線板の位置合わせを行い、位置合わせされたプリント配線板に部品を装着することでプリント配線板を製造してもよい。これにより、電子部品等の部品をプリント配線板の正確な位置に装着することができる。
また、本発明のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされたプリント配線板にもう一つのプリント配線板を接続することでプリント配線板を製造してもよい。さらに、本発明の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされたプリント配線板の位置合わせを行い、位置合わせされたプリント配線板にもう一つのプリント配線板を接続することでプリント配線板を製造してもよい。これにより、別のプリント配線板を接続対象のプリント配線板における正確な位置に接続することができる。ここで、「接続」とは、電気的な接続であってもよく(例えば半田付けなど)、電気的な接続ではない、接着材等による接続であってもよい。
なお、本発明において、「プリント配線板」には部品が装着されたプリント配線板およびプリント基板も含まれることとする。
The printed wiring board may be manufactured by positioning the printed wiring board by the method for positioning the printed wiring board according to the present invention and mounting components on the positioned printed wiring board. Furthermore, the printed wiring board is positioned by the positioning method of the present invention, the positioned printed wiring board is aligned, and a component is mounted on the aligned printed wiring board to produce the printed wiring board. May be. Thereby, components, such as an electronic component, can be mounted | worn in the exact position of a printed wiring board.
Further, the printed wiring board may be manufactured by positioning the printed wiring board by connecting the other printed wiring board to the positioned printed wiring board by the method of positioning the printed wiring board of the present invention. . Further, the printed wiring board is positioned by the positioning method of the present invention, the positioned printed wiring board is aligned, and another printed wiring board is connected to the aligned printed wiring board. A printed wiring board may be manufactured. Thereby, another printed wiring board can be connected to an accurate position on the printed wiring board to be connected. Here, the “connection” may be an electrical connection (for example, soldering), or may be a connection using an adhesive or the like, which is not an electrical connection.
In the present invention, the “printed wiring board” includes a printed wiring board and a printed board on which components are mounted.

本発明に係る透明基材の視認性を評価する方法及び積層体の位置決めをする方法おいて、マークとは印刷物であってもよく、金属であってもよく、無機物であってもよく、有機物であってもよく、目印となるものであればよい。   In the method for evaluating the visibility of the transparent substrate and the method for positioning the laminate according to the present invention, the mark may be a printed material, a metal, an inorganic material, or an organic material. It may be any mark as long as it serves as a mark.

なお、本発明の実施の形態に係る位置決め方法は積層体(銅と樹脂の積層体やプリント配線板を含む)を移動させる工程を含んでいてもよい。移動工程においては例えばベルトコンベヤーやチェーンコンベヤーなどのコンベヤーにより移動させてもよく、アーム機構を備えた移動装置により移動させてもよく、気体を用いて積層体を浮遊させることで移動させる移動装置や移動手段により移動させてもよく、略円筒形などの物を回転させて積層体を移動させる移動装置や移動手段(コロやベアリングなどを含む)、油圧を動力源とした移動装置や移動手段、空気圧を動力源とした移動装置や移動手段、モーターを動力源とした移動装置や移動手段、ガントリ移動型リニアガイドステージ、ガントリ移動型エアガイドステージ、スタック型リニアガイドステージ、リニアモーター駆動ステージなどのステージを有する移動装置や移動手段などにより移動させてもよい。また、公知の移動手段による移動工程を行ってもよい。
なお、本発明の実施の形態に係る位置決め方法は表面実装機やチップマウンターに用いてもよい。
また、本発明において位置決めされる前記金属と樹脂との積層体が、樹脂板及び前記樹脂板の上に設けられた回路を有するプリント配線板であってもよい。また、その場合、前記マークが前記回路であってもよい。
The positioning method according to the embodiment of the present invention may include a step of moving a laminated body (including a laminated body of copper and resin and a printed wiring board). In the moving process, for example, it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device equipped with an arm mechanism, or may be moved by floating a laminate using gas. The moving device may be moved by a moving means, such as a moving device or moving means (including a roller or a bearing) that moves a laminated body by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means.
The positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
Moreover, the printed wiring board which has the circuit provided on the resin board and the said resin board may be sufficient as the laminated body of the said metal and resin positioned in this invention. In that case, the mark may be the circuit.

本発明において「位置決め」とは「マークや物の位置を検出すること」を含む。また、本発明において、「位置合わせ」とは、「マークや物の位置を検出した後に、前記検出した位置に基づいて、当該マークや物を所定の位置に移動すること」を含む。   In the present invention, “positioning” includes “detecting the position of a mark or an object”. In the present invention, “alignment” includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.

実施例A1〜30及び実施例B1〜14として、各種銅箔を準備し、一方の表面に、粗化処理として表1に記載の条件にてめっき処理を行った。
上述の粗化めっき処理を行った後、実施例A1〜10、12〜27、実施例B3、4、6、9〜14について次の耐熱層および防錆層形成のためのめっき処理を行った。
耐熱層1の形成条件を以下に示す。
液組成 :ニッケル5〜20g/L、コバルト1〜8g/L
pH :2〜3
液温 :40〜60℃
電流密度 :5〜20A/dm2
クーロン量:10〜20As/dm2
上記耐熱層1を施した銅箔上に、耐熱層2を形成した。実施例B5、7、8については、粗化めっき処理は行わず、準備した銅箔に、この耐熱層2を直接形成した。耐熱層2の形成条件を以下に示す。
液組成 :ニッケル2〜30g/L、亜鉛2〜30g/L
pH :3〜4
液温 :30〜50℃
電流密度 :1〜2A/dm2
クーロン量:1〜2As/dm2
上記耐熱層1及び2を施した銅箔上に、さらに防錆層を形成した。防錆層の形成条件を以下に示す。
液組成 :重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
pH :3〜4
液温 :50〜60℃
電流密度 :0〜2A/dm2(浸漬クロメート処理のため)
クーロン量:0〜2As/dm2(浸漬クロメート処理のため)
上記耐熱層1、2及び防錆層を施した銅箔上に、さらに耐候性層を形成した。形成条件を以下に示す。
アミノ基を有するシランカップリング剤として、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン(実施例A17、24〜27)、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン(実施例A1〜16)、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン(実施例A18、28、29)、3−アミノプロピルトリメトキシシラン(実施例A19)、3−アミノプロピルトリエトキシシラン(実施例A20、21)、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン(実施例A22)、N−フェニル−3−アミノプロピルトリメトキシシラン(実施例A23)で、塗布・乾燥を行い、耐候性層を形成した。これらのシランカップリング剤を2種以上の組み合わせで用いることもできる。同様に実施例B1〜15においては、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシランで塗布・乾燥を行い、耐候性層を形成した。
As Examples A1 to 30 and Examples B1 to 14, various copper foils were prepared, and plating treatment was performed on one surface under the conditions described in Table 1 as a roughening treatment.
After performing the above-mentioned roughening plating treatment, the plating treatment for forming the following heat-resistant layer and antirust layer was carried out for Examples A1 to 10, 12 to 27, and Examples B3, 4, 6, and 9 to 14. .
The conditions for forming the heat-resistant layer 1 are shown below.
Liquid composition: Nickel 5-20 g / L, cobalt 1-8 g / L
pH: 2-3
Liquid temperature: 40-60 degreeC
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
A heat-resistant layer 2 was formed on the copper foil provided with the heat-resistant layer 1. For Examples B5, 7, and 8, the rough plating treatment was not performed, and the heat-resistant layer 2 was directly formed on the prepared copper foil. The conditions for forming the heat-resistant layer 2 are shown below.
Liquid composition: nickel 2-30 g / L, zinc 2-30 g / L
pH: 3-4
Liquid temperature: 30-50 degreeC
Current density: 1 to 2 A / dm 2
Coulomb amount: 1-2 As / dm 2
On the copper foil which gave the said heat-resistant layers 1 and 2, the antirust layer was further formed. The conditions for forming the rust preventive layer are shown below.
Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Current density: 0 to 2 A / dm 2 (for immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
On the copper foil which gave the said heat-resistant layers 1 and 2 and a rust prevention layer, the weathering layer was further formed. The formation conditions are shown below.
As a silane coupling agent having an amino group, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (Example A17, 24-27), N-2- (aminoethyl) -3-aminopropyltri Ethoxysilane (Examples A1 to 16), N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (Examples A18, 28, 29), 3-aminopropyltrimethoxysilane (Example A19), 3 -Aminopropyltriethoxysilane (Examples A20, 21), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (Example A22), N-phenyl-3-aminopropyltrimethoxysilane In (Example A23), coating and drying were performed to form a weather-resistant layer. These silane coupling agents can be used in combination of two or more. Similarly, in Examples B1 to 15, coating and drying were performed with N-2- (aminoethyl) -3-aminopropyltrimethoxysilane to form a weather resistant layer.

なお、圧延銅箔は以下のように製造した。表2に示す組成の銅インゴットを製造し、熱間圧延を行った後、300〜800℃の連続焼鈍ラインの焼鈍と冷間圧延を繰り返して1〜2mm厚の圧延板を得た。この圧延板を300〜800℃の連続焼鈍ラインで焼鈍して再結晶させ、表2の厚みまで最終冷間圧延し、銅箔を得た。表2の「種類」の欄の「タフピッチ銅」はJIS H3100 C1100に規格されているタフピッチ銅を、「無酸素銅」はJIS H3100 C1020に規格されている無酸素銅を示す。また、「タフピッチ銅+Ag:100ppm」はタフピッチ銅にAgを100質量ppm添加したことを意味する。
電解銅箔はJX日鉱日石金属社製電解銅箔HLP箔を用いた。電解研磨又は化学研磨を行った場合には、電解研磨又は化学研磨後の板厚を記載した。
なお、表2に表面処理前の銅箔作製工程のポイントを記載した。「高光沢圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「通常圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「化学研磨」、「電解研磨」は、以下の条件で行ったことを意味する。
「化学研磨」はH2SO4が1〜3質量%、H22が0.05〜0.15質量%、残部水のエッチング液を用い、研磨時間を1時間とした。
「電解研磨」はリン酸67%+硫酸10%+水23%の条件で、電圧10V/cm2、表2に記載の時間(10秒間の電解研磨を行うと、研磨量は1〜2μmとなる。)で行った。
In addition, the rolled copper foil was manufactured as follows. After manufacturing the copper ingot of the composition shown in Table 2 and performing hot rolling, annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled sheet having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 2 to obtain a copper foil. “Tough pitch copper” in the “Type” column of Table 2 indicates tough pitch copper standardized in JIS H3100 C1100, and “Oxygen-free copper” indicates oxygen-free copper standardized in JIS H3100 C1020. “Tough pitch copper + Ag: 100 ppm” means that 100 mass ppm of Ag is added to tough pitch copper.
The electrolytic copper foil used was an electrolytic copper foil HLP foil manufactured by JX Nippon Mining & Metals. When electrolytic polishing or chemical polishing was performed, the plate thickness after electrolytic polishing or chemical polishing was described.
Table 2 lists the points of the copper foil preparation process before the surface treatment. “High gloss rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the value of the oil film equivalent. “Normal rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the oil film equivalent value described. “Chemical polishing” and “electropolishing” mean the following conditions.
“Chemical polishing” was performed using an etching solution of 1 to 3% by mass of H 2 SO 4 , 0.05 to 0.15% by mass of H 2 O 2 , and the remaining water, and the polishing time was 1 hour.
“Electropolishing” is a condition of phosphoric acid 67% + sulfuric acid 10% + water 23%, voltage 10 V / cm 2 , and the time shown in Table 2 (when electrolytic polishing for 10 seconds is performed, the polishing amount is 1-2 μm ).

上述のようにして作製した実施例の各サンプルについて、各種評価を下記の通り行った。
(1)明度曲線の傾き
銅箔をポリイミドフィルム(カネカ製厚み25μm、50μm、東レデュポン製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作製した。続いて、ライン状の黒色マークを印刷した印刷物を、サンプルフィルムの下に敷いて、印刷物をサンプルフィルム越しにCCDカメラで撮影した。ここで使用したマークの幅は、0.1〜0.4mmであった。次に、コンピュータによって、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、マークの端部からマークがない部分にかけて生じる明度曲線および、ΔB及びt1、t2、Svを測定した。このとき用いた撮影手段の構成及び明度曲線の傾きの測定方法を表す模式図を図4に示す。
また、ΔB及びt1、t2、Svは、図3で示されるものであり、下記撮影手段で測定した。なお、図3の横軸は観察地点の位置情報を示し、横軸の1ピクセルは10μm長さに相当する。
撮影手段は、CCDカメラ、マークを付した紙を下に置いたポリイミド基板を置くステージ(白色)、ポリイミド基板の撮影部に光を照射する照明用電源、撮影対象のマークが付された紙を下に置いた評価用ポリイミド基板をステージ上に搬送する搬送機(不図示)を備えている。当該撮影手段の主な仕様を以下に示す:
・撮影手段:株式会社ニレコ製シート検査装置Mujiken
・CCDカメラ:8192画素(160MHz)、1024階調デジタル(10ビット)
・照明用電源:高周波点灯電源(電源ユニット×2)
・照明:蛍光灯(30W)
なお、図4に示された明度について、0は「黒」を意味し、明度255は「白」を意味し、「黒」から「白」までの灰色の程度(白黒の濃淡、グレースケール)を256階調に分割して表示している。
なお、使用したマークの幅が0.1〜0.4mmと小さいものであったため、作製した明度曲線は図2(a)に示すようなV型または図2(b)に示すような底部を有するV型となった。
Various evaluation was performed as follows about each sample of the Example produced as mentioned above.
(1) Inclination of brightness curve Copper foil was bonded to both sides of a polyimide film (Kaneka thickness 25 μm, 50 μm, Toray DuPont thickness 50 μm), and the copper foil was removed by etching (ferric chloride aqueous solution) to remove the sample film. Produced. Subsequently, a printed material on which a line-shaped black mark was printed was laid under the sample film, and the printed material was photographed with a CCD camera through the sample film. The width of the mark used here was 0.1 to 0.4 mm. Next, in the observation point-brightness graph prepared by measuring the lightness of each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends, for an image obtained by photographing with a computer, The brightness curve generated from the end of the mark to the portion without the mark, and ΔB and t1, t2, and Sv were measured. FIG. 4 is a schematic diagram showing the configuration of the photographing means used and the method of measuring the slope of the brightness curve used at this time.
Further, ΔB, t1, t2, and Sv are shown in FIG. 3, and were measured by the following photographing means. Note that the horizontal axis of FIG. 3 indicates position information of the observation point, and one pixel on the horizontal axis corresponds to a length of 10 μm.
The photographing means includes a CCD camera, a stage (white) on which a polyimide substrate is placed with a marked paper underneath, an illumination power source for irradiating light onto the photographing portion of the polyimide substrate, and a paper with a mark to be photographed. A transporter (not shown) for transporting the evaluation polyimide substrate placed below onto the stage is provided. The main specifications of the photographing means are as follows:
・ Photographing means: Nireco Corporation sheet inspection device Mujken
CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits)
・ Power supply for lighting: High-frequency lighting power supply (power supply unit x 2)
・ Lighting: Fluorescent lamp (30W)
For the lightness shown in FIG. 4, 0 means “black”, lightness 255 means “white”, and the gray level from “black” to “white” (black and white shading, gray scale) Is divided into 256 gradations for display.
In addition, since the width of the used mark was as small as 0.1 to 0.4 mm, the produced brightness curve has a V shape as shown in FIG. 2 (a) or a bottom as shown in FIG. 2 (b). It became V type which has.

(2)視認性(樹脂透明性);
銅箔をポリイミドフィルム(カネカ製厚み25μm、50μm、東レデュポン製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。なお、粗化処理を行った銅箔については、銅箔の粗化処理した面を前述のポリイミドフィルムに貼り合わせて前述のサンプルフィルムを作製した。得られた樹脂層の一面に印刷物(直径6cmの黒色の円)を貼り付け、反対面から樹脂層越しに印刷物の視認性を判定した。印刷物の黒色の円の輪郭が円周の90%以上の長さにおいてはっきりしたものを「◎」、黒色の円の輪郭が円周の80%以上90%未満の長さにおいてはっきりしたものを「○」(以上合格)、黒色の円の輪郭が円周の0〜80%未満の長さにおいてはっきりしたもの及び輪郭が崩れたものを「×」(不合格)と評価した。
(2) Visibility (resin transparency);
The copper foil was bonded to both surfaces of a polyimide film (Kaneka thickness 25 μm, 50 μm, Toray DuPont thickness 50 μm), and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. In addition, about the copper foil which performed the roughening process, the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film, and the above-mentioned sample film was produced. A printed material (black circle with a diameter of 6 cm) was attached to one surface of the obtained resin layer, and the visibility of the printed material was judged from the opposite surface through the resin layer. “◎” indicates that the outline of the black circle of the printed material is clear when the length is 90% or more of the circumference, and “Clear” indicates that the outline of the black circle is clear when the length is 80% or more and less than 90% of the circumference. “O” (passed above), a black circle with a clear outline of 0 to less than 80% of the circumference and a broken outline were evaluated as “x” (failed).

(3)歩留まり
銅箔をポリイミドフィルム(カネカ製厚み25μm、50μm、東レデュポン製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)して、L/Sが30μm/30μmの回路幅のFPCを作成した。なお、粗化処理を行った銅箔については、銅箔の粗化処理した面を前述のポリイミドフィルムに貼り合わせた。その後、20μm×20μm角のマークをポリイミド越しにCCDカメラで検出することを試みた。10回中9回以上検出できた場合には「◎」、7〜8回検出できた場合には「○」、6回検出できた場合には「△」、5回以下検出できた場合には「×」とした。
上記各試験の条件及び評価を表1〜5に示す。
(3) Yield The copper foil was bonded to both sides of a polyimide film (Kaneka thickness 25 μm, 50 μm, Toray DuPont thickness 50 μm), the copper foil was etched (ferric chloride aqueous solution), and L / S was 30 μm / 30 μm. An FPC with a circuit width of was prepared. In addition, about the copper foil which performed the roughening process, the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film. After that, an attempt was made to detect a 20 μm × 20 μm square mark with a CCD camera through polyimide. “◎” when 9 times or more out of 10 times can be detected, “◯” when 7 to 8 times can be detected, “△” when 6 times can be detected, and when 5 times or less can be detected. Is “×”.
The conditions and evaluation of each test are shown in Tables 1-5.

(評価結果)
実施例のポリイミド基材について、いずれも製造ラインで実際に製造することなく、実験室レベルで容易に且つ正確に視認性を評価することができた。
また、幅が1.0〜2.0mmと大きいマークを上記例の代わりに用いて上記実施例と同様の試験を行ったところ、明度曲線として図1に示す底部のある図が得られた。図5に、マークの幅が1.0〜2.0mmの場合の明度曲線の傾き評価の際の、撮影手段の構成及び明度曲線の傾きの測定方法を表す模式図を示す。この場合も、上記実施例と同じ結果が得られ、かつ上記実施例と同様に、ポリイミド基材について、製造ラインで実際に製造することなく、実験室レベルで容易に且つ正確に視認性を評価することができた。
(Evaluation results)
With respect to the polyimide base materials of the examples, the visibility could be easily and accurately evaluated at the laboratory level without actually producing them on the production line.
Moreover, when the same test as the said Example was done using the mark with a width | variety as large as 1.0-2.0 mm instead of the said example, the figure with the bottom part shown in FIG. 1 as a lightness curve was obtained. FIG. 5 is a schematic diagram showing the configuration of the photographing means and the method of measuring the slope of the brightness curve when evaluating the slope of the brightness curve when the mark width is 1.0 to 2.0 mm. In this case as well, the same results as in the above example were obtained, and as in the above example, the visibility of the polyimide base material was evaluated easily and accurately at the laboratory level without actually manufacturing it on the manufacturing line. We were able to.

Claims (20)

透明基材の下にマークを設けて、前記マークを前記透明基材越しに撮影手段で撮影し、
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、
前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線によって前記透明基材の視認性を評価する方法であり、
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いて行う透明基材の視認性を評価する方法。
A mark is provided under the transparent substrate, and the mark is photographed by the photographing means through the transparent substrate,
For the image obtained by the photographing, an observation point-brightness graph is prepared by measuring the brightness for each observation point along the direction perpendicular to the direction in which the observed mark extends,
In the observation point-lightness graph, it is a method for evaluating the visibility of the transparent substrate by a lightness curve generated from an end portion of the mark to a portion without the mark,
A method for evaluating the visibility of a transparent substrate using a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark .
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上となる場合を良好と判定する請求項1に記載の方法。   2. A case in which a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is 40 or more is determined as good. The method described in 1. 前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が50以上となる場合を良好と判定する請求項2に記載の方法。   3. A case where a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a lightness curve generated from an end portion of the mark to a portion without the mark is determined to be 50 or more. The method described in 1. 前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて行う請求項1〜3のいずれかに記載の方法。
A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark;
In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. Sv defined by the following equation (1) when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB in the depth range is t2.
Sv = (ΔB × 0.1) / (t1-t2) (1)
The method in any one of Claims 1-3 performed using.
前記Svが3.5以上となる場合を良好と判定する請求項4に記載の方法。The method according to claim 4, wherein the case where the Sv is 3.5 or more is determined to be good. 前記Svが3.9以上となる場合を良好と判定する請求項5に記載の方法。The method according to claim 5, wherein the case where the Sv is 3.9 or more is determined to be good. 前記Svが5.0以上となる場合を良好と判定する請求項6に記載の方法。The method according to claim 6, wherein the case where the Sv is 5.0 or more is determined to be good. 前記撮影によって得られた画像が、
少なくとも一方の表面が処理された表面処理銅箔を、処理表面側から厚さ25〜50μmの透明基材の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、マークを印刷した印刷物を、露出した前記透明基材の下に敷いて、前記印刷物を前記透明基材越しに撮影手段で撮影することで得られた画像である請求項1〜のいずれかに記載の方法。
The image obtained by the shooting is
After the surface-treated copper foil treated on at least one surface was bonded to both surfaces of a transparent substrate having a thickness of 25 to 50 μm from the treated surface side, the copper foil on both surfaces was removed by etching, and a mark was printed. printed materials, laying under the exposed the transparent substrate, the method according to any one of claims 1 to 7, wherein the printed matter is an image obtained by photographing by the photographing means to the transparent substrate over.
前記表面処理銅箔は、少なくとも一方の表面に粗化処理により粗化粒子が形成された表面処理銅箔である請求項に記載の方法。 The method according to claim 8 , wherein the surface-treated copper foil is a surface-treated copper foil in which roughened particles are formed on at least one surface by a roughening treatment. 前記透明基材がポリイミド基板である請求項1〜9のいずれかに記載の方法。   The method according to claim 1, wherein the transparent substrate is a polyimide substrate. 金属と樹脂との積層体の位置決めをする方法であって、
前記金属と樹脂の積層体はマークを有し、
前記マークを前記樹脂越しに撮影手段で撮影し、
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いて行う積層体の位置決めをする方法。
A method for positioning a laminate of metal and resin,
The metal and resin laminate has a mark,
The mark is photographed by the photographing means through the resin,
For the image obtained by the photographing, an observation point-brightness graph is prepared by measuring the brightness for each observation point along the direction perpendicular to the direction in which the observed mark extends,
A method of positioning a laminate using a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark.
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上となる場合を良好と判定する請求項11に記載の方法。   12. The case where a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is determined to be 40 or more is determined to be good. The method described in 1. 前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が50以上となる場合を良好と判定する請求項12に記載の方法。   13. A case where a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a lightness curve generated from an end portion of the mark to a portion without the mark is determined to be 50 or more is determined as good. The method described in 1. 前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と樹脂との積層体の位置決めをする請求項11〜13のいずれかに記載の方法。
A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark;
In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. Sv defined by the following equation (1) when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB in the depth range is t2.
Sv = (ΔB × 0.1) / (t1-t2) (1)
14. The method according to claim 11, wherein the position of the mark is detected by using and a laminated body of a metal and a resin is positioned based on the detected position of the mark.
絶縁樹脂板と、前記絶縁樹脂板上に設けられた回路とを有するプリント配線板の位置決めをする方法であって、
前記回路を前記樹脂越しに撮影手段で撮影し、
前記撮影によって得られた画像について、観察された前記回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製し、
前記回路の端部から前記回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を用いてプリント配線板の位置決めをする方法。
A method of positioning a printed wiring board having an insulating resin plate and a circuit provided on the insulating resin plate,
The circuit is photographed by the photographing means through the resin,
For the image obtained by the photographing, the brightness of each observation point is measured along the direction perpendicular to the direction in which the observed circuit extends, and an observation point-lightness graph is created.
A method of positioning a printed wiring board using a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the circuit to a portion without the circuit.
前記回路の端部から前記回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて前記回路の位置を検出して、前記検出された回路の位置に基づきプリント配線板の位置決めをする請求項15に記載の方法。
A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the circuit to a portion without the circuit,
In the observation point-lightness graph, the value indicating the position of the intersection closest to the circuit among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. Sv defined by the following equation (1) when the value indicating the position of the intersection closest to the circuit among the intersections of the lightness curve and 0.1 ΔB in the depth range is t2.
Sv = (ΔB × 0.1) / (t1-t2) (1)
The method according to claim 15, wherein the position of the circuit is detected by using the position of the printed circuit board, and the printed wiring board is positioned based on the detected position of the circuit.
請求項15又は16に記載のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板に部品を装着する工程を含むプリント配線板の製造方法。   A method for manufacturing a printed wiring board, comprising the steps of positioning the printed wiring board according to the method for positioning a printed wiring board according to claim 15 or 16, and mounting a component on the positioned printed wiring board. 請求項15又は16に記載のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板の位置合わせを行い、位置合わせされた前記プリント配線板に部品を装着する工程を含むプリント配線板の製造方法。   The method of positioning a printed wiring board according to claim 15 or 16, positioning the printed wiring board, aligning the positioned printed wiring board, and placing a component on the aligned printed wiring board. A method of manufacturing a printed wiring board including a step of mounting. 請求項15又は16に記載のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板にもう一つのプリント配線板を接続する工程を含むプリント配線板の製造方法。   A method for positioning a printed wiring board according to claim 15 or 16, comprising the steps of positioning the printed wiring board and connecting another printed wiring board to the positioned printed wiring board. Production method. 請求項15又は16に記載のプリント配線板の位置決めをする方法により、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板の位置合わせを行い、位置合わせされた前記プリント配線板にもう一つのプリント配線板を接続する工程を含むプリント配線板の製造方法。   The printed wiring board is positioned by the method for positioning a printed wiring board according to claim 15 or 16, the positioned printed wiring board is aligned, and the aligned printed wiring board is further aligned. A method of manufacturing a printed wiring board, including a step of connecting two printed wiring boards.
JP2012250747A 2012-09-14 2012-11-15 Visibility evaluation method for transparent substrate, positioning method for laminate, and method for manufacturing printed wiring board Active JP6205121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250747A JP6205121B2 (en) 2012-09-14 2012-11-15 Visibility evaluation method for transparent substrate, positioning method for laminate, and method for manufacturing printed wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012203428 2012-09-14
JP2012203428 2012-09-14
JP2012250747A JP6205121B2 (en) 2012-09-14 2012-11-15 Visibility evaluation method for transparent substrate, positioning method for laminate, and method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2014074706A JP2014074706A (en) 2014-04-24
JP6205121B2 true JP6205121B2 (en) 2017-09-27

Family

ID=50748930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250747A Active JP6205121B2 (en) 2012-09-14 2012-11-15 Visibility evaluation method for transparent substrate, positioning method for laminate, and method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP6205121B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191698A (en) * 2015-03-31 2016-11-10 新日鉄住金化学株式会社 Copper-clad laminate and circuit board
JP6915132B2 (en) * 2015-03-31 2021-08-04 日鉄ケミカル&マテリアル株式会社 Manufacturing method of copper-clad laminate
CN109142284B (en) * 2018-09-03 2021-10-01 重庆惠科金渝光电科技有限公司 Penetration rate detection method, device and computer readable storage medium
CN112129699A (en) * 2020-09-01 2020-12-25 中山德著智能科技有限公司 Image detection device and imaging shooting method of flexible circuit board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069288B2 (en) * 1989-03-31 1994-02-02 株式会社緑マーク製作所 Circuit board manufacturing method
FR2688310A1 (en) * 1992-03-03 1993-09-10 Saint Gobain Vitrage Int METHOD AND DEVICE FOR CONTROLLING THE TRANSPARENCY OF A LAMINATED GLAZING.
JPH06160433A (en) * 1992-11-19 1994-06-07 Matsushita Electric Ind Co Ltd Probe for inspecting circuit board and its manufacture
JP2001249006A (en) * 2000-03-02 2001-09-14 Sumitomo Bakelite Co Ltd Image recognition method
JP4273683B2 (en) * 2001-08-30 2009-06-03 株式会社日立ハイテクノロジーズ ACF sticking presence / absence detection method

Also Published As

Publication number Publication date
JP2014074706A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
TWI460069B (en) Surface treatment of copper foil and the use of its laminated board, printed wiring board and copper clad laminate
TWI460070B (en) Surface treatment of copper foil and the use of its laminated board
TWI477389B (en) Surface treatment of copper foil and the use of its laminated board
JP6393126B2 (en) Surface-treated rolled copper foil, laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP6205121B2 (en) Visibility evaluation method for transparent substrate, positioning method for laminate, and method for manufacturing printed wiring board
JP5362923B1 (en) Surface-treated copper foil and laminate using the same
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
JP5362922B1 (en) Surface-treated copper foil and laminate using the same
JP5432357B1 (en) Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
TWI503062B (en) Surface treatment of copper foil and the use of its laminated board, printed wiring board, electronic equipment and manufacturing
JP5269247B1 (en) Apparatus for evaluating surface condition of metal material, program for evaluating surface condition of metal material, computer-readable recording medium on which the program is recorded, and method for evaluating surface condition of metal material
JP6205120B2 (en) Visibility evaluation apparatus for transparent base material, visibility evaluation program for transparent base material and computer-readable recording medium on which it is recorded, laminated body positioning device, laminated body positioning program, and computer on which it is recorded Readable recording medium and printed wiring board manufacturing method
JP5824147B2 (en) Visibility evaluation device for transparent substrate, positioning device for laminated body, determination device, position detection device, evaluation device for surface condition of metal foil, program, recording medium, method for producing printed wiring board, visibility evaluation of transparent substrate Method, Laminate Positioning Method, Judgment Method, Position Detection Method
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP5323248B1 (en) Visibility evaluation method for transparent substrate and positioning method for laminate
WO2014042256A1 (en) Device for evaluating surface state of metal material, device for evaluating visibility of transparent substrate, evaluation program thereof, and computer-readable recording medium recording same
JP5337907B1 (en) Visibility evaluation device for transparent substrate, visibility evaluation program for transparent substrate and computer-readable recording medium on which it is recorded, positioning device for laminate, positioning program for laminate and computer-readable on which the recording is recorded Recording medium, apparatus for determining whether or not a mark of a laminate of a metal and a transparent substrate exists, a determination program, a computer-readable recording medium on which the mark is recorded, and a metal and a transparent substrate For detecting the position of a mark included in a laminate of the above, a detection program, and a computer-readable recording medium on which the same is recorded
JP5819571B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6205121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250