JP2001249006A - Image recognition method - Google Patents

Image recognition method

Info

Publication number
JP2001249006A
JP2001249006A JP2000057840A JP2000057840A JP2001249006A JP 2001249006 A JP2001249006 A JP 2001249006A JP 2000057840 A JP2000057840 A JP 2000057840A JP 2000057840 A JP2000057840 A JP 2000057840A JP 2001249006 A JP2001249006 A JP 2001249006A
Authority
JP
Japan
Prior art keywords
light
recognition
wavelength
resin layer
image recognition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000057840A
Other languages
Japanese (ja)
Inventor
Hidetaka Hara
英貴 原
Masaaki Kato
正明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000057840A priority Critical patent/JP2001249006A/en
Publication of JP2001249006A publication Critical patent/JP2001249006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid difficulty of shortening recognition time and avoid increase in process in the case a ring shape illumination device is used for casting waves in visible light range to a foundation structure of which the image is recognized from an insulation resin layer side. SOLUTION: The image recognition method selectively removes wave length improper for binarizing by transmitting visible light from a light source or the reflection light to a light reception machine into a wave length selection base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線基板
製造時の位置決め加工に関わる画像認識方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an image recognition method related to positioning processing at the time of manufacturing a printed wiring board.

【0002】[0002]

【従来の技術】少なくとも一層の絶縁樹脂、例えば、ポ
リイミドなどと銅箔層からなるプリント配線基板用基材
において、銅箔で形成したマークを絶縁層側からの反射
光によって画像認識を行う場合には、一般的な同軸落射
方式の照明装置では、絶縁樹脂層の外表面における可視
光反射により二値化処理が困難であるため、リング型の
照明装置を用いるのが主流である。
2. Description of the Related Art In a printed wiring board base material comprising at least one layer of insulating resin, for example, polyimide or the like and a copper foil layer, when a mark formed of copper foil is subjected to image recognition by reflected light from the insulating layer side. In a general coaxial epi-illumination type illuminating device, a ring-type illuminating device is mainly used because binarization processing is difficult due to visible light reflection on the outer surface of the insulating resin layer.

【0003】[0003]

【発明が解決しようとする課題】リング型の照明装置に
よれば、絶縁樹脂層を透過させてマーク認識することが
可能となる。しかし、絶縁樹脂層によって照射光と反射
光の吸収が起こり、得られる二値化画像の明度は低いも
のとなる。この結果、認識精度があまりよくない場合が
あったり、二値化演算処理に比較的長時間が必要とな
り、位置決め加工時間の短縮が困難であった。また、短
時間での認識を可能とするために高価な認識装置を導入
せねばならなかった。
According to the ring type illumination device, it is possible to recognize the mark by transmitting the light through the insulating resin layer. However, the irradiation light and the reflected light are absorbed by the insulating resin layer, and the brightness of the obtained binarized image is low. As a result, the recognition accuracy may not be very good, or the binarization operation may require a relatively long time, and it is difficult to reduce the positioning processing time. In addition, an expensive recognition device had to be introduced to enable recognition in a short time.

【0004】一方、これらの問題を回避するために、位
置決め認識を行う前にマーク上に被覆する絶縁樹脂層を
除去する方策が採られることがある。これによって、二
値化画像の明度を高くすることができ、位置決め加工時
間の短縮が可能ではある。しかし、例えば、レーザー孔
あけによってマーク上の絶縁樹脂層を除去し、露出した
銅箔表面にプラズマデスミア等の表面清浄化処理を必要
とする。あるいは、絶縁樹脂層となるフィルムを銅箔に
ラミネートする前に、フィルムの打ち抜き工程が必要と
なるなどの工程数の増加を伴い、コストの増加に繋がる
などの欠点があった。
On the other hand, in order to avoid these problems, there is a case where a measure is taken to remove the insulating resin layer covering the mark before performing the positioning recognition. Thereby, the brightness of the binarized image can be increased, and the positioning processing time can be reduced. However, for example, the insulating resin layer on the mark is removed by laser drilling, and the surface of the exposed copper foil needs a surface cleaning treatment such as plasma desmear. Alternatively, there is a disadvantage that the number of steps such as a step of punching the film is required before laminating the film to be the insulating resin layer on the copper foil, which leads to an increase in cost.

【0005】そこで本発明は、プリント配線基板用基材
の絶縁樹脂層を透過させる位置決め加工において、汎用
の認識装置であっても認識時間の短縮が可能であり、か
つトータル工程数の増加が起こらないような認識方法を
提供することを目的とする。
Accordingly, the present invention is directed to a positioning process for transmitting an insulating resin layer of a substrate for a printed wiring board, in which a recognition time can be reduced even with a general-purpose recognition device, and an increase in the total number of steps occurs. The purpose is to provide such a recognition method.

【0006】[0006]

【課題を解決するための手段】本発明は、認識対象物に
対して可視光領域の反射光を利用する画像認識装置にお
いて、具体例としては、銅箔層と絶縁樹脂層からなるプ
リント配線基板用基材の絶縁樹脂層側から照射した可視
領域の反射光を利用する画像認識装置で、照射する光
又は受光する光の波長領域が400〜550nmで画像
認識することを特徴とし、従来の問題点を解消できる画
像認識方法である。
SUMMARY OF THE INVENTION The present invention relates to an image recognition apparatus utilizing reflected light in the visible light range for an object to be recognized, and more specifically, a printed wiring board comprising a copper foil layer and an insulating resin layer. Visible from the insulating resin layer side of the base material
In the image recognition apparatus utilizing the reflected light of the light region, the wavelength region of the irradiated light or light to be received is characterized in that the image recognition at 400 to 550 nm, an image recognition method which can solve the conventional problems.

【0007】可視領域の反射光を利用する画像認識装置
を用いて、銅箔層と絶縁樹脂層から成るプリント配線基
板用基材の位置決めには、例えば、銅箔層に位置決め用
銅抜き部のアライメントマークを施し、絶縁樹脂層側か
らリング型照明により可視光を照射し、銅抜き部の反射
光であるコントラスト像を撮像することで位置決めがで
きる。
In order to position a substrate for a printed wiring board composed of a copper foil layer and an insulating resin layer using an image recognition device utilizing reflected light in the visible region, for example, a positioning copper removal portion is formed on the copper foil layer. Positioning can be performed by applying an alignment mark, irradiating visible light from the insulating resin layer side by ring-type illumination, and capturing a contrast image that is reflected light from the copper blank portion.

【0008】銅箔表面からの反射光は、波長領域が60
0〜750nmの範囲に強い光量をもっており、可視光
領域では、比較的短波長側の光を吸収する。従って、銅
箔形成したマークを絶縁樹脂層側から認識する場合に
は、400〜550nmの波長領域の光を照射すれば、
銅箔部が暗く、銅抜き部が明るい良好なコントラスト像
が得られる場合がある。
The reflected light from the copper foil surface has a wavelength range of 60
It has a strong light amount in the range of 0 to 750 nm, and absorbs light on a relatively short wavelength side in the visible light region. Therefore, when the mark formed on the copper foil is recognized from the insulating resin layer side, light in the wavelength region of 400 to 550 nm is irradiated,
A good contrast image in which the copper foil portion is dark and the copper blank portion is bright may be obtained.

【0009】可視光領域の波長から、波長400〜55
0nmの光を選択し画像認識に使用するためには、この
波長領域で選択的に透過率を与える波長選択基材を透過
させた後の光を受光機に入射させれば良く、その波長選
択基材にはフィルム、ガラス等を基材としたものを適用
できる。また、認識装置の照射側、受光側のどちらにも
設置が可能である。
[0009] From the wavelength in the visible light region, a wavelength of 400 to 55
In order to select 0 nm light and use it for image recognition, the light after passing through a wavelength selection base material that selectively gives transmittance in this wavelength region may be incident on the light receiver. A substrate using a film, glass, or the like as the substrate can be used. Further, it can be installed on both the irradiation side and the light receiving side of the recognition device.

【0010】一般的な可視光照射ハロゲンランプにおい
て、波長選択をすると、光量の低下によって、画像認識
の際の二値化処理にとって輝度差不足による認識不良あ
るいは認識時間が長くなるなどの弊害がおこる可能性が
あるが、波長領域400〜550nmの光線透過量の最
適化により回避することが可能である。
In a general visible light irradiation halogen lamp, if the wavelength is selected, a decrease in the amount of light causes adverse effects such as a recognition failure due to insufficient luminance difference or a long recognition time in a binarization process for image recognition. Although there is a possibility, it can be avoided by optimizing the amount of transmitted light in the wavelength region of 400 to 550 nm.

【0011】波長の選択により、銅箔表面からの光の反
射が低減し、かつマークの銅抜き部からの反射光量の低
下が軽度な場合は、絶縁樹脂層側からの認識であっても
良好なコントラスト像が得られ、汎用の認識装置におい
ても認識時間の短縮が可能となる。
In the case where the reflection of light from the copper foil surface is reduced by the selection of the wavelength and the decrease in the amount of reflected light from the copper blank portion of the mark is slight, recognition from the insulating resin layer side is satisfactory. A high contrast image can be obtained, and the recognition time can be reduced even with a general-purpose recognition device.

【0012】また、前記波長領域の光が透過する絶縁樹
脂層の厚みにより、光線透過量が低下する場合もある
が、前記波長を含んだ光照射量を上げることで認識に必
要な光線透過量は十分得られる。
In some cases, the amount of light transmission may decrease depending on the thickness of the insulating resin layer through which the light in the above-mentioned wavelength range is transmitted. Can be obtained enough.

【0013】反射光を利用する絶縁樹脂層側からの認識
において、導体層の材質が銅ではなく他の金属材料の場
合(例えば金、銀、ニッケル、アルミ、鉄、共晶はんだ
など)も同様な問題は起こりうるが、導体表面からの反
射光の波長領域を含まない光を選択すれば、回避でき
る。
According to the recognition from the insulating resin layer side using the reflected light, when the material of the conductor layer is not copper but another metal material (for example, gold, silver, nickel, aluminum, iron, eutectic solder, etc.), the same applies. Such a problem can occur, but can be avoided by selecting light that does not include the wavelength region of the reflected light from the conductor surface.

【0014】[0014]

【実施例】以下に、本発明を実施した評価例により、詳
細を説明するが、本発明は、これにより何ら限定されな
い。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to evaluation examples in which the present invention is implemented, but the present invention is not limited thereto.

【0015】実施例1 圧延銅箔層1(三井金属製、FX−BSH、M面のRz
=3.0μm、厚さ18μm )ポリイミド樹脂絶縁層2
(厚さ25μm)からなるフレキシブルプリント配線用
基板(住友ベークライト製A1フレキ)のポリイミド樹
脂上に、熱可塑性シリコーン変性ポリイミドを流延塗布
して接着層3を形成し、絶縁層の厚さ35μm(接着層
10μm)からなる接着剤付フレキシブルプリント配線
用基板4を得た。銅箔層に評価用パターンとしてレーザ
ー開孔位置に直径200μmの円状の独立ランドをエッ
チングによって形成し、そのときアライメントマークと
して直径100μmの銅抜き円5を同時に形成し、加工
位置評価基板6を得た。
Example 1 Rolled copper foil layer 1 (made by Mitsui Metals, FX-BSH, Rz on M-plane)
= 3.0 μm, thickness 18 μm) Polyimide resin insulation layer 2
An adhesive layer 3 is formed by casting and coating a thermoplastic silicone-modified polyimide on a polyimide resin of a flexible printed wiring board (A1 flexible manufactured by Sumitomo Bakelite) having a thickness of 25 μm (thickness: 25 μm). An adhesive-attached flexible printed wiring board 4 comprising an adhesive layer (10 μm) was obtained. A circular independent land having a diameter of 200 μm is formed by etching as a pattern for evaluation on a copper foil layer at a laser opening position, and a copper removal circle 5 having a diameter of 100 μm is simultaneously formed as an alignment mark. Obtained.

【0016】加工位置評価基板を紫外線レーザー加工装
置の吸着テーブル12上に接着層が上向きになるように
吸着し、実際の半導体搭載用基板加工時の認識環境を再
現した。認識用の光源としては、直流点灯方式(12
V,100W)のハロゲンランプ7を用いた。ハロゲン
ランプ7と認識カメラの対物レンズ8に取り付けられた
リング状照明9用の光ファイバーガイド10の間に図1
にある分光透過率曲線中に示したような可視光透過特性
をもつ波長選択基材A(ガラス製)11を挿入し、認識
実験を行った。画像認識装置は、(株)エデック製のM
USIC(ED−7810)13を用いた。
The processing position evaluation substrate was sucked onto the suction table 12 of the ultraviolet laser processing apparatus such that the adhesive layer faced upward, and the recognition environment at the time of actual processing of the semiconductor mounting substrate was reproduced. As a light source for recognition, a DC lighting method (12
V, 100 W). 1 between a halogen lamp 7 and an optical fiber guide 10 for a ring-shaped illumination 9 mounted on an objective lens 8 of a recognition camera
A wavelength selection substrate A (made of glass) 11 having visible light transmission characteristics as shown in the spectral transmittance curve shown in FIG. The image recognition device is M
USIC (ED-7810) 13 was used.

【0017】比較例1 実施例1において、波長選択基材なしの場合、マーク上
の絶縁樹脂層をあらかじめ除去しておいた場合、光線透
過率が比較的低い波長選択基材B(フィルム製)の場合
の分光透過率曲線、認識結果と加工位置測定結果をあわ
せて示す。照射する波長と照射光量の選択により、認識
エラーが無く、絶縁樹脂層除去の場合と同等以上の認
識、加工精度と認識時間の短縮が可能であることが明ら
かである。波長選択基材Bの場合は、選択波長の光線透
過量が低いために、二値化処理時に明度が十分に得られ
ず認識精度、速度の向上が顕著には認められず、認識不
能数も0ではない。但し、比較的高出力の光源ランプを
用いれば、認識性は向上すると考えられる。波長選択基
材Aの場合は、選択した波長の光線透過量が比較的高い
ため、二値化画像の明度、コントラストともに良好であ
った。
Comparative Example 1 In Example 1, when there was no wavelength selection substrate, and when the insulating resin layer on the mark had been removed in advance, the wavelength selection substrate B (made of film) having a relatively low light transmittance. In addition, the spectral transmittance curve, the recognition result, and the processing position measurement result in the case of are shown. It is clear that there is no recognition error and that the recognition, processing accuracy, and recognition time can be reduced to a level equal to or greater than that in the case of removing the insulating resin layer by selecting the irradiation wavelength and the irradiation light amount. In the case of the wavelength selection substrate B, since the light transmission amount of the selected wavelength is low, the brightness is not sufficiently obtained at the time of the binarization process, and the recognition accuracy and the speed are not significantly improved. Not zero. However, if a light source lamp having a relatively high output is used, it is considered that the recognizability is improved. In the case of the wavelength-selective substrate A, the light transmittance of the selected wavelength was relatively high, so that both the brightness and the contrast of the binarized image were good.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明の認識方法によれば、プリント配
線基板製造時に絶縁樹脂層側からの反射光を利用した位
置決め認識の際に、高価な装置、新たな工程を導入する
ことなく、短時間で高精度の認識と製造コスト削減が可
能となる。
According to the recognition method of the present invention, when performing positioning recognition using reflected light from the insulating resin layer side at the time of manufacturing a printed wiring board, an expensive device and a new process are not required, and a short time is required. High-precision recognition and manufacturing cost reduction can be achieved in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】波長選択基材A,Bの分光透過率曲線FIG. 1 Spectral transmittance curves of wavelength-selective substrates A and B

【図2】波長選択基材Aの時のレーザー開孔位置の分布FIG. 2 shows the distribution of laser aperture positions for wavelength-selective substrate A.

【図3】波長選択基材Bの時のレーザー開孔位置の分布FIG. 3 shows the distribution of laser aperture positions for wavelength-selective substrate B

【図4】波長選択基材なしの時のレーザー開孔位置の分
FIG. 4 shows the distribution of laser aperture positions without a wavelength selection substrate.

【図5】絶縁樹脂層除去時のレーザー開孔位置の分布FIG. 5 shows the distribution of laser aperture positions when the insulating resin layer is removed.

【図6】実施例で用いた評価基板と認識装置光路系略図FIG. 6 is a schematic diagram of an evaluation board and a recognition device optical path system used in the embodiment.

【符号の説明】[Explanation of symbols]

1 銅箔 2 絶縁層 3 接着層 4 接着剤付フレキシブルプリント配線基板 5 アライメントマーク 6 加工位置評価基板 7 ハロゲンランプ 8 対物レンズ 9 リング状照明 10 光ファイバーガイド 11 波長選択基材A 12 吸着テーブル 13 画像認識装置 DESCRIPTION OF SYMBOLS 1 Copper foil 2 Insulating layer 3 Adhesive layer 4 Flexible printed wiring board with adhesive 5 Alignment mark 6 Processing position evaluation board 7 Halogen lamp 8 Objective lens 9 Ring illumination 10 Optical fiber guide 11 Wavelength selection substrate A 12 Suction table 13 Image recognition apparatus

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 認識対象物に対して可視光領域の反射光
を利用する画像認識装置で、波長選択基材により、照射
する光波長又は受光する光波長を400〜550nmの
波長領域で画像認識することを特徴とする画像認識方
法。
An image recognition apparatus that uses reflected light in a visible light range for an object to be recognized, and uses a wavelength selection substrate to perform image recognition in a wavelength range of 400 to 550 nm by irradiating light wavelength or receiving light wavelength. Image recognition method.
JP2000057840A 2000-03-02 2000-03-02 Image recognition method Pending JP2001249006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057840A JP2001249006A (en) 2000-03-02 2000-03-02 Image recognition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000057840A JP2001249006A (en) 2000-03-02 2000-03-02 Image recognition method

Publications (1)

Publication Number Publication Date
JP2001249006A true JP2001249006A (en) 2001-09-14

Family

ID=18578533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057840A Pending JP2001249006A (en) 2000-03-02 2000-03-02 Image recognition method

Country Status (1)

Country Link
JP (1) JP2001249006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074706A (en) * 2012-09-14 2014-04-24 Jx Nippon Mining & Metals Corp Visibility evaluation method for transparent base material, positioning method for laminate and manufacturing method for printed circuit board
JP2014095679A (en) * 2012-10-12 2014-05-22 Jx Nippon Mining & Metals Corp Copper foil surface state evaluation device, copper foil surface state evaluation program, computer readable recording medium having the same recorded and copper foil surface state evaluation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074706A (en) * 2012-09-14 2014-04-24 Jx Nippon Mining & Metals Corp Visibility evaluation method for transparent base material, positioning method for laminate and manufacturing method for printed circuit board
JP2014095679A (en) * 2012-10-12 2014-05-22 Jx Nippon Mining & Metals Corp Copper foil surface state evaluation device, copper foil surface state evaluation program, computer readable recording medium having the same recorded and copper foil surface state evaluation method
JP2014095680A (en) * 2012-10-12 2014-05-22 Jx Nippon Mining & Metals Corp Transparent base material visibility evaluation device, transparent base material visibility evaluation program, computer readable recording medium having transparent base material visibility evaluation program recorded, laminated body positioning device, laminated body positioning program, computer readable recording medium having the same recorded and printed wiring board manufacturing method

Similar Documents

Publication Publication Date Title
JP5511597B2 (en) Method for manufacturing printed circuit board
TW200307333A (en) Recognition method of a mark provided on a semiconductor device
JPS6229737B2 (en)
JP3617547B2 (en) Method and processing apparatus for observing wiring pattern
CA2504335A1 (en) Apparatus of wiring pattern, inspection method, detection apparatus, detection method
WO2005036148A1 (en) Printed circuit board inspection system combining x-ray inspection and visual inspection
JP2001249006A (en) Image recognition method
JP2698213B2 (en) Circuit board and circuit board position recognition method
JP2002271039A (en) Multilayer board and its machining method
TW200928286A (en) Measurement method for laser vias on flip chip substrate and system thereof
CN112584961B (en) Method for processing a cermet substrate, installation for carrying out the method and cermet substrate produced by means of the method
US6571007B1 (en) Ball-arranging substrate for forming bump, ball-arranging head, ball-arranging device, and ball-arranging method
WO2004023122A1 (en) Pattern inspection method and inspection device therefor
EP1438570A1 (en) Computer vision recognition of metallic objects against a poorly contrasting background
JPH08222896A (en) Illuminator for mounting machine
JP2001022099A (en) Exposure device
JP4901077B2 (en) Method for determining position of reference point on processing and laser processing machine
JPH05296746A (en) Appearance checking method of cream solder
JP2003316031A (en) Reference section forming device
JPH05283825A (en) Printed-circuit board with identification mark
JPH11218406A (en) Detection apparatus and method for position recognition mark on substrate
JPH08304300A (en) Method for equipment for inspecting pattern of printed board and production of printed board
JP2008306012A (en) Substrate and its manufacturing method
KR19990018439A (en) Component Inspection Device
JP2009258692A (en) Method for cutting photoelectric composite wire film and dicing tape