JP5337907B1 - Visibility evaluation device for transparent substrate, visibility evaluation program for transparent substrate and computer-readable recording medium on which it is recorded, positioning device for laminate, positioning program for laminate and computer-readable on which the recording is recorded Recording medium, apparatus for determining whether or not a mark of a laminate of a metal and a transparent substrate exists, a determination program, a computer-readable recording medium on which the mark is recorded, and a metal and a transparent substrate For detecting the position of a mark included in a laminate of the above, a detection program, and a computer-readable recording medium on which the same is recorded - Google Patents

Visibility evaluation device for transparent substrate, visibility evaluation program for transparent substrate and computer-readable recording medium on which it is recorded, positioning device for laminate, positioning program for laminate and computer-readable on which the recording is recorded Recording medium, apparatus for determining whether or not a mark of a laminate of a metal and a transparent substrate exists, a determination program, a computer-readable recording medium on which the mark is recorded, and a metal and a transparent substrate For detecting the position of a mark included in a laminate of the above, a detection program, and a computer-readable recording medium on which the same is recorded Download PDF

Info

Publication number
JP5337907B1
JP5337907B1 JP2012286127A JP2012286127A JP5337907B1 JP 5337907 B1 JP5337907 B1 JP 5337907B1 JP 2012286127 A JP2012286127 A JP 2012286127A JP 2012286127 A JP2012286127 A JP 2012286127A JP 5337907 B1 JP5337907 B1 JP 5337907B1
Authority
JP
Japan
Prior art keywords
mark
lightness
transparent substrate
observation point
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012286127A
Other languages
Japanese (ja)
Other versions
JP2014112065A (en
Inventor
英太 新井
敦史 三木
康修 新井
嘉一郎 中室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012286127A priority Critical patent/JP5337907B1/en
Priority to KR1020157009269A priority patent/KR101628643B1/en
Priority to TW102133314A priority patent/TWI497051B/en
Priority to CN201380048090.5A priority patent/CN104884936B/en
Priority to PCT/JP2013/074932 priority patent/WO2014042256A1/en
Application granted granted Critical
Publication of JP5337907B1 publication Critical patent/JP5337907B1/en
Publication of JP2014112065A publication Critical patent/JP2014112065A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】透明基材の視認性を効率良く正確に評価する。
【解決手段】視認性評価装置10は、透明基材17の下に存在するマーク16を、透明基材17越しに撮影する撮影手段11と、撮影によって得られた画像について、観察されたマーク16が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、観察地点−明度グラフにおいて、マーク16の端部からマーク16がない部分にかけて生じる明度曲線の傾きによって透明基材15の視認性を評価する視認性評価手段と備える。視認性評価手段は、マークの端部からマークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔBと、観察地点−明度グラフにおいる、明度曲線とBtとの交点と、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲におけて、明度曲線と0.1ΔBとの交点を利用して行う。
【選択図】図1
An object of the present invention is to efficiently and accurately evaluate the visibility of a transparent substrate.
A visibility evaluation apparatus 10 includes a photographing means 11 for photographing a mark 16 existing under a transparent base material 17 through a transparent base material 17, and an observed mark 16 for an image obtained by photographing. In the observation point-lightness graph creating means for preparing the observation point-lightness graph by measuring the lightness of each observation point along the direction perpendicular to the direction in which the mark extends, Visibility evaluation means for evaluating the visibility of the transparent base material 15 by the inclination of the brightness curve generated over the portion without 16 is provided. The visibility evaluation means calculates the difference ΔB between the top average value Bt and the bottom average value Bb of the lightness curve generated from the end of the mark to the part without the mark, and the lightness curve and Bt in the observation point-lightness graph. This is performed using the intersection of the lightness curve and 0.1 ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt.
[Selection] Figure 1

Description

本発明は、透明基材の視認性評価装置、透明基材の視認性評価プログラム及びそれが記録されたコンピュータ読み取り可能な記録媒体積層体の位置決め装置、積層体の位置決めプログラム及びそれが記録されたコンピュータ読み取り可能な記録媒体、金属と透明基材との積層体が有するマークが存在するか否かを判定する装置及び判定プログラム及びそれが記録されたコンピュータ読み取り可能な記録媒体、並びに、金属と透明基材との積層体が有するマークの位置を検出する装置及び検出プログラム及びそれが記録されたコンピュータ読み取り可能な記録媒体に関する。
The present invention relates to a transparent substrate visibility evaluation apparatus, a transparent substrate visibility evaluation program and a computer-readable recording medium on which the transparent substrate visibility evaluation program is recorded , a laminate positioning apparatus, a laminate positioning program, and a program for recording the same. A computer-readable recording medium , an apparatus and a determination program for determining whether or not a mark of a laminate of a metal and a transparent substrate exists, a computer-readable recording medium on which the mark is recorded, and a metal The present invention relates to an apparatus and a detection program for detecting the position of a mark included in a laminate with a transparent substrate, and a computer-readable recording medium on which the recording program is recorded .

スマートフォンやタブレットPCといった小型電子機器には、配線の容易性や軽量性からフレキシブルプリント配線板(以下、FPC)が採用されている。近年、これら電子機器の高機能化により信号伝送速度の高速化が進み、FPCにおいてもインピーダンス整合が重要な要素となっている。信号容量の増加に対するインピーダンス整合の方策として、FPCのベースとなる樹脂絶縁層(例えば、ポリイミド)の厚層化が進んでいる。一方、FPCは液晶基材への接合やICチップの搭載などの加工が施されるが、この際の位置合わせは銅箔と樹脂絶縁層との積層板における銅箔をエッチングした後に残る樹脂絶縁層を透過して視認される位置決めパターンを介して行われるため、樹脂絶縁層の視認性が重要となる。   In a small electronic device such as a smartphone or a tablet PC, a flexible printed wiring board (hereinafter referred to as FPC) is adopted because of easy wiring and light weight. In recent years, with the enhancement of functions of these electronic devices, the signal transmission speed has been increased, and impedance matching has become an important factor in FPC. As a measure for impedance matching with respect to an increase in signal capacity, a resin insulation layer (for example, polyimide) serving as a base of an FPC has been increased in thickness. On the other hand, processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer The visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.

このような樹脂絶縁層の視認性の評価方法として、特許文献1では、CCDカメラによって樹脂絶縁層越しに撮影した画像を観察して評価している。また、特許文献2では、評価対象の樹脂絶縁層の水平面に対して30°をなす角度からCCDカメラで撮影した画像にテストパターンが歪んで映っているか否かを評価している。   As a method for evaluating the visibility of such a resin insulating layer, in Patent Document 1, an image taken through a resin insulating layer with a CCD camera is observed and evaluated. In Patent Document 2, it is evaluated whether or not a test pattern is distorted in an image taken by a CCD camera from an angle of 30 ° with respect to the horizontal plane of the resin insulating layer to be evaluated.

特開2003−309336号公報JP 2003-309336 A 特開2006−001056号公報JP 2006-001056 A

しかしながら、特許文献1のようにCCDカメラで観察して画像を単純に観察するものでは、視認性評価の精度には限界があり、製造ラインで実際に作製しなければ、位置合わせ等のために設けられたマークを透明基材越しに視認することが可能か否かを判断できないのが実情であり、製造コストの点で問題があった。これは特許文献2のように当該画像にテストパターンが歪んで映っているか否かを評価する方法であっても同様である。
本発明は、透明基材の視認性を効率良く正確に評価することができる透明基材の視認性評価装置、透明基材の視認性評価プログラム及びそれが記録されたコンピュータ読み取り可能な記録媒体を提供する。また、本発明は、積層体の位置決めを効率良く正確に行うことができる積層体の位置決め装置、積層体の位置決めプログラム及びそれが記録されたコンピュータ読み取り可能な記録媒体を提供する。
However, in the case of simply observing an image by observing with a CCD camera as in Patent Document 1, there is a limit to the accuracy of the visibility evaluation. In reality, it is impossible to determine whether or not the provided mark can be visually recognized through the transparent base material, which is problematic in terms of manufacturing cost. The same applies to a method of evaluating whether or not a test pattern is distorted in the image as in Patent Document 2.
The present invention relates to a visibility evaluation apparatus for a transparent base material that can efficiently and accurately evaluate the visibility of a transparent base material, a visibility evaluation program for a transparent base material, and a computer-readable recording medium on which the program is recorded. provide. The present invention also provides a laminate positioning apparatus, a laminate positioning program, and a computer-readable recording medium on which the laminate is recorded, capable of efficiently and accurately positioning the laminate.

本発明者らは鋭意研究を重ねた結果、透明基材の下にマークを設けて撮影手段で透明基材越しに撮影し、当該マーク部分の画像から得た観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線の傾きに着目し、当該明度曲線の傾きを評価することで、透明基材の視認性を透明基材の種類や透明基材の厚みの影響を受けずに、効率良く正確に評価することができることを見出した。   As a result of intensive research, the inventors have provided a mark under the transparent base material, photographed through the transparent base material with a photographing means, and a mark drawn in the observation point-lightness graph obtained from the image of the mark portion. Paying attention to the slope of the brightness curve near the edge and evaluating the slope of the brightness curve, the visibility of the transparent substrate can be efficiently improved without being affected by the type of transparent substrate and the thickness of the transparent substrate. It was found that it can be evaluated accurately.

以上の知見を基礎として完成された本発明は一側面において、透明基材の下に存在するマークを、前記透明基材越しに撮影する撮影手段と、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記透明基材の視認性を評価する視認性評価手段とを備えた透明基材の視認性評価装置であり、前記視認性評価手段は、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)として、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvを用いて視認性の評価を行う透明基材の視認性評価装置である。
Sv=(ΔB×0.1)/(t1−t2) (1)
The present invention completed on the basis of the above knowledge is, in one aspect, observed with respect to an imaging means for imaging a mark existing under a transparent substrate through the transparent substrate, and an image obtained by the imaging. In the observation point-lightness graph creating means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the mark extends to prepare an observation point-lightness graph, and in the observation point-lightness graph, A visibility evaluation device for a transparent base material comprising a visibility evaluation means for evaluating the visibility of the transparent base material by an inclination of a brightness curve generated from an end portion to a portion without the mark, and the visibility evaluation means The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark to the part without the mark is ΔB (ΔB = Bt−Bb). In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and the depth from the intersection of the lightness curve and Bt to 0.1 ΔB on the basis of Bt In this range, when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB is t2, the visibility is determined using Sv defined by the following equation (1). It is the visibility evaluation apparatus of the transparent base material which performs evaluation.
Sv = (ΔB × 0.1) / (t1-t2) (1)

本発明の透明基材の視認性評価装置は別の一側面において、透明基材の下に存在するマークを、前記透明基材越しに撮影する撮影手段と、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記透明基材の視認性を評価する視認性評価手段とを備えた透明基材の視認性評価装置であり、前記視認性評価手段は、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて視認性の評価を行う透明基材の視認性評価装置である。
In another aspect, the visibility evaluation apparatus for a transparent substrate of the present invention is a photographing means for photographing a mark existing under the transparent substrate through the transparent substrate, and an image obtained by the photographing, In the observation point-lightness graph preparation means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the observed mark extends to prepare an observation point-lightness graph, and in the observation point-lightness graph, A visibility evaluation device for a transparent substrate, comprising a visibility evaluation means for evaluating the visibility of the transparent substrate by an inclination of a brightness curve generated from an end portion of a mark to a portion without the mark, and the visibility evaluation The means includes a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark, and the observation point − In the lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt. Sv defined by the following equation (1), where t2 is the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB:
Sv = (ΔB × 0.1) / (t1-t2) (1)
It is the visibility evaluation apparatus of the transparent base material which evaluates visibility using.

本発明の透明基材の視認性評価装置は一実施形態において、前記撮影手段による撮影によって得られた画像について、明度のばらつきを緩和させるスムージング処理手段をさらに備え、前記観察地点−明度グラフ作製手段が、前記スムージング処理後の前記明度を用いて観察地点−明度グラフを作製する。   In one embodiment, the visibility evaluation apparatus for a transparent substrate according to the present invention further includes smoothing processing means for reducing variation in brightness of an image obtained by photographing by the photographing means, and the observation point-lightness graph creating means. However, an observation point-lightness graph is prepared using the lightness after the smoothing process.

本発明の透明基材の視認性評価装置は別の一実施形態において、前記透明基材の下に存在するマークが、前記透明基材の下に敷いた印刷物に印刷されたライン状のマークであり、前記観察地点−明度グラフ作製手段が、前記撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する。   In another embodiment of the visibility evaluation device for a transparent substrate of the present invention, the mark present under the transparent substrate is a line-shaped mark printed on a printed material laid under the transparent substrate. Yes, the observation point-lightness graph preparation means measures the lightness of each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends about the image obtained by the photographing, and the observation point -Create a brightness graph.

本発明の透明基材の視認性評価装置は更に別の一実施形態において、前記視認性評価手段による視認性評価において、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、前記Svが3.5以上となる場合を良好と判定する。   In yet another embodiment of the visibility evaluation apparatus for a transparent substrate according to the present invention, in the visibility evaluation by the visibility evaluation means, in the observation point-lightness graph, the mark among the intersections of the lightness curve and Bt The value indicating the position of the closest intersection to t1 is t1, and in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt, the intersection of the lightness curve and 0.1ΔB When the value indicating the position of the nearest intersection is t2, the case where the Sv is 3.5 or more is determined to be good.

本発明の透明基材の視認性評価装置は更に別の一実施形態において、前記視認性評価手段による視認性評価において、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であり、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、前記Svが3.5以上となる場合を良好と判定する。   In yet another embodiment, the visibility evaluation apparatus for a transparent substrate according to the present invention is a top average value of a brightness curve generated from an end portion of the mark to a portion without the mark in the visibility evaluation by the visibility evaluation means. The difference ΔB (ΔB = Bt−Bb) between Bt and the bottom average value Bb is 40 or more, and in the observation point-lightness graph, the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is shown. A value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt, where the value is t1 When t2 is t2, the case where the Sv is 3.5 or more is determined to be good.

本発明の透明基材の視認性評価装置は更に別の一実施形態において、前記ΔB(ΔB=Bt−Bb)が50以上である場合を良好と判定する。   In yet another embodiment, the transparent substrate visibility evaluation apparatus of the present invention determines that the case where ΔB (ΔB = Bt−Bb) is 50 or more is good.

本発明の透明基材の視認性評価装置は更に別の一実施形態において、前記Svが3.9以上となる場合を良好と判定する。   In yet another embodiment, the transparent substrate visibility evaluation apparatus of the present invention determines that the case where the Sv is 3.9 or more is good.

本発明の透明基材の視認性評価装置は更に別の一実施形態において、前記Svが5.0以上となる場合を良好と判定する。   In yet another embodiment, the transparent substrate visibility evaluation apparatus of the present invention determines that the case where the Sv is 5.0 or more is good.

本発明は別の一側面において、コンピュータを本発明の透明基材の視認性評価装置として機能させるためのプログラムである。   In another aspect, the present invention is a program for causing a computer to function as the visibility evaluation device for a transparent substrate of the present invention.

本発明は更に別の一側面において、本発明の透明基材の視認性評価プログラムが記録されたコンピュータ読み取り可能な記録媒体である。   In still another aspect of the present invention, there is provided a computer-readable recording medium on which the transparent substrate visibility evaluation program of the present invention is recorded.

本発明は更に別の一側面において、金属と透明基材との積層体の位置決めをするための積層体の位置決め装置であって、マークを有する、前記金属と透明基材の積層体に対し、前記マークを前記透明基材越しに撮影する撮影手段と、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記積層体の位置を決定する位置決め手段とを備えた積層体の位置決め装置であり、前記位置決め手段は、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)として、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvを用いて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と透明基材との積層体の位置決めをする積層体の位置決め装置である。
Sv=(ΔB×0.1)/(t1−t2) (1)
In yet another aspect of the present invention, a positioning apparatus for a laminate for positioning a laminate of a metal and a transparent substrate, the mark having a mark, the laminate of the metal and the transparent substrate, Imaging means for imaging the mark through the transparent substrate, and for the image obtained by the imaging, the brightness at each observation point is measured along a direction perpendicular to the direction in which the observed mark extends. -Observation point for preparing a lightness graph-Lightness graph preparation means and positioning for determining the position of the laminate according to the inclination of the lightness curve generated from the end of the mark to the portion without the mark in the observation point-lightness graph And a positioning device for the laminated body, wherein the positioning means has a top flatness of a brightness curve generated from an end portion of the mark to a portion without the mark. The difference between the value Bt and the bottom average value Bb is ΔB (ΔB = Bt−Bb), and the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt in the observation point-lightness graph. Is a value indicating the position of the closest point of intersection between the lightness curve and 0.1 ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt. When t2, the position of the mark is detected using Sv defined by the following equation (1), and the laminate of the metal and the transparent substrate is positioned based on the detected position of the mark. It is a positioning device of a layered product.
Sv = (ΔB × 0.1) / (t1-t2) (1)

本発明は更に別の一側面において、金属と透明基材との積層体の位置決めをするための積層体の位置決め装置であって、マークを有する、前記金属と透明基材の積層体に対し、前記マークを前記透明基材越しに撮影する撮影手段と、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記積層体の位置を決定する位置決め手段とを備えた積層体の位置決め装置であり、前記位置決め手段は、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と透明基材との積層体の位置決めをする積層体の位置決め装置である。
In yet another aspect of the present invention, a positioning apparatus for a laminate for positioning a laminate of a metal and a transparent substrate, the mark having a mark, the laminate of the metal and the transparent substrate, Imaging means for imaging the mark through the transparent substrate, and for the image obtained by the imaging, the brightness at each observation point is measured along a direction perpendicular to the direction in which the observed mark extends. -Observation point for preparing a lightness graph-Lightness graph preparation means and positioning for determining the position of the laminate according to the inclination of the lightness curve generated from the end of the mark to the portion without the mark in the observation point-lightness graph And a positioning device for the laminated body, wherein the positioning means has a top flatness of a brightness curve generated from an end portion of the mark to a portion without the mark. A value ΔB (ΔB = Bt−Bb) between the value Bt and the bottom average value Bb, and a value indicating the position of the intersection closest to the mark among the intersections of the brightness curve and Bt in the observation point-brightness graph. t2 is a value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt. And Sv defined by the following equation (1):
Sv = (ΔB × 0.1) / (t1-t2) (1)
This is a laminated body positioning device that detects the position of the mark by using and positions the laminated body of the metal and the transparent substrate based on the detected position of the mark.

本発明の積層体の位置決め装置は一実施形態において、前記位置を決定した積層体の位置合わせを行う位置合わせ手段をさらに備える。   In one embodiment, the laminate positioning apparatus of the present invention further includes an alignment means for aligning the laminate with the position determined.

本発明は更に別の一側面において、コンピュータを本発明の積層体の位置決め装置として機能させるためのプログラムである。   In yet another aspect of the present invention, there is provided a program for causing a computer to function as the laminated body positioning device of the present invention.

本発明は更に別の一側面において、本発明の積層体の位置決めプログラムが記録されたコンピュータ読み取り可能な記録媒体である。   In still another aspect of the present invention, there is provided a computer-readable recording medium on which the laminate positioning program of the present invention is recorded.

本発明の積層体の位置決め装置は更に別の一実施形態において、前記金属と透明基材との積層体が、透明基材の板及び前記透明基材の板の上に設けられた回路を有するプリント配線板である。   In yet another embodiment of the positioning device for a laminate according to the present invention, the laminate of the metal and the transparent substrate includes a transparent substrate plate and a circuit provided on the transparent substrate plate. It is a printed wiring board.

本発明の積層体の位置決め装置は更に別の一実施形態において、前記マークが前記回路である。   In another embodiment of the positioning device for a laminate according to the present invention, the mark is the circuit.

本発明は更に別の一側面において、本発明のプリント配線板の位置決め装置を用いて、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板に部品を装着する工程を含むプリント配線板の製造方法である。   According to another aspect of the present invention, there is provided a printed wiring board including a step of positioning a printed wiring board using the printed wiring board positioning device of the present invention and mounting a component on the printed printed wiring board. It is a manufacturing method.

本発明は更に別の一側面において、本発明のプリント配線板の位置決め装置を用いて、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板にもう一つのプリント配線板を接続する工程を含むプリント配線板の製造方法である。   In yet another aspect of the present invention, the printed wiring board positioning apparatus of the present invention is used to position the printed wiring board and connect the other printed wiring board to the positioned printed wiring board. It is a manufacturing method of a printed wiring board containing.

本発明は更に別の一側面において、本発明の位置決め装置を用いて、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板の位置合わせを行い、位置合わせされた前記プリント配線板に部品を装着する工程を含むプリント配線板の製造方法である。   In yet another aspect of the present invention, the printed wiring board is positioned using the positioning device of the present invention, the positioned printed wiring board is aligned, and a component is mounted on the aligned printed wiring board. It is a manufacturing method of the printed wiring board including the process of mounting | wearing.

本発明は更に別の一側面において、本発明の位置決め装置を用いて、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板の位置合わせを行い、位置合わせされた前記プリント配線板にもう一つのプリント配線板を接続する工程を含むプリント配線板の製造方法である。   In yet another aspect of the present invention, the printed wiring board is positioned using the positioning device of the present invention, the positioned printed wiring board is aligned, and the aligned printed wiring board is already aligned. It is a manufacturing method of a printed wiring board including the process of connecting one printed wiring board.

本発明によれば、透明基材の視認性を効率良く正確に評価することができる。   According to the present invention, the visibility of a transparent substrate can be evaluated efficiently and accurately.

本発明の実施形態に係る透明基材の視認性評価装置の模式図である。It is a schematic diagram of the visibility evaluation apparatus of the transparent base material which concerns on embodiment of this invention. 本発明の実施形態に係る透明基材の視認性評価方法のフローチャートである。It is a flowchart of the visibility evaluation method of the transparent base material which concerns on embodiment of this invention. マーク幅が約1.3mmの場合のBt及びBbを定義する模式図である。It is a schematic diagram which defines Bt and Bb in case a mark width is about 1.3 mm. マーク幅が約0.3mmの場合のBt及びBbを定義する模式図である。It is a schematic diagram which defines Bt and Bb in case a mark width is about 0.3 mm. t1及びt2及びSvを定義する模式図である。It is a schematic diagram which defines t1, t2, and Sv. 本発明の実施形態に係る積層体の位置決め装置の模式図である。It is a schematic diagram of the positioning apparatus of the laminated body which concerns on embodiment of this invention. 本発明の実施形態に係る積層体の位置決め方法のフローチャートである。It is a flowchart of the positioning method of the laminated body which concerns on embodiment of this invention. マークの幅が0.1〜0.4mmの場合の明度曲線の傾き評価の際の、撮影手段の構成及び明度曲線の傾きの測定方法を表す模式図である。It is a schematic diagram showing the structure of an imaging | photography means and the measuring method of the inclination of a brightness curve in the case of the inclination evaluation of the brightness curve in case the width | variety of a mark is 0.1-0.4 mm. マークの幅が1.0〜2.0mmの場合の明度曲線の傾き評価の際の、撮影手段の構成及び明度曲線の傾きの測定方法を表す模式図である。It is a schematic diagram showing the structure of an imaging | photography means and the measuring method of the inclination of a brightness curve in the case of the inclination evaluation of the brightness curve in case the width | variety of a mark is 1.0-2.0 mm.

(透明基材の視認性評価装置、視認性評価方法、視認性評価プログラム及び記録媒体)
図1は、本発明の実施形態に係る透明基材の視認性評価装置10の模式図である。本発明の実施形態に係る透明基材の視認性評価装置10は、ステージ15上に設けられた透明基材17の下に存在するマーク16を、透明基材17越しに撮影する撮影手段11と、撮像手段11からの画像信号を基に各種の処理を行うコンピュータ12と、コンピュータ12からの各種信号を基に所定の画像等を表示する表示手段13と、ステージ上の透明基材17及びマーク16に光を照射する照明手段14とを備えている。本発明で評価の対象とする透明基材17は特に限定されず、透明であれば、ガラス製や樹脂製基材であってもよい。なお、本発明では透明とは光透過性を有することも含まれる。なお、本発明におけるマークは、紙等の印刷物に印刷された印でもよく、銅配線でもよく、金属でもよく、無機物でもよく、有機物でもよく、目印となる印であればどのような形態であってもよい。
(Visibility evaluation apparatus for transparent substrate, visibility evaluation method, visibility evaluation program, and recording medium)
FIG. 1 is a schematic diagram of a visibility evaluation apparatus 10 for a transparent substrate according to an embodiment of the present invention. The transparent substrate visibility evaluation apparatus 10 according to the embodiment of the present invention includes a photographing unit 11 that photographs the mark 16 existing under the transparent substrate 17 provided on the stage 15 through the transparent substrate 17. , A computer 12 that performs various processes based on image signals from the imaging means 11, a display means 13 that displays predetermined images and the like based on various signals from the computer 12, a transparent substrate 17 on the stage, and a mark 16 is provided with illumination means 14 for irradiating light. The transparent substrate 17 to be evaluated in the present invention is not particularly limited, and may be a glass or resin substrate as long as it is transparent. In the present invention, the term “transparent” includes light transparency. The mark in the present invention may be a mark printed on a printed matter such as paper, a copper wiring, a metal, an inorganic material, an organic material, or any mark as long as it is a mark. May be.

撮影手段11は、撮像素子、撮像素子の出力が入力される画像処理回路等で構成された画像処理部、画像処理部等を制御する制御回路等で構成された制御部、レンズ等で構成された光学系等を備えている。撮影手段11としては、例えばCCDカメラ等を用いることができる。撮影手段11は、ステージ15上に設けられた透明基材17の下に存在するマーク16を、透明基材17越しに撮影して画像を取得する。   The imaging means 11 includes an imaging device, an image processing unit configured with an image processing circuit to which an output of the imaging device is input, a control unit configured with a control circuit that controls the image processing unit, a lens, and the like. Equipped with an optical system. As the photographing means 11, for example, a CCD camera or the like can be used. The photographing means 11 photographs the mark 16 existing under the transparent base material 17 provided on the stage 15 through the transparent base material 17 and acquires an image.

コンピュータ12は、撮像手段11からの画像信号を基に各種の処理を行う。コンピュータ12は、撮像手段11からの画像信号について、観察されたマーク16が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、観察地点−明度グラフにおいて、マーク16の端部からマーク16がない部分にかけて生じる明度曲線の傾きによって透明基材17の視認性を評価する視認性評価手段とを備えている。   The computer 12 performs various processes based on the image signal from the imaging unit 11. The computer 12 measures the lightness of each observation point along the direction perpendicular to the direction in which the observed mark 16 extends with respect to the image signal from the image pickup means 11, and creates an observation point-lightness graph. A preparation means and a visibility evaluation means for evaluating the visibility of the transparent substrate 17 based on the slope of the brightness curve generated from the end of the mark 16 to the portion without the mark 16 in the observation point-lightness graph.

コンピュータ12は、撮影手段11による撮影によって得られた画像について、明度のばらつきを緩和させるスムージング処理手段をさらに備え、観察地点−明度グラフ作製手段が、スムージング処理後の明度を用いて観察地点−明度グラフを作製してもよい。   The computer 12 further includes smoothing processing means for reducing variations in lightness of the image obtained by photographing by the photographing means 11, and the observation point-lightness graph creating means uses the lightness after the smoothing processing to observe point-lightness. A graph may be created.

また、透明基材17の下に存在するマーク16が、透明基材17の下に敷いた印刷物に印刷されたライン状のマーク16であり、観察地点−明度グラフ作製手段が、撮影によって得られた画像について、観察されたライン状のマーク16が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製してもよい。   Further, the mark 16 present under the transparent base material 17 is a line-shaped mark 16 printed on a printed material laid under the transparent base material 17, and the observation point-lightness graph preparation means is obtained by photographing. For the obtained image, the brightness at each observation point may be measured along the direction perpendicular to the direction in which the observed line-shaped mark 16 extends to create an observation point-lightness graph.

コンピュータ12は、記憶手段としてのメモリを備えている。このメモリには、デジタル化した撮像手段11からの画像、観察地点−明度グラフ作製式、視認性評価式、各段階における評価値等がそれぞれコンピュータ読み取り可能に記録(いわゆる保存)されている。   The computer 12 includes a memory as storage means. In this memory, a digitized image from the image pickup means 11, an observation point-lightness graph preparation formula, a visibility evaluation formula, an evaluation value at each stage, and the like are recorded (so-called stored) so as to be readable by a computer.

表示手段13は、コンピュータ12からの各種信号を基に、観察地点−明度グラフ、視認性評価結果等の所定の画像や数値等を表示する。   The display unit 13 displays a predetermined image such as an observation point-lightness graph and a visibility evaluation result, numerical values, and the like based on various signals from the computer 12.

次に、上記実施形態による透明基材の視認性評価装置10を用いた視認性評価方法について、図2に示すフローチャートを参照して説明する。なお、図2に示すフローチャートは本発明に係る透明基材の視認性評価装置10を用いた視認性評価方法の一実施形態であり、本発明の視認性評価装置10で実現可能な評価方法は、図2のフローチャートで示すものに限られない。特に、スムージング処理は、図2では撮影で得られた画像に対して、観察地点−明度グラフを作成する前に行っているが、これに限らず、例えば、観察地点−明度グラフを作成した後に行ってもよい。
透明基材の視認性評価装置10を用いた視認性評価方法では、まず、透明基材17の下に存在するマーク16を、透明基材17越しに撮影手段11によって撮影する。撮影手段11によって撮影された画像の信号は、コンピュータ12へ送られる。コンピュータ12の観察地点−明度グラフ作製手段は、撮像手段11からの画像信号について、観察されたマーク16が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する。コンピュータ12の視認性評価手段は、当該観察地点−明度グラフにおいて、マーク16の端部からマーク16がない部分にかけて生じる明度曲線の傾きによって透明基材17の視認性を評価する。
Next, a visibility evaluation method using the transparent substrate visibility evaluation apparatus 10 according to the above embodiment will be described with reference to a flowchart shown in FIG. The flowchart shown in FIG. 2 is an embodiment of a visibility evaluation method using the transparent substrate visibility evaluation apparatus 10 according to the present invention, and an evaluation method that can be realized by the visibility evaluation apparatus 10 of the present invention is as follows. The present invention is not limited to that shown in the flowchart of FIG. In particular, the smoothing process is performed before creating the observation point-lightness graph for the image obtained by shooting in FIG. 2, but is not limited to this. For example, after creating the observation point-lightness graph, FIG. You may go.
In the visibility evaluation method using the visibility evaluation apparatus 10 for a transparent substrate, first, the mark 16 existing under the transparent substrate 17 is photographed by the photographing means 11 through the transparent substrate 17. The signal of the image photographed by the photographing means 11 is sent to the computer 12. The observation point-lightness graph creating means of the computer 12 measures the lightness of each observation point along the direction perpendicular to the direction in which the observed mark 16 extends with respect to the image signal from the image pickup means 11, and the observation point-lightness graph. Is made. The visibility evaluation means of the computer 12 evaluates the visibility of the transparent substrate 17 based on the slope of the brightness curve generated from the end of the mark 16 to the portion where the mark 16 is not present in the observation point-lightness graph.

コンピュータ12の視認性評価手段は、マーク16の端部からマーク16がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)として、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、マーク16に最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt2としたときに、下記(1)式で定義されるSvを用いて視認性の評価を行う。
Sv=(ΔB×0.1)/(t1−t2) (1)
従来、製造ラインで実際に作製しなければ、位置合わせ等のために設けられたマークを透明基材越しに視認することが可能か否かを判断できず、製造コストの点で問題があった。しかしながら、本発明に係る透明基材の視認性評価装置10を用いれば、上記構成により、実験室のみでも容易に効率良く透明基材17の視認性を正確に評価することが可能となる。なお、上述した観察位置-明度グラフにおいて、横軸は位置情報(ピクセル×0.1)、縦軸は明度(階調)の値を示す。
The visibility evaluation means of the computer 12 uses the difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark 16 to the portion without the mark 16 as ΔB (ΔB = Bt−Bb). -In the lightness graph, among the intersections of the lightness curve and Bt, the value indicating the position of the intersection closest to the mark 16 (the observation point-the value on the horizontal axis of the lightness graph) is t1, and the intersection of the lightness curve and Bt A value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1ΔB in the depth range from 0 to Bt to 0.1ΔB (value on the horizontal axis of the observation point-lightness graph) When t2 is t2, visibility is evaluated using Sv defined by the following equation (1).
Sv = (ΔB × 0.1) / (t1-t2) (1)
Conventionally, unless actually produced on the production line, it was impossible to determine whether or not the marks provided for alignment etc. could be seen through the transparent base material, and there was a problem in terms of production cost . However, if the visibility evaluation apparatus 10 of the transparent base material which concerns on this invention is used, it will become possible to evaluate the visibility of the transparent base material 17 easily and efficiently easily only by a laboratory with the said structure. In the observation position-lightness graph described above, the horizontal axis indicates position information (pixel × 0.1), and the vertical axis indicates the value of brightness (gradation).

また、コンピュータ12の視認性評価手段は、マーク16の端部からマーク16がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、マーク16に最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて視認性の評価を行う。
このような構成によれば、実験室のみでも容易に効率良く透明基材17の視認性をより正確に評価することが可能となる。
The visibility evaluation means of the computer 12 also observes the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark 16 to the portion where the mark 16 is not present, and observation. In the point-lightness graph, the value indicating the position of the intersection closest to the mark 16 among the intersections of the lightness curve and Bt (the value on the horizontal axis of the observation point-lightness graph) is t1, and the lightness curve and Bt A value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB in the depth range from the intersection to Bt with respect to 0.1 ΔB (value on the horizontal axis of the observation point-lightness graph) ) Is t2, and Sv defined by the following equation (1):
Sv = (ΔB × 0.1) / (t1-t2) (1)
The visibility is evaluated using.
According to such a configuration, the visibility of the transparent base material 17 can be more accurately evaluated easily and efficiently even in the laboratory alone.

コンピュータ12は、撮影手段11による撮影によって得られた画像について、明度のばらつきを緩和させるスムージング処理手段をさらに備え、観察地点−明度グラフ作製手段が、スムージング処理後の明度を用いて観察地点−明度グラフを作製するのが好ましい。撮影手段11による撮影によって得られた画像から得られる明度のノイズを含んだデータ(原波形)に対して、スムージング処理手段によるスムージング処理を行うことで、当該明度のばらつきが緩和するため、透明基材17の視認性をより正確に評価することが可能となる。スムージング処理手段によるスムージング処理としては、種々ある平滑化プログラムにより行うことができ、例えば、2・3次多項式適合法によるスムージング処理、フーリエ変換によるスムージング処理、或いは、移動平均法によるスムージング処理等を用いることができる。なお、スムージング処理は、公知の種々ある平滑化プログラムを用いて行ってもよい。また、明度データのスムージング処理はマーク16の有る部分、無い部分の両方について行ってもよく、マーク16の有る部分について行ってもよく、マーク16の無い部分に行ってもよく、部分的に行ってもよい。
なお、撮影手段11による撮影によって得られた画像について、当該明度のスムージング処理を行う前に、あらかじめ当該明度のノイズを含んだデータ(原波形)の観察地点−明度グラフ作製を行ってもよい。
The computer 12 further includes smoothing processing means for reducing variations in lightness of the image obtained by photographing by the photographing means 11, and the observation point-lightness graph creating means uses the lightness after the smoothing processing to observe point-lightness. It is preferable to create a graph. Since smoothing processing by the smoothing processing means is performed on the data (original waveform) including lightness noise obtained from the image obtained by the photographing by the photographing means 11, the variation in the lightness is reduced. The visibility of the material 17 can be more accurately evaluated. The smoothing processing by the smoothing processing means can be performed by various smoothing programs. For example, smoothing processing by a second-third order polynomial fitting method, smoothing processing by Fourier transform, or smoothing processing by a moving average method is used. be able to. The smoothing process may be performed using various known smoothing programs. Further, the smoothing process of the brightness data may be performed for both the portion with the mark 16 and the portion without the mark 16, may be performed for the portion with the mark 16, may be performed on the portion without the mark 16, or may be performed partially. May be.
Note that an image obtained by photographing by the photographing unit 11 may be prepared in advance for an observation point-lightness graph of data (original waveform) including the lightness noise before performing the lightness smoothing process.

また、視認性評価手段による視認性評価において、上記のSv値のみに基づいて視認性を評価する場合は、マーク16の端部からマーク16がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)とし、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、マーク16に最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt2としたときに、Svが3.5以上となる場合を良好と判定してもよい。
さらに、視認性評価手段による視認性評価において、上記のSv値及びΔB値に基づいて視認性を評価する場合は、マーク16の端部からマーク16がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であり、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、マーク16に最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt2としたときに、Svが3.5以上となる場合を良好と判定してもよい。
Svは、3.9以上、好ましくは4.5以上、好ましくは5.0以上、より好ましくは5.5以上となる場合を視認性良好と判定するのがより好ましい。また、Svの上限は特に限定する必要はないが、例えば70以下、30以下、15以下、10以下である。
ΔB(ΔB=Bt−Bb)は、50以上であるのが好ましく、60以上であるのがより好ましい。ΔBの上限は特に限定する必要は無いが、例えば100以下、あるいは80以下、あるいは70以下である。このような評価によれば、透明基材17の視認性を効率良く、更に正確に評価することが可能となる。
Further, in the visibility evaluation by the visibility evaluation means, when the visibility is evaluated based only on the above Sv value, the top average value Bt and the bottom of the brightness curve generated from the end of the mark 16 to the portion without the mark 16 A difference from the average value Bb is ΔB (ΔB = Bt−Bb), and a value indicating the position of the intersection closest to the mark among the intersections of the brightness curve and Bt in the observation point-brightness graph (the observation point-brightness). The value on the horizontal axis of the graph is t1, and in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt, the intersection of the lightness curve and 0.1ΔB is closest to the mark 16 When the value indicating the position of the intersection (the value on the horizontal axis of the observation point-lightness graph) is t2, it may be determined that the case where Sv is 3.5 or more is good.
Further, when the visibility is evaluated based on the above Sv value and ΔB value in the visibility evaluation by the visibility evaluation means, the top average value Bt of the brightness curve generated from the end portion of the mark 16 to the portion where the mark 16 is not present. The difference ΔB (ΔB = Bt−Bb) between the average value and the bottom average value Bb is 40 or more, and in the observation point-lightness graph, a value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt ( In the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt, where t1 is the value of the observation point—the horizontal axis of the lightness graph, among the intersections of the lightness curve and 0.1ΔB, When the value indicating the position of the intersection closest to the mark 16 (value on the horizontal axis of the observation point-lightness graph) is t2, it may be determined that the case where Sv is 3.5 or more is good.
When Sv is 3.9 or more, preferably 4.5 or more, preferably 5.0 or more, more preferably 5.5 or more, it is more preferable to determine that the visibility is good. The upper limit of Sv is not particularly limited, but is, for example, 70 or less, 30 or less, 15 or less, or 10 or less.
ΔB (ΔB = Bt−Bb) is preferably 50 or more, and more preferably 60 or more. The upper limit of ΔB is not particularly limited, but is, for example, 100 or less, 80 or less, or 70 or less. According to such an evaluation, the visibility of the transparent substrate 17 can be evaluated efficiently and more accurately.

ここで、「明度曲線のトップ平均値Bt」、「明度曲線のボトム平均値Bb」、及び、後述の「t1」、「t2」、「Sv」について、図を用いて説明する。また、「明度曲線のボトム平均値Bb」については、マークの幅を大きくした(例えばマークの幅は0.7mm以上、例えば0.8mm以上、例えば5mm以下、4mm以下、例えば約1.3mmとすることができる。)としたものと、マークの幅を小さくした(例えばマークの幅は0.01mm以上、0.05mm以上、0.1mm以上、0.8mm以下、0.7mm以下、0.6mm以下、例えば0.3mmとすることができる。)としたものとでは、規定が異なっているため、それぞれの場合について説明する。
図3に、マークの幅を大きくした(約1.3mmとした)場合のBt及びBbを定義する模式図を示す。図3の「マーク」は、上記CCDカメラによる撮影で得られた画像に観察された印刷物のライン状のマーク(幅約1.3mm)を示している。当該マークに重なるように描かれた曲線が上記観察地点−明度グラフにおいて、マークの端部からマークがない部分にかけて生じる明度曲線を示している。図3に示すように、「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から100μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を示す。「明度曲線のボトム平均値Bb」は、マークの端部位置から100μm内側に入った位置から100μm間隔で11箇所測定したときの明度の平均値を示す。なお、明度の平均値を測定するための観察地点の間隔は、明度曲線の形に応じて適宜1μm〜500μmの範囲で採用することができる。観察地点の偏りを避けるため、観察地点の間隔は略等間隔であるか、等間隔であることが好ましい。なお、観察地点の間隔は略等間隔でなくても良く、等間隔でなくても良い。また、測定間隔が広いほど、特定の観察地点の影響を排除することができ、観察地点による誤差を軽減できると考える。
図4(a)及び図4(b)に、マークの幅を約0.3mmとした場合のBt及びBbを定義する模式図を示す。マークの幅を約0.3mmとした場合、図4(a)に示すようにV型の明度曲線となる場合と、図4(b)に示すように約1.3mmの場合と同様に底部を有する明度曲線となる場合がある。いずれの場合も「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から50μm離れた位置から、マークの幅を約1.3mmとした場合と同様に、30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を示す。一方、「明度曲線のボトム平均値Bb」は、明度曲線が図4(a)に示すようにV型となる場合は、このV字の谷の先端部における明度の最低値を示し、図4(b)の底部を有する場合は、約0.3mmの中心部の値を示す。なお、明度の平均値を測定するための観察地点の間隔は、明度曲線の形に応じて適宜1μm〜500μmの範囲で採用することができる。観察地点の偏りを避けるため、観察地点の間隔は略等間隔であるか、等間隔であることが好ましい。なお、観察地点の間隔は略等間隔でなくてもよく、等間隔でなくてもよい。また、測定間隔が広いほど、特定の観察地点の影響を排除することができ、観測地点による誤差を軽減できると考える。
図5に、t1及びt2及びSvを定義する模式図を示す。「t1(ピクセル×0.1)」は、明度曲線とBtとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。「t2(ピクセル×0.1)」は、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。このとき、t1およびt2を結ぶ線で示される明度曲線の傾きについては、y軸方向に0.1ΔB、x軸方向に(t1−t2)で計算されるSv(階調/ピクセル×0.1)で定義される。なお、横軸の1ピクセルは10μm長さに相当する。また、Svは、マークの両側を測定し、小さい値を採用する。さらに、明度曲線の形状が不安定で上記「明度曲線とBtとの交点」が複数存在する場合は、最もマークに近い交点を採用する。
撮影手段11で撮影した上記画像において、マークが付されていない部分では高い明度となるが、マーク端部に到達したとたんに明度が低下する。透明基材17の視認性が良好であれば、このような明度の低下状態が明確に観察される。一方、透明基材17の視認性が不良であれば、明度がマーク端部付近で一気に「高」から「低」へ急に下がるのではなく、低下の状態が緩やかとなり、明度の低下状態が不明確となってしまう。
本発明はこのような知見に基づき、透明基材17に対し、例えばマークを付した印刷物を下に置き、透明基材17越しに撮影手段11で撮影した上記マーク部分の画像から得られる観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線の傾きを制御している。より詳細には、明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)を40以上とし、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt2としたときに、上記(1)式で定義されるSvを評価することで、正確な透明基板の視認性評価を可能としている。Svは、3.5以上となる場合を視認性良好と判定するのが好ましい。Svは、3.9以上、好ましくは4.5以上、好ましくは5.0以上、より好ましくは5.5以上となる場合を視認性良好と判定するのがより好ましい。また、ΔBは好ましくは50以上、好ましくは60以上である。ΔBの上限は特に限定する必要は無いが、例えば100以下、あるいは80以下、あるいは70以下である。また、Svの上限は特に限定する必要はないが、例えば70以下、30以下、15以下、10以下である。このような構成によれば、マークとマークで無い部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。
Here, “top average value Bt of the lightness curve”, “bottom average value Bb of the lightness curve”, and “t1”, “t2”, and “Sv” described later will be described with reference to the drawings. For the “bottom average value Bb of the lightness curve”, the width of the mark is increased (for example, the width of the mark is 0.7 mm or more, for example, 0.8 mm or more, for example, 5 mm or less, 4 mm or less, for example, about 1.3 mm). And the mark width is reduced (for example, the mark width is 0.01 mm or more, 0.05 mm or more, 0.1 mm or more, 0.8 mm or less, 0.7 mm or less, 0.00 mm or less). Since the definition is different from that of 6 mm or less, for example, 0.3 mm, each case will be described.
FIG. 3 is a schematic diagram for defining Bt and Bb when the mark width is increased (about 1.3 mm). The “mark” in FIG. 3 indicates a line-like mark (width of about 1.3 mm) of the printed matter observed in the image obtained by photographing with the CCD camera. A curve drawn so as to overlap the mark indicates a brightness curve generated from the end of the mark to a portion without the mark in the observation point-lightness graph. As shown in FIG. 3, the “top average value Bt of the brightness curve” is the average of the brightness when measured at 5 locations (total 10 locations on both sides) at 30 μm intervals from the positions 100 μm away from the end positions on both sides of the mark. Indicates the value. The “bottom average value Bb of the lightness curve” indicates an average value of lightness when 11 positions are measured at intervals of 100 μm from a position inside 100 μm from the end position of the mark. Note that the interval between observation points for measuring the average value of the brightness can be appropriately selected in the range of 1 μm to 500 μm depending on the shape of the brightness curve. In order to avoid the bias of the observation points, it is preferable that the intervals between the observation points are substantially equal or equal. Note that the intervals between the observation points do not have to be substantially equal and may not be equal. Further, it is considered that the wider the measurement interval, the more the influence of a specific observation point can be eliminated and the error due to the observation point can be reduced.
FIGS. 4A and 4B are schematic diagrams for defining Bt and Bb when the mark width is about 0.3 mm. When the width of the mark is about 0.3 mm, the bottom is the same as in the case of a V-shaped brightness curve as shown in FIG. 4A and the case of about 1.3 mm as shown in FIG. May result in a lightness curve having In any case, the “top average value Bt of the lightness curve” is 5 locations at intervals of 30 μm from the positions 50 μm away from the end positions on both sides of the mark, as in the case where the mark width is about 1.3 mm ( The average value of the brightness when measured at 10 locations on both sides). On the other hand, the “bottom average value Bb of the lightness curve” indicates the minimum value of lightness at the tip of the V-shaped valley when the lightness curve is V-shaped as shown in FIG. When it has the bottom of (b), the value of the center part of about 0.3 mm is shown. Note that the interval between observation points for measuring the average value of the brightness can be appropriately selected in the range of 1 μm to 500 μm depending on the shape of the brightness curve. In order to avoid the bias of the observation points, it is preferable that the intervals between the observation points are substantially equal or equal. Note that the intervals between the observation points may not be substantially equal, and may not be equal. Further, it is considered that the wider the measurement interval, the more the influence of a specific observation point can be eliminated and the error due to the observation point can be reduced.
FIG. 5 is a schematic diagram for defining t1, t2, and Sv. “T1 (pixel × 0.1)” is a value indicating an intersection point closest to the line-shaped mark among intersection points of the lightness curve and Bt and a position of the intersection point (value on the horizontal axis of the observation point-lightness graph) ). “T2 (pixel × 0.1)” is the line-shaped mark among the intersections of the lightness curve and 0.1ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt. And the value (the value on the horizontal axis of the observation point-brightness graph) indicating the position of the intersection closest to. At this time, regarding the slope of the brightness curve indicated by the line connecting t1 and t2, Sv (gradation / pixel × 0.1) calculated by 0.1 ΔB in the y-axis direction and (t1−t2) in the x-axis direction. ). One pixel on the horizontal axis corresponds to a length of 10 μm. Further, Sv is measured on both sides of the mark, and a small value is adopted. Further, when the shape of the lightness curve is unstable and there are a plurality of the “intersections between the lightness curve and Bt”, the intersection closest to the mark is adopted.
In the image taken by the photographing means 11, the lightness is high in a portion where no mark is attached, but the lightness is lowered as soon as the mark end is reached. If the visibility of the transparent substrate 17 is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility of the transparent substrate 17 is poor, the lightness does not suddenly drop from “high” to “low” in the vicinity of the end of the mark, but the state of decline is moderate and the state of lightness decline is reduced. It will be unclear.
Based on such knowledge, the present invention places an observation mark obtained from the image of the mark portion taken by the photographing means 11 through the transparent base material 17, for example, with a printed matter with a mark placed under the transparent base material 17. -Controls the slope of the brightness curve near the edge of the mark drawn in the brightness graph. More specifically, the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the lightness curve is set to 40 or more, and in the observation point-lightness graph, among the intersections of the lightness curve and Bt, Depth range from the intersection of the lightness curve and Bt to 0.1 ΔB on the basis of Bt, where t1 is the value indicating the position of the intersection closest to the line mark (value on the horizontal axis of the observation point-lightness graph) , When the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB (the value of the observation point—the horizontal axis of the lightness graph) is t2, By evaluating the defined Sv, it is possible to accurately evaluate the visibility of the transparent substrate. It is preferable to determine that the visibility is good when Sv is 3.5 or more. When Sv is 3.9 or more, preferably 4.5 or more, preferably 5.0 or more, more preferably 5.5 or more, it is more preferable to determine that the visibility is good. ΔB is preferably 50 or more, and preferably 60 or more. The upper limit of ΔB is not particularly limited, but is, for example, 100 or less, 80 or less, or 70 or less. The upper limit of Sv is not particularly limited, but is, for example, 70 or less, 30 or less, 15 or less, or 10 or less. According to such a configuration, the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately.

また、上述のような処理手順をプログラムとしてコンピュータに実行させることで、透明基材の視認性を効率良く正確に評価することができる。   Moreover, the visibility of a transparent base material can be evaluated efficiently and correctly by making a computer perform the above processing procedures as a program.

さらに、このプログラムを光学、あるいは磁気ディスクなどの記録媒体にコンピュータ読み取り可能に記録させて用いることにより、他のコンピュータでもこのプログラムを実現でき、上述の処理手順と同様の作用効果を得ることができる。   Furthermore, by using this program recorded on a recording medium such as an optical or magnetic disk so that it can be read by a computer, this program can be realized on other computers, and the same effects as the above-described processing procedure can be obtained. .

(積層体の位置決め装置、積層体の位置決め方法、積層体の位置決めプログラム及び記録媒体)
図6は、本発明の実施形態に係る積層体の位置決め装置20の模式図である。本発明の実施形態に係る積層体の位置決め装置20は、ステージ25上に設けられた金属と透明基材との積層体27中に存在するマーク26を、透明基材越しに撮影する撮影手段21と、撮像手段21からの画像信号を基に各種の処理を行うコンピュータ22と、コンピュータ22からの各種信号を基に所定の画像等を表示する表示手段23と、ステージ上の積層体27に光を照射する照明手段24とを備えている。以下、透明基材として樹脂を例に挙げて説明する。
(Laminate Positioning Device, Laminate Positioning Method, Laminate Positioning Program, and Recording Medium)
FIG. 6 is a schematic diagram of a positioning device 20 for a laminate according to an embodiment of the present invention. The laminated body positioning apparatus 20 according to the embodiment of the present invention has a photographing means 21 for photographing a mark 26 present in a laminated body 27 of a metal and a transparent base material provided on a stage 25 through a transparent base material. And a computer 22 that performs various processes based on image signals from the imaging means 21, a display means 23 that displays predetermined images and the like based on various signals from the computer 22, and a light on the laminate 27 on the stage. Illumination means 24 for irradiating the light. Hereinafter, a resin will be described as an example of the transparent substrate.

金属と樹脂との積層体27としては、樹脂に金属を貼り合わせて構成されているものであれば、特に形態は限定されない。本発明における金属と樹脂との積層体27の具体例としては、本体基板と付属の回路基板と、それらを電気的に接続するために用いられる、ポリイミド等の樹脂の少なくとも一方の表面に銅等の金属配線が形成されたフレキシブルプリント基板とで構成される電子機器において、フレキシブルプリント基板を正確に位置決めして当該本体基板及び付属の回路基板の配線端部に圧着させて作製される積層体が挙げられる。すなわち、この場合であれば、積層体27は、フレキシブルプリント基板及び本体基板の配線端部が圧着により貼り合わせられた積層体、或いは、フレキシブルプリント基板及び回路基板の配線端部が圧着により貼り合わせられた積層体となる。積層体27は、当該金属配線の一部や別途材料で形成したマークを有している。マークの位置については、当該積層体27を構成する樹脂越しにCCDカメラ等の撮影手段21で撮影可能な位置であれば特に限定されない。   The form of the laminate 27 of metal and resin is not particularly limited as long as it is configured by bonding a metal to a resin. As a specific example of the laminate 27 of metal and resin in the present invention, copper or the like is used on at least one surface of a resin such as polyimide, which is used to electrically connect the main body substrate and the attached circuit board. In an electronic device composed of a flexible printed circuit board on which a metal wiring is formed, a laminate is produced by accurately positioning the flexible printed circuit board and crimping the flexible printed circuit board to the wiring ends of the main circuit board and the attached circuit board. Can be mentioned. That is, in this case, the laminate 27 is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding. The resulting laminate is obtained. The laminate 27 has a part of the metal wiring and a mark formed of a separate material. The position of the mark is not particularly limited as long as it can be photographed by the photographing means 21 such as a CCD camera through the resin constituting the laminated body 27.

撮影手段21は、撮像素子、撮像素子の出力が入力される画像処理回路等で構成された画像処理部、画像処理部等を制御する制御回路等で構成された制御部、レンズ等で構成された光学系等を備えている。撮影手段21としては、例えばCCDカメラ等を用いることができる。撮影手段21は、ステージ25上に設けられた積層体27中に存在するマーク26を、積層体の樹脂越しに撮影して画像を取得する。   The photographing means 21 includes an imaging device, an image processing unit configured with an image processing circuit to which an output of the imaging device is input, a control unit configured with a control circuit that controls the image processing unit, a lens, and the like. Equipped with an optical system. As the photographing means 21, for example, a CCD camera or the like can be used. The photographing means 21 obtains an image by photographing the mark 26 present in the laminated body 27 provided on the stage 25 through the resin of the laminated body.

コンピュータ12は、撮像手段21からの画像信号を基に各種の処理を行う。コンピュータ22は、撮像手段21からの画像信号について、観察されたマーク26が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、観察地点−明度グラフにおいて、マーク26の端部からマーク26がない部分にかけて生じる明度曲線の傾きによって積層体27の位置を決定する位置決め手段とを備えている。   The computer 12 performs various processes based on the image signal from the imaging means 21. The computer 22 measures the lightness of each observation point along the direction perpendicular to the direction in which the observed mark 26 extends with respect to the image signal from the image pickup means 21, and creates an observation point-lightness graph. Production means, and positioning means for determining the position of the laminated body 27 by the inclination of the brightness curve generated from the end of the mark 26 to the portion without the mark 26 in the observation point-lightness graph.

コンピュータ22は、撮影手段21による撮影によって得られた画像について、明度のばらつきを緩和させるスムージング処理手段をさらに備え、観察地点−明度グラフ作製手段が、スムージング処理後の明度を用いて観察地点−明度グラフを作製してもよい。   The computer 22 further includes smoothing processing means for reducing variations in lightness of an image obtained by photographing by the photographing means 21, and the observation point-lightness graph creating means uses the lightness after the smoothing processing to observe point-lightness. A graph may be created.

コンピュータ22は、記憶手段としてのメモリを備えている。このメモリには、デジタル化した撮像手段21からの画像、観察地点−明度グラフ作製式、位置決め式、各段階における評価値等がそれぞれコンピュータ読み取り可能に記録(いわゆる保存)されている。   The computer 22 includes a memory as storage means. In this memory, the digitized image from the imaging means 21, the observation point-brightness graph preparation formula, the positioning formula, the evaluation value at each stage, and the like are recorded (so-called stored) so as to be readable by a computer.

表示手段23は、コンピュータ22からの各種信号を基に、観察地点−明度グラフ、位置評価結果等の所定の画像や数値等を表示する。   The display unit 23 displays a predetermined image such as an observation point-brightness graph, a position evaluation result, a numerical value, and the like based on various signals from the computer 22.

次に、上記実施形態による積層体の位置決め装置20を用いた位置決め方法について、図7に示すフローチャートを参照して説明する。なお、図7に示すフローチャートは本発明に係る積層体の位置決め装置20を用いた位置決め方法の一実施形態であり、本発明の位置決め装置20で実現可能な評価方法は、図7のフローチャートで示すものに限られない。特に、スムージング処理は、図7では撮影で得られた画像に対して、観察地点−明度グラフを作成する前に行っているが、これに限らず、例えば、観察地点−明度グラフを作成した後に行ってもよい。
積層体の位置決め装置20を用いた位置決め方法は、ステージ25上に設けられた金属と樹脂との積層体27中に存在するマーク26を、撮影手段21によって樹脂越しに撮影する。撮影手段21によって撮影された画像の信号は、コンピュータ22へ送られる。コンピュータ22の観察地点−明度グラフ作製手段は、撮像手段21からの画像信号について、観察されたマーク26が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する。コンピュータ22の位置決め手段は、当該観察地点−明度グラフにおいて、マーク26の端部からマーク26がない部分にかけて生じる明度曲線の傾きによって積層体27の位置を評価する。
Next, a positioning method using the laminated body positioning apparatus 20 according to the above embodiment will be described with reference to a flowchart shown in FIG. 7 is an embodiment of a positioning method using the laminate positioning device 20 according to the present invention, and an evaluation method that can be realized by the positioning device 20 of the present invention is shown in the flowchart of FIG. It is not limited to things. In particular, the smoothing process is performed before creating the observation point-lightness graph for the image obtained by shooting in FIG. 7, but the present invention is not limited to this. For example, after the observation point-lightness graph is created, smoothing processing is performed. You may go.
In the positioning method using the laminated body positioning device 20, the image 26 is photographed by the photographing means 21 over the mark 26 existing in the laminated body 27 of metal and resin provided on the stage 25. The signal of the image photographed by the photographing means 21 is sent to the computer 22. The observation point-lightness graph creating means of the computer 22 measures the lightness of each observation point along the direction perpendicular to the direction in which the observed mark 26 extends with respect to the image signal from the image pickup means 21, and the observation point-lightness graph. Is made. The positioning means of the computer 22 evaluates the position of the stacked body 27 based on the slope of the brightness curve generated from the end of the mark 26 to the portion without the mark 26 in the observation point-lightness graph.

コンピュータ22の位置決め手段は、マーク26の端部からマーク26がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)として、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、マーク26に最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt2としたときに、下記(1)式で定義されるSvを用いてマーク26の位置を検出して、検出されたマーク26の位置に基づき金属と樹脂との積層体27の位置決めをする。
Sv=(ΔB×0.1)/(t1−t2) (1)
また、コンピュータ22の位置決め手段は、マーク26の端部からマーク26がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、マーク26に最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いてマーク26の位置を検出して、検出されたマーク26の位置に基づき金属と樹脂との積層体27の位置決めをしてもよい。
Bt、Bb、t1及びt2の定義は、上記の透明基材の視認性評価で説明した通りであり、このような位置決め方法によれば、マーク26とマーク26で無い部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。例えば、Sv、ΔBの値が所定の値以上の場合は、マーク26が当該位置に存在するという判定を、位置を検出する装置が行うことが出来る。具体的には、例えば、Sv値のみで判定を行う場合はSvが3.5以上のとき、或いは、Sv値とΔB値とで判定を行う場合はSvが3.5以上かつΔBが40以上のときにマークが当該位置に存在するという判定を、位置を検出する装置が行うことが出来る。
The positioning means of the computer 22 sets the difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the mark 26 to the portion without the mark 26 as ΔB (ΔB = Bt−Bb), and the observation point−lightness. In the graph, the value indicating the position of the intersection closest to the mark 26 among the intersections of the lightness curve and Bt (the observation point-the value on the horizontal axis of the lightness graph) is t1, and Bt is determined from the intersection of the lightness curve and Bt. In the depth range up to 0.1ΔB, a value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1ΔB (the value of the observation point-lightness graph on the horizontal axis) is t2. In this case, the position of the mark 26 is detected using Sv defined by the following equation (1), and the laminate 27 of the metal and the resin is positioned based on the detected position of the mark 26.
Sv = (ΔB × 0.1) / (t1-t2) (1)
Further, the positioning means of the computer 22 determines the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark 26 to the portion where the mark 26 is not present, and the observation point − In the lightness graph, the value indicating the position of the intersection closest to the mark 26 among the intersections of the lightness curve and Bt (the observation point—the value on the horizontal axis of the lightness graph) is t1, and from the intersection of the lightness curve and Bt. In the depth range up to 0.1ΔB with reference to Bt, a value indicating the position of the intersection closest to the mark among the intersections of the brightness curve and 0.1ΔB (value on the horizontal axis of the observation point-lightness graph) When t2, Sv defined by the following equation (1):
Sv = (ΔB × 0.1) / (t1-t2) (1)
May be used to detect the position of the mark 26 and position the laminate 27 of metal and resin based on the detected position of the mark 26.
The definitions of Bt, Bb, t1, and t2 are as described in the visibility evaluation of the transparent substrate, and according to such a positioning method, the boundary between the mark 26 and the portion that is not the mark 26 is clearer. Therefore, positioning accuracy is improved, errors due to mark image recognition are reduced, and more accurate alignment can be performed. For example, when the values of Sv and ΔB are greater than or equal to predetermined values, the position detecting device can determine that the mark 26 exists at the position. Specifically, for example, when the determination is made only with the Sv value, when Sv is 3.5 or more, or when the determination is made with the Sv value and the ΔB value, Sv is 3.5 or more and ΔB is 40 or more. At this time, the position detecting device can determine that the mark is present at the position.

コンピュータ22は、撮影手段21による撮影によって得られた画像について、明度のばらつきを緩和させるスムージング処理手段をさらに備え、観察地点−明度グラフ作製手段が、スムージング処理後の明度を用いて観察地点−明度グラフを作製するのが好ましい。撮影手段21による撮影によって得られた画像から得られる明度のノイズを含んだデータ(原波形)に対して、スムージング処理手段によるスムージング処理を行うことで、当該明度のばらつきが緩和するため、積層体27の位置をより正確に評価することが可能となる。スムージング処理手段によるスムージング処理としては、種々ある平滑化プログラムにより行うことができ、例えば、2・3次多項式適合法によるスムージング処理、フーリエ変換によるスムージング処理、或いは、移動平均法によるスムージング処理等を用いることができる。
なお、撮影手段21による撮影によって得られた画像について、当該明度のスムージング処理を行う前に、あらかじめ当該明度のノイズを含んだデータ(原波形)の観察地点−明度グラフ作製を行ってもよい。
The computer 22 further includes smoothing processing means for reducing variations in lightness of an image obtained by photographing by the photographing means 21, and the observation point-lightness graph creating means uses the lightness after the smoothing processing to observe point-lightness. It is preferable to create a graph. By performing smoothing processing by the smoothing processing means on the data (original waveform) including lightness noise obtained from the image obtained by photographing by the photographing means 21, the brightness variation is reduced, so that the laminate It becomes possible to evaluate the position of 27 more correctly. The smoothing processing by the smoothing processing means can be performed by various smoothing programs. For example, smoothing processing by a second-third order polynomial fitting method, smoothing processing by Fourier transform, or smoothing processing by a moving average method is used. be able to.
Note that an image obtained by photographing by the photographing unit 21 may be prepared in advance for an observation point-lightness graph of data (original waveform) including noise of the lightness before performing the lightness smoothing process.

また、上述のような処理手順をプログラムとしてコンピュータに実行させることで、積層体の位置決めを効率良く正確に評価することができる。   Moreover, the positioning of a laminated body can be evaluated efficiently and correctly by making a computer perform the above processing procedures as a program.

さらに、このプログラムを光学、あるいは磁気ディスクなどの記録媒体にコンピュータ読み取り可能に記録させて用いることにより、他のコンピュータでもこのプログラムを実現でき、上述の処理手順と同様の作用効果を得ることができる。
本発明の実施の形態に係るプログラムや位置決め装置を用いてプリント配線板の位置決めを行うと、プリント配線板の位置決めをより正確に行うことが出来る。そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際や一つのプリント配線板に部品を装着する際に、接続不良が低減し、歩留まりが向上すると考えられる。なお、このプログラムを用いてプリント配線板の位置決めを行うことは、半田付けや異方性導電フィルム(Anisotropic Conductive Film、ACF)を介した接続、異方性導電ペースト(Anisotropic Conductive Paste、ACP)を介した接続または導電性を有する接着剤を介しての接続など公知の接続方法において一つのプリント配線板ともう一つのプリント配線板を接続する際や一つのプリント配線板に部品を装着する際にも適用することができる。
なお、本発明の実施の形態に係る積層体の位置決め装置20は、位置を決定した積層体(銅と樹脂の積層体やプリント配線板を含む)を移動させて積層体の位置合わせを行う位置合わせ手段(不図示)をさらに備えてもよい。位置合わせ手段としては、例えばベルトコンベヤーやチェーンコンベヤーなどのコンベヤーを用いてもよく、アーム機構を備えた移動装置を用いてもよく、気体を用いて積層体を浮遊させることで移動させる移動装置や移動手段を用いてもよく、略円筒形などの物を回転させて積層体を移動させる移動装置や移動手段(コロやベアリングなどを含む)、油圧を動力源とした移動装置や移動手段、空気圧を動力源とした移動装置や移動手段、モーターを動力源とした移動装置や移動手段、ガントリ移動型リニアガイドステージ、ガントリ移動型エアガイドステージ、スタック型リニアガイドステージ、リニアモーター駆動ステージなどのステージを有する移動装置や移動手段等を用いてもよい。また、公知の移動手段を用いてもよい。
なお、本発明の実施の形態に係る位置決め装置20は表面実装機やチップマウンターを有していてもよいし、表面実装機やチップマウンターに本発明の実施の形態に係る位置決め装置を設置してもよい。
また、本発明の実施の形態に係る位置決め装置は、前記金属と透明基材との積層体が、透明基材の板及び前記透明基材の板の上に設けられた回路を有するプリント配線板であってもよい。また、その場合、前記マークが前記回路であってもよい。
Furthermore, by using this program recorded on a recording medium such as an optical or magnetic disk so that it can be read by a computer, this program can be realized on other computers, and the same effects as the above-described processing procedure can be obtained. .
When the printed wiring board is positioned using the program or positioning device according to the embodiment of the present invention, the printed wiring board can be positioned more accurately. Therefore, when one printed wiring board is connected to another printed wiring board or when a component is mounted on one printed wiring board, it is considered that the connection failure is reduced and the yield is improved. It should be noted that positioning of the printed wiring board using this program includes soldering, connection through an anisotropic conductive film (ACF), anisotropic conductive paste (ACP), and anisotropic conductive paste (ACP). When connecting one printed wiring board and another printed wiring board or mounting a component on one printed wiring board in a known connection method such as connection via an adhesive or conductive adhesive Can also be applied.
The laminated body positioning device 20 according to the embodiment of the present invention moves the laminated body (including a laminated body of copper and resin and a printed wiring board) to determine the position of the laminated body. A matching means (not shown) may further be provided. As the alignment means, for example, a conveyor such as a belt conveyor or a chain conveyor may be used, a moving device provided with an arm mechanism may be used, a moving device that moves the laminate by floating using gas, Moving means may be used, moving devices and moving means (including rollers and bearings) that move the laminate by rotating an object such as a substantially cylindrical shape, moving devices and moving means that use hydraulic power as a power source, air pressure Stages such as moving devices and moving means powered by motors, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. A moving device, a moving means, or the like may be used. Moreover, you may use a well-known moving means.
The positioning device 20 according to the embodiment of the present invention may include a surface mounter or a chip mounter, or the positioning device according to the embodiment of the present invention is installed in the surface mounter or the chip mounter. Also good.
In the positioning device according to the embodiment of the present invention, the laminate of the metal and the transparent substrate has a transparent substrate plate and a circuit provided on the transparent substrate plate. It may be. In that case, the mark may be the circuit.

本発明の位置決め装置により、プリント配線板の位置決めを行い、位置決めされたプリント配線板に部品を装着することでプリント配線板を製造してもよい。さらに、本発明のプリント配線板の位置決め装置により、プリント配線板の位置決めを行い、位置決めされたプリント配線板の位置合わせを行い、位置合わせされたプリント配線板に部品を装着することでプリント配線板を製造してもよい。これにより、電子部品等の部品をプリント配線板の正確な位置に装着することができる。
また、本発明の位置決め装置により、プリント配線板の位置決めを行い、位置決めされたプリント配線板にもう一つのプリント配線板を接続することでプリント配線板を製造してもよい。さらに、本発明のプリント配線板の位置決め装置により、プリント配線板の位置決めを行い、位置決めされたプリント配線板の位置合わせを行い、位置合わせされたプリント配線板にもう一つのプリント配線板を接続することでプリント配線板を製造してもよい。これにより、別のプリント配線板を接続対象のプリント配線板における正確な位置に接続することができる。ここで、「接続」とは、電気的な接続であってもよく(例えば半田付けなど)、電気的な接続ではない、接着材等による接続であってもよい。
なお、本発明において、「プリント配線板」には部品が装着されたプリント配線板およびプリント基板も含まれることとする。
The printed wiring board may be manufactured by positioning the printed wiring board with the positioning device of the present invention and mounting components on the positioned printed wiring board. Further, the printed wiring board positioning device of the present invention positions the printed wiring board, aligns the positioned printed wiring board, and mounts the components on the aligned printed wiring board. May be manufactured. Thereby, components, such as an electronic component, can be mounted | worn in the exact position of a printed wiring board.
Further, the printed wiring board may be manufactured by positioning the printed wiring board with the positioning device of the present invention and connecting another printed wiring board to the positioned printed wiring board. Further, the printed wiring board positioning device of the present invention positions the printed wiring board, aligns the positioned printed wiring board, and connects another printed wiring board to the aligned printed wiring board. A printed wiring board may be manufactured. Thereby, another printed wiring board can be connected to an accurate position on the printed wiring board to be connected. Here, the “connection” may be an electrical connection (for example, soldering), or may be a connection using an adhesive or the like, which is not an electrical connection.
In the present invention, the “printed wiring board” includes a printed wiring board and a printed board on which components are mounted.

また、本発明において位置決めされる前記金属と透明基材との積層体が、透明基材の板及び前記透明基材の板の上に設けられた回路を有するプリント配線板であってもよい。また、その場合、前記マークが前記回路であってもよい。また、当該回路は配線も含むこととする。
本発明において「位置決め」とは「マークや物の位置を検出すること」を含む。また、本発明において、「位置合わせ」とは、「マークや物の位置を検出した後に、前記検出した位置に基づいて、当該マークや物を所定の位置に移動すること」を含む。
Moreover, the printed wiring board which has the circuit provided on the board of the transparent base material and the board of the transparent base material may be sufficient as the laminated body of the said metal and transparent base material which are positioned in this invention. In that case, the mark may be the circuit. The circuit also includes wiring.
In the present invention, “positioning” includes “detecting the position of a mark or an object”. In the present invention, “alignment” includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.

実施例A1〜29及び実施例B1〜15として、各種銅箔を準備し、一方の表面に、粗化処理として表1に記載の条件にてめっき処理を行った。
上述の粗化めっき処理を行った後、実施例A1〜10、12〜27、実施例B3、4、6、9〜15について次の耐熱層および防錆層形成のためのめっき処理を行った。
耐熱層1の形成条件を以下に示す。
液組成 :ニッケル5〜20g/L、コバルト1〜8g/L
pH :2〜3
液温 :40〜60℃
電流密度 :5〜20A/dm2
クーロン量:10〜20As/dm2
上記耐熱層1を施した銅箔上に、耐熱層2を形成した。実施例B5、7、8については、粗化めっき処理は行わず、準備した銅箔に、この耐熱層2を直接形成した。耐熱層2の形成条件を以下に示す。
液組成 :ニッケル2〜30g/L、亜鉛2〜30g/L
pH :3〜4
液温 :30〜50℃
電流密度 :1〜2A/dm2
クーロン量:1〜2As/dm2
上記耐熱層1及び2を施した銅箔上に、さらに防錆層を形成した。防錆層の形成条件を以下に示す。
液組成 :重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
pH :3〜4
液温 :50〜60℃
電流密度 :0〜2A/dm2(浸漬クロメート処理のため)
クーロン量:0〜2As/dm2(浸漬クロメート処理のため)
上記耐熱層1、2及び防錆層を施した銅箔上に、さらに耐候性層を形成した。形成条件を以下に示す。
アミノ基を有するシランカップリング剤として、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン(実施例A17、24〜27)、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン(実施例A1〜16)、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン(実施例A18、28、29)、3−アミノプロピルトリメトキシシラン(実施例A19)、3−アミノプロピルトリエトキシシラン(実施例A20、21)、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン(実施例A22)、N−フェニル−3−アミノプロピルトリメトキシシラン(実施例A23)で、塗布・乾燥を行い、耐候性層を形成した。これらのシランカップリング剤を2種以上の組み合わせで用いることもできる。同様に実施例B1〜15においては、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシランで塗布・乾燥を行い、耐候性層を形成した。
As Examples A1 to 29 and Examples B1 to 15, various copper foils were prepared, and plating treatment was performed on one surface under the conditions described in Table 1 as a roughening treatment.
After performing the above-mentioned roughening plating process, the plating process for the following heat-resistant layer and rust prevention layer formation was performed about Example A1-10, 12-27, Example B3, 4, 6, 9-15. .
The conditions for forming the heat-resistant layer 1 are shown below.
Liquid composition: Nickel 5-20 g / L, cobalt 1-8 g / L
pH: 2-3
Liquid temperature: 40-60 degreeC
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
A heat-resistant layer 2 was formed on the copper foil provided with the heat-resistant layer 1. For Examples B5, 7, and 8, the rough plating treatment was not performed, and the heat-resistant layer 2 was directly formed on the prepared copper foil. The conditions for forming the heat-resistant layer 2 are shown below.
Liquid composition: nickel 2-30 g / L, zinc 2-30 g / L
pH: 3-4
Liquid temperature: 30-50 degreeC
Current density: 1 to 2 A / dm 2
Coulomb amount: 1-2 As / dm 2
On the copper foil which gave the said heat-resistant layers 1 and 2, the antirust layer was further formed. The conditions for forming the rust preventive layer are shown below.
Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Current density: 0 to 2 A / dm 2 (for immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
On the copper foil which gave the said heat-resistant layers 1 and 2 and a rust prevention layer, the weathering layer was further formed. The formation conditions are shown below.
As a silane coupling agent having an amino group, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (Example A17, 24-27), N-2- (aminoethyl) -3-aminopropyltri Ethoxysilane (Examples A1 to 16), N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (Examples A18, 28, 29), 3-aminopropyltrimethoxysilane (Example A19), 3 -Aminopropyltriethoxysilane (Examples A20, 21), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (Example A22), N-phenyl-3-aminopropyltrimethoxysilane In (Example A23), coating and drying were performed to form a weather-resistant layer. These silane coupling agents can be used in combination of two or more. Similarly, in Examples B1 to 15, coating and drying were performed with N-2- (aminoethyl) -3-aminopropyltrimethoxysilane to form a weather resistant layer.

なお、圧延銅箔は以下のように製造した。表2に示す組成の銅インゴットを製造し、熱間圧延を行った後、300〜800℃の連続焼鈍ラインの焼鈍と冷間圧延を繰り返して1〜2mm厚の圧延板を得た。この圧延板を300〜800℃の連続焼鈍ラインで焼鈍して再結晶させ、表2の厚みまで最終冷間圧延し、銅箔を得た。表2の「種類」の欄の「タフピッチ銅」はJIS H3100 C1100に規格されているタフピッチ銅を、「無酸素銅」はJIS H3100 C1020に規格されている無酸素銅を示す。また、「タフピッチ銅+Ag:100ppm」はタフピッチ銅にAgを100質量ppm添加したことを意味する。
電解銅箔はJX日鉱日石金属社製電解銅箔HLP箔を用いた。電解研磨又は化学研磨を行った場合には、電解研磨又は化学研磨後の板厚を記載した。
なお、表2に表面処理前の銅箔作製工程のポイントを記載した。「高光沢圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「通常圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「化学研磨」、「電解研磨」は、以下の条件で行ったことを意味する。
「化学研磨」はH2SO4が1〜3質量%、H22が0.05〜0.15質量%、残部水のエッチング液を用い、研磨時間を1時間とした。
「電解研磨」はリン酸67%+硫酸10%+水23%の条件で、電圧10V/cm2、表2に記載の時間(10秒間の電解研磨を行うと、研磨量は1〜2μmとなる。)で行った。
In addition, the rolled copper foil was manufactured as follows. After manufacturing the copper ingot of the composition shown in Table 2 and performing hot rolling, annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled sheet having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 2 to obtain a copper foil. “Tough pitch copper” in the “Type” column of Table 2 indicates tough pitch copper standardized in JIS H3100 C1100, and “Oxygen-free copper” indicates oxygen-free copper standardized in JIS H3100 C1020. “Tough pitch copper + Ag: 100 ppm” means that 100 mass ppm of Ag is added to tough pitch copper.
The electrolytic copper foil used was an electrolytic copper foil HLP foil manufactured by JX Nippon Mining & Metals. When electrolytic polishing or chemical polishing was performed, the plate thickness after electrolytic polishing or chemical polishing was described.
Table 2 lists the points of the copper foil preparation process before the surface treatment. “High gloss rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the value of the oil film equivalent. “Normal rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the oil film equivalent value described. “Chemical polishing” and “electropolishing” mean the following conditions.
“Chemical polishing” was performed using an etching solution of 1 to 3% by mass of H 2 SO 4 , 0.05 to 0.15% by mass of H 2 O 2 , and the remaining water, and the polishing time was 1 hour.
“Electropolishing” is a condition of phosphoric acid 67% + sulfuric acid 10% + water 23%, voltage 10 V / cm 2 , and the time shown in Table 2 (when electropolishing for 10 seconds, the polishing amount is 1 to 2 μm. ).

上述のようにして作製した実施例の各サンプルについて、図1に示したものと同様の構成の視認性評価装置を用いて、各種評価を下記の通り行った。
(1)明度曲線の傾き
銅箔をポリイミドフィルム(カネカ製厚み25μm、50μm、東レデュポン製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作製した。続いて、ライン状の黒色マークを印刷した印刷物を、サンプルフィルムの下に敷いて、印刷物をサンプルフィルム越しにCCDカメラで撮影した。ここで使用したマークの幅は、0.1〜0.4mmであった。次に、コンピュータによって、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、マークの端部からマークがない部分にかけて生じる明度曲線および、ΔB及びt1、t2、Svを測定した。このとき用いた撮影手段の構成及び明度曲線の傾きの測定方法を表す模式図を図8に示す。
また、ΔB及びt1、t2、Svは、図5で示すように下記撮影手段で測定した。なお、横軸の1ピクセルは10μm長さに相当する。
撮影手段は、CCDカメラ、マークを付した紙を下に置いたポリイミド基板を置くステージ(白色)、ポリイミド基板の撮影部に光を照射する照明用電源、撮影対象のマークが付された紙を下に置いた評価用ポリイミド基板をステージ上に搬送する搬送機(不図示)を備えている。当該撮影手段の主な仕様を以下に示す:
・撮影手段:株式会社ニレコ製シート検査装置Mujiken
・CCDカメラ:8192画素(160MHz)、1024階調デジタル(10ビット)
・照明用電源:高周波点灯電源(電源ユニット×2)
・照明:蛍光灯(30W)
なお、図8に示された明度について、0は「黒」を意味し、明度255は「白」を意味し、「黒」から「白」までの灰色の程度(白黒の濃淡、グレースケール)を256階調に分割して表示している。
なお、使用したマークの幅が0.1〜0.4mmと小さいものであったため、作製した明度曲線は図4(a)に示すようなV型または図4(b)に示すような底部を有するV型となった。
About each sample of the Example produced as mentioned above, various evaluation was performed as follows using the visibility evaluation apparatus of the structure similar to what was shown in FIG.
(1) Inclination of brightness curve Copper foil was bonded to both sides of a polyimide film (Kaneka thickness 25 μm, 50 μm, Toray DuPont thickness 50 μm), and the copper foil was removed by etching (ferric chloride aqueous solution) to remove the sample film. Produced. Subsequently, a printed material on which a line-shaped black mark was printed was laid under the sample film, and the printed material was photographed with a CCD camera through the sample film. The width of the mark used here was 0.1 to 0.4 mm. Next, in the observation point-brightness graph prepared by measuring the lightness of each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends, for an image obtained by photographing with a computer, The brightness curve generated from the end of the mark to the portion without the mark, and ΔB and t1, t2, and Sv were measured. FIG. 8 is a schematic diagram showing the configuration of the photographing means used at this time and the method of measuring the slope of the brightness curve.
ΔB, t1, t2, and Sv were measured by the following photographing means as shown in FIG. One pixel on the horizontal axis corresponds to a length of 10 μm.
The photographing means includes a CCD camera, a stage (white) on which a polyimide substrate is placed with a marked paper underneath, an illumination power source for irradiating light onto the photographing portion of the polyimide substrate, and a paper with a mark to be photographed. A transporter (not shown) for transporting the evaluation polyimide substrate placed below onto the stage is provided. The main specifications of the photographing means are as follows:
・ Photographing means: Nireco Corporation sheet inspection device Mujken
CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits)
・ Power supply for lighting: High-frequency lighting power supply (power supply unit x 2)
・ Lighting: Fluorescent lamp (30W)
For the lightness shown in FIG. 8, 0 means “black”, lightness 255 means “white”, and the gray level from “black” to “white” (black and white shading, gray scale) Is divided into 256 gradations for display.
In addition, since the used mark width was as small as 0.1 to 0.4 mm, the produced brightness curve has a V shape as shown in FIG. 4A or a bottom as shown in FIG. It became V type which has.

(2)視認性(樹脂透明性);
銅箔をポリイミドフィルム(カネカ製厚み25μm、50μm、東レデュポン製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。なお、粗化処理を行った銅箔については、銅箔の粗化処理した面を前述のポリイミドフィルムに貼り合わせて前述のサンプルフィルムを作製した。得られた樹脂層の一面に印刷物(直径6cmの黒色の円)を貼り付け、反対面から樹脂層越しに印刷物の視認性を判定した。印刷物の黒色の円の輪郭が円周の90%以上の長さにおいてはっきりしたものを「◎」、黒色の円の輪郭が円周の80%以上90%未満の長さにおいてはっきりしたものを「○」(以上合格)、黒色の円の輪郭が円周の0〜80%未満の長さにおいてはっきりしたもの及び輪郭が崩れたものを「×」(不合格)と評価した。
(2) Visibility (resin transparency);
The copper foil was bonded to both surfaces of a polyimide film (Kaneka thickness 25 μm, 50 μm, Toray DuPont thickness 50 μm), and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. In addition, about the copper foil which performed the roughening process, the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film, and the above-mentioned sample film was produced. A printed material (black circle with a diameter of 6 cm) was attached to one surface of the obtained resin layer, and the visibility of the printed material was judged from the opposite surface through the resin layer. “◎” indicates that the outline of the black circle of the printed material is clear when the length is 90% or more of the circumference, and “Clear” indicates that the outline of the black circle is clear when the length is 80% or more and less than 90% of the circumference. “O” (passed above), a black circle with a clear outline of 0 to less than 80% of the circumference and a broken outline were evaluated as “x” (failed).

(3)歩留まり
銅箔をポリイミドフィルム(カネカ製厚み25μm、50μm、東レデュポン製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)して、L/Sが30μm/30μmの回路幅のFPCを作成した。なお、粗化処理を行った銅箔については、銅箔の粗化処理した面を前述のポリイミドフィルムに貼り合わせた。その後、20μm×20μm角のマークをポリイミド越しにCCDカメラで検出することを試みた。10回中9回以上検出できた場合には「◎」、7〜8回検出できた場合には「○」、6回検出できた場合には「△」、5回以下検出できた場合には「×」とした。
上記各試験の条件及び評価を表1〜5に示す。
(3) Yield The copper foil was bonded to both sides of a polyimide film (Kaneka thickness 25 μm, 50 μm, Toray DuPont thickness 50 μm), the copper foil was etched (ferric chloride aqueous solution), and L / S was 30 μm / 30 μm. An FPC with a circuit width of was prepared. In addition, about the copper foil which performed the roughening process, the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film. After that, an attempt was made to detect a 20 μm × 20 μm square mark with a CCD camera through polyimide. “◎” when 9 times or more out of 10 times can be detected, “◯” when 7 to 8 times can be detected, “△” when 6 times can be detected, and when 5 times or less can be detected. Is “×”.
The conditions and evaluation of each test are shown in Tables 1-5.

(評価結果)
実施例のポリイミド基材について、いずれも製造ラインで実際に製造することなく、実験室レベルで容易に且つ正確に視認性を評価することができた。
また、幅が1.0〜2.0mmと大きいマークを上記例の代わりに用いて上記実施例と同様の試験を行ったところ、明度曲線として図3に示す底部のある図が得られた。図9に、マークの幅が1.0〜2.0mmの場合の明度曲線の傾き評価の際の、撮影手段の構成及び明度曲線の傾きの測定方法を表す模式図を示す。この場合も、上記実施例と同じ結果が得られ、かつ上記実施例と同様に、ポリイミド基材について、製造ラインで実際に製造することなく、実験室レベルで容易に且つ正確に視認性を評価することができた。
(Evaluation results)
With respect to the polyimide base materials of the examples, the visibility could be easily and accurately evaluated at the laboratory level without actually producing them on the production line.
Moreover, when the same test as the said Example was done using the mark with a width | variety as large as 1.0-2.0 mm instead of the said example, the figure with the bottom part shown in FIG. 3 as a lightness curve was obtained. FIG. 9 is a schematic diagram showing the configuration of the photographing means and the method of measuring the slope of the brightness curve when evaluating the slope of the brightness curve when the mark width is 1.0 to 2.0 mm. In this case as well, the same results as in the above example were obtained, and as in the above example, the visibility of the polyimide base material was evaluated easily and accurately at the laboratory level without actually manufacturing it on the manufacturing line. We were able to.

10 透明基材の視認性評価装置
11 撮影手段
12 コンピュータ(観察地点−明度グラフ作製手段、視認性評価手段、スムージング処理手段)
13 表示手段
14 照明手段
15 ステージ
16 マーク
17 透明基材
20 積層体の位置決め装置
21 撮影手段
22 コンピュータ(観察地点−明度グラフ作製手段、位置決め手段、スムージング処理手段)
23 表示手段
24 照明手段
25 ステージ
26 マーク
27 積層体
DESCRIPTION OF SYMBOLS 10 Visibility evaluation apparatus of transparent base material 11 Imaging | photography means 12 Computer (Observation point-lightness graph preparation means, visibility evaluation means, smoothing processing means)
DESCRIPTION OF SYMBOLS 13 Display means 14 Illumination means 15 Stage 16 Mark 17 Transparent base material 20 Laminate positioning apparatus 21 Imaging means 22 Computer (observation point-lightness graph preparation means, positioning means, smoothing processing means)
23 Display means 24 Illumination means 25 Stage 26 Mark 27 Laminate

Claims (32)

透明基材の下に存在するマークを、前記透明基材越しに撮影する撮影手段と、
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、
前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記透明基材の視認性を評価する視認性評価手段と、
を備えた透明基材の視認性評価装置であり、
前記視認性評価手段は、
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)として、
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvを用いて視認性の評価を行う透明基材の視認性評価装置。
Sv=(ΔB×0.1)/(t1−t2) (1)
Photographing means for photographing the mark existing under the transparent substrate through the transparent substrate;
With respect to the image obtained by the photographing, an observation point-lightness graph creating means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the observed mark extends, and creating an observation point-lightness graph;
In the observation point-lightness graph, visibility evaluation means for evaluating the visibility of the transparent base material by the slope of the lightness curve generated from the end of the mark to the portion without the mark;
It is a visibility evaluation device of a transparent substrate provided with,
The visibility evaluation means includes:
A difference between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is ΔB (ΔB = Bt−Bb),
In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. In the depth range, when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB is t2, the visibility is obtained using Sv defined by the following equation (1). The visibility evaluation apparatus of the transparent base material which evaluates.
Sv = (ΔB × 0.1) / (t1-t2) (1)
透明基材の下に存在するマークを、前記透明基材越しに撮影する撮影手段と、
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、
前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記透明基材の視認性を評価する視認性評価手段と、
を備えた透明基材の視認性評価装置であり、
前記視認性評価手段は、
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて視認性の評価を行う透明基材の視認性評価装置。
Photographing means for photographing the mark existing under the transparent substrate through the transparent substrate;
With respect to the image obtained by the photographing, an observation point-lightness graph creating means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the observed mark extends, and creating an observation point-lightness graph;
In the observation point-lightness graph, visibility evaluation means for evaluating the visibility of the transparent base material by the slope of the lightness curve generated from the end of the mark to the portion without the mark;
It is a visibility evaluation device of a transparent substrate provided with,
The visibility evaluation means includes:
A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark;
In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. Sv defined by the following equation (1) when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB in the depth range is t2.
Sv = (ΔB × 0.1) / (t1-t2) (1)
A visibility evaluation apparatus for a transparent substrate, which evaluates visibility using a screen.
前記撮影手段による撮影によって得られた画像について、明度のばらつきを緩和させるスムージング処理手段をさらに備え、
前記観察地点−明度グラフ作製手段が、前記スムージング処理後の前記明度を用いて観察地点−明度グラフを作製する請求項1又は2に記載の透明基材の視認性評価装置。
For an image obtained by photographing by the photographing means, further comprising a smoothing processing means for reducing variations in brightness,
The visibility evaluation apparatus of the transparent base material of Claim 1 or 2 with which the said observation point-lightness graph preparation means produces an observation point-lightness graph using the said lightness after the said smoothing process.
前記透明基材の下に存在するマークが、前記透明基材の下に敷いた印刷物に印刷されたライン状のマークであり、
前記観察地点−明度グラフ作製手段が、前記撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する請求項1〜3のいずれかに記載の透明基材の視認性評価装置。
The mark present under the transparent substrate is a line-shaped mark printed on a printed material laid under the transparent substrate,
The observation point-lightness graph preparation means measures the lightness of each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends with respect to the image obtained by the photographing. The visibility evaluation apparatus of the transparent base material in any one of Claims 1-3 which produces a graph.
前記視認性評価手段による視認性評価において、
観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、前記Svが3.5以上となる場合を良好と判定する請求項1〜4のいずれかに記載の透明基材の視認性評価装置。
In the visibility evaluation by the visibility evaluation means,
In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and the depth from the intersection of the lightness curve and Bt to 0.1 ΔB on the basis of Bt. If the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1ΔB in the range is t2, it is determined that the case where the Sv is 3.5 or more is good. Item 5. The visibility evaluation apparatus for a transparent substrate according to any one of Items 1 to 4.
前記視認性評価手段による視認性評価において、
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であり、
観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、前記Svが3.5以上となる場合を良好と判定する請求項2〜4のいずれかに記載の透明基材の視認性評価装置。
In the visibility evaluation by the visibility evaluation means,
A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is 40 or more,
In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and the depth from the intersection of the lightness curve and Bt to 0.1 ΔB on the basis of Bt. If the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1ΔB in the range is t2, it is determined that the case where the Sv is 3.5 or more is good. Item 5. The visibility evaluation device for a transparent substrate according to any one of Items 2 to 4.
前記ΔB(ΔB=Bt−Bb)が50以上である場合を良好と判定する請求項2〜6のいずれかに記載の透明基材の視認性評価装置。   The visibility evaluation apparatus of the transparent base material in any one of Claims 2-6 which determines that the case where said (DELTA) B ((DELTA) B = Bt-Bb) is 50 or more is favorable. 前記Svが3.9以上となる場合を良好と判定する請求項5〜7のいずれかに記載の透明基材の視認性評価装置。   The visibility evaluation apparatus of the transparent base material in any one of Claims 5-7 which determines that the case where said Sv becomes 3.9 or more is favorable. 前記Svが5.0以上となる場合を良好と判定する請求項8に記載の透明基材の視認性評価装置。   The visibility evaluation apparatus of the transparent base material of Claim 8 which determines that the case where said Sv becomes 5.0 or more is favorable. コンピュータを請求項1〜9のいずれかに記載の透明基材の視認性評価装置として機能させるためのプログラム。   The program for functioning a computer as a visibility evaluation apparatus of the transparent base material in any one of Claims 1-9. 請求項10に記載のプログラムが記録されたコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium on which the program according to claim 10 is recorded. 金属と透明基材との積層体の位置決めをするための積層体の位置決め装置であって、
マークを有する、前記金属と透明基材の積層体に対し、前記マークを前記透明基材越しに撮影する撮影手段と、
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、
前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記積層体の位置を決定する位置決め手段と、
を備えた積層体の位置決め装置であり、
前記位置決め手段は、
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)として、
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが所定の値以上となる場合に、前記Svを測定した位置に基づいて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と透明基材との積層体の位置決めをする積層体の位置決め装置。
Sv=(ΔB×0.1)/(t1−t2) (1)
A laminated body positioning device for positioning a laminated body of a metal and a transparent substrate,
An imaging means for photographing the mark through the transparent substrate with respect to a laminate of the metal and the transparent substrate having a mark;
With respect to the image obtained by the photographing, an observation point-lightness graph creating means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the observed mark extends, and creating an observation point-lightness graph;
In the observation point-lightness graph, positioning means for determining the position of the stacked body by an inclination of a lightness curve generated from an end portion of the mark to a portion without the mark;
Is a laminate positioning device comprising:
The positioning means includes
A difference between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is ΔB (ΔB = Bt−Bb),
In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. In the depth range, when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is a predetermined value or more. In this case, the position of the mark is detected based on the position where the Sv is measured, and the position of the laminate of the metal and the transparent substrate is determined based on the position of the detected mark. .
Sv = (ΔB × 0.1) / (t1-t2) (1)
金属と透明基材との積層体の位置決めをするための積層体の位置決め装置であって、
マークを有する、前記金属と透明基材の積層体に対し、前記マークを前記透明基材越しに撮影する撮影手段と、
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、
前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記積層体の位置を決定する位置決め手段と、
を備えた積層体の位置決め装置であり、
前記位置決め手段は、
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、
Sv=(ΔB×0.1)/(t1−t2) (1)
を用いて、ΔB及びSvが所定の値以上となる場合に、前記Svを測定した位置に基づいて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と透明基材との積層体の位置決めをする積層体の位置決め装置。
A laminated body positioning device for positioning a laminated body of a metal and a transparent substrate,
An imaging means for photographing the mark through the transparent substrate with respect to a laminate of the metal and the transparent substrate having a mark;
With respect to the image obtained by the photographing, an observation point-lightness graph creating means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the observed mark extends, and creating an observation point-lightness graph;
In the observation point-lightness graph, positioning means for determining the position of the stacked body by an inclination of a lightness curve generated from an end portion of the mark to a portion without the mark;
Is a laminate positioning device comprising:
The positioning means includes
A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark;
In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. Sv defined by the following equation (1) when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB in the depth range is t2.
Sv = (ΔB × 0.1) / (t1-t2) (1)
When ΔB and Sv are equal to or larger than predetermined values, the position of the mark is detected based on the position where the Sv is measured, and the metal and the transparent substrate are detected based on the detected position of the mark. Laminate positioning device for positioning the laminate.
前記位置を決定した積層体の位置合わせを行う位置合わせ手段をさらに備えた請求項12又は13に記載の積層体の位置決め装置。   The positioning device for a laminate according to claim 12 or 13, further comprising an alignment means for aligning the laminate having the determined position. コンピュータを請求項12〜14のいずれかに記載の積層体の位置決め装置として機能させるためのプログラム。   The program for functioning a computer as a positioning device of the laminated body in any one of Claims 12-14. 請求項15に記載のプログラムが記録されたコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium on which the program according to claim 15 is recorded. 前記金属と透明基材との積層体が、透明基材の板及び前記透明基材の板の上に設けられた回路を有するプリント配線板である請求項12〜14のいずれかに記載の積層体の位置決め装置。   The laminate according to any one of claims 12 to 14, wherein the laminate of the metal and the transparent substrate is a printed wiring board having a transparent substrate plate and a circuit provided on the transparent substrate plate. Body positioning device. 前記マークが前記回路である請求項17に記載の積層体の位置決め装置。   The laminated body positioning apparatus according to claim 17, wherein the mark is the circuit. 請求項17又は18に記載の位置決め装置を用いて、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板に部品を装着する工程を含むプリント配線板の製造方法。   A method for manufacturing a printed wiring board, comprising the steps of positioning the printed wiring board using the positioning device according to claim 17 and mounting components on the positioned printed wiring board. 請求項17又は18に記載の位置決め装置を用いて、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板にもう一つのプリント配線板を接続する工程を含むプリント配線板の製造方法。   A method for manufacturing a printed wiring board, comprising the steps of positioning the printed wiring board using the positioning device according to claim 17 and connecting another printed wiring board to the positioned printed wiring board. 請求項17又は18に記載の位置決め装置を用いて、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板の位置合わせを行い、位置合わせされた前記プリント配線板に部品を装着する工程を含むプリント配線板の製造方法。   A step of positioning a printed wiring board using the positioning device according to claim 17, aligning the positioned printed wiring board, and mounting a component on the aligned printed wiring board. A method for manufacturing a printed wiring board. 請求項17又は18に記載の位置決め装置を用いて、プリント配線板の位置決めを行い、位置決めされた前記プリント配線板の位置合わせを行い、位置合わせされた前記プリント配線板にもう一つのプリント配線板を接続する工程を含むプリント配線板の製造方法。   19. The printed wiring board is positioned using the positioning device according to claim 17 or 18, the positioned printed wiring board is aligned, and another printed wiring board is aligned with the aligned printed wiring board. The manufacturing method of a printed wiring board including the process of connecting. 金属と透明基材との積層体が有するマークが存在するか否かを判定する装置であって、An apparatus for determining whether or not a mark included in a laminate of a metal and a transparent substrate exists,
マークを有する、前記金属と透明基材の積層体に対し、前記マークを前記透明基材越しに撮影する撮影手段と、An imaging means for photographing the mark through the transparent substrate with respect to a laminate of the metal and the transparent substrate having a mark;
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、With respect to the image obtained by the photographing, an observation point-lightness graph creating means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the observed mark extends, and creating an observation point-lightness graph;
前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記積層体の位置を決定する位置決め手段と、In the observation point-lightness graph, positioning means for determining the position of the stacked body by an inclination of a lightness curve generated from an end portion of the mark to a portion without the mark;
を備え、With
前記位置決め手段は、The positioning means includes
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)として、A difference between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is ΔB (ΔB = Bt−Bb),
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが所定の値以上となる場合に、前記マークが存在すると判定する、金属と透明基材との積層体が有するマークが存在するか否かを判定する装置。In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. In the depth range, when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is a predetermined value or more. When it becomes, the apparatus which determines whether the mark which the laminated body of a metal and a transparent base material determines that the said mark exists exists.
Sv=(ΔB×0.1)/(t1−t2)Sv = (ΔB × 0.1) / (t1−t2) (1)(1)
金属と透明基材との積層体が有するマークが存在するか否かを判定する装置であって、An apparatus for determining whether or not a mark included in a laminate of a metal and a transparent substrate exists,
マークを有する、前記金属と透明基材との積層体に対し、前記マークを前記透明基材越しに撮影する撮影手段と、An imaging means for photographing the mark through the transparent substrate with respect to a laminate of the metal and the transparent substrate having a mark;
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、With respect to the image obtained by the photographing, an observation point-lightness graph creating means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the observed mark extends, and creating an observation point-lightness graph;
前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記積層体の位置を決定する位置決め手段と、In the observation point-lightness graph, positioning means for determining the position of the stacked body by an inclination of a lightness curve generated from an end portion of the mark to a portion without the mark;
を備えた積層体の位置決め装置であり、Is a laminate positioning device comprising:
前記位置決め手段は、The positioning means includes
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark;
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. Sv defined by the following equation (1) when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB in the depth range is t2.
Sv=(ΔB×0.1)/(t1−t2)Sv = (ΔB × 0.1) / (t1−t2) (1)(1)
を用いて、ΔB及びSvが所定の値以上となる場合に、前記マークが存在すると判定する、金属と透明基材との積層体が有するマークが存在するか否かを判定する装置。Is used to determine whether or not there is a mark included in a laminate of a metal and a transparent substrate, when ΔB and Sv are equal to or greater than a predetermined value.
前記マークが、前記透明基材の板及び前記透明基材の板の上に設けられた回路である請求項23又は24に記載の金属と透明基材との積層体が有するマークが存在するか否かを判定する装置。 The mark is a circuit provided on the plate of the transparent substrate and the plate of the transparent substrate, or is there a mark that the laminate of the metal and the transparent substrate according to claim 23 or 24 has? A device that determines whether or not. コンピュータを請求項23〜25のいずれかに記載の判定装置として機能させるためのプログラム。The program for functioning a computer as a determination apparatus in any one of Claims 23-25. 請求項26に記載のプログラムが記録されたコンピュータ読み取り可能な記録媒体。A computer-readable recording medium on which the program according to claim 26 is recorded. 金属と透明基材との積層体が有するマークの位置を検出する装置であって、An apparatus for detecting the position of a mark of a laminate of a metal and a transparent substrate,
マークを有する、前記金属と透明基材の積層体に対し、前記マークを前記透明基材越しに撮影する撮影手段と、An imaging means for photographing the mark through the transparent substrate with respect to a laminate of the metal and the transparent substrate having a mark;
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、With respect to the image obtained by the photographing, an observation point-lightness graph creating means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the observed mark extends, and creating an observation point-lightness graph;
前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記積層体の位置を決定する位置決め手段と、In the observation point-lightness graph, positioning means for determining the position of the stacked body by an inclination of a lightness curve generated from an end portion of the mark to a portion without the mark;
を備え、With
前記位置決め手段は、The positioning means includes
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)として、A difference between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is ΔB (ΔB = Bt−Bb),
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが所定の値以上となる場合に、前記Svを測定した位置に基づいて前記マークの位置を検出する、金属と透明基材との積層体が有するマークの位置を検出する装置。In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. In the depth range, when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is a predetermined value or more. In this case, the apparatus detects the position of the mark included in the laminate of the metal and the transparent substrate, and detects the position of the mark based on the position where the Sv is measured.
Sv=(ΔB×0.1)/(t1−t2)Sv = (ΔB × 0.1) / (t1−t2) (1)(1)
金属と透明基材との積層体が有するマークの位置を検出する装置であって、An apparatus for detecting the position of a mark of a laminate of a metal and a transparent substrate,
マークを有する、前記金属と透明基材との積層体に対し、前記マークを前記透明基材越しに撮影する撮影手段と、An imaging means for photographing the mark through the transparent substrate with respect to a laminate of the metal and the transparent substrate having a mark;
前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点−明度グラフを作製する観察地点−明度グラフ作製手段と、With respect to the image obtained by the photographing, an observation point-lightness graph creating means for measuring the lightness of each observation point along a direction perpendicular to the direction in which the observed mark extends, and creating an observation point-lightness graph;
前記観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線の傾きによって前記積層体の位置を決定する位置決め手段と、In the observation point-lightness graph, positioning means for determining the position of the stacked body by an inclination of a lightness curve generated from an end portion of the mark to a portion without the mark;
を備えた積層体の位置決め装置であり、Is a laminate positioning device comprising:
前記位置決め手段は、The positioning means includes
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)と、A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark;
前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記マークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvと、In the observation point-lightness graph, the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt. Sv defined by the following equation (1) when the value indicating the position of the intersection closest to the mark among the intersections of the lightness curve and 0.1 ΔB in the depth range is t2.
Sv=(ΔB×0.1)/(t1−t2)Sv = (ΔB × 0.1) / (t1−t2) (1)(1)
を用いて、ΔB及びSvが所定の値以上となる場合に、前記Svを測定した位置に基づいて前記マークの位置を検出する、金属と透明基材との積層体が有するマークの位置を検出する装置。Is used to detect the position of the mark based on the position where the Sv is measured when ΔB and Sv are equal to or greater than a predetermined value. Device to do.
前記マークが、前記透明基材の板及び前記透明基材の板の上に設けられた回路である請求項28又は29に記載の金属と透明基材との積層体が有するマークの位置を検出する装置。
The mark is a circuit provided on the transparent base plate and the transparent base plate, and detects the position of the mark of the laminate of the metal and the transparent base according to claim 28 or 29. Device to do.
コンピュータを請求項28〜30のいずれかに記載の検出装置として機能させるためのプログラム。The program for functioning a computer as a detection apparatus in any one of Claims 28-30. 請求項31に記載のプログラムが記録されたコンピュータ読み取り可能な記録媒体。32. A computer-readable recording medium on which the program according to claim 31 is recorded.
JP2012286127A 2012-09-14 2012-12-27 Visibility evaluation device for transparent substrate, visibility evaluation program for transparent substrate and computer-readable recording medium on which it is recorded, positioning device for laminate, positioning program for laminate and computer-readable on which the recording is recorded Recording medium, apparatus for determining whether or not a mark of a laminate of a metal and a transparent substrate exists, a determination program, a computer-readable recording medium on which the mark is recorded, and a metal and a transparent substrate For detecting the position of a mark included in a laminate of the above, a detection program, and a computer-readable recording medium on which the same is recorded Active JP5337907B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012286127A JP5337907B1 (en) 2012-10-12 2012-12-27 Visibility evaluation device for transparent substrate, visibility evaluation program for transparent substrate and computer-readable recording medium on which it is recorded, positioning device for laminate, positioning program for laminate and computer-readable on which the recording is recorded Recording medium, apparatus for determining whether or not a mark of a laminate of a metal and a transparent substrate exists, a determination program, a computer-readable recording medium on which the mark is recorded, and a metal and a transparent substrate For detecting the position of a mark included in a laminate of the above, a detection program, and a computer-readable recording medium on which the same is recorded
KR1020157009269A KR101628643B1 (en) 2012-09-14 2013-09-13 Device for evaluating surface state of metal material, device for evaluating visibility of transparent substrate, evaluation program thereof, and computer-readable recording medium recording same
TW102133314A TWI497051B (en) 2012-09-14 2013-09-13 An evaluation apparatus for a surface condition of a metallic material, a visibility evaluation apparatus for a transparent substrate, an evaluation program thereof, and a computer-readable recording medium on which a recording medium is recorded, and a method of detecting the same
CN201380048090.5A CN104884936B (en) 2012-09-14 2013-09-13 The evaluating apparatus of the surface state of metal material, the visibility evaluating apparatus of transparent base, its assessment process and record have its computer-readable recording medium
PCT/JP2013/074932 WO2014042256A1 (en) 2012-09-14 2013-09-13 Device for evaluating surface state of metal material, device for evaluating visibility of transparent substrate, evaluation program thereof, and computer-readable recording medium recording same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012227377 2012-10-12
JP2012227377 2012-10-12
JP2012247898 2012-11-09
JP2012247898 2012-11-09
JP2012286127A JP5337907B1 (en) 2012-10-12 2012-12-27 Visibility evaluation device for transparent substrate, visibility evaluation program for transparent substrate and computer-readable recording medium on which it is recorded, positioning device for laminate, positioning program for laminate and computer-readable on which the recording is recorded Recording medium, apparatus for determining whether or not a mark of a laminate of a metal and a transparent substrate exists, a determination program, a computer-readable recording medium on which the mark is recorded, and a metal and a transparent substrate For detecting the position of a mark included in a laminate of the above, a detection program, and a computer-readable recording medium on which the same is recorded

Publications (2)

Publication Number Publication Date
JP5337907B1 true JP5337907B1 (en) 2013-11-06
JP2014112065A JP2014112065A (en) 2014-06-19

Family

ID=49679114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286127A Active JP5337907B1 (en) 2012-09-14 2012-12-27 Visibility evaluation device for transparent substrate, visibility evaluation program for transparent substrate and computer-readable recording medium on which it is recorded, positioning device for laminate, positioning program for laminate and computer-readable on which the recording is recorded Recording medium, apparatus for determining whether or not a mark of a laminate of a metal and a transparent substrate exists, a determination program, a computer-readable recording medium on which the mark is recorded, and a metal and a transparent substrate For detecting the position of a mark included in a laminate of the above, a detection program, and a computer-readable recording medium on which the same is recorded

Country Status (1)

Country Link
JP (1) JP5337907B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143641A (en) * 1990-10-04 1992-05-18 Mitsui Toatsu Chem Inc Method for measuring see-through characteristics of plastic film
JPH0618414A (en) * 1992-03-03 1994-01-25 Saint Gobain Vitrage Internatl Method and device for monitoring transparency of laminated window glass
JP2000019064A (en) * 1998-07-06 2000-01-21 Sumitomo Chem Co Ltd Film evaluation method and film evaluation apparatus
JP2003309336A (en) * 2002-04-15 2003-10-31 Toray Ind Inc Laminated plate for flexible printed wiring board and the flexible printed wiring board
JP2005333028A (en) * 2004-05-20 2005-12-02 Nitto Denko Corp Wiring circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143641A (en) * 1990-10-04 1992-05-18 Mitsui Toatsu Chem Inc Method for measuring see-through characteristics of plastic film
JPH0618414A (en) * 1992-03-03 1994-01-25 Saint Gobain Vitrage Internatl Method and device for monitoring transparency of laminated window glass
JP2000019064A (en) * 1998-07-06 2000-01-21 Sumitomo Chem Co Ltd Film evaluation method and film evaluation apparatus
JP2003309336A (en) * 2002-04-15 2003-10-31 Toray Ind Inc Laminated plate for flexible printed wiring board and the flexible printed wiring board
JP2005333028A (en) * 2004-05-20 2005-12-02 Nitto Denko Corp Wiring circuit board

Also Published As

Publication number Publication date
JP2014112065A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
TWI460069B (en) Surface treatment of copper foil and the use of its laminated board, printed wiring board and copper clad laminate
JP6393126B2 (en) Surface-treated rolled copper foil, laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP5362921B1 (en) Surface-treated copper foil and laminate using the same
JP5427943B1 (en) Rolled copper foil, surface-treated copper foil, laminate and printed circuit board
JP5362923B1 (en) Surface-treated copper foil and laminate using the same
JP6205121B2 (en) Visibility evaluation method for transparent substrate, positioning method for laminate, and method for manufacturing printed wiring board
JP5362922B1 (en) Surface-treated copper foil and laminate using the same
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
JP5432357B1 (en) Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
JP5269247B1 (en) Apparatus for evaluating surface condition of metal material, program for evaluating surface condition of metal material, computer-readable recording medium on which the program is recorded, and method for evaluating surface condition of metal material
TWI503062B (en) Surface treatment of copper foil and the use of its laminated board, printed wiring board, electronic equipment and manufacturing
JP6205120B2 (en) Visibility evaluation apparatus for transparent base material, visibility evaluation program for transparent base material and computer-readable recording medium on which it is recorded, laminated body positioning device, laminated body positioning program, and computer on which it is recorded Readable recording medium and printed wiring board manufacturing method
JP5824147B2 (en) Visibility evaluation device for transparent substrate, positioning device for laminated body, determination device, position detection device, evaluation device for surface condition of metal foil, program, recording medium, method for producing printed wiring board, visibility evaluation of transparent substrate Method, Laminate Positioning Method, Judgment Method, Position Detection Method
JP5882932B2 (en) Rolled copper foil, surface-treated copper foil and laminate
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP5337907B1 (en) Visibility evaluation device for transparent substrate, visibility evaluation program for transparent substrate and computer-readable recording medium on which it is recorded, positioning device for laminate, positioning program for laminate and computer-readable on which the recording is recorded Recording medium, apparatus for determining whether or not a mark of a laminate of a metal and a transparent substrate exists, a determination program, a computer-readable recording medium on which the mark is recorded, and a metal and a transparent substrate For detecting the position of a mark included in a laminate of the above, a detection program, and a computer-readable recording medium on which the same is recorded
JP2015079780A (en) Copper foil, copper-clad laminate, and flexible printed wiring board
WO2014042256A1 (en) Device for evaluating surface state of metal material, device for evaluating visibility of transparent substrate, evaluation program thereof, and computer-readable recording medium recording same
JP5323248B1 (en) Visibility evaluation method for transparent substrate and positioning method for laminate
JP5819571B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP6190619B2 (en) Copper foil and manufacturing method thereof, copper-clad laminate and flexible printed wiring board
JP2014218690A (en) Copper foil, production method thereof, copper-clad laminate and flexible printed wiring board

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5337907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250