JP6204600B2 - オプトエレクトロニクス半導体デバイスを製造する方法および半導体デバイス - Google Patents

オプトエレクトロニクス半導体デバイスを製造する方法および半導体デバイス Download PDF

Info

Publication number
JP6204600B2
JP6204600B2 JP2016547223A JP2016547223A JP6204600B2 JP 6204600 B2 JP6204600 B2 JP 6204600B2 JP 2016547223 A JP2016547223 A JP 2016547223A JP 2016547223 A JP2016547223 A JP 2016547223A JP 6204600 B2 JP6204600 B2 JP 6204600B2
Authority
JP
Japan
Prior art keywords
semiconductor
contact
filler
semiconductor device
carrier body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016547223A
Other languages
English (en)
Other versions
JP2016533044A (ja
Inventor
ルッツ ヘッペル
ルッツ ヘッペル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of JP2016533044A publication Critical patent/JP2016533044A/ja
Application granted granted Critical
Publication of JP6204600B2 publication Critical patent/JP6204600B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

本発明は、オプトエレクトロニクス半導体デバイスを製造する方法および半導体デバイスに関する。
半導体デバイスを小型化する必要性が高まるにつれて、放射を生成する、または放射を受け取る目的で設けられる半導体チップのハウジングの横方向範囲が、半導体チップ自体の横方向範囲よりも大きくない、または少なくともさほど大きくないオプトエレクトロニクス半導体デバイス(例えばルミネセンス(発光)ダイオードなど)の需要が増している。
しかしながら、同等に良好なオプトエレクトロニクス(光電子)特性を有する、そのような設計のオプトエレクトロニクス半導体デバイスを製造することは、技術的な課題を伴う。
本発明の目的は、特にコンパクトなオプトエレクトロニクス半導体デバイスを簡単かつ高い信頼性で製造することのできる方法、を提供することである。さらには、設計がコンパクトであると同時にオプトエレクトロニクス(光電子)特性も良好であることを特徴とするオプトエレクトロニクス半導体デバイス、を提供する。
これらの目的は、特に、独立請求項に記載の方法または半導体デバイスによって達成される。実施形態および発展形態は、従属請求項に記載されている。
複数のオプトエレクトロニクス半導体デバイスを製造する方法を提供する。
本方法の少なくとも一実施形態によると、本方法は、複数の半導体ボディ領域を有する半導体積層体を作製するステップ、を含む。半導体ボディ領域とは、半導体積層体の横方向に延びる領域であって、オプトエレクトロニクス半導体デバイスの製造時にこの領域からオプトエレクトロニクス半導体デバイスの半導体ボディ(特に、ただ1つの半導体ボディ)が作製される領域であるものと理解されたい。半導体積層体は、例えば、電磁放射を生成する目的で、もしくは電磁放射を受け取る目的で、またはその両方の目的で設けられる活性領域、を含む。活性領域は、例えば、第1の導電型の第1の半導体層と、第1の導電型とは異なる第2の導電型の第2の半導体層との間に配置される。第2の半導体層との電気的接触を形成するため、各半導体ボディ領域は、例えば、第1の半導体層および活性領域を貫いて第2の半導体層の中まで達する1つまたは複数の凹部、を備えている。
本方法の少なくとも一実施形態によると、本方法は、複数のキャリアボディを作製するステップ、を含む。キャリアボディそれぞれは、例えば、第1の接触構造および第2の接触構造を有する。好ましい方法においては、これら第1の接触構造および第2の接触構造は、互いに導電的に直接接続されない。キャリアボディは、半導体材料(例えばシリコン、ゲルマニウム)を含む、または半導体材料からなることが好ましい。
キャリアボディは、例えば、補助キャリア(例:剛性の補助キャリア、可撓性の補助キャリア)の上に配置することができる。
本方法の少なくとも一実施形態によると、本方法は、半導体積層体およびキャリアボディを有する複合体を形成するステップ、を含む。隣り合うキャリアボディが隙間によって互いに隔てられ、かつ、各半導体ボディ領域が、対応するキャリアボディの第1の接触構造および第2の接触構造に導電的に接続されるように、キャリアボディを半導体ボディ領域に取り付ける。
本方法の少なくとも一実施形態によると、本方法は、複合体を複数の半導体デバイスに個片化するステップであって、半導体デバイスそれぞれが1つの半導体ボディおよび1つのキャリアボディを備えている、ステップ、を含む。複合体を個片化すると、横方向範囲が半導体ボディの辺長より大きくない、または少なくともさほど大きくない半導体デバイスが製造される。「〜よりさほど大きくない」とは、本明細書においては、特に、個片化された半導体デバイスの辺長が、同じ方向における半導体ボディの辺長よりも最大でも5%大きいにすぎないことを意味する。
本方法の少なくとも一実施形態によると、複数の半導体ボディ領域を有する半導体積層体を作製する。次いで、それぞれが第1の接触構造および第2の接触構造を有する複数のキャリアボディを作製する。次いで、隣り合うキャリアボディが隙間によって互いに隔てられ、かつ、各半導体ボディ領域が、対応するキャリアボディの第1の接触構造および第2の接触構造に導電的に接続されるように、半導体積層体およびキャリアボディを有する複合体を形成する。次いで、複合体を複数の半導体デバイスに個片化し、この場合、半導体デバイスそれぞれが1つの半導体ボディおよび1つのキャリアボディを有する。
複合体を形成するとき、製造する半導体デバイスの個々のキャリアボディは、すでに互いに連続していない個別の要素である。半導体積層体の表面全体の上にキャリアを形成し、複数の半導体デバイスに個片化するときに初めてキャリアが個々のキャリアボディに個片化される方法と比較すると、半導体積層体が上に配置される基板の熱膨張係数と、キャリアボディの材料の熱膨張係数とを適合させる必要性が減少する。
本方法の少なくとも一実施形態によると、半導体積層体を成長基板の上に作製する。半導体積層体は、例えばMOVPEによって成長基板上にエピタキシャルに堆積させる。成長基板は、複合体を形成するときに半導体積層体を機械的に安定させる目的に使用される。半導体積層体をキャリアボディに取り付けた後には、個々の半導体ボディ領域は対応するキャリアボディによって安定し、したがって成長基板はこの目的にはもはや必要なく、除去することができる。
したがって、成長基板は、特に、複合体を形成した後に除去する。さらには、複合体を複数の半導体デバイスに個片化する前に、成長基板を除去することが好ましい。したがって、表面全体から成長基板を除去することができ、さらなるエピタキシャル工程においてその成長基板を再利用することができる。
本方法の少なくとも一実施形態によると、成長基板は、サファイアを含む、またはサファイアからなる。サファイアは、窒化物化合物半導体材料系の半導体材料のための成長基板として特に適している。
本明細書において、「窒化物化合物半導体材料系」(窒化物化合物半導体材料とも略される)とは、半導体積層体または少なくともその一部分(特に好ましくは少なくとも活性ゾーン)、もしくは成長基板、またはその両方が、窒化物化合物半導体材料、好ましくはAlGaIn1−n−mN(0≦n≦1、0≦m≦1、n+m≦1)を含む、またはこのような材料からなることを意味する。この材料は、上の化学式に従った数学的に正確な組成を必ずしも有する必要はない。むしろ、この材料は、1種類または複数種類のドーパントおよび追加の構成成分を含むことができる。しかしながら、説明を簡潔にする目的で、上の化学式は、結晶格子の本質的な構成成分(Al、Ga、In、N)のみを含み、これらの構成成分は、その一部分を少量のさらなる物質によって置き換える、もしくはさらなる物質を添加する、またはその両方を行うことができる。
サファイアの代わりに、シリコンまたはシリコンカーバイド(炭化ケイ素)を成長基板に使用することができる。シリコンは、シリコン系のキャリアボディとの組合せに特に適している。しかしながら、サファイア上にエピタキシャルに堆積される窒化物化合物半導体材料は、シリコン上に堆積される窒化物化合物半導体材料の場合よりも、結晶品質が高く、したがって良好なオプトエレクトロニクス特性を有することが判明している。
しかしながら、本方法は、他の半導体材料、特に、III−V族化合物半導体材料の場合にも当然ながら適している。
本方法の少なくとも一実施形態によると、複合体を形成した後、隙間を少なくとも部分的にフィラーによって満たす。特に、複合体を形成した後に、隙間を少なくとも部分的に満たすことができる。これに代えて、複合体を形成する時点では、キャリアボディに例えば被覆の形でフィラーがすでに形成されているようにすることができる。特に、隙間を完全に満たすことができる。フィラーによって満たすステップは、特に、成長基板を除去する前に行う。したがって、特に、成長基板を除去するとき、あるいは複合体を加工するさらなるステップにおいて、フィラーを使用して複合体を機械的に安定させることができる。
本方法の少なくとも一実施形態によると、フィラーは、第1の部分領域および第2の部分領域を備える。具体的には、第1の部分領域の一部分は、第2の部分領域と、自身の横に位置するキャリアボディとの間に配置される。第1の部分領域の一部分は、例えば、複合体の構造に従うように形成する。すなわち、第1の部分領域の形状は、複合体の構造、特に、キャリアボディの間の隙間の形状に従う。第1の部分領域は、例えば、被覆工程(例:蒸着またはスパッタリング)によって形成することができる。化学蒸着(CVD)工程または原子層成長(ALD)工程を使用することもできる。特に、第1の部分領域は、キャリアボディの少なくとも一部分に直接隣接する。
本方法の少なくとも一実施形態によると、第1の部分領域は、少なくとも一部分が半導体デバイスに残り、第2の部分領域が完全に除去される。この場合、第2の部分領域は、特に、複合体を一時的に機械的に安定させる目的に使用される。
例えば、フィラーの全体またはその部分領域(例えば第2の部分領域)を、一時的なフィラーとして形成する。一時的なフィラーとしては、複合体の残りの材料が影響されることなく溶剤または湿式化学エッチング工程によって簡単かつ高い信頼性で除去することのできる材料が特に適している。
本方法の少なくとも一実施形態によると、複合体を個片化するときに、フィラーを少なくとも部分的に除去する。この場合、個片化するステップは、個片化する前にフィラーを形成した位置において行う。
本方法の少なくとも一実施形態によると、複合体を個片化するため、フィラーまたはその部分領域(例えば第2の部分領域)を、特に、完全に除去する。フィラーの全体またはその部分領域(例えば第2の部分領域)は、例えば、一時的なフィラーとして形成される。
特に、個片化する直前には、フィラーのみによって複合体を横方向に互いに保持することができ、したがって、複合体の個片化は、フィラーを除去することによって、さらなるステップなしに行われる。
横方向とは、半導体積層体の半導体層の主延在面に沿って延びる方向であるものと理解されたい。したがって、垂直方向は、半導体層の主延在面に対して直角に延びる方向であるものと理解されたい。
本方法の少なくとも一実施形態によると、フィラーは、個片化時に個片化線に沿ってのみ除去され、個片化線の両側において半導体デバイスに残る。この場合、半導体デバイスは、例えば機械的に(例:ソーイングによって)、または化学的に(例:乾式化学エッチング工程によって)、またはレーザ切断工程によって、個片化することができる。したがってこの場合、フィラーは、個片化された半導体デバイスの側面の少なくとも一部分を形成する。例えば、フィラーは、部分的に、横方向においてその表面がキャリアボディもしくは半導体ボディまたはその両方の端面と同一平面内にある。特に、この場合、フィラーは、個片化工程において一般的である個片化痕跡を有する。
個片化された半導体デバイスに残るフィラーとしては、例えば、ポリマー材料(例:エポキシ、シリコーン、ポリイミド)が適切である。
本方法の少なくとも一実施形態によると、複合体を個片化するときに、半導体ボディ領域とは反対側の面に、第1のコンタクトおよび第2のコンタクトを形成し、これらの第1のコンタクトもしくは第2のコンタクトまたはその両方は、キャリアボディを貫くスルービア(through via)を介して、対応する半導体ボディ領域に導電的に接続される。第1のコンタクトのみ、または第2のコンタクトのみが、キャリアボディを貫くスルービアを介して対応する半導体ボディ領域に導電的に接続される実施形態においては、他方のコンタクトは、キャリアボディ自体の材料を通じて半導体ボディ領域に導電的に接続することができる。
本方法の少なくとも一実施形態によると、複合体を、半導体積層体とは反対側の後面において薄化する。薄化することによって、製造される半導体デバイスの垂直方向範囲がさらに低減する。キャリアボディを薄化するのは、半導体積層体の成長基板をすでに除去した後であることが好ましい。成長基板を除去するときには、キャリアボディは依然として比較的大きな厚さを有し、したがって薄化した後よりも高い機械的安定性を有する。さらに、複合体を薄化するのは、隙間をフィラーによって満たした後であることが好ましい。薄化するとき、キャリアボディの材料とフィラーを除去する。これに代えて、成長基板を除去する前にキャリアボディを薄化することもできる。
薄化した後、外部から半導体デバイスとの電気的接触を形成するための第1のコンタクトおよび第2のコンタクトを、半導体積層体とは反対側の複合体の後面に形成することができる。
変形形態においては、キャリアボディをあらかじめ最終的な厚さに形成しておき、それを半導体積層体に取り付けて複合体を形成することもできる。この場合、薄化するステップを省くことができる。複合体を形成するとき、もしくは、成長基板を除去するとき、またはその両方における機械的安定性を高める目的で、複合体を半導体積層体とは反対側の後面を介して補助キャリアの上に配置することができる。
本方法の少なくとも一実施形態によると、複合体を形成するとき、半導体積層体は、複数の半導体ボディ領域の上に連続的に延在している。したがって、半導体ボディ領域は、横方向に連続する半導体積層体の部分領域である。
本方法の少なくとも一実施形態によると、半導体積層体は、個片化時に切断される。したがって、個々の半導体デバイスの互いに個別の半導体ボディは、個片化するときに初めて作製される。
本方法の少なくとも一実施形態によると、個片化するステップの前に、隣り合う半導体ボディ領域の間に分離溝を形成する。分離溝は、垂直方向に半導体積層体を途中まで貫いていることができる。これに代えて、分離溝は、垂直方向に半導体積層体を完全に貫いていることができ、したがって、個片化するステップの前に、隣り合う半導体ボディ領域が分離溝によって互いに分離されている。
分離溝は、成長基板が除去された後に形成することが好ましい。例えば、分離溝を形成した後、複合体は、フィラーの部分においてのみ連続しているように形成されており、したがって、垂直方向にフィラーを切断する、またはフィラーを完全に除去することによって、個片化を達成することができる。
これに代えて、成長基板を除去する前、特に、複合体を形成する前に、分離溝を形成することができる。この場合、特に、すでに互いに分離された半導体ボディを成長基板によって一体的に保持することができる。
本方法の少なくとも一実施形態によると、成長基板上に半導体積層体を作製し、複合体を形成した後、隙間を少なくとも部分的にフィラーによって満たす。隙間を満たした後に成長基板を除去し、成長基板を除去した後に複合体を個片化し、個片化するときにはフィラーを少なくとも部分的に除去する。
したがって、フィラーは、個片化するときに個々のキャリアボディを機械的に安定させる目的に使用される。成長基板を除去した後、個片化する目的で、フィラーを垂直方向に完全に切断する、またはフィラーを完全に除去することができる。
本方法の少なくとも一実施形態によると、成長基板上に半導体積層体を作製し、複合体を形成した後に成長基板を除去する。キャリアボディとは反対側の半導体積層体の面に、化学的工程によって構造化部を形成し、構造化部を形成するとき、隙間は、化学的工程に対して安定であるフィラーによって、少なくとも部分的に満たされている。
フィラーは、複合体を形成した後に形成する、または作製するキャリアボディにあらかじめ形成しておくことができる。化学的に安定なフィラーとしては、例えば窒化物(例:シリコン窒化物)が適している。
少なくとも一実施形態によると、本半導体デバイスは、放射を生成する、もしくは放射を受け取る、またはその両方を行う目的で設けられている活性領域を有する半導体積層体を有する半導体ボディと、半導体ボディが取り付けられているキャリアボディと、を備えている。
本半導体デバイスの少なくとも一実施形態によると、キャリアボディは、半導体ボディとは反対側の後面に、外部から半導体デバイスとの電気的接触を形成するための第1のコンタクトおよび第2のコンタクトを有する。これら第1のコンタクトおよび第2のコンタクトは、本半導体デバイスの動作時に活性領域の両側から活性領域内に電荷キャリアを注入する目的で設けられており、したがってこれらの電荷キャリアが再結合して放射が放出される。放射受光器(radiation receiver)の場合、活性領域の両側から第1のコンタクトおよび第2のコンタクトを介して電荷キャリアを放出させることができる。第1のコンタクトおよび第2のコンタクトは、半導体デバイスの、外部からアクセス可能な領域である。
本半導体デバイスの少なくとも一実施形態によると、半導体ボディとコンタクトとを互いに導電接続するため、半導体ボディとキャリアボディとの間に金属中間層が配置されている。金属中間層は、特に、多層として形成されており、例えば、半導体ボディとの電気的接触を形成するための接続層、もしくは、キャリアボディと半導体ボディとを一体に結合する結合層(例えばはんだ層)、またはその両方を含む。
本半導体デバイスの少なくとも一実施形態によると、キャリアボディの側端面は、少なくとも部分的にフィラーによって囲まれている。特に、キャリアボディは、例えば被覆の形で、周囲全体に沿ってフィラーによって囲まれている。フィラーは、特に製造時にも、例えば湿式化学エッチング工程の影響に対してキャリアボディを保護する。
本半導体デバイスの少なくとも一実施形態によると、本半導体デバイスは、放射を生成する、もしくは放射を受け取る、またはその両方を行う目的で設けられている活性領域を有する半導体積層体を有する半導体ボディと、半導体ボディが取り付けられているキャリアボディと、を備えており、キャリアボディは、半導体ボディとは反対側の後面に、外部から本半導体デバイスとの電気的接触を形成するための第1のコンタクトおよび第2のコンタクトを有する。半導体ボディとキャリアボディとの間には、半導体ボディとコンタクトとを互いに導電接続する金属中間層が配置されており、キャリアボディの側端面は、少なくとも部分的にフィラーによって囲まれている。
金属中間層は、特に、互いに電気的に絶縁されている部分領域を備えており、したがって、第1のコンタクトと第2のコンタクトが金属中間層によって互いに直接接続されることはない。
本半導体デバイスの少なくとも一実施形態によると、金属中間層は、少なくとも部分的に、特に、本半導体デバイスの周囲全体に沿って、フィラーによって囲まれている。本半導体デバイスの側面において、フィラーは、その表面が半導体ボディの端面と同一平面内にあるようにすることができる。
本半導体デバイスの側面において、フィラーは、個片化ステップの痕跡、例えば、機械的な個片化の痕跡(ソーイングの痕跡など)またはレーザ照射による個片化の痕跡を有しうる。しかしながら、変形形態においては、フィラーに個片化ステップの痕跡が存在しないようにすることもできる。
本半導体デバイスの少なくとも一実施形態によると、本半導体デバイスの平面視において、本半導体ボディは、少なくとも部分的に、キャリアボディよりも突き出している。例えば、本半導体デバイスのただ1つの側面または2つの側面(特に、互いに隣接する側面)において、半導体ボディがキャリアボディよりも突き出している。半導体ボディは、例えば、少なくとも100nm、最大で10μmだけ、キャリアボディよりも突き出している。
本半導体デバイスの少なくとも一実施形態によると、第1のコンタクトおよび第2のコンタクトは、それぞれ、スルービアを介して半導体ボディに導電的に接続されており、第1のコンタクトと第2のコンタクトとの間にESD保護素子が形成されており、このESD保護素子は活性領域に並列に接続されている。「活性領域に並列に接続されている」という表現は、活性領域の順方向に逆並列な向きの順方向を有するESD保護素子(例えばESD保護ダイオード)も含む。
ESD保護素子は、例えば、互いに異なる導電型を有する、キャリアボディの2つの部分領域によって形成されており、したがってキャリアボディはpn接合部を備えている。
前に説明した本方法は、本半導体デバイスを製造するのに特に適している。したがって、本方法に関連して記載した特徴は、本半導体デバイスにもあてはまり、逆も同様である。
以下では、例示的な実施形態について図面を参照しながら説明する。さらなる特徴、実施形態、および発展形態は、以下の説明から明らかになるであろう。
図1Aは、オプトエレクトロニクス半導体デバイスを製造する方法の第1の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図1Bは、オプトエレクトロニクス半導体デバイスを製造する方法の第1の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図1Cは、オプトエレクトロニクス半導体デバイスを製造する方法の第1の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図1Dは、オプトエレクトロニクス半導体デバイスを製造する方法の第1の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図1Eは、オプトエレクトロニクス半導体デバイスを製造する方法の第1の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図1Fは、オプトエレクトロニクス半導体デバイスを製造する方法の第1の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図2Aは、オプトエレクトロニクス半導体デバイスを製造する方法の第2の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図2Bは、オプトエレクトロニクス半導体デバイスを製造する方法の第2の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図2Cは、オプトエレクトロニクス半導体デバイスを製造する方法の第2の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図2Dは、オプトエレクトロニクス半導体デバイスを製造する方法の第2の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図2Eは、オプトエレクトロニクス半導体デバイスを製造する方法の第2の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図3Aは、オプトエレクトロニクス半導体デバイスを製造する方法の第3の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図3Bは、オプトエレクトロニクス半導体デバイスを製造する方法の第3の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図3Cは、オプトエレクトロニクス半導体デバイスを製造する方法の第3の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図3Dは、オプトエレクトロニクス半導体デバイスを製造する方法の第3の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図3Eは、オプトエレクトロニクス半導体デバイスを製造する方法の第3の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 図3Fは、オプトエレクトロニクス半導体デバイスを製造する方法の第3の例示的な実施形態を概略断面図として示した中間ステップを用いて示している。 本半導体デバイスの第1の例示的な実施形態を概略断面図において示している。 本半導体デバイスの第2の例示的な実施形態を概略断面図において示している。
図面において、同じ要素、類似する要素、または同じ機能の要素には、同じ参照数字を付してある。
図面と、図面に示したさまざまな要素の互いの大きさの比率は、正しい縮尺ではないものとみなされたい。むしろ、図を明瞭にする、または理解を容易にする目的で、個々の要素および特に層の厚さを、誇張して大きく示してある。
図1A〜図1Fに記載されている、本方法の第1の例示的な実施形態においては、オプトエレクトロニクス半導体デバイスを製造する目的で、半導体積層体2を作製する。以下では、製造時に4つの半導体デバイスが得られる半導体積層体2の部分を一例として用いて、本発明について説明する。
半導体積層体2は、第1の導電型の第1の半導体層21と、第1の導電型とは異なる第2の導電型の第2の半導体層22との間に配置される活性領域25とを含む。例えば、第1の半導体層21がp型導電性であり第2の半導体層22がn型導電性である、またはこの逆である。以下では、一例として、ルミネセンスダイオード(例:発光ダイオード)など放射を放出する半導体デバイスの場合に関して、本発明について説明する。当然ながら、本半導体デバイスは、放射受光器(例えば光ダイオードや太陽電池)とすることもでき、その場合、活性領域25は放射を受け取る目的で設けられる。
図1Aに示したように、半導体積層体をエピタキシャルに堆積させるための成長基板29の上に、半導体積層体2を作製する。半導体積層体2の材料が窒化物化合物半導体材料である場合、成長基板としてはサファイアが特に適している。これに代えて、シリコンまたはシリコンカーバイド(炭化ケイ素)を使用することもできる。
半導体積層体2は、複数の半導体ボディ領域200の上に横方向に連続的に延在しており、個々の半導体デバイスの製造時、半導体ボディ領域200それぞれから1つの半導体ボディが作製される。第1の半導体層との電気的接触を形成する目的で設けられる第1の接続層71と、第2の半導体層22との電気的接触を形成する目的で設けられる第2の接続層72とを、成長基板29とは反対側の半導体積層体の面に配置する。図を見やすくするため、接続層71,72を介して半導体層との電気的接触を形成する方法の詳細は示しておらず、これらの接続層は大幅に単純化して示している。接続層71,72によって第1の半導体層21および第2の半導体層22との電気的接触を形成するための1つの可能な方法については、後から図3を参照しながらさらに詳しく説明する。
図1Bに示したように、複合体4を形成し、この場合、キャリアボディ3を各半導体ボディ領域200に取り付ける。キャリアボディ3は、互いに隔てられた個々の要素であり、隙間35によって互いに分離されている。キャリアボディそれぞれは、第1の接続層71との電気的接触を形成するための第1の接触構造31と、第2の接続層72との電気的接触を形成するための第2の接触構造32とを備えている。第1の接触構造31および第2の接触構造32それぞれは、キャリアボディ3を貫いているスルービア33を備えている。
このようにして作製される複合体4は、垂直方向に(すなわち半導体積層体2の半導体層の主延在面に垂直に)、後面40と前面41との間に延在しており、半導体積層体はキャリアボディから見て前面41の側にある。
図示した例示的な実施形態においては、第1の接触構造31および第2の接触構造32は、後面において垂直方向にキャリアボディ3よりも突き出している。しかしながら、このことは絶対的に必要ではない。
キャリアボディ3は、例えば結合層(例:はんだ層)によって半導体積層体2に取り付ける。キャリアボディ3と半導体積層体2との間の機械的に安定な結合を形成するとき、キャリアボディ3それぞれが横方向における比較的小さい辺長を有するため、成長基板29の熱膨張係数とキャリアボディ3の熱膨張係数の差に起因する損傷の危険性が、連続的に延在するキャリア(例えばキャリアウェハ)と比較して減少する。結果として、成長基板29とキャリアボディ3とで熱膨張係数が異なるために複合体4が損傷する危険性が最小になる。例えば、シリコンやゲルマニウムなどの半導体材料を含む、またはこのような材料からなるキャリアボディ3の場合、熱膨張係数に関してシリコンと比較して大きく異なるにもかかわらず、サファイアを成長基板として使用することもできる。結果として、特に高い結晶品質を有する半導体層を作製することができる。
複合体を形成した後、キャリアボディ3の間の隙間35をフィラー5によって満たす。このステップには、例えば鋳造工程が適している。鋳造工程とは、一般的には、成形材料を所定の形状に成型することのできる工程を意味するものと理解されたい。「鋳造工程」という表現は、具体的には、鋳造、射出成形、トランスファ成形、および圧縮成形を含む。
フィラーとしては、例えばポリマー材料(例:シリコーン、エポキシ)が適している。図1Cに示した実施形態においては、フィラー5は複合体4の後面40も形成している。したがって、フィラーは、半導体積層体の上のキャリアボディ3を完全に覆う。変形形態においては、フィラーが隙間のみを、完全に、または少なくとも部分的に満たすように、フィラーを形成することもできる。
フィラー5によって、複合体4の機械的安定性が高まる。次いで、図1Dに示したように、成長基板29を除去する。サファイアの成長基板の場合、このステップには例えばレーザリフトオフ(LLO)工程が適している。この場合、完全な除去を行うことができ、したがって複合体4の横方向の構造に関係なく(すなわち、特に、製造する半導体デバイスのサイズに関係なく)、レーザリフトオフ工程を実行することができる。したがって、例えば対応するビーム形状を有するエキシマレーザを使用することによって半導体デバイスの形状に合わせてレーザリフトオフ工程を調整する必要がない。
これに代えて、成長基板の材料によっては、湿式化学エッチングまたは乾式化学エッチングによって、あるいは機械的に(例えば研削、ラッピング、または研磨によって)、成長基板を除去することもできる。成長基板を除去した後、光取り出し効率を高める目的で、キャリアボディ3とは反対側の半導体積層体2の面に構造化部15を形成することができ、このステップは、半導体積層体2が窒化物化合物半導体材料の場合、例えば湿式化学エッチングによって(例:KOHによって)行うことができる。
成長基板を除去した後、複合体4を後面40から薄化する。この場合、キャリアボディ3の材料とフィラーの材料とを除去する。複合体4を形成するとき、および成長基板を除去するときには、複合体4の特徴として、キャリアボディ3の厚さが比較的大きいために機械的安定性が高い。これらのステップの後には、以降の半導体デバイスの高さ(すなわち垂直方向の範囲)を低減する目的で、キャリアボディを薄化することができる。薄化した後、第1の接触構造に接触する第1のコンタクト310と、第2の接触構造32に接触する第2のコンタクト320とを、複合体の後面40に形成する。次いで、図1Fに示したように、複合体4を、例えばソーイング、エッチング、またはレーザ分離工程によって、個片化線49に沿って個片化して、互いに分離された半導体デバイス1を形成する。
上述した例示的な実施形態の変形形態においては、成長基板を除去する前にキャリアボディを薄化することもできる。
個片化された半導体デバイス1それぞれは、1つのキャリアボディ3と1つの半導体ボディ20とを備えている。半導体デバイス1それぞれは、放射出口面11とは反対側の後面40において電気的接触を形成することのできる表面実装可能な半導体デバイスとして形成される。個片化時に形成される半導体デバイスの側面12は、半導体ボディ20と、フィラー5と、キャリアボディ3とによって形成されている。半導体ボディ20と、フィラー5と、キャリアボディ3は、横方向に端面が互いに揃っている。このように製造される半導体デバイスの辺長は、その方向沿いの活性領域25の横方向範囲と同じである。したがって、製造される半導体デバイスの横方向範囲は、放射を生成する目的で設けられる活性領域25の横方向範囲を超えない。次いで、完成した半導体デバイスを、接続キャリア(例えばプリント基板やサブキャリア(サブマウント))に取り付けることができる。
上述した製造方法においては、キャリアボディ3を半導体積層体2に取り付けて複合体4を形成する前に、半導体積層体2を作製するステップとは実質的に独立して、キャリアボディ3の少なくとも一部分を事前に作製することができる。これによって、キャリアボディ3を作製するステップが単純化される。例えば、キャリアボディ3を半導体積層体2に取り付ける前に、キャリアボディ3に電子部品(例:ESD保護素子)をあらかじめ組み込むことができる。さらに、特に、第1の接触構造と第2の接触構造との間において、半導体デバイスの高い機械的安定性を達成することができる。
さらに、キャリアボディ3は、実質的に任意の横方向範囲を有するキャリアから作製することができる。特に、半導体積層体の表面全体にキャリアを貼り付けて複合体を形成する方法とは異なり、キャリアボディの横方向範囲は、半導体積層体の横方向範囲とは独立している。さらには、キャリアボディ3を少なくとも部分的に事前に作製することによって、半導体積層体の上にコンタクト構造310,320を形成するためのガルバニック工程が必要ない。
図2A〜図2Eに示した第2の例示的な実施形態は、図1A〜図1Fに関連して説明した第1の例示的な実施形態とほぼ同じである。図2Aは、半導体積層体2と、半導体積層体2に取り付けられたキャリアボディ3とを有する複合体4がすでに形成された製造段階を示している。この複合体は、図1Aおよび図1Bに関連して説明したように形成することができる。第1の例示的な実施形態とは異なり、複合体を形成するとき、キャリアボディ3は所望の最終的な厚さをすでに有する。複合体4の後面40には、第1のコンタクト310および第2のコンタクト320がすでに形成されている。
次いで、キャリアボディ3の間の隙間35をフィラー5によって満たす(図2B)。機械的安定性を高める目的で、半導体積層体2とは反対側のキャリアボディ3の面に補助キャリア95を取り付ける。次いで、図2Cに示したように、成長基板を除去する(図1Dを参照)。
成長基板を除去した後、半導体積層体2を垂直方向に完全に貫く分離溝27を形成する(図2D)。変形形態においては、分離溝は、半導体積層体を垂直方向に部分的にのみ貫いていることができる。図示した例示的な実施形態においては、分離溝27は、隙間35の中に存在しているフィラーまで延びている。分離溝を形成した後には、それぞれが対応するキャリアボディ3を有する、このように作製した複数の半導体ボディ20は、フィラー5および補助キャリア95のみによって互いに機械的に結合されている。次いで、図2Eに示したように、フィラー5を除去することによって、個片化された半導体デバイス1を形成する。この場合、フィラーとしては、例えば溶剤や湿式化学エッチング工程によって容易に除去することのできる一時的な材料が特に適している。例えば、可溶性ラッカーを使用することができる。この例示的な実施形態においては、個片化された半導体デバイス1には、個片化工程の結果として残りうるフィラー5の残留物を除いて、フィラーは存在しない。
図3A〜図3Fに示した第3の例示的な実施形態は、図2A〜図2Eに関連して説明した第2の例示的な実施形態とほぼ同じである。
第2の例示的な実施形態とは異なり、図3Aに示したように、複合体を形成する前に半導体積層体2に分離溝27をあらかじめ形成する。
次いで、すでに形成された半導体ボディ20にキャリアボディ3を取り付けて複合体4を形成する(図3B)。このステップは、ここまでに説明した例示的な実施形態と同様に行うことができる。この方法段階においては、半導体ボディおよび半導体ボディに取り付けられたキャリアボディは、成長基板29のみによって互いに機械的に連続している。
次いで、隙間35をフィラー5によって満たす。この例示的な実施形態においては、フィラーは、第1の部分領域51および第2の部分領域52を含む。第1の部分領域は、例えば蒸着またはスパッタリングによって堆積される被覆として形成する。第1の部分領域は、複合体4の構造(特に、隙間35の形状)に従う。変形形態においては、複合体4を形成する前に、フィラー5(特に、第1の部分領域51)をあらかじめキャリアボディに付加することもできる。この場合、第1の部分領域51は、キャリアボディの一部(特に、キャリアボディの側端面302)のみを覆う。
第2の部分領域52は、残っている隙間を特に完全に満たす。図3Cは、複合体を一時的な補助キャリア97に貼り付けた段階を示している(図3C)。
図3Dに示したように、成長基板を除去し、したがって、個々の半導体ボディ20は、キャリアボディ3とともに、一時的な補助キャリア97の上に位置している。次いで、図3Eに示したように、成長基板29を除去することによって露出した半導体ボディに、例えば湿式化学エッチング工程によって(例:KOHを使用することによって)、構造化部15を形成する。
フィラー5(特に、第1の部分領域51)は、この湿式化学工程に対して安定であるように形成し、したがって、構造化するときにキャリアボディ3が保護される。例えば、シリコン窒化物は、KOHに対して安定である材料として適している。これとは異なり、第2の部分領域52の材料は、構造化工程に対して必ずしも安定である必要はなく、結果として、構造化するときに部分的または完全に除去することができる(図3E)。オプションとして、次いで第2の部分領域の残留物を除去することができる。第2の部分領域を除去することによって、複合体4が個々の半導体デバイスに同時に個片化される。当然ながら、第2の部分領域が構造化工程に対して安定であり、構造化工程の後に除去することもできる。
特に、第2の部分領域52自体が構造化工程に対して安定ではない場合、一時的な補助キャリア97は第1の部分領域と同様に構造化工程に対して安定であるように形成することが好ましい。一時的な補助キャリアは、例えば、ポリイミドを含むことができる。このような材料は、湿式化学エッチング工程に対する比較的高い安定性と、良好な温度安定性とを特徴とする。
次いで、個片化された半導体デバイス1を補助キャリア95の上に移載することができ(図3F)、補助キャリア95の上の半導体デバイスに対して、さらなる処理を行うことができる。このステップには、従来のキャリアフィルムが適している。
上述した例示的な実施形態においては、完成した半導体デバイスに残る第1の部分領域51と、本方法において除去される第2の部分領域52とを有するフィラー5を使用する。フィラー5のこのような設計は、前に説明した例示的な実施形態において使用することもできる。
これに代えて、この例示的な実施形態においては、単一構造のフィラーを使用することもできる。
図4は、特に、図1A〜図1Fまたは図3A〜図3Fに関連して説明したように製造することのできる半導体デバイス1の例示的な実施形態を、概略断面図において示している。
この半導体デバイス1は、半導体積層体2を有する半導体ボディ20を含む。半導体積層体は、放射を生成する目的で設けられている活性領域25を含み、活性領域25は、キャリアボディ3の側の第1の半導体層21と、キャリアボディ3とは反対の活性領域25の側に配置されている第2の半導体層22との間に配置されている。半導体ボディ20は、キャリアボディから第1の半導体層21および活性領域25を貫いている複数の凹部24を備えている。
第1の半導体層21は、第1の接続層71に導電的に接続されている。第1の接続層は、1層または複数の層によって形成することができる。第1の接続層71の少なくとも1層の部分層は、活性領域25において生成された放射を反射するように形成されていることが好ましい。例えば、銀、パラジウム、ロジウムは、可視スペクトル領域における高い反射率を特徴とする。
さらに、半導体デバイス1は、第2の接続層72を含む。第2の接続層は、凹部24において、第2の半導体層22に導電的に接続されている。第1の接続層71の一部分は、第2の接続層72と半導体ボディ20との間に延在している。電気的短絡を防止する目的で、第2の接続層72と第1の半導体層21の間と、第2の接続層と第1の接続層の間とに、第1の絶縁層81が配置されている。
さらに、第1の接続層71と第2の接続層72との間の第2の絶縁層82は、これらの層の間を電気的に絶縁する目的に使用される。
電荷キャリアは、凹部24を介して横方向に均一に活性領域25の中に注入することができる。しかしながら、第2の半導体層22の横方向導電率が十分に高い場合、半導体ボディ20がただ1つの凹部24のみを有することも可能である。
キャリアボディ3は、垂直方向に、半導体ボディ20の側の前面301と、前面とは反対側の後面300との間に延在している。キャリアボディ3にはスルービア33が形成されており、キャリアボディ3を垂直方向に完全に貫いている。キャリアボディの後面300には、第1のコンタクト310および第2のコンタクト320が配置されており、それぞれ、スルービア33を介して第1の接続層71および第2の接続層72に導電的に接続されている。第1のコンタクト310と第2のコンタクト320の間に外部電圧を印加することによって、活性領域25の中に両側から電荷キャリアを注入することができ、活性領域25において電荷キャリアが再結合して放射が放出される。
キャリアボディ3の一部分は、第3の絶縁層83によって覆われている。第1の絶縁層81、第2の絶縁層82、および第3の絶縁層83それぞれには、誘電体材料、例えば酸化物(例:シリコン酸化物)あるいは窒化物(例:シリコン窒化物)が適している。この場合、「第1の絶縁層」、「第2の絶縁層」、および「第3の絶縁層」という表現は、これらの層を形成するときの順序を暗黙的に示すものではなく、異なる電気的絶縁領域を示す目的に使用しているにすぎない。
さらには、キャリアボディ3にESD保護素子91が形成されている。ESD保護素子にも、同様に第1のコンタクト310および第2のコンタクト320を介して外部から電気的接触を形成することができ、ESD保護素子は活性領域25に並列に接続されている。図示した例示的な実施形態においては、ESD保護素子は、キャリアボディの第1の部分領域38および第2の部分領域39によって形成されている。これらの部分領域は、互いに反対の導電型を有する。したがって、ESD保護素子91は、第1の部分領域38と第2の部分領域39との間のpn接合部によって形成されている。
第1の接触構造31は、第3の絶縁層83の第1の開口部92において、第1の部分領域に導電的に接続されている。第2の接触構造32は、第3の絶縁層83の第2の開口部93において、第2の部分領域に導電的に接続されている。
第1の部分領域38の導電型と第1の半導体層21の導電型は互いに反対であり、したがって、ESD保護素子91の順方向と活性領域25の順方向は互いに逆並列な向きにある。
半導体ボディ20とキャリアボディ3との間には金属中間層6が配置されており、金属中間層6は、例えば、第1の接続層71と、第2の接続層72と、結合層73(例:はんだ層)を含む。
図示した例示的な実施形態においては、側面において、少なくとも金属中間層6の一部分と、キャリアボディの側端面302は、フィラー5によって完全に囲まれている。フィラー(例えば被覆の形で形成される)は、特に、製造時にキャリアボディを保護する(例えば化学的負荷に対してキャリアボディを保護する)目的に使用される。上述した例示的な実施形態の変形形態においては、金属中間層をフィラーによって覆わないこともできる。
特に、図1A〜図1Fに関連して説明したように製造される半導体デバイスの場合、半導体デバイス1の側面12において、フィラー5はその表面が半導体ボディ20の端面と同一平面内にある。側面12において、フィラーは、個片化ステップの痕跡、例えば、機械的な除去の痕跡(例:ソーイングの痕跡)、材料の化学的な除去の痕跡、またはレーザ分離工程の痕跡を有する。この場合、図1Fに示したように、キャリアボディをフィラーによって覆わないこともできる。
図5に示した半導体デバイスの第2の例示的な実施形態は、図4に関連して説明した半導体デバイスの第1の例示的な実施形態とほぼ同じである。第1の例示的な実施形態と異なる点として、半導体デバイスの平面視において、少なくとも1つの側面12において、半導体ボディ20が、例えば少なくとも100nm、最大で10μmだけ、キャリアボディ3よりも突き出している。2つの側面、特に、互いに隣接する2つの側面において、半導体ボディがキャリアボディより突き出していることもできる。しかしながら、対向する2つの側面において半導体ボディがキャリアボディより突き出すことがないようにすることが好ましい。例えば、半導体ボディとキャリアボディが平面視において同じ断面積を有することができ、互いにずれた状態に配置される。このような半導体デバイスは、特に効率的にコンパクトに形成できることが判明している。これとは異なり、半導体デバイスに個片化するときにキャリアウェハを切断することによってキャリアボディが形成される半導体デバイスにおいては、半導体ボディは製造工程の結果としていずれの側面においてもキャリアボディより突き出すことはない。
特に、図1A〜図1F、および図3A〜図3Fに関連して説明したように、特にコンパクトな設計においてオプトエレクトロニクス半導体デバイスを製造する方法は、フィラー5によって単純化される。本半導体デバイスは、特に、CSP(チップサイズパッケージ)設計におけるコンパクトな表面実装デバイス(SMD)として形成される。
ここまで、本発明について例示的な実施形態を参照しながら説明してきたが、本発明はこれらの説明によって制限されない。本発明は、任意の特徴および特徴の任意の組合せを含み、特に、請求項における特徴の任意の組合せを含む。これらの特徴または特徴の組合せは、それ自体が請求項あるいは例示的な実施形態に明示的に記載されていない場合であっても、本発明に含まれる。
本特許出願は、独国特許出願第102013111496.2号の優先権を主張し、この文書の開示内容は参照によって本明細書に組み込まれている。

Claims (18)

  1. 複数のオプトエレクトロニクス半導体デバイス(1)を製造する方法であって、
    a) 複数の半導体ボディ領域(200)を有する半導体積層体(2)を作製するステップと、
    b) 複数のキャリアボディ(3)を作製するステップであって、前記キャリアボディ(3)それぞれが第1の接触構造(31)および第2の接触構造(32)を有する、ステップと、
    c) 隣り合うキャリアボディが隙間(35)によって互いに隔てられ、かつ、各半導体ボディ領域が、対応する前記キャリアボディの前記第1の接触構造および前記第2の接触構造に導電的に接続されるように、前記半導体積層体および前記キャリアボディを有する複合体(4)を形成するステップと、
    d) 前記複合体を前記複数の半導体デバイスに個片化するステップであって、前記半導体デバイスそれぞれが1つの半導体ボディ(20)および1つのキャリアボディを有する、ステップと、
    を含む、方法。
  2. ステップa)において、前記半導体積層体が成長基板(29)の上に作製され、
    前記成長基板がステップc)の後に除去される、
    請求項1に記載の方法。
  3. 前記成長基板がサファイアを含む、
    請求項2に記載の方法。
  4. ステップc)の後、前記隙間が少なくとも部分的にフィラー(5)によって満たされる、
    請求項1から請求項3のいずれか1項に記載の方法。
  5. 前記フィラーが第1の部分領域(51)および第2の部分領域(52)を有し、前記第1の部分領域の一部分が、前記複合体の構造に従うように形成される、
    請求項4に記載の方法。
  6. 前記第1の部分領域(51)の少なくとも一部分が前記半導体デバイスに残り、前記第2の部分領域(52)が完全に除去される、
    請求項5に記載の方法。
  7. ステップd)において、前記複合体を個片化するために前記フィラーが除去される、
    請求項4から請求項6のいずれか1項に記載の方法。
  8. 前記フィラーが、個片化時に個片化線に沿ってのみ除去され、前記個片化線の両側において前記半導体デバイスに残る、
    請求項4から請求項6のいずれか1項に記載の方法。
  9. ステップd)において、前記半導体ボディ領域とは反対側の面に、第1のコンタクト(310)および第2のコンタクト(320)が形成され、前記第1のコンタクトもしくは前記第2のコンタクトまたはその両方が、前記キャリアボディを貫くスルービア(33)を介して、対応する前記半導体ボディ領域に導電的に接続される、
    請求項1から請求項8のいずれか1項に記載の方法。
  10. 前記複合体が、前記半導体積層体とは反対側の後面(40)において薄化される、
    請求項1から請求項9のいずれか1項に記載の方法。
  11. ステップc)において、前記半導体積層体が、前記複数の半導体ボディ領域の上に連続的に延在している、
    請求項1から請求項10のいずれか1項に記載の方法。
  12. 前記半導体積層体が、個片化時に切断される、
    請求項9に記載の方法。
  13. ステップd)の前に、隣り合う半導体ボディ領域の間に分離溝が形成される、
    請求項1から請求項9のいずれか1項に記載の方法。
  14. − ステップa)において、前記半導体積層体が成長基板(29)の上に作製され、
    − ステップc)の後、前記隙間が少なくとも部分的にフィラー(5)によって満たされ、
    − 前記隙間が満たされた後に前記成長基板が除去され、
    − 前記成長基板を除去した後に前記複合体が個片化され、個片化するときに前記フィラーが少なくとも部分的に除去される、
    請求項1に記載の方法。
  15. − ステップa)において、前記半導体積層体が成長基板(29)の上に作製され、
    − ステップc)の後、前記成長基板が除去され、
    − 前記キャリアボディとは反対側の前記半導体積層体の面に、化学的工程によって構造化部(15)が形成され、
    − 前記構造化部を形成するとき、前記隙間が、前記化学的工程に対して安定であるフィラー(5)によって、少なくとも部分的に満たされている、
    請求項1に記載の方法。
  16. 放射を生成する、もしくは放射を受け取る、またはその両方を行う目的で設けられている活性領域(25)を有する半導体積層体を有する半導体ボディ(20)と、前記半導体ボディが取り付けられているキャリアボディ(3)と、を備えている半導体デバイス(1)であって、
    − 前記キャリアボディが、前記半導体ボディとは反対側の後面(300)に、外部から前記半導体デバイスとの電気的接触を形成するための第1のコンタクト(310)および第2のコンタクト(320)を有し、
    − 前記半導体ボディと前記第1のコンタクト(310)および第2のコンタクト(320)とを互いに導電接続するため、前記半導体ボディと前記キャリアボディとの間に金属中間層(6)が配置されており、
    − 前記キャリアボディの側端面(302)の少なくとも一部分がフィラー(5)によって囲まれており、
    前記半導体デバイスの平面視において、前記半導体ボディが、少なくとも部分的に、前記キャリアボディよりも突き出している、
    半導体デバイス。
  17. 前記金属中間層が、少なくとも部分的に、前記フィラーによって囲まれている、
    請求項16に記載の半導体デバイス。
  18. 前記第1のコンタクトおよび前記第2のコンタクトが、それぞれ、スルービア(33)を介して前記半導体ボディに導電的に接続されており、前記第1のコンタクトと前記第2のコンタクトとの間にESD保護素子(91)が形成されており、前記ESD保護素子(91)が活性領域に並列に接続されている、
    請求項16または請求項17に記載の半導体デバイス。
JP2016547223A 2013-10-18 2014-09-02 オプトエレクトロニクス半導体デバイスを製造する方法および半導体デバイス Expired - Fee Related JP6204600B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201310111496 DE102013111496A1 (de) 2013-10-18 2013-10-18 Verfahren zum Herstellen von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement
DE102013111496.2 2013-10-18
PCT/EP2014/068565 WO2015055346A1 (de) 2013-10-18 2014-09-02 Optoelektronischens halbleiterbauelement und sein herstellungsverfahren

Publications (2)

Publication Number Publication Date
JP2016533044A JP2016533044A (ja) 2016-10-20
JP6204600B2 true JP6204600B2 (ja) 2017-09-27

Family

ID=51485600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016547223A Expired - Fee Related JP6204600B2 (ja) 2013-10-18 2014-09-02 オプトエレクトロニクス半導体デバイスを製造する方法および半導体デバイス

Country Status (5)

Country Link
US (1) US9780078B2 (ja)
JP (1) JP6204600B2 (ja)
CN (1) CN105637636B (ja)
DE (1) DE102013111496A1 (ja)
WO (1) WO2015055346A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9819144B2 (en) * 2015-05-14 2017-11-14 Apple Inc. High-efficiency vertical emitters with improved heat sinking
US10034375B2 (en) 2015-05-21 2018-07-24 Apple Inc. Circuit substrate with embedded heat sink
DE102015109413A1 (de) * 2015-06-12 2016-12-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von optoelektronischen Konversions-Halbleiterchips und Verbund von Konversions-Halbleiterchips
US9735539B2 (en) 2015-07-20 2017-08-15 Apple Inc. VCSEL structure with embedded heat sink
DE102015111721A1 (de) * 2015-07-20 2017-01-26 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Vielzahl von Halbleiterchips und strahlungsemittierender Halbleiterchip
DE102015113310B4 (de) * 2015-08-12 2022-08-04 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterchip
DE102016124646A1 (de) * 2016-12-16 2018-06-21 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements
US10804360B2 (en) * 2017-04-14 2020-10-13 Mitsubishi Electric Corporation Silicon carbide semiconductor device, electric power conversion device, method for producing silicon carbide semiconductor device, and method for producing electric power conversion device
DE102017119664A1 (de) 2017-08-28 2019-02-28 Osram Opto Semiconductors Gmbh Kantenemittierender Laserbarren
DE102017130131B4 (de) * 2017-12-15 2021-08-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von optoelektronischen Halbleiterbauteilen und optoelektronisches Halbleiterbauteil
JP6897640B2 (ja) 2018-08-02 2021-07-07 日亜化学工業株式会社 発光装置の製造方法
US11152533B1 (en) * 2018-09-21 2021-10-19 Facebook Technologies, Llc Etchant-accessible carrier substrate for display manufacture
DE102018128692A1 (de) * 2018-11-15 2020-05-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement mit ersten Verbindungsbereichen und optoelektronische Vorrichtung
US10881028B1 (en) 2019-07-03 2020-12-29 Apple Inc. Efficient heat removal from electronic modules
DE102019129327A1 (de) * 2019-10-30 2021-05-06 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung eines optoelektronischen halbleiterbauelements und optoelektronisches halbleiterbauelement
US11710945B2 (en) 2020-05-25 2023-07-25 Apple Inc. Projection of patterned and flood illumination
US11699715B1 (en) 2020-09-06 2023-07-11 Apple Inc. Flip-chip mounting of optoelectronic chips

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691363B1 (ko) 2005-09-23 2007-03-12 삼성전기주식회사 수직구조 발광 다이오드의 제조 방법
DE102007043877A1 (de) * 2007-06-29 2009-01-08 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von optoelektronischen Bauelementen und optoelektronisches Bauelement
JP5278317B2 (ja) * 2007-06-29 2013-09-04 豊田合成株式会社 発光ダイオードの製造方法
DE102008011848A1 (de) * 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
JP5232975B2 (ja) * 2008-07-01 2013-07-10 豊田合成株式会社 発光ダイオードの製造方法及び発光ダイオード、並びにランプ
DE102009032486A1 (de) * 2009-07-09 2011-01-13 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
DE102009036621B4 (de) 2009-08-07 2023-12-21 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Halbleiterbauteil
WO2011099384A1 (ja) * 2010-02-09 2011-08-18 日亜化学工業株式会社 発光装置および発光装置の製造方法
US8390009B2 (en) * 2010-02-16 2013-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitting diode (LED) package systems
DE102010025320B4 (de) * 2010-06-28 2021-11-11 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
JP4778107B1 (ja) * 2010-10-19 2011-09-21 有限会社ナプラ 発光デバイス、及び、その製造方法
US9666764B2 (en) * 2012-04-09 2017-05-30 Cree, Inc. Wafer level packaging of multiple light emitting diodes (LEDs) on a single carrier die
US8324082B1 (en) 2011-09-15 2012-12-04 SemiLEDs Optoelectronics Co., Ltd. Method for fabricating conductive substrates for electronic and optoelectronic devices
WO2013050898A1 (en) * 2011-10-07 2013-04-11 Koninklijke Philips Electronics N.V. Electrically insulating bond for mounting a light emitting device
WO2013094078A1 (ja) 2011-12-21 2013-06-27 ウェーブスクエア,インコーポレイテッド 半導体素子およびその製造方法ならびに半導体素子結合体
DE102012217533A1 (de) * 2012-09-27 2014-03-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102012218457A1 (de) 2012-10-10 2014-04-10 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement und verfahren zu seiner herstellung

Also Published As

Publication number Publication date
WO2015055346A1 (de) 2015-04-23
US9780078B2 (en) 2017-10-03
CN105637636B (zh) 2018-10-12
WO2015055346A9 (de) 2015-12-03
CN105637636A (zh) 2016-06-01
JP2016533044A (ja) 2016-10-20
US20160300825A1 (en) 2016-10-13
DE102013111496A1 (de) 2015-04-23

Similar Documents

Publication Publication Date Title
JP6204600B2 (ja) オプトエレクトロニクス半導体デバイスを製造する方法および半導体デバイス
JP6933691B2 (ja) トップエミッション型半導体発光デバイス
TWI385825B (zh) 光電元件及其製造方法
JP6104158B2 (ja) オプトエレクトロニクス半導体チップ、およびオプトエレクトロニクス半導体チップの製造方法
US9449879B2 (en) Method of severing a semiconductor device composite
US9324926B2 (en) Wavelength converted light emitting device
US9721940B2 (en) Radiation-emitting semiconductor chip and method of producing radiation-emitting semiconductor chips
US9165816B2 (en) Method for singulating a component composite assembly
JP2014509085A (ja) 少なくとも1個のオプトエレクトロニクス半導体チップの製造方法
US9530935B2 (en) Method for fabricating a plurality of opto-electronic semiconductor chips, and opto-electronic semiconductor chip
KR20110030542A (ko) 광전 소자 제조 방법 및 광전 소자
JP6223555B2 (ja) オプトエレクトロニクス半導体エレメント及びオプトエレクトロニクス半導体エレメントの製造方法
JP2012504875A (ja) オプトエレクトロニクス半導体素子の製造方法及びオプトエレクトロニクス半導体素子
US10586788B2 (en) Method of producing optoelectronic component with integrated protection diode
JP2018518039A (ja) オプトエレクトロニクス部品アレイおよび複数のオプトエレクトロニクス部品アレイを製造する方法
US10505091B2 (en) Component and method of producing a component
JP6277270B2 (ja) オプトエレクトロニクス半導体チップ、半導体部品、および、オプトエレクトロニクス半導体チップの製造方法
US10424698B2 (en) Method for producing optoelectronic conversion semiconductor chips and composite of conversion semiconductor chips
KR20130136260A (ko) 반도체 발광소자 패키지 및 그 제조방법
US11081520B2 (en) Luminescence diode with first and second layer sequences having an arrangement of microprisms and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170831

R150 Certificate of patent or registration of utility model

Ref document number: 6204600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees