JP6199456B2 - Wide light distribution type straight tube LED lamp - Google Patents

Wide light distribution type straight tube LED lamp Download PDF

Info

Publication number
JP6199456B2
JP6199456B2 JP2016165333A JP2016165333A JP6199456B2 JP 6199456 B2 JP6199456 B2 JP 6199456B2 JP 2016165333 A JP2016165333 A JP 2016165333A JP 2016165333 A JP2016165333 A JP 2016165333A JP 6199456 B2 JP6199456 B2 JP 6199456B2
Authority
JP
Japan
Prior art keywords
particles
tube
light
ceramic
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016165333A
Other languages
Japanese (ja)
Other versions
JP2017092023A (en
Inventor
昆淵 江
昆淵 江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW104137668A external-priority patent/TWI571595B/en
Priority claimed from TW104218326U external-priority patent/TWM519710U/en
Application filed by Individual filed Critical Individual
Publication of JP2017092023A publication Critical patent/JP2017092023A/en
Application granted granted Critical
Publication of JP6199456B2 publication Critical patent/JP6199456B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、直管LEDランプに関し、特に、広配光タイプ直管LEDランプに関する。直管ランプの内管壁とLED光源の間に散漫な光透過性セラミック粒子を充填することで、熱抵抗を低下し、光を柔らかくすると共に青色光が外部に漏れ出ることを避けることができる。   The present invention relates to a straight tube LED lamp, and more particularly to a wide light distribution type straight tube LED lamp. By filling the diffused light-transmitting ceramic particles between the inner tube wall of the straight tube lamp and the LED light source, the thermal resistance can be lowered, the light can be softened and the blue light can be prevented from leaking outside. .

LEDフィラメントと通称する広配光タイプLEDライトバーで製造したフィラメント型LED電球は、徐々に市場の注目を浴びているが、ここ数年終始市場を開拓できないでいて、その主な原因はフィラメント型LED電球の放熱問題をやはり克服する必要があり、価格と性能が市場の期待にとうてい及んでいないためである。まず放熱問題を解決するため、現在市場上のフィラメント型LED電球商品の多くはガラス球殻内にヘリウムガスを封入して放熱する。一般的な空気の熱伝導率と比べても、ヘリウムガスの充填は6倍余りの熱伝導能力を向上することができる。ただしフィラメント型LED電球は、火炎加工時の高温や、製造工程非常に低い歩留まりに耐えたとしても、実際のヘリウムガスの熱伝導率もわずか0.159W/m.Kのみであり、そのため現在市場のフィラメント型LED電球商品はLEDの駆動電流を半減することで、ガラス球殻内にヘリウムガスを充てんするという放熱能力不足の問題に対応している。   Filament type LED bulbs manufactured with a wide light distribution type LED light bar, commonly referred to as LED filaments, have gradually attracted market attention, but the market has not been cultivated throughout the last few years, the main cause of which is the filament type This is because the heat dissipation problem of LED bulbs still needs to be overcome, and the price and performance are not meeting market expectations. First, in order to solve the heat dissipation problem, most of the filament type LED bulb products on the market currently radiate heat by enclosing helium gas in a glass shell. Compared with the general thermal conductivity of air, the filling of helium gas can improve the thermal conductivity of about six times. However, the filament type LED bulb has an actual helium gas thermal conductivity of only 0.159 W / m.e. Even if it withstands high temperatures during flame processing and a very low yield in the manufacturing process. Therefore, the filament-type LED light bulb products on the market currently deal with the problem of insufficient heat radiation capability that the glass bulb shell is filled with helium gas by halving the LED driving current.

一般的に透明な樹脂系接着剤の硬化後の熱伝導率が約0.3W/m.Kで、広配光タイプLEDライトバーに透明な樹脂系接着剤を注入・充填して発光ダイオードライトバー動作時の発熱表面積を拡大できるが、透明な樹脂系接着剤の黄変は商品の寿命に影響を及ぼす。且つ樹脂系接着剤の化学非相溶性の悪影響が最も明らかなのは、青色光、藍色光及びその派生する白色光LEDで、設計者は、化学物質の間の影響を最大限で減少することを十分考慮し、特にLEDに直接注入・充填する樹脂系接着剤である。やむを得ない状況において使用しなければならない時、相溶性に優れ、耐候性が高い樹脂系接着剤を選択する以外に、高い材料費でもたらされる製造コストの圧力も考慮しなければならない。   Generally, the heat conductivity of a transparent resin adhesive after curing is about 0.3 W / m. With K, you can inject and fill a transparent resin adhesive into a wide light distribution type LED light bar to increase the heat generating surface area during operation of the light emitting diode light bar, but the yellowing of the transparent resin adhesive is the product life Affects. And the most obvious adverse effects of chemical incompatibility of resin adhesives are blue light, indigo light and its derived white light LED, which allows designers to fully reduce the effects between chemicals In particular, it is a resin-based adhesive that is directly injected and filled into the LED. When it must be used in an unavoidable situation, in addition to selecting a resin-based adhesive with excellent compatibility and high weather resistance, pressure on manufacturing costs caused by high material costs must be considered.

広配光タイプLEDライトバー自体の放熱能力を強化するため、組み合わせる透明基板をガラスから価格が高く、熱伝導性も良好で、サファイアと通称する単結晶酸化アルミニウムのセラミック基板に変更し、且つサファイアセラミック基板の熱伝導性が良好という利点を目立つため、透明基板の全周に塗布していた蛍光体層もサファイアセラミック基板の上下両側に塗布することに変更し、サファイアセラミック基板左右の両側を外部に露出することで放熱能力を高めているが、青色光LEDに蛍光体層を加えた白色光照明器にとって、基板の左右両側の青色光が外部に漏れ出る問題が派生した。これ以外に、サファイアセラミックの機械強度は、ガラスより極めて良好であるが、材料費が高いため、サファイアセラミック基板の厚さを故意に減らし、よってサファイアセラミック基板の広配光タイプLEDライトバーが特別脆弱で容易に折れる。また、環境要因の水分、硫化物等の酸化腐食に抵抗するため、サファイアセラミック基板を組み合わせた広配光タイプLEDライトバーは、実際上の応用に適合するため、管球内に取り付けらなければならない。よって如何にして管球の管壁とLED光源の間に熱抵抗を低下し、光を柔らかくにするか、並びに青色光が外部に漏れ出ることをいかにして避けるかが、克服して解決しなければならない課題となる。   In order to enhance the heat dissipation capability of the wide light distribution type LED light bar itself, the transparent substrate to be combined is changed from a glass to a single crystal aluminum oxide ceramic substrate, which is expensive and has good thermal conductivity, and sapphire In order to stand out the advantage of good thermal conductivity of the ceramic substrate, the phosphor layer applied to the entire circumference of the transparent substrate was changed to be applied to both the upper and lower sides of the sapphire ceramic substrate, and both the left and right sides of the sapphire ceramic substrate were external Although the heat radiation capability is enhanced by exposing the light to the blue light, the problem that the blue light leaks out to the outside on the left and right sides of the substrate is derived for the white light illuminator in which the phosphor layer is added to the blue light LED. Besides this, the mechanical strength of sapphire ceramic is much better than glass, but the material cost is high, so the thickness of the sapphire ceramic substrate is deliberately reduced, so the wide light distribution type LED light bar with sapphire ceramic substrate is special Vulnerable and easy to break. In addition, in order to resist the oxidative corrosion of moisture, sulfides, and other environmental factors, the wide light distribution type LED light bar combined with the sapphire ceramic substrate is suitable for practical applications. Don't be. Therefore, how to reduce the thermal resistance between the tube wall of the bulb and the LED light source, soften the light, and how to avoid the blue light leaking out is overcome and solved. It becomes a problem that must be done.

そこで、本発明は、熱抵抗を低下し、青色光が外部に漏れ出ることを避けることのできる広配光タイプ直管LEDランプを提供することを目的とする。 Then, an object of this invention is to provide the wide light distribution type straight tube | pipe LED lamp which reduces thermal resistance and can avoid that blue light leaks outside.

よく見られる透光媒質の熱伝導率は、熱空気が約0.0316W/m.K、ヘリウムガスが約0.18W/m.K、プラスチックが約0.25W/m.K、エポキシ樹脂が約0.3W/m.K、シリコーンが約0.5W/m.K等とする。その他のよく見られるセラミック媒質の熱伝導率は、一般ガラスが約1.1W/m.K、石英ガラスが約1.5W/m.K、単結晶酸化アルミニウムが46W/m.K、多結晶酸化アルミニウムが28W/m.K、酸化ジルコニウムが1.8W/m.K、炭化ケイ素が126W/m.K、窒化ケイ素が27W/m.K、炭化ホウ素が40W/m.K、窒化ホウ素が30W/m.K、窒化アルミニウムが160W/m.K等とする。   The thermal conductivity of a light-transmitting medium often seen is that hot air is about 0.0316 W / m. K, helium gas is about 0.18 W / m. K, plastic is about 0.25 W / m. K, epoxy resin is about 0.3 W / m. K, silicone is about 0.5 W / m. K etc. Other commonly seen ceramic media have a thermal conductivity of about 1.1 W / m. K, quartz glass is about 1.5 W / m. K, single crystal aluminum oxide is 46 W / m. K, polycrystalline aluminum oxide is 28 W / m. K, zirconium oxide was 1.8 W / m. K, silicon carbide of 126 W / m. K, silicon nitride is 27 W / m. K, boron carbide is 40 W / m. K, boron nitride is 30 W / m. K, aluminum nitride is 160 W / m. K etc.

セラミックとは、金属酸化物又は非金属の酸化物、炭化物或いは窒化物を広く指すものとし、例えば酸化カリウム、酸化ナトリウム、酸化ケイ素等である。ガラスは、酸化カリウム、酸化ナトリウム、酸化ケイ素等の混合物であるため、セラミック材料の一種類に属する。セラミック材料は、耐高温で、高い熱伝導性を持ち、LEDに対し化学非相溶性の悪影響がなく、特に、光が透過できるセラミック材料は、LED透光・熱伝導の応用に有利である。   Ceramic refers to metal oxides or non-metal oxides, carbides or nitrides, and examples thereof include potassium oxide, sodium oxide, silicon oxide and the like. Since glass is a mixture of potassium oxide, sodium oxide, silicon oxide, etc., it belongs to one type of ceramic material. The ceramic material has high temperature resistance and high thermal conductivity, and does not have an adverse effect of chemical incompatibility with the LED. In particular, a ceramic material capable of transmitting light is advantageous for LED light transmission / heat conduction applications.

乾燥かつ散漫な粒子材料は、粒子間の摩擦力は小さく、流動性にも良好で、適切な振動において、管球の内管壁と発光ダイオード光源の間の間隙を密に充てんし、その過程中に乾燥で散漫な粒子材料は砂時計の砂のように発光ダイオード光源を埋め立て、これは実施例内の脆弱な広配光タイプLEDライトバーにとっても非常に重要なことである。1つ目は粒子の流動充填過程が広配光タイプLEDライトバーに対し、機械的表面摩擦或いは圧迫損傷を起きない。2つ目は広配光タイプLEDライトバー動作時の熱膨張冷収縮も粒子材料の被覆制限を受けて内部応力による疲労損傷も起きない。   The dry and diffuse particle material has low frictional force between particles and good fluidity, and in an appropriate vibration, the gap between the inner tube wall of the bulb and the light source of the light emitting diode is closely filled, and the process The dry and diffuse particulate material fills the light emitting diode light source like the hourglass sand, which is also very important for the fragile wide light distribution type LED light bar in the examples. First, the flow filling process of particles does not cause mechanical surface friction or compression damage to the wide light distribution type LED light bar. Second, thermal expansion / cooling / shrinkage during operation of the wide light distribution type LED light bar is not affected, and fatigue damage due to internal stress does not occur due to the limited coating of the particulate material.

管球の内管壁とLED光源の間に充てんされ、散漫な光透過性セラミック粒子材料は、その空隙率の大きさと熱伝導能力は反比例の関係となり、空隙率の大きさと光透過性セラミック粒子の大きさは比例の関係となり、光透過性セラミック粒子の大きさと光透過率が比例の関係となるため、粒子が小さく、空隙率が小さく、熱伝導能力が大きいが、光透過率が小さい。そのため粒子の大きさは、体積等価粒径が0.05ミリメートルより大きくなるのを選定し、なぜなら0.05ミリメートル以下の粒子の透光性は悪いからである。また空隙率が大きいと熱伝導能力が悪いため、管球の内管壁と発光ダイオード光源の間に充てんする散漫な光透過性セラミック粒子材料は、その空隙率に対する要求は50%を下回らなければならない。   The diffused light-transmitting ceramic particle material filled between the inner tube wall of the bulb and the LED light source has an inverse relationship between the size of the porosity and the heat conduction capacity, and the size of the porosity and the light-transmitting ceramic particles Is proportional, and the size of the light-transmitting ceramic particles and the light transmittance are in a proportional relationship. Therefore, the particles are small, the porosity is small, and the heat conduction ability is large, but the light transmittance is small. Therefore, the size of the particles is selected such that the volume equivalent particle size is larger than 0.05 millimeters because the translucency of particles of 0.05 millimeters or less is poor. Moreover, since the heat conductivity is poor when the porosity is large, the requirement for the porosity of the diffused light-transmitting ceramic particle material filled between the inner tube wall of the bulb and the light source of the light emitting diode must be less than 50%. Don't be.

空隙率の大きさと熱伝導能力が反比例の関係となり、空隙率の大きさと光透過性セラミック粒子の大きさが比例の関係となり、且つ光透過性セラミック粒子の大きさと光透過率が比例の関係となる。よって、好ましい実施例内において、透光且つ熱伝導を満たす粒の子大きさの配置を開示する。   The relationship between the size of the porosity and the thermal conductivity is inversely proportional, the relationship between the size of the porosity and the size of the light-transmitting ceramic particles is proportional, and the relationship between the size of the light-transmitting ceramic particles and the light transmittance is Become. Thus, in a preferred embodiment, a particle size arrangement that satisfies light transmission and heat conduction is disclosed.

一実施例において、大きさが異なるビー玉から言うと、サイズの個別振動充填する空隙率は、各々次の通りとする。
0.05mm直径は、0.3空隙率、
0.1mm直径は、0.33空隙率、
0.6mm直径は、0.38空隙率、
2.0mm直径は、0.4空隙率。
サイズを混合して振動充填する空隙率は、各々次の通りとする。
重量比22.7%の0.05mm直径+重量比77.3%の0.6mm直径が、0.21空隙率
重量比17.8%の0.1mm直径+重量比82.2%の0.6mm直径が、0.24空隙率。
重量比11.6%の0.6mm直径+重量比88.4%の2.0mm直径が0.32空隙率。
上述を見ても分かる通り、サイズの混合充填は、個別に大きい或いは小さいものを充填する空隙率より小さく、且つまたも大部分の大きな粒子の光透過率を有する。
In an embodiment, speaking of marbles having different sizes, the void ratios for filling individual vibrations of sizes are as follows.
0.05mm diameter is 0.3 porosity,
0.1 mm diameter is 0.33 porosity,
0.6mm diameter is 0.38 porosity,
The 2.0 mm diameter is 0.4 porosity.
The void ratio for vibration filling by mixing the sizes is as follows.
0.05 mm diameter with a weight ratio of 22.7% + 0.6 mm diameter with a weight ratio of 77.3%, 0.21 porosity 0.1 mm diameter with a weight ratio of 17.8% + 0 with a weight ratio of 82.2% .6mm diameter is 0.24 porosity.
0.6 mm diameter with a weight ratio of 11.6% + 2.0 mm diameter with a weight ratio of 88.4% is 0.32 porosity.
As can be seen from the above, the mixed size filling is smaller than the porosity that individually fills larger or smaller ones and also has the light transmittance of most large particles.

粒子の外観形状は、粒子間の摩擦力に影響を及ぼし、摩擦力が小さいと流動性が高くなる。粒子間の摩擦力の大きさとその安息角は比例の関係となり、粒子の外観形状の安息角は、各々の球状粒子が23°〜28°となり、規則形状粒子が30°、不規則形状粒子が35°、極めて不規則な形状粒子が40°となる。上記から分かるように、一実施例において同じ体積等価粒径下で選択した球状粒子が比較的小さい空隙率を有する。散漫な光透過性セラミック粒子材料で発光ダイオードライトバーの不規則表面を被覆・接触し、粒子材料の粒子と隣接粒子とが接触し、空隙率が小さいため熱抵抗を低下し、熱伝導性を向上できる。   The appearance shape of the particles affects the frictional force between the particles, and the fluidity increases when the frictional force is small. The magnitude of the frictional force between the particles and the angle of repose are proportional to each other. The angle of repose of the appearance of the particles is 23 ° to 28 ° for each spherical particle, 30 ° for regular shaped particles, and 30 ° for irregular shaped particles. 35 °, very irregular shaped particles will be 40 °. As can be seen from the above, spherical particles selected under the same volume equivalent particle size in one example have a relatively low porosity. The irregular surface of the light-emitting diode light bar is coated and contacted with a diffused light-transmitting ceramic particle material, and the particles of the particle material and adjacent particles are in contact with each other, and since the porosity is small, the thermal resistance is lowered and the thermal conductivity is reduced. Can be improved.

このほかに、実施例において、サファイアセラミック基板を組み合わせ、蛍光体層をガラス布基板上下両側に塗布し、基板の左右両側に露出する広配光タイプLEDライトバーは、散漫な光透過性セラミック粒子材料間の入射光に対する屈折、散乱作用、LEDの発光時蛍光体層とより一層均一な混光作用により、射出光の演色指数を増すと共に色温度を下げることができ、同時に光を柔らかくし、グレアを減らし、並びに青色光が外部に漏れ出ることを避けることができる。   In addition, in the embodiment, the wide light distribution type LED light bar that combines the sapphire ceramic substrate, coats the phosphor layer on the upper and lower sides of the glass cloth substrate, and is exposed on both the left and right sides of the substrate is diffused light-transmitting ceramic particles. Refraction of light incident on materials, scattering action, phosphor layer when emitting light and more uniform light mixing action can increase the color rendering index of the emitted light and lower the color temperature, and at the same time soften the light, Glare can be reduced, and blue light can be prevented from leaking outside.

粒子間の粘着性はその摩擦力に影響を及ぼし、粒子間が湿潤状態で、液体膜が存在する場合、粒子間の摩擦力が増え、充填流動性が低下し、流動性が低下すると圧縮成形又は高圧注入で充填しなければならず、これは、脆弱な広配光タイプLEDライトバーにとって機械的表面摩擦及び圧迫損傷を起こす。且つ、これも散漫な光透過性セラミック粒子を管球の内管壁とLED光源の間の空隙率に影響を及ぼし、粒子と隣接粒子の間が液体膜の存在により直接接触しないため、空隙率が大きくなり、熱抵抗が増加した。よって、散漫な光透過性セラミック粒子を管球の内管壁とLED光源の間に充填する前、先に適切な油膜の洗浄、乾燥を行うことは必要なことである。   Adhesion between particles affects the frictional force, and when particles are wet and a liquid film is present, the frictional force between particles increases, filling fluidity decreases, and compression molding occurs when fluidity decreases. Or it must be filled with high pressure injection, which causes mechanical surface friction and compression damage for the fragile wide light distribution type LED light bar. And this also affects the porosity between the inner tube wall of the bulb and the LED light source due to the diffuse light transmissive ceramic particles, and the particles and adjacent particles are not in direct contact due to the presence of the liquid film. Increased and thermal resistance increased. Therefore, before filling the diffused light-transmitting ceramic particles between the inner tube wall of the bulb and the LED light source, it is necessary to clean and dry the oil film first.

屈折率は光透過性セラミック粒子の屈折率と類似する液体、コロイドを粒子間に添加して粒子間の光透過率を増加できるが、好ましい形態は先に管球の内管壁と発光ダイオード光源の間に空隙率50%未満、粒子と隣接粒子が接触する散漫な光透過性セラミック粒子材料を充填してから該屈折率に類似する液体、コロイドを滴下する。当然該液体、コロイドの化学非相溶性の悪影響及び黄変は、商品の寿命等に影響を及ぼし、トラブルが増えることになる。また、屈折率は光透過性セラミック粒子の屈折率と類似する液体、コロイドを粒子間に充填するため、光透過率がアップしたが、これにより散漫なセラミック粒子材料間の光に対する散乱、屈折作用を減少し、光を柔らかくし、グレアを減らし、並びに青色光が外部に漏れ出ることを避けることのできるプラス効果を与える。   The refractive index can be increased between the particles by adding liquid or colloid between the particles similar to the refractive index of the light-transmitting ceramic particles, but the preferred form is the inner tube wall of the bulb and the light emitting diode light source first. Between the particles, a light-transmitting ceramic particle material having a porosity of less than 50% and in contact with adjacent particles is filled, and then a liquid or colloid similar to the refractive index is dropped. Naturally, the adverse effect of chemical incompatibility of the liquid and colloid and yellowing affect the life of the product and increase troubles. In addition, since the refractive index is filled between the particles with liquid and colloid similar to the refractive index of light-transmitting ceramic particles, the light transmittance is increased, but this causes scattering and refraction of light between diffuse ceramic particle materials. , Softening the light, reducing glare, and giving the positive effect of avoiding blue light leaking out.

前記で述べたことに鑑み、本発明は、広配光タイプ直管LEDランプを提供し、該広配光タイプ直管LEDランプが管球を包括し、該管球は両端又は一端が開口する。管球内はLED光源を有し、LED光源が少なくとも2本の電気接続線を備え、2本の電気接続線が各々管球の両端開口部から引き出して該管球に接続し、或いは2本の電気接続線が一緒に管球の一端開口部から引き出して該管球に接続する。管球の両端開口部若しくは該管球の一端開口部がプラグで塞ぐ。   In view of the foregoing, the present invention provides a wide light distribution type straight tube LED lamp, the wide light distribution type straight tube LED lamp includes a tube, and the tube is open at both ends or one end. . The tube has an LED light source, and the LED light source has at least two electric connection lines, and the two electric connection lines are each drawn from both ends of the tube and connected to the tube, or two The electrical connection lines are pulled out from one end opening of the tube together and connected to the tube. The opening at both ends of the tube or the opening at one end of the tube is closed with a plug.

前記広配光タイプ直管LEDランプにおいて、LED光源は少なくとも1個の広配光タイプLEDライトバーを備える。広配光タイプLEDライトバーは、複数のLEDチップを有し、複数のLEDチップが青色光LEDチップと他の色のLEDチップとを含む。   In the wide light distribution type straight tube LED lamp, the LED light source includes at least one wide light distribution type LED light bar. The wide light distribution type LED light bar has a plurality of LED chips, and the plurality of LED chips include a blue light LED chip and LED chips of other colors.

管球の内管壁とLED光源(発光ダイオード光源)の間に散漫な光透過性セラミック粒子材料を充填する。散漫な光透過性セラミック粒子材料の粒子が隣接粒子と接触し、且つ散漫な光透過性セラミック粒子材料の空隙率が50%を下回る。散漫な光透過性セラミック粒子材料は、主要セラミック粒子と隙間充填用セラミック粒子とセラミック粒子の破片とを含む。散漫な光透過性セラミック粒子材料の体積等価粒径は、各々主要セラミック粒子が0.1mmを上回り、隙間充填用セラミック粒子が0.05mmを上回り、且つ0.1mmを下回り、セラミック粒子の破片が0.05mmを下回る。散漫な光透過性セラミック粒子材料の体積占有率は、主要セラミック粒子が60%を上回り、隙間充填用セラミック粒子が40%未満、セラミック粒子の破片が20%未満とする。   A diffused light transmissive ceramic particle material is filled between the inner tube wall of the bulb and the LED light source (light emitting diode light source). The particles of diffuse light transmissive ceramic particulate material are in contact with adjacent particles, and the porosity of the diffuse light transmissive ceramic particulate material is below 50%. Diffuse light transmissive ceramic particle materials include primary ceramic particles, gap filling ceramic particles, and ceramic particle fragments. The volume-equivalent particle size of the diffuse light-transmitting ceramic particle material is greater than 0.1 mm for the main ceramic particles, more than 0.05 mm for the gap filling ceramic particles, and less than 0.1 mm for the ceramic particle fragments. Below 0.05 mm. The volume occupancy of the diffuse light transmissive ceramic particle material is greater than 60% for the main ceramic particles, less than 40% for the gap filling ceramic particles, and less than 20% for the ceramic particle debris.

サイズの異なる主要セラミック粒子、隙間充填用セラミック粒子及びセラミック粒子の破片の充填過程において、分けて同時に割合によって連続投入でき、管球に充填する際、設けた羽根が回転して撹拌して混合する。散漫な光透過性セラミック粒子の充填過程中及び/或いは定量充填後、該管球を振動し、振動方法は線形振動及びねじれ振動を包括する。散漫な光透過性セラミック粒子材料の粒子と隣接粒子とが接触する。散漫な光透過性セラミック粒子材料の粒子と隣接粒子の接触とは、散漫な光透過性セラミック粒子材料が落下して管球の内管壁とLED光源の間に堆積し、粒子と粒子間の坐標位置がランダムで分布配列し、密な堆積下で静止粒子支持構造を形成し、該粒子支持構造内の粒子が隣接粒子支持関係と接触することを意味する。   In the filling process of the main ceramic particles of different sizes, ceramic particles for gap filling and ceramic particle fragments, it can be divided and continuously put in proportion at the same time. When filling the tube, the blades provided rotate and mix by stirring . The tube is vibrated during the filling process of diffuse light transmissive ceramic particles and / or after quantitative filling, and the vibration method encompasses linear and torsional vibrations. The particles of diffuse light transmissive ceramic particulate material are in contact with adjacent particles. The contact between the particles of the diffuse light-transmitting ceramic particle material and the adjacent particles means that the diffuse light-transmitting ceramic particle material falls and accumulates between the inner tube wall of the bulb and the LED light source, and between the particles. This means that the positions of the coordinates are randomly distributed and form a stationary particle support structure under dense deposition, and the particles in the particle support structure are in contact with the adjacent particle support relationship.

前記広配光タイプ直管LEDランプにおいて、管球が透明管球又はカラー管球とする。   In the wide light distribution type straight tube LED lamp, the tube is a transparent tube or a color tube.

前記広配光タイプ直管LEDランプにおいて、管球の材料がプラスチック材料又はガラス材料或いはセラミック材料とする。   In the wide light distribution type straight tube LED lamp, the material of the bulb is a plastic material, a glass material or a ceramic material.

前記広配光タイプ直管LEDランプにおいて、前記ガラス材料は、石英ガラス又はナトリウムガラス或いはカルシウムガラス若しくはカリウムガラス又は鉛ガラス或いはホウ素ガラス若しくは任意の組み合わせの2種以上混合されたガラス材料とし、又は前記ガラス材料が2種或いは多種の異なる金属酸化物若しくは非金属酸化物を混合したガラス材料とする。   In the wide light distribution type straight tube LED lamp, the glass material is quartz glass, sodium glass, calcium glass, potassium glass, lead glass, boron glass, or a glass material mixed in any combination, or The glass material is a glass material in which two or more different metal oxides or non-metal oxides are mixed.

前記広配光タイプ直管LEDランプにおいて、前記セラミック材料は、単結晶酸化アルミニウム又は多結晶酸化アルミニウムとする。   In the wide light distribution type straight tube LED lamp, the ceramic material is single crystal aluminum oxide or polycrystalline aluminum oxide.

前記広配光タイプ直管LEDランプにおいて、光透過性セラミック粒子材料は透明な粒子或いは着色粒子とする。着色粒子の色は、赤色又は橙色或いは黄色若しくは緑色又は青色或いは紫色若しくはそれら色のいずれかの2種又は多種を混合した色とする。   In the wide light distribution type straight tube LED lamp, the light-transmitting ceramic particle material is transparent particles or colored particles. The color of the colored particles is red, orange, yellow, green, blue, purple, or a color obtained by mixing two or any of these colors.

前記広配光タイプ直管LEDランプにおいて、光透過性セラミック粒子材料の粒子の外観形状は、規則形状粒子或いは不規則形状粒子とする。   In the wide light distribution type straight tube LED lamp, the appearance shape of the particles of the light-transmitting ceramic particle material is regular shaped particles or irregular shaped particles.

前記広配光タイプ直管LEDランプにおいて、光透過性セラミック粒子材料は、単結晶酸化アルミニウム又は多結晶酸化アルミニウムのセラミック粒子とする。   In the wide light distribution type straight tube LED lamp, the light-transmitting ceramic particle material is ceramic particles of single crystal aluminum oxide or polycrystalline aluminum oxide.

前記広配光タイプ直管LEDランプにおいて、光透過性セラミック粒子材料は、ガラス粒子とする。ガラス粒子は、石英ガラス粒子又はナトリウムガラス粒子或いはカルシウムガラス粒子若しくはカリウムガラス粒子又は鉛ガラス粒子或いはホウ素ガラス粒子若しくは任意の組み合わせの2種以上混合されたガラス粒子とし、又は前記ガラス粒子が多種の異なる金属酸化物或いは非金属酸化物を混合したガラス粒子とする。   In the wide light distribution type straight tube LED lamp, the light-transmitting ceramic particle material is glass particles. The glass particles are quartz glass particles, sodium glass particles, calcium glass particles, potassium glass particles, lead glass particles, boron glass particles, or glass particles mixed in any combination, or the glass particles are variously different. Glass particles mixed with metal oxide or nonmetal oxide are used.

従来技術に比べると、本発明は、次の利点を有する。つまり本発明で提供する広配光タイプ直管LEDランプにおいて、管球の内管壁とLED光源の間に散漫な光透過性セラミック粒子材料を充填し、散漫な光透過性セラミック粒子材料はLED光源の不規則表面を被覆・接触し、熱抵抗を低下し、熱伝導性を向上でき、且つ散漫な光透過性セラミック粒子材料間の光に対する散乱、屈折作用が光を柔らかくし、グレアを減らし、並びに青色光が外部に漏れ出ることを避けるプラス効果を有する。   Compared to the prior art, the present invention has the following advantages. That is, in the wide light distribution type straight tube LED lamp provided in the present invention, a diffuse light transmissive ceramic particle material is filled between the inner tube wall of the bulb and the LED light source, and the diffuse light transmissive ceramic particle material is an LED. Covers and contacts the irregular surface of the light source, reduces thermal resistance, improves thermal conductivity, and scattering and refraction of light between diffuse light-transmitting ceramic particle materials softens the light and reduces glare In addition, it has a positive effect of preventing blue light from leaking outside.

本発明の実施例1及び実施例2に係るLED光源の構造を示す模式図であり;つまり蛍光体層を有する広配光タイプLEDライトバーである。It is a schematic diagram which shows the structure of the LED light source which concerns on Example 1 and Example 2 of this invention; That is, it is a wide light distribution type LED light bar which has a fluorescent substance layer. 本発明実の施例1及び実施例2に係るLED光源の断面図であり;つまり蛍光体層を有する広配光タイプLEDライトバーである。It is sectional drawing of the LED light source which concerns on Example 1 and Example 2 of this invention actual; That is, it is a wide light distribution type LED light bar which has a fluorescent substance layer. 本発明の実施例1の構造を示す模式図である。It is a schematic diagram which shows the structure of Example 1 of this invention. 本発明の実施例1の断面図である。It is sectional drawing of Example 1 of this invention. 本発明の実施例1の断面図の一部分拡大図である。It is a partial expanded view of sectional drawing of Example 1 of this invention. 本発明の実施例2の構造を示す模式図である。It is a schematic diagram which shows the structure of Example 2 of this invention. 本発明の実施例2の断面図である。It is sectional drawing of Example 2 of this invention. 本発明の実施例2の断面図の一部分拡大図である。It is a partial expanded view of sectional drawing of Example 2 of this invention. 本発明の実施例3及び実施例4に係るLED光源の構造を示す模式図であり;つまり蛍光体層を有しない広配光タイプLEDライトバーである。It is a schematic diagram which shows the structure of the LED light source which concerns on Example 3 and Example 4 of this invention; That is, it is a wide light distribution type LED light bar which does not have a fluorescent substance layer. 本発明の実施例3及び実施例4に係るLED光源の断面図であり;つまり蛍光体層を有しない広配光タイプLEDライトバーである。It is sectional drawing of the LED light source which concerns on Example 3 and Example 4 of this invention; That is, it is a wide light distribution type LED light bar which does not have a fluorescent substance layer. 本発明の実施例3の構造を示す模式図である。It is a schematic diagram which shows the structure of Example 3 of this invention. 本発明の実施例3の断面図である。It is sectional drawing of Example 3 of this invention. 本発明の実施例3の断面図の一部分拡大図である。It is a partial enlarged view of a sectional view of Example 3 of the present invention. 本発明の実施例4の構造を示す模式図である。It is a schematic diagram which shows the structure of Example 4 of this invention. 本発明の実施例4の断面図である。It is sectional drawing of Example 4 of this invention. 本発明の実施例4の断面図の一部分拡大図である。It is a partial enlarged view of sectional drawing of Example 4 of the present invention. 本発明の実施例5に係るLED光源の構造を示す模式図であり;つまり基板を拡幅し、ダイボンド面に蛍光体層がない広配光タイプLEDライトバーである。It is a schematic diagram which shows the structure of the LED light source which concerns on Example 5 of this invention; That is, it is a wide light distribution type LED light bar which expands a board | substrate and does not have a fluorescent substance layer in a die-bonding surface. 本発明の実施例5に係るLED光源の断面図であり;つまり基板を拡幅し、ダイボンド面に蛍光体層がない広配光タイプLEDライトバーである。It is sectional drawing of the LED light source which concerns on Example 5 of this invention; That is, it is a wide light distribution type LED light bar which expands a board | substrate and does not have a fluorescent substance layer in a die-bonding surface. 本発明の実施例5の構造を示す模式図である。It is a schematic diagram which shows the structure of Example 5 of this invention. 本発明の実施例5の断面図である。It is sectional drawing of Example 5 of this invention. 本発明の実施例5の断面図の一部分拡大図である。It is a partial enlarged view of sectional drawing of Example 5 of the present invention. 光透過性セラミック粒子材料の光に対する乱屈折作用を示す模式図である。It is a schematic diagram which shows the random refraction effect | action with respect to the light of a light transmissive ceramic particle material.

本発明の技術方案、目的及び効果について更に明確に理解してもらうため、添付図面を組み合わせて本発明の具体的実施形態を説明する。   Specific embodiments of the present invention will be described in combination with the accompanying drawings in order to provide a clearer understanding of the technical solution, objects, and effects of the present invention.

図1a及び図1bは、本発明の実施例1及び実施例2に係るLED光源の構造を示す模式図及び断面図であり;つまり蛍光体層を有する広配光タイプLEDライトバーである。蛍光体層を有する広配光タイプLEDライトバー20;複数のLEDチップ10は、サファイアセラミック基板12上下の一側にダイボンド、ワイヤボンディン11し、青色光LEDチップと(青色光が除外)他の色のLEDチップとを含む。蛍光体層14はサファイアセラミック基板12上下両側に塗布され、サファイアセラミック基板12の左右両側が外部に露出されることで放熱能力を高め、青色光LEDに蛍光体層を加えた白色光照明器にとって、基板の左右両側の青色光が外部に漏れ出る16問題が派生した。
≪実施例1≫
1a and 1b are a schematic view and a sectional view showing the structure of an LED light source according to Example 1 and Example 2 of the present invention; that is, a wide light distribution type LED light bar having a phosphor layer. Wide light distribution type LED light bar 20 having a phosphor layer; a plurality of LED chips 10 are die-bonded and wire-bonded 11 on one side of the sapphire ceramic substrate 12 and a blue light LED chip (excluding blue light) and others Color LED chips. The phosphor layer 14 is applied to both the upper and lower sides of the sapphire ceramic substrate 12, and the right and left sides of the sapphire ceramic substrate 12 are exposed to the outside to enhance the heat dissipation capability, and for a white light illuminator in which a phosphor layer is added to a blue LED. The 16 problems that the blue light on the left and right sides of the substrate leaks to the outside are derived.
Example 1

図2aは、本発明の実施例1の構造を示す模式図である。図2bは、本発明の実施例1の断面図である。図2c内のアルファベット大文字Aは断面図内の一部分拡大図を示し、一端が開口した管球22は開口部を塞ぐプラグ26を備え、一端が開口した管球22内にLED光源18があり、LED光源18は少なくとも2本の電気接続線24を備え、一緒に管球の一端開口部から引き出して管球に接続する。一端が開口した管球22は、プラスチック、ガラス、セラミック材料の管球を包括する。一端が開口した管球22は、透明管球又はカラー管球(つまり着色管球)を含む。実施例1におけるLED光源18は、2本の直列に接続し、蛍光体層を有する広配光タイプLEDライトバー20で構成する。管球の内管壁23とLED光源18の間に散漫な光透過性セラミック粒子材料を充填する。散漫な光透過性セラミック粒子材料の粒子と隣接粒子とが接触30する。散漫な光透過性セラミック粒子材料の粒子と隣接粒子の接触30とは、散漫な光透過性セラミック粒子材料が落下して管球の内管壁23とLED光源18の間に堆積し、粒子と粒子間の坐標位置がランダムで分布配列し、密な堆積下で静止粒子支持構造を形成し、該粒子支持構造内の粒子が隣接粒子支持関係と接触することを意味する。且つ光透過性セラミック粒子材料の空隙率が50%未満を要求し、なぜなら光透過性セラミック粒子材料の空隙率が50%を上回ると、熱抵抗の低下、熱伝導性の向上に不利になるからである。散漫な光透過性セラミック粒子材料は、主要セラミック粒子28と隙間充填用セラミック粒子32とセラミック粒子の破片33とを含む。散漫な光透過性セラミック粒子材料の体積等価粒径は、各々主要セラミック粒子28が0.1mmを上回り、隙間充填用セラミック粒子32が0.05mmを上回り、且つ0.1mmを下回り、セラミック粒子の破片33が0.05mmを下回る。散漫な光透過性セラミック粒子材料の体積占有率は、主要セラミック粒子28が60%を上回り、隙間充填用セラミック粒子32が40%未満、セラミック粒子の破片33が20%未満とする。サイズの異なる主要セラミック粒子28、隙間充填用セラミック粒子32及びセラミック粒子の破片33の充填過程において、分けて同時に割合によって連続投入でき、一端が開口した管球22に充填する際、設けた羽根が回転して撹拌して混合する。散漫な光透過性セラミック粒子の充填過程中及び/或いは定量充填後、該一端が開口した管球22を振動し、振動方法は線形振動及びねじれ振動を包括する。散漫な光透過性セラミック粒子材料の粒子と隣接粒子の接触30は、主要セラミック粒子28、隙間充填用セラミック粒子32及びセラミック粒子の破片33、サイズの同一又は異なる粒子と隣接粒子の接触を包括する。   FIG. 2a is a schematic diagram showing the structure of the first embodiment of the present invention. FIG. 2b is a cross-sectional view of the first embodiment of the present invention. The alphabetic capital letter A in FIG. 2c shows a partially enlarged view in the cross-sectional view, the tube 22 having an open end includes a plug 26 that closes the opening, and the LED light source 18 is in the tube 22 having an open end, The LED light source 18 includes at least two electrical connection lines 24, and is drawn out from one end opening of the tube together and connected to the tube. The tube 22 opened at one end includes a tube of plastic, glass, or ceramic material. The tube 22 opened at one end includes a transparent tube or a color tube (that is, a colored tube). The LED light source 18 in Example 1 is composed of two wide light distribution type LED light bars 20 connected in series and having a phosphor layer. A diffused light-transmitting ceramic particle material is filled between the inner tube wall 23 of the bulb and the LED light source 18. Diffuse light transmissive ceramic particulate material particles and adjacent particles contact 30. Diffuse light transmissive ceramic particulate material particles and adjacent particle contact 30 cause the diffuse light transmissive ceramic particulate material to fall and deposit between the inner tube wall 23 of the bulb and the LED light source 18, This means that the positions of the coordinates between the particles are randomly distributed and form a stationary particle support structure under dense deposition, and the particles in the particle support structure are in contact with the adjacent particle support relationship. In addition, the porosity of the light-transmitting ceramic particle material is required to be less than 50%, because if the porosity of the light-transmitting ceramic particle material is more than 50%, it is disadvantageous for lowering the thermal resistance and improving the thermal conductivity. It is. The diffuse light transmissive ceramic particle material includes primary ceramic particles 28, gap filling ceramic particles 32, and ceramic particle fragments 33. The volume equivalent particle size of the diffuse light transmissive ceramic particle material is such that the primary ceramic particles 28 are each greater than 0.1 mm, the gap filling ceramic particles 32 are greater than 0.05 mm, and less than 0.1 mm. Debris 33 is below 0.05 mm. The volume occupancy of the diffuse light transmissive ceramic particle material is greater than 60% for the main ceramic particles 28, less than 40% for the gap filling ceramic particles 32, and less than 20% for the ceramic particle debris 33. In the filling process of the main ceramic particles 28 of different sizes, the gap filling ceramic particles 32, and the ceramic particle fragments 33, the blades provided can be continuously charged separately at a ratio at the same time. Rotate and stir to mix. During the filling process of diffuse light-transmitting ceramic particles and / or after quantitative filling, the tube 22 with one end opened is vibrated, and the vibration method includes linear vibration and torsional vibration. Diffuse light transmissive ceramic particulate material particle-to-adjacent particle contact 30 encompasses primary ceramic particles 28, gap filling ceramic particles 32 and ceramic particle debris 33, contact between adjacent or adjacent particles of the same size or different sizes. .

主要セラミック粒子28は、熱抵抗を低下し、熱伝導性を向上でき、且つ主要セラミック粒子間の光に対する散乱、屈折作用が光を柔らかくし、青色光が外部に漏れ出ることを避けることができるため、プラス効果を有する。   The main ceramic particles 28 can reduce thermal resistance, improve thermal conductivity, and light scattering and refraction between the main ceramic particles can soften the light, and blue light can be prevented from leaking outside. Therefore, it has a positive effect.

隙間充填用セラミック粒子32は、空隙率の減少を補助し、熱抵抗の低下、熱伝導性の向上にアシストするが、隙間充填用セラミック粒子32を添加すると、散漫な光透過性セラミック粒子材料の光透過率を低下することになる。   The gap-filling ceramic particles 32 assist in reducing the porosity and assist in lowering thermal resistance and improving thermal conductivity. However, when the gap-filling ceramic particles 32 are added, a diffused light-transmitting ceramic particle material is formed. The light transmittance will be reduced.

セラミック粒子の破片33は、主要セラミック粒子28、隙間充填用セラミック粒子32等の粒子表面上に付着する粉塵粒子及び運送、充填過程中の振動衝撃等に起因して主要セラミック粒子28、隙間充填用セラミック粒子32を割れてセラミック粒子の破片33となる。セラミック粒子の破片33は、少なければ少ないほどよく、微細粒子間の光に対する散乱、屈折作用が大きすぎるため、光透過に不利になる。   The ceramic particle debris 33 is formed by dust particles adhering to the surface of the main ceramic particles 28, gap filling ceramic particles 32, and the like, and vibration shock during the filling process. The ceramic particles 32 are broken into ceramic particle fragments 33. The smaller the debris 33 of the ceramic particles, the better. The scattering and refraction effects on the light between the fine particles are too large, which is disadvantageous for light transmission.

光透過性セラミック粒子材料は、透明粒子、着色粒子を包括する。   The light-transmitting ceramic particle material includes transparent particles and colored particles.

光透過性セラミック粒子材料の粒子の外観形状は、規則な光透過性セラミック粒子と不規則な光透過性セラミック粒子とを含む。規則な光透過性セラミック粒子は、球状、玉状、対称立方体型等の光透過性セラミック粒子とし、不規則な光透過性セラミック粒子がシート状、プレート状、非対称立方体型等の光透過性セラミック粒子とする。 The appearance shape of the particles of the light-transmitting ceramic particle material includes regular light-transmitting ceramic particles and irregular light-transmitting ceramic particles. The regular light-transmitting ceramic particles are spherical, ball-shaped, symmetrical cube-type light-transmitting ceramic particles, and the irregular light-transmitting ceramic particles are sheet-shaped, plate-shaped, asymmetric cube-type, etc. light-transmitting ceramic particles Particles.

一実施例において、光透過性セラミック粒子材料は、単結晶酸化アルミニウム又は多結晶酸化アルミニウムのセラミック粒子とする。   In one embodiment, the light transmissive ceramic particle material is single crystal aluminum oxide or polycrystalline aluminum oxide ceramic particles.

一実施例において、光透過性セラミック粒子材料は、ガラス粒子とする。ガラス粒子は、石英ガラス粒子又はナトリウムガラス粒子或いはカルシウムガラス粒子若しくはカリウムガラス粒子又は鉛ガラス粒子或いはホウ素ガラス粒子若しくは任意の組み合わせの2種以上混合されたガラス粒子とし、又は2種以上の異なる金属酸化物或いは非金属酸化物を混合したガラス粒子とする。
≪実施例2≫
In one embodiment, the light transmissive ceramic particulate material is glass particles. The glass particles are quartz glass particles, sodium glass particles, calcium glass particles, potassium glass particles, lead glass particles, boron glass particles, or glass particles mixed in any combination, or two or more different metal oxides. Or glass particles mixed with a non-metal oxide.
<< Example 2 >>

図3aは、本発明の実施例2の構造を示す模式図である。図3bは、本発明の実施例2の断面図である。図3cのアルファベット大文字Bは断面図中の一部分拡大図を示す。実施例2及び実施例1のLED光源が同じであり、実施例2と実施例1の相違点は管球タイプの違いである。実施例2の両端が開口した管球38は、両端に開口部を塞ぐプラグ36(つまり、管球は両端が開口した時、管球両端の開口部がいずれもプラグ36で塞ぎ、又は管球は一端が開口した時、管球一端にある開口部をプラグ26で塞ぐ)があり、両端が開口した管球38内にLED光源18があり、LED光源18は2本の直列に接続し、蛍光体層を有する広配光タイプLEDライトバー20で構成する。LED光源18は、2本の電気接続線34を備え、各々両端が開口した管球38の両端開口部から引き出して該両端が開口した管球38に接続する。管球の内管壁40とLED光源18の間に散漫な光透過性セラミック粒子材料を充填し、散漫な光透過性セラミック粒子材料の粒子と隣接粒子とが接触48し、光透過性セラミック粒子材料は主要セラミック粒子42と隙間充填用セラミック粒子44とセラミック粒子の破片46とを含む。 FIG. 3a is a schematic diagram showing the structure of Example 2 of the present invention. FIG. 3b is a cross-sectional view of Embodiment 2 of the present invention. The capital letter B in FIG. 3c shows a partially enlarged view in the cross-sectional view. The LED light source of Example 2 and Example 1 is the same, and the difference between Example 2 and Example 1 is a difference in tube type. The tube 38 having both ends opened in the second embodiment is a plug 36 that closes the opening at both ends (that is, when both ends of the tube are opened, the openings at both ends of the tube are closed by the plug 36, or the tube When one end is open, the plug 26 is used to close the opening at one end of the tube), the LED light source 18 is in the tube 38 open at both ends, and the LED light source 18 is connected in series in two, A wide light distribution type LED light bar 20 having a phosphor layer is used. The LED light source 18 includes two electrical connection lines 34, each of which is drawn out from the opening at both ends of a tube 38 having both ends opened and connected to the tube 38 having both ends opened. A diffused light-transmitting ceramic particle material is filled between the inner tube wall 40 of the bulb and the LED light source 18, and the particles of the diffused light-transmitting ceramic particle material are in contact with adjacent particles 48, so that the light-transmitting ceramic particles are in contact with each other. The material includes primary ceramic particles 42, gap filling ceramic particles 44, and ceramic particle fragments 46.

図4a及び図4bは、本発明の実施例3及び実施例4に係るLED光源の構造を示す模式図及び断面図であり;蛍光体層を有しない広配光タイプLEDライトバー。蛍光体層を有しない広配光タイプLEDライトバー50;複数のLEDチップ10は、サファイアセラミック基板12上下の一側にダイボンド、ワイヤボンディン11し、青色光LEDチップと他の色のLEDチップとを含む。サファイアセラミック基板12は、蛍光体層を被覆せず、上下左右が外部に露出されることで放熱能力を高め、青色光LEDの白色光照明器に対して、管球内又は外管壁上にリモートフォスファー層を製作する。
≪実施例3≫
4a and 4b are a schematic view and a cross-sectional view showing the structure of the LED light source according to Example 3 and Example 4 of the present invention; a wide light distribution type LED light bar having no phosphor layer. Wide light distribution type LED light bar 50 having no phosphor layer; the plurality of LED chips 10 are die-bonded and wire bonded 11 on one side of the upper and lower sides of the sapphire ceramic substrate 12, and the blue light LED chip and LED chips of other colors Including. The sapphire ceramic substrate 12 does not cover the phosphor layer, and the heat dissipation capability is improved by exposing the top, bottom, left and right to the outside, and in the tube or on the outer tube wall with respect to the white light illuminator of the blue light LED Make a remote phosphor layer.
Example 3

図5aは、本発明の実施例3の構造を示す模式図である。図5bは、本発明の実施例3の断面図である。図5cのアルファベット大文字Cは断面図中の一部分拡大図を示す。実施例3と実施例1の相違点は、LED光源52が2本の直列に接続し、蛍光体層を有しない広配光タイプLEDライトバー50で構成されることである。サファイアセラミック基板12を蛍光体層で覆わないため、上下左右が外部に露出して散漫な光透過性セラミック粒子材料と接触し、放熱能力を高める。本実施例は、青色発光ダイオードの白色光照明器に対して、内管壁60にリモートフォスファー層を製作する。一端が開口した管球54は、開口部を塞ぐプラグ56を備え、一端が開口した管球54内にLED光源52があり、LED光源52は少なくとも2本の電気接続線58を備え、一緒に管球の一端開口部から引き出して管球に接続する。管球の内管壁60とLED光源52の間に散漫な光透過性セラミック粒子材料を充填する。散漫な光透過性セラミック粒子材料の粒子と隣接粒子とが接触68する。散漫な光透過性セラミック粒子材料は、主要セラミック粒子62と隙間充填用セラミック粒子64とセラミック粒子の破片66とを含む。
≪実施例4≫
FIG. 5a is a schematic diagram showing the structure of Example 3 of the present invention. FIG. 5b is a cross-sectional view of Embodiment 3 of the present invention. The capital letter C in FIG. 5c shows a partially enlarged view in the cross-sectional view. The difference between the third embodiment and the first embodiment is that the LED light source 52 is composed of two wide light distribution type LED light bars 50 connected in series and having no phosphor layer. Since the sapphire ceramic substrate 12 is not covered with the phosphor layer, the top, bottom, left, and right are exposed to the outside and come into contact with the diffused light-transmitting ceramic particle material, thereby increasing the heat dissipation capability. In this embodiment, a remote phosphor layer is manufactured on the inner tube wall 60 for a white light illuminator of a blue light emitting diode. The tube 54 opened at one end is provided with a plug 56 that closes the opening, and the LED light source 52 is provided in the tube 54 opened at one end. The LED light source 52 includes at least two electrical connection lines 58, together. Pull out from one end opening of the tube and connect to the tube. A diffused light transmissive ceramic particle material is filled between the inner tube wall 60 of the bulb and the LED light source 52. Diffuse light transmissive ceramic particulate material particles and adjacent particles make contact 68. The diffuse light transmissive ceramic particle material includes primary ceramic particles 62, gap filling ceramic particles 64, and ceramic particle debris 66.
Example 4

図6aは、本発明の実施例4の構造を示す模式図である。図6bは、本発明の実施例4の断面図である。図6cのアルファベット大文字Dは断面図中の一部分拡大図を示す。実施例4及び実施例3のLED光源が同じであり、実施例4と実施例3の相違点は管球タイプの違いである。本実施例の一端が開口した管球は、半円弧状のカバー70、ソリッド半円棒74で構成される。LED光源52が2本の直列に接続し、蛍光体層を有しない広配光タイプLEDライトバー50で構成される。蛍光体層を有しない広配光タイプLEDライトバー50のサファイアセラミック基板12は、ソリッド半円棒74のダイボンド面86上に密着し、半円弧状のカバー70、ソリッド半円棒74がガラス及び単結晶酸化アルミニウムセラミック、多結晶酸化アルミニウムセラミックで製造され、熱伝導に有利になる。本実施例において、該一端が開口した管球は開口部を塞ぐプラグ76を備え、一端が開口した管球内にLED光源52があり、LED光源52は少なくとも2本の電気接続線77を備え、一緒に管球の一端開口部から引き出して管球に接続する。本実施例において、管球の内管壁と発光ダイオード光源の間に散漫な光透過性セラミック粒子材料を充填し、管球の内管壁が半円弧状のカバー70の内壁78及びソリッド半円棒74のダイボンド面86で構成され、LED光源52との間に散漫な光透過性セラミック粒子材料を充填し、散漫な光透過性セラミック粒子材料の粒子と隣接粒子とが接触85する。光透過性セラミック粒子材料は、主要セラミック粒子80と隙間充填用セラミック粒子82とセラミック粒子の破片84とを含む。本実施例は、青色光LEDの白色光照明器に対して、半円弧状のカバー70の外円弧壁72及びソリッド半円棒74の外円壁75上にリモートフォスファー層を製作する。
≪実施例5≫
FIG. 6a is a schematic diagram showing the structure of the fourth embodiment of the present invention. FIG. 6b is a cross-sectional view of Embodiment 4 of the present invention. The capital letter D in FIG. 6c shows a partially enlarged view in the cross-sectional view. The LED light source of Example 4 and Example 3 is the same, and the difference between Example 4 and Example 3 is a difference in tube type. The tube having one end opened in this embodiment is composed of a semicircular arc cover 70 and a solid semicircular rod 74. The LED light source 52 is composed of two wide light distribution type LED light bars 50 connected in series and having no phosphor layer. The sapphire ceramic substrate 12 of the wide light distribution type LED light bar 50 having no phosphor layer is in close contact with the die bond surface 86 of the solid semicircular bar 74, and the semicircular arc cover 70 and the solid semicircular bar 74 are made of glass and Manufactured with single crystal aluminum oxide ceramic or polycrystalline aluminum oxide ceramic, it is advantageous for heat conduction. In the present embodiment, the tube having one end opened includes a plug 76 that closes the opening, the LED light source 52 is provided in the tube having one end opened, and the LED light source 52 includes at least two electrical connection lines 77. , Together pull out from one end opening of the tube and connect to the tube. In the present embodiment, a diffused light-transmitting ceramic particle material is filled between the inner tube wall of the bulb and the light source of the light emitting diode, and the inner wall 78 of the cover 70 having a semicircular arc shape and a solid semicircle. It is composed of a die-bonding surface 86 of the rod 74 and is filled with a diffuse light-transmitting ceramic particle material between the LED light source 52 and the particles of the diffuse light-transmitting ceramic particle material and adjacent particles are in contact with each other. The light transmissive ceramic particle material includes primary ceramic particles 80, gap filling ceramic particles 82, and ceramic particle fragments 84. In this embodiment, a remote phosphor layer is manufactured on the outer circular arc wall 72 of the semicircular arc-shaped cover 70 and the outer circular wall 75 of the solid semicircular bar 74 for the white light illuminator of the blue light LED.
Example 5

図7a及び図7bは、本発明の実施例5に係るLED光源の構造を示す模式図及び断面図であり;つまり基板を拡幅し、ダイボンド面に蛍光体層がない広配光タイプLEDライトバーである。基板を拡幅し、ダイボンド面に蛍光体層がない広配光タイプLEDライトバー88;複数のLEDチップ10は、セラミック基板92のダイボンド面94上にダイボンド、ワイヤボンディン11し、ダイボンド面94上に蛍光体層がない。複数のLEDチップ10は、青色光LEDチップと他の色のLEDチップとを含む。セラミック基板92は、ガラス及び単結晶酸化アルミニウムセラミック、多結晶酸化アルミニウムセラミックで製造され、熱伝導に有利である。   7a and 7b are a schematic view and a cross-sectional view showing the structure of an LED light source according to Example 5 of the present invention; that is, a wide light distribution type LED light bar having a wide substrate and no phosphor layer on the die bond surface. It is. Wide light distribution type LED light bar 88 having a wide substrate and no phosphor layer on the die bond surface; the plurality of LED chips 10 are die-bonded and wire-bonded 11 on the die bond surface 94 of the ceramic substrate 92, and on the die bond surface 94 Have no phosphor layer. The plurality of LED chips 10 include a blue light LED chip and LED chips of other colors. The ceramic substrate 92 is made of glass, single crystal aluminum oxide ceramic, or polycrystalline aluminum oxide ceramic, and is advantageous for heat conduction.

図8aは、本発明の実施例5の構造を示す模式図である。図8bは、本発明の実施例5の断面図である。図8cのアルファベット大文字Eは断面図中の一部分拡大図を示す。実施例5及び実施例1の相違点は、LED光源及び管球タイプの違いである。本実施例のLED光源は、基板を拡幅し、ダイボンド面に蛍光体層がない広配光タイプLEDライトバー88である。一端が開口した管球は、基板を拡幅し、ダイボンド面に蛍光体層がない広配光タイプLEDライトバー88及び半円溝カバー98で構成される。本実施例において、該一端が開口した管球は開口部を塞ぐプラグ110を備え、一端が開口した管球内にLED光源があり、基板を拡幅し、ダイボンド面に蛍光体層がない広配光タイプLEDライトバー88は少なくとも2本の電気接続線112を備え、一緒に管球の一端開口部から引き出して管球に接続する。本実施例において、管球の内管壁と発光ダイオード光源の間に散漫な光透過性セラミック粒子材料を充填し、管球の内管壁がダイボンド面に蛍光体層がない広配光タイプLEDライトバー88、セラミック基板92のダイボンド面94及び半円溝カバー98の内溝壁96で構成され、散漫な光透過性セラミック粒子材料の粒子と隣接粒子とが接触108する。光透過性セラミック粒子材料は、主要セラミック粒子102と隙間充填用セラミック粒子104とセラミック粒子の破片106とを含む。セラミック基板92及び半円溝カバー98は、ガラス及び単結晶酸化アルミニウムセラミック、多結晶酸化アルミニウムセラミックで製造され、熱伝導に有利である。青色LEDの白色光照明器に対して、半円溝カバー98の外表面100及びセラミック基板92の基板外表面90上にリモートフォスファー層を製作する。   FIG. 8a is a schematic diagram showing the structure of Example 5 of the present invention. FIG. 8 b is a cross-sectional view of Embodiment 5 of the present invention. The capital letter E in FIG. 8c shows a partially enlarged view in the cross-sectional view. The difference between Example 5 and Example 1 is the difference between the LED light source and the tube type. The LED light source of the present embodiment is a wide light distribution type LED light bar 88 that widens the substrate and has no phosphor layer on the die bond surface. The tube whose one end is open is composed of a wide light distribution type LED light bar 88 and a semicircular groove cover 98 which widen the substrate and has no phosphor layer on the die bond surface. In this embodiment, the tube having one end opened is provided with a plug 110 that closes the opening, the LED light source is in the tube having one end opened, the substrate is widened, and there is no phosphor layer on the die bond surface. The light type LED light bar 88 is provided with at least two electrical connection lines 112, which are drawn together from one end opening of the tube and connected to the tube. In this embodiment, a wide light distribution type LED in which a diffused light-transmitting ceramic particle material is filled between the inner tube wall of the bulb and the light-emitting diode light source, and the inner tube wall of the bulb has no phosphor layer on the die bond surface. The light bar 88, the die bond surface 94 of the ceramic substrate 92, and the inner groove wall 96 of the semicircular groove cover 98 are in contact 108 with particles of diffuse light transmissive ceramic particle material and adjacent particles. The light transmissive ceramic particle material includes primary ceramic particles 102, gap filling ceramic particles 104, and ceramic particle fragments 106. The ceramic substrate 92 and the semicircular groove cover 98 are made of glass, single crystal aluminum oxide ceramic, and polycrystalline aluminum oxide ceramic, and are advantageous for heat conduction. A remote phosphor layer is fabricated on the outer surface 100 of the semicircular groove cover 98 and the substrate outer surface 90 of the ceramic substrate 92 for the white light illuminator of the blue LED.

図9は、光透過性セラミック粒子材料の光に対する乱屈折作用を示す模式図である。入射光114は、光透過性セラミック粒子材料に入り、一部が透過して乱屈折光116になり、一部が内部反射して乱反射光118になる。実施例1及び実施例2における蛍光体層を有する広配光タイプLEDライトバー20は、その蛍光体層14がサファイアセラミック基板12の上下両側に塗布され、サファイアセラミック基板12の左右両側が外部に露出することで放熱能力を高め、基板の左右両側の青色光が外部に漏れ出る16。該青色光が外部に漏れ出る16ことは、入射光114のように光透過性セラミック粒子材料に入り、一部が透過して乱屈折光116にあって出射光の角度を変更して白色光と混合し、青色光が外部に漏れ出ることを避け、一部が内部反射して乱反射光118になって蛍光体層14に入って混光し、出射光の演色指数をアップすると共に色温度を低下できる。実施例3、実施例4及び実施例5において、光透過性セラミック粒子材料の光に対する乱屈折作用は、光を柔らかくし、グレアを減らすことができる。入射光114のアルファベット大文字A、B、C、D、E、F、G、Hは、異なる位置の平行入射光が光透過性セラミック粒子に入ることを示す。乱屈折光116のアルファベット大文字A′、B′、C′、D′、E′、F′、G′、H′は、入射光114が光透過性セラミック粒子を透過した後、乱屈折光116の出射光角度を変更することを示す。乱反射光118のアルファベット小文字a、b、c、d、e、f、g、hは、入射光114が光透過性セラミック粒子に入った後、異なる出射光角度の乱反射光118として内部反射する。   FIG. 9 is a schematic diagram showing the random refraction effect of light-transmitting ceramic particle material on light. Incident light 114 enters the light-transmitting ceramic particle material, part of which is transmitted to become irregularly refracted light 116, and part of it is internally reflected to become irregularly reflected light 118. In the wide light distribution type LED light bar 20 having the phosphor layer in Example 1 and Example 2, the phosphor layer 14 is applied on both upper and lower sides of the sapphire ceramic substrate 12, and both the left and right sides of the sapphire ceramic substrate 12 are exposed to the outside. The exposure increases the heat dissipation capability, and the blue light on both the left and right sides of the substrate leaks outside 16. The fact that the blue light leaks to the outside 16 enters the light-transmitting ceramic particle material like the incident light 114, part of it is transmitted through the irregularly refracted light 116, and the angle of the outgoing light is changed to produce white light. To prevent the blue light from leaking to the outside, a part of the light is internally reflected to be irregularly reflected light 118 and mixed into the phosphor layer 14 to increase the color rendering index of the emitted light and the color temperature. Can be reduced. In Example 3, Example 4, and Example 5, the random refraction effect on the light of the light-transmitting ceramic particle material can soften the light and reduce the glare. Alphabet capital letters A, B, C, D, E, F, G, and H of incident light 114 indicate that parallel incident light at different positions enters the light transmissive ceramic particles. Alphabet capital letters A ′, B ′, C ′, D ′, E ′, F ′, G ′, and H ′ of the irregular refraction light 116 are obtained after the incident light 114 passes through the light-transmitting ceramic particles. It shows that the outgoing light angle is changed. Alphabet small letters a, b, c, d, e, f, g, and h of the irregularly reflected light 118 are internally reflected as irregularly reflected light 118 having different outgoing light angles after the incident light 114 enters the light-transmitting ceramic particles.

発明の詳細な説明の項においてなされた具体的な実施形態は、あくまでも本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではない。当業者が本発明の構想及び原則から逸脱することなく、様々な改良変更をなし得ることは、本発明の保護範囲に属するものであるのが勿論である。   The specific embodiments made in the section of the detailed description of the invention are merely to clarify the technical contents of the present invention, and should not be construed in a narrow sense by limiting only to such specific examples. Absent. It goes without saying that it is within the protection scope of the present invention that those skilled in the art can make various modifications and changes without departing from the concept and principle of the present invention.

10 LEDチップ
11 ワイヤボンディン
12 サファイアセラミック基板
14 蛍光体層
16 青色光が外部に漏れ出
18 LED光源
20 蛍光体層を有する広配光タイプLEDライトバー
22 一端が開口した管球
23 内管壁
24 電気接続線
26 プラグ
28 主要セラミック粒子
30 粒子と隣接粒子の接触
32 隙間充填用セラミック粒子
33 セラミック粒子の破片
34 電気接続線
36 プラグ
38 両端が開口した管球
40 内管壁
42 主要セラミック粒子
44 隙間充填用セラミック粒子
46 セラミック粒子の破片
48 粒子と隣接粒子の接触
50 蛍光体層を有しない広配光タイプLEDライトバー
52 LED光源
54 一端が開口した管球
56 プラグ
58 電気接続線
60 内管壁
62 主要セラミック粒子
64 隙間充填用セラミック粒子
66 セラミック粒子の破片
68 粒子と隣接粒子の接触
70 半円弧状のカバー
72 外円弧壁
74 ソリッド半円棒
75 外円壁
76 プラグ
77 電気接続線
78 内壁
80 主要セラミック粒子
82 隙間充填用セラミック粒子
84 セラミック粒子の破片
85 粒子と隣接粒子の接触
86 ダイボンド面
88 基板を拡幅し、ダイボンド面に蛍光体層がない広配光タイプLEDライトバー
90 基板外表面
92 セラミック基板
94 ダイボンド面
96 内溝壁
98 半円溝カバー
100 外表面
102 主要セラミック粒子
104 隙間充填用セラミック粒子
106 セラミック粒子の破片
108 粒子と隣接粒子の接触
110 プラグ
112 電気接続線
114 入射光
116 乱屈折光
118 乱反射光
DESCRIPTION OF SYMBOLS 10 LED chip 11 Wire bond 12 Sapphire ceramic substrate 14 Phosphor layer 16 Blue light leaks outside 18 LED light source 20 Wide light distribution type LED light bar 22 having a phosphor layer Tube 23 with one end opened Inner tube wall 24 Electrical Connection Line 26 Plug 28 Main Ceramic Particle 30 Contact between Particles and Adjacent Particles 32 Gap Filling Ceramic Particle 33 Ceramic Particle Fragment 34 Electrical Connection Line 36 Plug 38 Tube 40 Opened at Both Ends Inner Tube Wall 42 Main Ceramic Particle 44 Ceramic particle 46 for gap filling Ceramic particle fragment 48 Contact between particle and adjacent particle 50 Wide light distribution type LED light bar 52 having no phosphor layer LED light source 54 Tube 56 having one end opened 56 Plug 58 Electrical connection line 60 Inner tube Wall 62 Main ceramic particles 64 Ceramic particles 66 for gap filling Ramic particle fragment 68 Contact between particle and adjacent particle 70 Semicircular arc cover 72 Outer arc wall 74 Solid semicircular rod 75 Outer circular wall 76 Plug 77 Electrical connection line 78 Inner wall 80 Main ceramic particle 82 Ceramic particle 84 for gap filling Ceramic Particle Debris 85 Contact between Particles and Adjacent Particles 86 Die Bond Surface 88 Wide Light Distribution Type LED Light Bar 90 Widening Substrate and No Phosphor Layer on Die Bond Surface 90 Substrate Outer Surface 92 Ceramic Substrate 94 Die Bond Surface 96 Inner Groove Wall 98 Half Circular groove cover 100 Outer surface 102 Main ceramic particle 104 Ceramic particle for filling gap 106 Ceramic particle fragment 108 Contact between particle and adjacent particle 110 Plug 112 Electrical connection line 114 Incident light 116 Random refraction light 118 Diffuse reflection light

Claims (10)

広配光タイプ直管LEDランプであって、前記広配光タイプ直管LEDランプが管球を包括し、前記管球は両端又は一端が開口し、前記管球内にLED光源を有し、前記LED光源が少なくとも2本の電気接続線を備え、2本の前記電気接続線が各々前記管球の両端開口部から引き出して前記管球に接続し、或いは2本の前記電気接続線が一緒に前記管球の一端開口部から引き出して前記管球に接続し、前記管球の両端開口部若しくは前記管球の一端開口部がプラグで塞がれ、前記管球の内管壁と前記LED光源の間に散漫な光透過性セラミック粒子材料を充填する。前記散漫な光透過性セラミック粒子材料の粒子が隣接粒子と接触し、且つ前記散漫な光透過性セラミック粒子材料の空隙率が50%を下回り、前記散漫な光透過性セラミック粒子材料は主要セラミック粒子と隙間充填用セラミック粒子とセラミック粒子の破片とを含み、前記散漫な光透過性セラミック粒子材料の体積等価粒径は各々前記主要セラミック粒子が0.1mmを上回り、前記隙間充填用セラミック粒子が0.05mmを上回り、且つ0.1mmを下回り、前記セラミック粒子の破片が0.05mmを下回り、前記散漫な光透過性セラミック粒子材料の体積占有率は前記主要セラミック粒子が60%を上回り、前記隙間充填用セラミック粒子が40%未満、前記セラミック粒子の破片が20%未満とすることを特徴とする広配光タイプ直管LEDランプ。   Wide light distribution type straight tube LED lamp, the wide light distribution type straight tube LED lamp includes a tube, the tube is open at both ends or one end, and has an LED light source in the tube, The LED light source includes at least two electrical connection lines, and the two electrical connection lines are each pulled out from openings at both ends of the tube and connected to the tube, or the two electrical connection lines are connected together. The tube is pulled out from one end opening of the tube and connected to the tube, and both ends of the tube or one end of the tube is closed with a plug, the inner tube wall of the tube and the LED A diffuse light transmissive ceramic particulate material is filled between the light sources. The particles of the diffuse light transmissive ceramic particle material are in contact with adjacent particles, and the porosity of the diffuse light transmissive ceramic particle material is less than 50%, and the diffuse light transmissive ceramic particle material is a primary ceramic particle. The volume-equivalent particle size of the diffuse light-transmitting ceramic particle material is greater than 0.1 mm for each of the main ceramic particles and 0 for the gap-filling ceramic particles. .05 mm and less than 0.1 mm, the ceramic particle debris is less than 0.05 mm, the volume fraction of the diffuse light transmissive ceramic particle material is more than 60% of the main ceramic particles, and the gap Wide light distribution tie characterized in that ceramic particles for filling are less than 40%, and fragments of ceramic particles are less than 20%. Straight-tube LED lamp. 前記LED光源は、少なくとも1個の広配光タイプLEDライトバーを備え、前記広配光タイプLEDライトバーが複数のLEDチップを有し、複数の前記LEDチップが青色光LEDチップと他の色のLEDチップとを含むことを特徴とする請求項1に記載の広配光タイプ直管LEDランプ。   The LED light source includes at least one wide light distribution type LED light bar, the wide light distribution type LED light bar has a plurality of LED chips, and the plurality of LED chips have a blue light LED chip and another color. The wide light distribution type straight tube LED lamp according to claim 1, further comprising: 前記管球が、透明管球又はカラー管球とすることを特徴とする請求項1に記載の広配光タイプ直管LEDランプ。   The wide light distribution type straight tube LED lamp according to claim 1, wherein the tube is a transparent tube or a color tube. 前記管球の材料が、プラスチック材料又はガラス材料或いはセラミック材料とすることを特徴とする請求項1に記載の広配光タイプ直管LEDランプ。   2. The wide light distribution type straight tube LED lamp according to claim 1, wherein the material of the bulb is a plastic material, a glass material, or a ceramic material. 前記管球の前記ガラス材料は、石英ガラス又はナトリウムガラス或いはカルシウムガラス若しくはカリウムガラス又は鉛ガラス或いはホウ素ガラス若しくは任意の組み合わせの2種以上混合されたガラス材料とし、又は前記ガラス材料が2種或いは多種の異なる金属酸化物若しくは非金属酸化物を混合したガラス材料とすることを特徴とする請求項4に記載の広配光タイプ直管LEDランプ。   The glass material of the tube is made of quartz glass, sodium glass, calcium glass, potassium glass, lead glass, boron glass, or any combination of two or more kinds of glass materials. 5. The wide light distribution type straight tube LED lamp according to claim 4, wherein the glass material is a glass material in which different metal oxides or non-metal oxides are mixed. 前記管球の前記セラミック材料は、単結晶酸化アルミニウム又は多結晶酸化アルミニウムとすることを特徴とする請求項4に記載の広配光タイプ直管LEDランプ。   The wide light distribution type straight tube LED lamp according to claim 4, wherein the ceramic material of the tube is single crystal aluminum oxide or polycrystalline aluminum oxide. 前記光透過性セラミック粒子材料は、透明な粒子或いは着色粒子とすることを特徴とする請求項1に記載の広配光タイプ直管LEDランプ。   The wide light distribution type straight tube LED lamp according to claim 1, wherein the light-transmitting ceramic particle material is transparent particles or colored particles. 前記光透過性セラミック粒子材料の粒子の外観形状は、規則形状粒子或いは不規則形状粒子とすることを特徴とする請求項1に記載の広配光タイプ直管LEDランプ。   2. The wide light distribution type straight tube LED lamp according to claim 1, wherein the appearance shape of the particles of the light-transmitting ceramic particle material is regular shaped particles or irregular shaped particles. 前記光透過性セラミック粒子材料は、単結晶酸化アルミニウム又は多結晶酸化アルミニウムのセラミック粒子とすることを特徴とする請求項1に記載の広配光タイプ直管LEDランプ。   2. The wide light distribution type straight tube LED lamp according to claim 1, wherein the light transmissive ceramic particle material is ceramic particles of single crystal aluminum oxide or polycrystalline aluminum oxide. 前記光透過性セラミック粒子材料がガラス粒子とし、前記ガラス粒子は、石英ガラス粒子又はナトリウムガラス粒子或いはカルシウムガラス粒子若しくはカリウムガラス粒子又は鉛ガラス粒子或いはホウ素ガラス粒子若しくは任意の組み合わせの2種以上混合されたガラス粒子とし、又は前記ガラス粒子が2種又は多種の異なる金属酸化物或いは非金属酸化物を混合したガラス粒子とすることを特徴とする請求項1に記載の広配光タイプ直管LEDランプ。   The light-transmitting ceramic particle material is glass particles, and the glass particles are mixed with two or more of quartz glass particles, sodium glass particles, calcium glass particles, potassium glass particles, lead glass particles, boron glass particles, or any combination. 2. The wide light distribution type straight tube LED lamp according to claim 1, wherein the glass particles are glass particles mixed with two or more different metal oxides or non-metal oxides. .
JP2016165333A 2015-11-16 2016-08-26 Wide light distribution type straight tube LED lamp Expired - Fee Related JP6199456B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW104137668 2015-11-16
TW104137668A TWI571595B (en) 2015-11-16 2015-11-16 Omni-directional led lamps
TW104218326U TWM519710U (en) 2015-11-16 2015-11-16 Omni-directional LED lamps
TW104218326 2015-11-16

Publications (2)

Publication Number Publication Date
JP2017092023A JP2017092023A (en) 2017-05-25
JP6199456B2 true JP6199456B2 (en) 2017-09-20

Family

ID=58771808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165333A Expired - Fee Related JP6199456B2 (en) 2015-11-16 2016-08-26 Wide light distribution type straight tube LED lamp

Country Status (1)

Country Link
JP (1) JP6199456B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3762434B2 (en) * 1994-11-08 2006-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Low pressure discharge lamp
JP2002314136A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Semiconductor light emitting device
WO2009150584A1 (en) * 2008-06-11 2009-12-17 Koninklijke Philips Electronics N.V. Reduced power consumption sensor device and illumination system comprising such a sensor device
US8360607B2 (en) * 2010-02-17 2013-01-29 Next Lighting Corp. Lighting unit with heat-dissipating chimney
DE102010030863A1 (en) * 2010-07-02 2012-01-05 Osram Gesellschaft mit beschränkter Haftung LED lighting device and method for producing an LED lighting device
JP2013201102A (en) * 2012-03-26 2013-10-03 Toshiba Lighting & Technology Corp Straight tube shape lamp, and illuminating device

Also Published As

Publication number Publication date
JP2017092023A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6327220B2 (en) Light emitting device
TW201017932A (en) Light emitting device having a refractory phosphor layer
CN103563111B (en) Light emitting module, lamp and light fixture including heat carrier
JP2012028501A (en) Light emission device
JP2014072213A (en) Light-emitting device and process of manufacturing the same
JP2016219613A (en) Light-emitting device
JP2014017474A (en) Light-emitting device
CN103035820A (en) Three-dimensional light-emitting diode (LED) white light device
JP2016092271A (en) Phosphor sheet and lighting system
CN102969434B (en) LED component
JP5738541B2 (en) Optical semiconductor device
CN103827576A (en) Lighting module
JP2011119292A (en) Light-emitting device (cob module)
JP6199456B2 (en) Wide light distribution type straight tube LED lamp
US10964859B2 (en) Light-emitting device and method of manufacturing the same
CN109564919A (en) Device and its manufacturing method including patterned color conversion medium
TWI571595B (en) Omni-directional led lamps
JP2013149690A (en) Light-emitting device and illuminating device
WO2015168825A1 (en) Led bulb light with high luminous efficacy
CN209389062U (en) A kind of white light LED part
JP6249699B2 (en) LED light emitting device
CN103411153A (en) LED lamp tube
CN204596838U (en) A kind of LED encapsulation structure
TWM519710U (en) Omni-directional LED lamps
JP5287747B2 (en) Linear light source device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170823

R150 Certificate of patent or registration of utility model

Ref document number: 6199456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees