JP6249699B2 - LED light emitting device - Google Patents

LED light emitting device Download PDF

Info

Publication number
JP6249699B2
JP6249699B2 JP2013195062A JP2013195062A JP6249699B2 JP 6249699 B2 JP6249699 B2 JP 6249699B2 JP 2013195062 A JP2013195062 A JP 2013195062A JP 2013195062 A JP2013195062 A JP 2013195062A JP 6249699 B2 JP6249699 B2 JP 6249699B2
Authority
JP
Japan
Prior art keywords
emitting device
led light
container
light emitting
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013195062A
Other languages
Japanese (ja)
Other versions
JP2015061014A (en
Inventor
康生 中西
康生 中西
福田 匡広
福田  匡広
浩之 塚田
浩之 塚田
豪一郎 広瀬
豪一郎 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2013195062A priority Critical patent/JP6249699B2/en
Publication of JP2015061014A publication Critical patent/JP2015061014A/en
Application granted granted Critical
Publication of JP6249699B2 publication Critical patent/JP6249699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体発光素子と蛍光体を用いたLED発光装置の構造に関するものであり、詳しくは、蛍光体からの放熱特性を向上させる発明に関する。   The present invention relates to a structure of an LED light emitting device using a semiconductor light emitting element and a phosphor, and more particularly to an invention for improving heat dissipation characteristics from the phosphor.

近年、半導体発光素子であるLED素子(以下LED)は、長寿命かつ小型で発光効率が良く、鮮やかな発光色を有することから、カラー表示装置のバックライトや照明等に広く利用されるようになってきた。LED素子には、波長変換素子として蛍光体が使用されるが、半導体発光素子からの熱や蛍光体自身の発熱によって、蛍光体の波長変換効率が低下し、LED発光装置の演色性や発光効率が低下することがある。
特に、近年ではLEDの高輝度化が進み、LEDから放出される光のエネルギーが増加するに伴い、蛍光体の発熱量の増加による波長変換効率の低下が問題になっている。
2. Description of the Related Art In recent years, LED elements (hereinafter referred to as LEDs), which are semiconductor light-emitting elements, have a long life, are small in size, have high luminous efficiency, and have a bright emission color, so that they are widely used in backlights and illumination of color display devices. It has become. For LED elements, phosphors are used as wavelength conversion elements, but the wavelength conversion efficiency of the phosphors decreases due to heat from the semiconductor light emitting elements and the heat generation of the phosphors themselves, and the color rendering properties and light emission efficiency of the LED light emitting device. May decrease.
In particular, in recent years, as the brightness of LEDs has increased and the energy of light emitted from LEDs has increased, there has been a problem of a decrease in wavelength conversion efficiency due to an increase in the amount of heat generated by phosphors.

次に、蛍光体の発熱について、図13を参照して更に詳述する。
図13は、横軸を蛍光体の温度として、発光波長(λp)がそれぞれ518nmと527nmである蛍光体Aと蛍光体Bの2種類の蛍光体の、各温度における蛍光体の理論発光効率である内部量子収率を縦軸にプロットしたグラフである。
図13に示す様に、蛍光体の温度が150℃上昇すると、蛍光体Aと蛍光体Bの内部量子収率は50%ないし60%に低下する。
このため、蛍光体の放熱を解決するための技術が公開されている。(例えば特許文献1)
Next, the heat generation of the phosphor will be described in more detail with reference to FIG.
FIG. 13 shows the theoretical luminous efficiency of the phosphor at each temperature of two types of phosphors, phosphor A and phosphor B, whose emission axes (λp) are 518 nm and 527 nm, respectively, where the horizontal axis is the temperature of the phosphor. It is the graph which plotted a certain internal quantum yield on the vertical axis | shaft.
As shown in FIG. 13, when the temperature of the phosphor is increased by 150 ° C., the internal quantum yields of the phosphor A and the phosphor B are reduced to 50% to 60%.
For this reason, a technique for solving the heat radiation of the phosphor is disclosed. (For example, Patent Document 1)

次に、図14を用いて特許文献1に開示されている技術について説明する。図14は、特許文献1に開示されている蛍光体を用いたLED発光装置の構成の一例を示している。
図14に示すLED発光装置1は、基板5にLED素子2の発光面を上側にして実装し、LED素子2の周囲および上部を支持部材8で囲い、支持部材8の上端に空気層9を介して蛍光体層3を設けたものである。この構成は、リモートフォスファー(Remote
Phospher)と呼ばれる構成であり、支持部材8を用いてLED素子2の上面側に空気層9を介して蛍光体層3を設けることによって、LED素子2の発光発熱が直接蛍光体層3に伝わることを防止している。
Next, the technique disclosed in Patent Document 1 will be described with reference to FIG. FIG. 14 shows an example of the configuration of an LED light emitting device using a phosphor disclosed in Patent Document 1.
The LED light emitting device 1 shown in FIG. 14 is mounted on a substrate 5 with the light emitting surface of the LED element 2 facing upward, the periphery and upper part of the LED element 2 are surrounded by a support member 8, and an air layer 9 is formed on the upper end of the support member 8. A phosphor layer 3 is provided. This configuration is a remote phosphor (Remote).
The phosphor layer 3 is provided via the air layer 9 on the upper surface side of the LED element 2 using the support member 8, so that the emission heat of the LED element 2 is directly transmitted to the phosphor layer 3. To prevent that.

また、蛍光体層3の上面側に金属酸化物を表面に堆積した放熱層6を設けている。この放熱層6によって、蛍光体層3中の蛍光体量子7から発せられる熱7hを効率的に支持部材8へ熱伝導すると共に、放熱層6の表面から上方の空気中へと熱6hとして放熱することを意図している。このようにすることによって、蛍光体が光を受けて励起光を出す際に発する熱を逃がすことができる。これにより、蛍光体粒子7の温度上昇が抑えられることで内部量子効率が低下することなく、より効率的に蛍光体層3から光を取り出すことが可能となる。   Further, a heat dissipation layer 6 having a metal oxide deposited on the surface is provided on the upper surface side of the phosphor layer 3. The heat radiation layer 6 efficiently conducts heat 7h emitted from the phosphor quanta 7 in the phosphor layer 3 to the support member 8, and radiates heat from the surface of the heat radiation layer 6 to the upper air as heat 6h. Is intended to be. By doing so, it is possible to release heat generated when the phosphor receives light and emits excitation light. Thereby, it becomes possible to extract light from the phosphor layer 3 more efficiently without suppressing the temperature rise of the phosphor particles 7 and reducing the internal quantum efficiency.

特許第5100744号公報(第5頁、図5−7)Japanese Patent No. 5100744 (5th page, Fig. 5-7)

しかしながら、特許文献1に開示されたLED発光装置の構造において、放熱層6の表面から上方の空気中へと放熱される熱6hの熱量は非常に小さく、効率の悪いものであっ
た。また、蛍光体層6が発熱した際には放熱層6の熱容量が小さいことから、放熱層6がすぐに熱的に飽和するため、結果として支持部材8より最も遠い蛍光体層3の中心部を効果的に冷却することができないものであった。
However, in the structure of the LED light emitting device disclosed in Patent Document 1, the amount of heat 6h radiated from the surface of the heat dissipation layer 6 to the upper air is very small and inefficient. Further, since the heat capacity of the heat dissipation layer 6 is small when the phosphor layer 6 generates heat, the heat dissipation layer 6 is immediately thermally saturated. As a result, the central portion of the phosphor layer 3 farthest from the support member 8 is obtained. Cannot be cooled effectively.

そこで本発明の目的は、上記問題点を解決しようとするものであり、蛍光体層の上方への放熱性を向上することで、発光効率を向上したLED発光装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems, and to provide an LED light-emitting device with improved luminous efficiency by improving the heat dissipation property above a phosphor layer.

上記目的を達成するため、本発明におけるLED発光装置は下記構成とする。   In order to achieve the above object, the LED light-emitting device of the present invention has the following configuration.

本発明におけるLED発光装置は、基板上に実装されたLED素子と、基板上にLED素子を囲んで形成された支持部材と、支持部材上に配置された波長変換部材と、波長変換部材とLED素子との間の空気層と、を有するLED発光装置において、波長変換部材は、上部及び底部に透光性部材を有する密閉された容器と、容器内にあって容器上部又は容
器下部に固定されている蛍光体層と、蛍光体層と接するとともに容器内に満たされた溶媒と、によって構成され、溶媒の熱容量は蛍光体層の熱容量よりも大きく、溶媒は、蛍光体層が有する蛍光体粒子と異なる蛍光体粒子を含有し、異なる蛍光体粒子は、蛍光体粉末が樹脂によってカプセル状に包含されたものであることを特徴とする。
An LED light emitting device according to the present invention includes an LED element mounted on a substrate, a support member formed on the substrate so as to surround the LED element, a wavelength conversion member disposed on the support member, a wavelength conversion member, and an LED. In the LED light emitting device having an air layer between the elements, the wavelength conversion member is fixed in a sealed container having a light-transmitting member on the top and bottom, and in the container at the top or bottom of the container. and a phosphor layer are, the solvent filled in the container together with contact with the phosphor layer, is constituted by the heat capacity of the solvent is much larger than the heat capacity of the phosphor layer, the solvent, the phosphor in which the phosphor layer has Phosphor particles different from the particles are contained, and the different phosphor particles are characterized in that the phosphor powder is encapsulated by a resin .

上記構成によれば、溶媒が流動性を有しているため温度差によって対流を生じ、溶媒の対流が蛍光体層の広い面積を有する光放射面または光入射面から熱を奪って速やかに支持部材へ輸送するため、効率よく放熱を行うことができる。また、溶媒が持つ大きな熱容量によって溶媒内に多くの熱を蓄えることができることで、熱的に飽和しづらくなる。また、溶媒の対流によって熱を有する溶媒自体が移動することから、蛍光体層3の中心部を効果的に冷却することができる。結果として蛍光体の温度上昇が抑えられてLED発光装置の発光効率が向上する。   According to the above configuration, since the solvent has fluidity, convection is generated due to a temperature difference, and the convection of the solvent quickly removes heat from the light emitting surface or light incident surface having a large area of the phosphor layer. Since it is transported to the member, it is possible to efficiently dissipate heat. In addition, since a large amount of heat can be stored in the solvent due to the large heat capacity of the solvent, thermal saturation is difficult. Further, since the solvent itself having heat moves by the convection of the solvent, the central portion of the phosphor layer 3 can be effectively cooled. As a result, the temperature rise of the phosphor is suppressed and the luminous efficiency of the LED light emitting device is improved.

また、溶媒は、メチル系シリコーンオイルであって、蛍光体層は、シリコーン樹脂中に蛍光体を含有させたものであることが望ましい。
Further, it is desirable that the solvent is methyl silicone oil, and the phosphor layer contains a phosphor in a silicone resin .

上記構造によれば、蛍光体層と異なる特性の蛍光体粒子を溶媒に混入することができるので、異なる演色性を有することが可能になる。   According to the above structure, phosphor particles having characteristics different from those of the phosphor layer can be mixed in the solvent, so that different color rendering properties can be obtained.

上記の如く本発明によれば、蛍光体層の熱は、蛍光体層と溶媒の接する面全体から速やかに外部へ放散され、蛍光体の波長変換効率の低下を生じないので、LED発光装置としての発光効率を高めることができる。
さらに、溶媒中の蛍光体粒子により、LED発光装置としての演色性を向上させることができる。
As described above, according to the present invention, the heat of the phosphor layer is quickly dissipated to the outside from the entire surface where the phosphor layer and the solvent are in contact, and the wavelength conversion efficiency of the phosphor does not decrease. The luminous efficiency can be increased.
Furthermore, the color rendering property as an LED light-emitting device can be improved by the phosphor particles in the solvent.

本発明の第1実施形態におけるLED発光装置の構造を示す断面図である。It is sectional drawing which shows the structure of the LED light-emitting device in 1st Embodiment of this invention. 図1に示すLED発光装置の容器の構造を示す断面図である。It is sectional drawing which shows the structure of the container of the LED light-emitting device shown in FIG. 図1に示すLED発光装置の作用を示す断面図である。It is sectional drawing which shows the effect | action of the LED light-emitting device shown in FIG. 図1に示すLED発光装置の製造工程を説明する断面図および斜視図である。It is sectional drawing and a perspective view explaining the manufacturing process of the LED light-emitting device shown in FIG. 図1に示すLED発光装置の製造工程を説明する断面図および斜視図である。It is sectional drawing and a perspective view explaining the manufacturing process of the LED light-emitting device shown in FIG. 本発明の第2実施形態におけるLED発光装置の構造および作用を示す断面図である。It is sectional drawing which shows the structure and effect | action of the LED light-emitting device in 2nd Embodiment of this invention. 図6に示すLED発光装置の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of the LED light-emitting device shown in FIG. 本発明の第3実施形態におけるLED発光装置の構造および作用を示す断面図である。It is sectional drawing which shows the structure and effect | action of the LED light-emitting device in 3rd Embodiment of this invention. 図8に示すLED発光装置の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of the LED light-emitting device shown in FIG. 本発明の第4実施形態におけるLED発光装置の構造を示す断面図である。It is sectional drawing which shows the structure of the LED light-emitting device in 4th Embodiment of this invention. 図10に示すLED発光装置の作用を示す断面図である。It is sectional drawing which shows the effect | action of the LED light-emitting device shown in FIG. 本発明の第5実施形態におけるLED発光装置の構造および作用を示す断面図である。It is sectional drawing which shows the structure and effect | action of the LED light-emitting device in 5th Embodiment of this invention. 蛍光体の温度特性を表すグラフである。It is a graph showing the temperature characteristic of fluorescent substance. 従来のLED発光装置の断面図である。It is sectional drawing of the conventional LED light-emitting device.

(第1実施形態)
以下図面により、本発明の実施形態を説明する。
図1〜図5は、本発明の第1実施形態におけるLED発光装置を示し、図1〜図3は、第1実施形態におけるLED発光装置の構造を示す断面図で、図4(a)〜(d)および図5(e)〜(i)は、製造工程を説明する断面図である。
(First embodiment)
Embodiments of the present invention will be described below with reference to the drawings.
1 to 5 show the LED light-emitting device according to the first embodiment of the present invention, and FIGS. 1 to 3 are cross-sectional views showing the structure of the LED light-emitting device according to the first embodiment. (D) and FIG.5 (e)-(i) are sectional drawings explaining a manufacturing process.

(第1実施形態の構造説明)
図1および図2を用いてLED発光装置100の構造を説明する。
図1は、LED発光装置100の構造を示す断面図であり、図2は、容器18の構造を示す断面図である。
(Description of structure of the first embodiment)
The structure of the LED light emitting device 100 will be described with reference to FIGS. 1 and 2.
FIG. 1 is a cross-sectional view showing the structure of the LED light emitting device 100, and FIG. 2 is a cross-sectional view showing the structure of the container 18.

図1おいて、LED発光装置100は、窒化ガリウム(GaN)を材料とし青色光を発光するLED素子60を、アルミナや窒化アルミニウムなどのセラミック材料を用いた基板50に発光面を上側にして実装し、LED素子60の周囲および上部をアルミニウム等の高反射率、高熱伝導率を有する金属材を用いた支持部材40で囲い、支持部材40の上端に空気層90を介して波長変換部材10を設けて構成される。   In FIG. 1, an LED light emitting device 100 includes an LED element 60 that emits blue light using gallium nitride (GaN) as a material and mounted on a substrate 50 using a ceramic material such as alumina or aluminum nitride with a light emitting surface facing upward. Then, the periphery and the upper part of the LED element 60 are surrounded by a support member 40 using a metal material having high reflectivity and high thermal conductivity such as aluminum, and the wavelength conversion member 10 is placed on the upper end of the support member 40 via the air layer 90. Provided and configured.

波長変換部材10は、容器18と容器18の中に保持された溶媒20と蛍光体層30とから構成され、蛍光体層30は、容器18内の底部すなわちLED素子60からの光入射面側に配設する。   The wavelength conversion member 10 includes a container 18, a solvent 20 held in the container 18, and a phosphor layer 30, and the phosphor layer 30 is on the bottom of the container 18, that is, on the light incident surface side from the LED element 60. It arranges in.

容器18は、透光性アルミナなどの透光性のセラミックスを材料として、注入された溶媒20を保持するための円柱状の収納部を備えており、図1に示す様に、LED素子60からの発光が入射する光入射面16と、LED素子60からの発光と、後述する蛍光体層30による励起光とを出射する光出射面14とを有している。   The container 18 is provided with a cylindrical storage portion for holding the injected solvent 20 made of a light-transmitting ceramic such as light-transmitting alumina. As shown in FIG. The light incident surface 16 on which the emitted light enters, the light emitting surface 14 that emits light emitted from the LED element 60 and excitation light from the phosphor layer 30 described later.

蛍光体層30は、透光性のシリコーンあるいはエポキシ樹脂を基材とし、内部にはLED素子60からの発光を受けて、波長変換した励起光を発光する蛍光体粒子(図示せず)が混入されている。本実施例では、蛍光体粒子として、LED素子60から発光される青色光を受け黄色の励起光を発光する蛍光体粒子であるYAG(Yttrium Aluminum Garnet)系蛍光体を用いている。   The phosphor layer 30 is made of translucent silicone or epoxy resin as a base material, and contains phosphor particles (not shown) that emit light emitted from the LED element 60 and emit wavelength-converted excitation light. Has been. In this embodiment, a YAG (Yttrium Aluminum Garnet) phosphor, which is a phosphor particle that receives blue light emitted from the LED element 60 and emits yellow excitation light, is used as the phosphor particle.

溶媒20は、本実施例ではメチル系シリコンオイルを用いたが、透光性と、不燃性と、不活性、絶縁性とを有し、沸点が使用するLED素子の発光時の温度より低い液体であれば、どのような液体でも用いることが可能である。   As the solvent 20, methyl silicon oil is used in this embodiment. However, the solvent 20 has translucency, nonflammability, inertness, and insulation, and has a boiling point lower than the temperature at which the LED element used emits light. Any liquid can be used.

次に、図2を用いて容器18の構造を詳述する。図2に示す様に、容器18は、容器底部181と容器上部182と容器側部180とで構成され、容器底部181および容器上部182を、容器側部180に接着して容器18を形成する。なお、容器上部182の容器内側の面は光出射面14であり、容器底部181の容器外側の面は光入射面16である。   Next, the structure of the container 18 will be described in detail with reference to FIG. As shown in FIG. 2, the container 18 includes a container bottom 181, a container top 182, and a container side 180, and the container bottom 181 and the container top 182 are bonded to the container side 180 to form the container 18. . The inner surface of the container upper portion 182 is the light emitting surface 14, and the outer surface of the container bottom 181 is the light incident surface 16.

容器底部181および容器上部182および容器側部180は、透光性アルミナを用い、加圧成形法または押し出し成形法によって加工し、ホットプレス法等による接着により容器18を形成する。容器側部180は透光性がなくてもよく、反射率が高く熱伝導性の良いアルミニウムを用いても良い。なお、製造方法の詳細は後述する。   The container bottom part 181, the container upper part 182 and the container side part 180 are made of translucent alumina and processed by a pressure molding method or an extrusion molding method, and the container 18 is formed by adhesion using a hot press method or the like. The container side portion 180 may not have translucency, and aluminum having high reflectivity and good thermal conductivity may be used. Details of the manufacturing method will be described later.

(第1実施形態の作用効果の説明)
次に、図3を用いて本発明のLED発光装置100の作用および効果を説明する。
図3は、本発明のLED発光装置100の作用を説明する断面図であり、実線は、LED素子60から発光された青色光Pb、点線は、蛍光体層30によって波長変換された黄色の励起光Pyを示し、回転矢印は、溶媒20に生じる対流Fを示している。
(Description of operational effects of the first embodiment)
Next, the operation and effect of the LED light emitting device 100 of the present invention will be described with reference to FIG.
FIG. 3 is a cross-sectional view illustrating the operation of the LED light emitting device 100 of the present invention, where the solid line is blue light Pb emitted from the LED element 60 and the dotted line is yellow excitation wavelength-converted by the phosphor layer 30. The light Py is shown, and the rotation arrow shows the convection F generated in the solvent 20.

図3に示す様に、LED素子60から発光された青色光Pbは空気層90を通過し、容器18の光入射面16から入射し、蛍光体層30によって黄色の励起光Pyに変換されて光出射面14から容器18の外部に出射する。   As shown in FIG. 3, the blue light Pb emitted from the LED element 60 passes through the air layer 90, enters from the light incident surface 16 of the container 18, and is converted into yellow excitation light Py by the phosphor layer 30. The light exits from the light exit surface 14 to the outside of the container 18.

また、LED素子60から発光された青色光Pbの一部は、容器18の光入射面16から入射し、蛍光体層30での励起が行われずにそのまま光出射面14から青色光Pbとして容器18の外部に出射する。   Further, a part of the blue light Pb emitted from the LED element 60 is incident from the light incident surface 16 of the container 18, and is not excited by the phosphor layer 30 and is directly converted into the blue light Pb from the light emitting surface 14. 18 is emitted to the outside.

この結果、青色光Pbと黄色励起光Pyとの合成により生じた白色光Pwが、LED発光装置100から外部に出射される。以上の過程において、青色光Pbを黄色励起光Pyに波長変換した際の励起発熱によって、蛍光体層30は熱を発生する。   As a result, white light Pw generated by the combination of the blue light Pb and the yellow excitation light Py is emitted from the LED light emitting device 100 to the outside. In the above-described process, the phosphor layer 30 generates heat due to excitation heat generated when the wavelength of the blue light Pb is converted into the yellow excitation light Py.

図3において、蛍光体層30の近傍の溶媒20hは、蛍光体層30で発生した熱を吸収するが、熱容量が大きいため緩やかに温度が上昇する。温度が上昇した溶媒20hは、温度が低い容器18の上部(光出射面14に近い領域)近傍の溶媒20fとの温度差により、熱源から重力に逆らう方向に発生する溶媒の流に起因する対流Fが発生する。   In FIG. 3, the solvent 20 h in the vicinity of the phosphor layer 30 absorbs heat generated in the phosphor layer 30, but the temperature rises slowly because of its large heat capacity. The solvent 20h whose temperature has risen is convected due to the flow of the solvent generated in the direction against gravity from the heat source due to the temperature difference with the solvent 20f in the vicinity of the upper part (region close to the light emitting surface 14) of the container 18 having a low temperature. F is generated.

この様に、蛍光体層30の発熱は、容器18内の溶媒20の温度を急激に上昇させずに対流Fによって移動され、容器18の周囲部分から矢印Thで示す放熱経路により支持部材40へと放熱される。これにより、蛍光体層30の近傍の溶媒20hが熱伝導とは異なり対流Fによって直接移動して支持部材へ熱を伝えると共に、溶媒20の熱容量が飽和することなく、継続的に熱を蛍光体層30より吸収し続けることができる。そのため、効率的に蛍光体層30の溶媒20に接する面の全面から熱を奪い続けることが可能となる。これにより、蛍光体層30における熱の放熱が促進されると蛍光体層30の温度上昇が低減し、蛍光体層30の波長変換効率が上昇するのでLED発光装置100の発光効率が向上する。   In this way, the heat generated in the phosphor layer 30 is moved by the convection F without rapidly increasing the temperature of the solvent 20 in the container 18, and is transferred from the peripheral portion of the container 18 to the support member 40 through the heat dissipation path indicated by the arrow Th. And dissipate heat. Thus, the solvent 20h in the vicinity of the phosphor layer 30 moves directly by the convection F and transfers heat to the support member, unlike heat conduction, and the heat is continuously transferred to the phosphor without the heat capacity of the solvent 20 being saturated. It can continue to absorb from the layer 30. Therefore, it becomes possible to keep taking heat from the entire surface of the phosphor layer 30 in contact with the solvent 20 efficiently. Thereby, when heat dissipation in the phosphor layer 30 is promoted, the temperature rise of the phosphor layer 30 is reduced, and the wavelength conversion efficiency of the phosphor layer 30 is increased, so that the light emission efficiency of the LED light emitting device 100 is improved.

(第1実施形態の製造方法)
次に、図4、5を用いLED発光装置100の製造方法を説明する。
図4、5は、集合材料を用い、複数のLED発光装置100を製造する製造工程を説明する断面図であり、図4(a)〜(d)は前工程であり、図5(e)〜(g)は後工程である。
(Manufacturing method of the first embodiment)
Next, the manufacturing method of the LED light-emitting device 100 is demonstrated using FIG.
4 and 5 are cross-sectional views illustrating a manufacturing process for manufacturing a plurality of LED light emitting devices 100 using an aggregate material, and FIGS. 4A to 4D are pre-processes, and FIG. -(G) is a post-process.

まず、前工程について説明する。
図4(a)に示す様に、複数のLED素子60を集合基板50sに、フリップチップボンディングを用いて図示しない集合基板上の配線に実装し、電気的に接続する。
First, the previous process will be described.
As shown in FIG. 4A, the plurality of LED elements 60 are mounted on the collective substrate 50s on the wiring on the collective substrate (not shown) using flip chip bonding, and are electrically connected.

次に、図4(b)および図(c)に示す様に、支持部材開口41を備えた集合支持部材40sを集合基板50sに接着する。なお、図4(b−1)に示す様に、集合支持部材40sは円筒状の支持部材開口41を備えているが、角柱状であっても良い。   Next, as shown in FIGS. 4B and 4C, the collective support member 40s having the support member openings 41 is bonded to the collective substrate 50s. As shown in FIG. 4 (b-1), the collective support member 40s includes a cylindrical support member opening 41, but may have a prismatic shape.

続けて、図4(d)に示す様に、集合支持部材40sに集合容器底部181sを接着し、さらに集合容器底部181sに集合容器側部180sを接着する。ここで、集合容器側部180sは円筒状の容器開口部183を備えているが角柱状でも良い。   Subsequently, as shown in FIG. 4D, the collecting container bottom portion 181s is bonded to the collecting support member 40s, and the collecting container side portion 180s is bonded to the collecting container bottom portion 181s. Here, the collecting container side portion 180s includes a cylindrical container opening 183, but may be a prismatic shape.

次に、後工程について説明する。
まず、図5(e)に示す様に、集合容器側部180sの容器開口部183から、集合容器側部180sの底部に蛍光体層30を落とし込んで各々接着する。
Next, a post process is demonstrated.
First, as shown in FIG. 5E, the phosphor layers 30 are dropped from the container opening 183 of the collecting container side portion 180s to the bottom of the collecting container side portion 180s and bonded to each other.

次に、図5(f)に示す様に、各々の容器開口部183にディスペンサDによって溶媒20を注入する。   Next, as shown in FIG. 5 (f), the solvent 20 is injected into each container opening 183 by the dispenser D.

続けて、図5(g)に示す様に、集合容器側部180sに集合容器上部182sを接着する。その後切断線cに沿って分離する。この図5(g)の分離工程により、図5(h)の断面図および図5(i)の斜視図に示す様に、LED発光装置100が完成する。   Subsequently, as shown in FIG. 5G, the collecting container upper part 182s is bonded to the collecting container side part 180s. Thereafter, separation is performed along the cutting line c. As shown in the cross-sectional view of FIG. 5H and the perspective view of FIG. 5I, the LED light emitting device 100 is completed by the separation step of FIG.

上記各工程における接着は、材料に応じて無機接着剤またはホットプレス法を適宜使い分けることが出来る。   For the adhesion in each of the above steps, an inorganic adhesive or a hot press method can be appropriately used depending on the material.

(第2実施形態)
次に、図6を用いて、第2実施形態のLED発光装置200の構造を説明する。
図6は、第2実施形態のLED発光装置200の構造を示す断面図であり、図1〜図5に示した第1実施形態のLED発光装置100と同じ要素には同じ番号を付し、重複する説明は省略する。
(Second Embodiment)
Next, the structure of the LED light-emitting device 200 of 2nd Embodiment is demonstrated using FIG.
FIG. 6 is a cross-sectional view showing the structure of the LED light emitting device 200 of the second embodiment. The same elements as those of the LED light emitting device 100 of the first embodiment shown in FIGS. A duplicate description is omitted.

(第2実施形態の構成説明)
図6に示す様に、第2実施形態のLED発光装置200は、波長変換部材11の容器18の底部に蛍光体層30を配設したもので、第1実施形態において使用した容器底部181を用いていないことが、第1実施形態と異なる。
この構造によって、図6に示す様にLED素子60から発光した青色光Pbは、蛍光体層30に直接入射する。
(Description of configuration of second embodiment)
As shown in FIG. 6, the LED light emitting device 200 according to the second embodiment has a phosphor layer 30 disposed on the bottom of the container 18 of the wavelength conversion member 11, and the container bottom 181 used in the first embodiment is used. What is not used is different from the first embodiment.
With this structure, as shown in FIG. 6, the blue light Pb emitted from the LED element 60 is directly incident on the phosphor layer 30.

(第2実施形態の作用効果の説明)
この様にして構成した第2実施形態のLED発光装置200は、第1実施形態のLED発光装置100と異なり、LED素子60から発光した青色光Pbが蛍光体層30に直接入射することで、光の伝搬ロスが減りLED発光装置200の発光効率が向上する。また、容器18の底部に容器底部181を使用していないので、波長変換部材11の厚みが減り、LED発光装置200が薄型化するとともに、部材が減りコストダウンに繋がる。
(Description of operational effects of the second embodiment)
Unlike the LED light emitting device 100 of the first embodiment, the LED light emitting device 200 of the second embodiment configured as described above is such that the blue light Pb emitted from the LED element 60 is directly incident on the phosphor layer 30. Light propagation loss is reduced, and the light emission efficiency of the LED light emitting device 200 is improved. Further, since the container bottom 181 is not used at the bottom of the container 18, the thickness of the wavelength conversion member 11 is reduced, the LED light emitting device 200 is reduced in thickness, and the number of members is reduced, leading to cost reduction.

また、第1実施形態と同様に、溶媒20の対流Fによって蛍光体層30の放熱は促進されるので、蛍光体層30の波長変換効率が低下することがなく、LED発光装置200の発光効率は向上する。   Further, similarly to the first embodiment, the heat dissipation of the phosphor layer 30 is promoted by the convection F of the solvent 20, so that the wavelength conversion efficiency of the phosphor layer 30 does not decrease, and the light emission efficiency of the LED light emitting device 200 Will improve.

(第2実施形態の製造方法)
次に、図7を用いLED発光装置200の製造方法を説明する。
図7は、集合材料を用い複数のLED発光装置200を製造する製造工程を説明する断面図である。
(Manufacturing method of the second embodiment)
Next, a method for manufacturing the LED light emitting device 200 will be described with reference to FIG.
FIG. 7 is a cross-sectional view illustrating a manufacturing process for manufacturing a plurality of LED light emitting devices 200 using an aggregate material.

図7に示す様に、集合支持部材40sにおける支持部材開口部41の上部に蛍光体層30を各々接着する。さらに、集合支持部材40sの上部に容器開口部183を有する集合容器側部180sを接着する。集合容器側部180sは容器側部凸部180sbを備えており、容器側部凸部180sbと集合支持部材40sとを接着し固定する。   As shown in FIG. 7, the phosphor layers 30 are bonded to the upper portions of the support member openings 41 in the collective support member 40s. Further, the collecting container side portion 180s having the container opening 183 is bonded to the upper portion of the collecting support member 40s. The collective container side portion 180s includes a container side convex portion 180sb, and bonds and fixes the container side convex portion 180sb and the collective support member 40s.

その他の工程は、図4および図5に示した第1実施形態のLED発光装置100と同じなので、重複する説明は省略する。   Other steps are the same as those of the LED light emitting device 100 of the first embodiment shown in FIGS.

(第3実施形態)
次に、図8を用いて第3実施形態におけるLED発光装置300を説明する。
図8は、本発明の第3実施形態におけるLED発光装置300の構造を示す断面図であり、図6に示す第2実施形態のLED発光装置200と同じ要素には、同じ番号を付し重複する説明は省略する。
(Third embodiment)
Next, the LED light-emitting device 300 in 3rd Embodiment is demonstrated using FIG.
FIG. 8 is a cross-sectional view showing the structure of the LED light emitting device 300 according to the third embodiment of the present invention. The same elements as those of the LED light emitting device 200 of the second embodiment shown in FIG. The description to be omitted is omitted.

(第3実施形態の構成説明)
第3実施形態におけるLED発光装置300の構造と、第2実施形態におけるLED発光装置200の構造で異なるところは、LED発光装置200では、支持部材40が波長変換部材11の蛍光体層30と容器側部180とに接しているが、LED発光装置300では、支持部材40が波長変換部材12の蛍光体層30と、容器側部180と、さらに溶媒20とに接していることである。
(Description of configuration of the third embodiment)
The difference between the structure of the LED light emitting device 300 in the third embodiment and the structure of the LED light emitting device 200 in the second embodiment is that in the LED light emitting device 200, the support member 40 is the phosphor layer 30 of the wavelength conversion member 11 and the container. In the LED light emitting device 300, the support member 40 is in contact with the phosphor layer 30 of the wavelength conversion member 12, the container side portion 180, and the solvent 20.

以下、図8を用いて、LED発光装置300の構造を説明する。
図8に示す様に、支持部材40の上部に支持部材凸部40bが形成され、この支持部材凸部40bの位置で、支持部材40と溶媒20とが接している。支持部材凸部40bの内側には、蛍光体層30の外周部を陥入する支持部材辺40uが設けられ、支持部材凸部40bと蛍光体層30とは、支持部材辺40uの位置で接着にて固定される。
Hereinafter, the structure of the LED light emitting device 300 will be described with reference to FIG.
As shown in FIG. 8, the support member convex part 40b is formed in the upper part of the support member 40, and the support member 40 and the solvent 20 are contacting in the position of this support member convex part 40b. A support member side 40u is provided on the inner side of the support member convex portion 40b so as to indent the outer peripheral portion of the phosphor layer 30, and the support member convex portion 40b and the phosphor layer 30 are bonded at the position of the support member side 40u. It is fixed with.

また、支持部材凸部40bの外側には、容器側部180を陥入する支持部材辺40gが設けられ、容器側部180と支持部材凸部40bとは、支持部材辺40gの位置で接着にて固定される。   Further, a support member side 40g that indents the container side portion 180 is provided outside the support member convex portion 40b, and the container side portion 180 and the support member convex portion 40b are bonded to each other at the position of the support member side 40g. Fixed.

(第3実施形態の作用効果の説明)
図8において、蛍光体層30の発熱および溶媒20の対流Fについては、第1実施形態のLED発光装置100と同じなので、重複する説明は省略する。蛍光体層30は、支持部材凸部40bに接着されているので、蛍光体層30の一部の熱は、蛍光体層30の端部から支持部材凸部40bに矢印T1で示す熱伝導経路で放熱される。
また、溶媒20の対流Fに伴う放熱は、支持部材40の支持部材凸部40bが溶媒20と接しているので、矢印T2で示す新たな放熱経路により、直接支持部材40に放熱される。この様にして、第3実施形態におけるLED発光装置300は、溶媒20の対流Fによる直接放熱経路T2と、熱伝導経路T1とからなる2系統の放熱経路を有しており、強力な放熱が可能となる。
(Description of operational effects of the third embodiment)
In FIG. 8, the heat generation of the phosphor layer 30 and the convection F of the solvent 20 are the same as those of the LED light emitting device 100 of the first embodiment, and thus redundant description is omitted. Since the phosphor layer 30 is bonded to the support member convex portion 40b, a part of the heat of the phosphor layer 30 is transferred from the end of the phosphor layer 30 to the support member convex portion 40b by a heat conduction path indicated by an arrow T1. The heat is dissipated.
Further, the heat radiation accompanying the convection F of the solvent 20 is directly radiated to the support member 40 through the new heat radiation path indicated by the arrow T2 because the support member convex portion 40b of the support member 40 is in contact with the solvent 20. In this way, the LED light emitting device 300 in the third embodiment has two heat dissipation paths including the direct heat dissipation path T2 due to the convection F of the solvent 20 and the heat conduction path T1, and strong heat dissipation is achieved. It becomes possible.

この様に、第3実施形態におけるLED発光装置300は、実施形態1、2に記載の放熱経路に加え、溶媒20と支持部材40が直接接していることによって対流Fから直接支
持部材へ熱が伝えられる放熱経路を有しているので、蛍光体層30の放熱がさらに促進され、波長変換部材12の波長変換効率が改善され、LED発光装置300の発光効率はさらに向上する。
As described above, in the LED light emitting device 300 according to the third embodiment, in addition to the heat dissipation path described in the first and second embodiments, heat is directly transferred from the convection F to the support member because the solvent 20 and the support member 40 are in direct contact. Since the heat radiation path is transmitted, the heat radiation of the phosphor layer 30 is further promoted, the wavelength conversion efficiency of the wavelength conversion member 12 is improved, and the light emission efficiency of the LED light emitting device 300 is further improved.

(第3実施形態の製造方法)
次に、図9を用いLED発光装置300の製造方法を説明する。
図9(a)〜(b)は、集合材料を用い複数のLED発光装置300を製造する製造工程を説明する断面図である。
(Manufacturing method of 3rd Embodiment)
Next, a method for manufacturing the LED light emitting device 300 will be described with reference to FIG.
FIGS. 9A to 9B are cross-sectional views illustrating a manufacturing process for manufacturing a plurality of LED light emitting devices 300 using a collective material.

図9(a)に示す様に、LED素子60を実装した集合基板50sに、支持部材開口41を備えた集合支持部材40ssを接着する。なおこのとき、図9(a−1)に示す様に、集合支持部材40ssは、複数の支持部材開口41を形成する複数の支持部材40によって構成されており、各々の支持部材40の上部には突起状の支持部材凸部40bを有している。支持部材凸部40bの凸部は、蛍光体層30と集合容器側部(図示せず)とに接着固定するために設けられている。   As shown in FIG. 9A, the collective support member 40ss having the support member openings 41 is bonded to the collective substrate 50s on which the LED elements 60 are mounted. At this time, as shown in FIG. 9 (a-1), the collective support member 40 ss is composed of a plurality of support members 40 that form a plurality of support member openings 41. Has a protruding support member convex portion 40b. The convex part of the support member convex part 40b is provided in order to adhere and fix to the phosphor layer 30 and the collecting container side part (not shown).

その他の工程は、図4および図5に示す第1実施形態のLED発光装置100、または図7に示す第2実施形態のLED発光装置200と同じなので重複する説明は省略する。   The other steps are the same as those of the LED light emitting device 100 of the first embodiment shown in FIGS. 4 and 5 or the LED light emitting device 200 of the second embodiment shown in FIG.

(第4実施形態)
次に、図10、図11を用いて第4実施形態におけるLED発光装置400を説明する。
図10は、本発明のLED発光装置400の構造を示す断面図であり、図1〜図5に示した第1実施形態のLED発光装置100と同じ要素には、同じ番号を付し重複する説明は省略する。
(Fourth embodiment)
Next, the LED light-emitting device 400 in 4th Embodiment is demonstrated using FIG. 10, FIG.
FIG. 10 is a cross-sectional view showing the structure of the LED light emitting device 400 of the present invention. The same elements as those of the LED light emitting device 100 of the first embodiment shown in FIGS. Description is omitted.

(第4実施形態の構成説明)
LED発光装置400がLED発光装置100と異なるところは、LED発光装置100は、波長変換部材10の蛍光体層30が容器18の光入射面16側、すなわち容器底部181に固定されていたのに対し、LED発光装置400では、波長変換部材13蛍光体層30が容器18の光出射面14側、すなわち容器上部182に固定されていることである。
(Description of configuration of the fourth embodiment)
The LED light emitting device 400 is different from the LED light emitting device 100 in that the phosphor layer 30 of the wavelength conversion member 10 is fixed to the light incident surface 16 side of the container 18, that is, the container bottom 181. On the other hand, in the LED light emitting device 400, the wavelength conversion member 13 phosphor layer 30 is fixed to the light emitting surface 14 side of the container 18, that is, the container upper part 182.

(第4実施形態の作用効果の説明)
次に、図11を用いて、本発明のLED発光装置400の作用を説明する。
図11は、本発明のLED発光装置400の作用を説明する断面図であり、実線はLED素子60から発光された青色光Pb、点線は蛍光体層30によって波長変換された黄色の励起光Pyを示し、回転矢印は溶媒20に生じる対流Fを示している。
(Description of operational effects of the fourth embodiment)
Next, the operation of the LED light emitting device 400 of the present invention will be described with reference to FIG.
FIG. 11 is a cross-sectional view for explaining the operation of the LED light emitting device 400 of the present invention, where the solid line is blue light Pb emitted from the LED element 60 and the dotted line is yellow excitation light Py wavelength-converted by the phosphor layer 30. The rotation arrows indicate the convection F generated in the solvent 20.

図11に示す様に、LED素子60から発光された青色光Pbは空気層90を通過し、容器18の光入射面16から入射し、溶媒20を通過した後に、蛍光体層30によって黄色の励起光Pyに変換されて光出射面14から容器18の外部に出射する。   As shown in FIG. 11, the blue light Pb emitted from the LED element 60 passes through the air layer 90, enters from the light incident surface 16 of the container 18, passes through the solvent 20, and then becomes yellow by the phosphor layer 30. It is converted into excitation light Py and emitted from the light exit surface 14 to the outside of the container 18.

また、LED素子60から発光された青色光Pbの一部は、容器18の光入射面16から入射し、溶媒20を通過した後に、蛍光体層30での励起が行われずに、そのまま光出射面14から青色光Pbとして容器18の外部に出射する。   Further, a part of the blue light Pb emitted from the LED element 60 is incident on the light incident surface 16 of the container 18 and passes through the solvent 20, and then is not emitted by the phosphor layer 30 and is emitted as it is. The blue light Pb is emitted from the surface 14 to the outside of the container 18.

この結果、青色光Pbと黄色励起光Pyとの合成により生じた白色光PwがLED発光装置400から外部に出射される。以上の過程において、青色光Pbを黄色励起光Pyに波長変換した際の励起発熱によって、蛍光体層30は熱を発生する。   As a result, white light Pw generated by the synthesis of the blue light Pb and the yellow excitation light Py is emitted from the LED light emitting device 400 to the outside. In the above-described process, the phosphor layer 30 generates heat due to excitation heat generated when the wavelength of the blue light Pb is converted into the yellow excitation light Py.

図11において、LED発光装置400を光出射面側を下にして使用した際、すなわち蛍光体層30の上に溶媒20を有するように配置した際において、蛍光体層30の近傍の溶媒20は蛍光体層30で発生した熱を吸収し、容器18の上部(光出射面14に近い領域)近傍の溶媒20hが温度が上昇するため、温度が上昇した溶媒20hと温度が低い容器18の下部(光入射面14に近い領域)の溶媒20fとの温度差により、熱源から重力に逆らう方向に発生する溶媒の流に起因する対流Fが発生する。   In FIG. 11, when the LED light emitting device 400 is used with the light emitting surface side down, that is, when the LED light emitting device 400 is disposed so as to have the solvent 20 on the phosphor layer 30, the solvent 20 in the vicinity of the phosphor layer 30 is The heat generated in the phosphor layer 30 is absorbed, and the temperature of the solvent 20h in the vicinity of the upper portion of the container 18 (region close to the light emitting surface 14) is increased. Therefore, the solvent 20h having the increased temperature and the lower portion of the container 18 having the lower temperature. Due to the temperature difference with the solvent 20f (region close to the light incident surface 14), convection F is generated due to the flow of the solvent generated in the direction against gravity from the heat source.

この様に、蛍光体層30の発熱は、容器18内の溶媒20の対流Fによって移動され、容器18の周囲部分から矢印Thで示す放熱経路により支持部材40へと放熱される。   In this manner, the heat generated in the phosphor layer 30 is moved by the convection F of the solvent 20 in the container 18 and is radiated from the peripheral portion of the container 18 to the support member 40 through the heat radiation path indicated by the arrow Th.

(第5実施形態)
次に、図12を用いて第5実施形態におけるLED発光装置500を説明する。
図12は本発明のLED発光装置500の構造を示す断面図であり、図1〜図5に示す第1実施形態のLED発光装置100および図6に示す第2実施形態のLED発光装置200および図8に示す第3実施形態のLED発光装置300と同じ要素には、同じ番号を付し重複する説明は省略する。
(Fifth embodiment)
Next, the LED light-emitting device 500 in 5th Embodiment is demonstrated using FIG.
12 is a cross-sectional view showing the structure of the LED light emitting device 500 of the present invention. The LED light emitting device 100 of the first embodiment shown in FIGS. 1 to 5 and the LED light emitting device 200 of the second embodiment shown in FIG. The same elements as those of the LED light emitting device 300 of the third embodiment shown in FIG.

(第5実施形態の構成説明)
第5実施形態におけるLED発光装置500の構成は、基本的に第1実施形態におけるLED発光装置100の構成と同じであるが、異なるところは、第1実施形態におけるLED発光装置100の波長変換部材10の溶媒20は蛍光体を含有していないが、第5実施形態におけるLED発光装置500の波長変換部材15の溶媒20は、図12に示す様に、蛍光体粒子80を含有していることである。
(Description of configuration of fifth embodiment)
The configuration of the LED light emitting device 500 in the fifth embodiment is basically the same as the configuration of the LED light emitting device 100 in the first embodiment, but the difference is the wavelength conversion member of the LED light emitting device 100 in the first embodiment. Although the solvent 20 of 10 does not contain a phosphor, the solvent 20 of the wavelength conversion member 15 of the LED light emitting device 500 in the fifth embodiment contains phosphor particles 80 as shown in FIG. It is.

この蛍光体粒子80は、数十ミクロンの蛍光体粉末をエポキシ樹脂やアクリル樹脂などでカプセル状に包含し、耐久性ならびに流動性を高めたものであるが、特にカプセル状にしなくても蛍光体粉末のみであっても良い。その他の構成は、第1実施形態のLED発光装置100と同じなので、重複する説明は省略する。   This phosphor particle 80 includes a phosphor powder of several tens of microns in a capsule shape with an epoxy resin or an acrylic resin to improve durability and fluidity. Only powder may be sufficient. Other configurations are the same as those of the LED light emitting device 100 according to the first embodiment, and thus redundant description is omitted.

(第5実施形態の作用効果の説明)
図12に示す様に、第5実施形態におけるLED発光装置500においては、LED素子60の発光する青色光Pbによる黄色の励起光Pyや一部の励起されない青色光Pbに加えて、さらに青色光Pbによって溶媒20の中の蛍光体粒子80が励起され、新たに別の励起光Pxを発光し、この励起光Pxが青色光Pbや黄色の励起光Pyと合成され、異なる演色特性を有する白色光Pwrとなる。すなわち、蛍光体粒子80として赤系統の蛍光体粒子を用いることによって、白色光Pwrは暖色系の演色特性を有する白色光となる。
(Explanation of effects of the fifth embodiment)
As shown in FIG. 12, in the LED light emitting device 500 according to the fifth embodiment, in addition to the yellow excitation light Py and part of the unexcited blue light Pb generated by the blue light Pb emitted from the LED element 60, further blue light is emitted. The phosphor particles 80 in the solvent 20 are excited by Pb, and another excitation light Px is newly emitted. This excitation light Px is synthesized with the blue light Pb and the yellow excitation light Py, and has a different color rendering characteristic. It becomes light Pwr. That is, by using red phosphor particles as the phosphor particles 80, the white light Pwr becomes white light having a warm color rendering property.

そして、LED発光装置500においては、溶媒20の中の蛍光体粒子80によって発光される新たな励起光Px(1点鎖線で示す)は、青色光Pbや黄色の励起光Pyとともに新たな演色効果を生むので、蛍光体粒子80を適宜に選択すれば所望の演色効果を生じさせることが可能となり、LED発光装置500の照明装置としての応用範囲が広がる。   In the LED light emitting device 500, the new excitation light Px (indicated by a one-dot chain line) emitted by the phosphor particles 80 in the solvent 20 is a new color rendering effect together with the blue light Pb and the yellow excitation light Py. Therefore, if the phosphor particles 80 are appropriately selected, a desired color rendering effect can be generated, and the application range of the LED light emitting device 500 as an illumination device is expanded.

(第5実施形態の製造方法)
第5実施形態におけるLED発光装置500の製造方法は、第1実施形態のLED発光装置100と略同じであり、唯一溶媒20を封入する封入工程において、蛍光体粒子80の混入が追加されるのみなので、図示および重複する説明は省略する。
(Manufacturing method of 5th Embodiment)
The manufacturing method of the LED light emitting device 500 in the fifth embodiment is substantially the same as that of the LED light emitting device 100 in the first embodiment, and only the mixing of the phosphor particles 80 is added in the sealing step of sealing the solvent 20 only. Therefore, illustration and overlapping explanation are omitted.

(変形例の説明)
以上、各実施形態について説明したが、図1に示す第1実施形態におけるLED発光装置100と、図10に示す第4実施形態のLED発光装置400とは、容器18内における蛍光体層30の配置を、上下逆の位置に設定したことのみが異なる実施形態であるが、蛍光体層30によって発生した発熱を、溶媒20の流体Fによって放熱させる構成には変化がなく、同一の効果とみなすことができる。また、蛍光体層30の配置は容器18の上下位置に限ることはなく、容器18の中間位置に設けることで、同一の効果を得ることができる。さらに、各実施形態において、蛍光体層30は、LED素子60から発せられて容器18を通過する光の光路をすべて覆うように配置されているが、透光性を有する容器底部181または容器上部182と蛍光体層30で溶媒20を挟持していれば、蛍光体30は容器18を通過する光の光路のすべてではなく一部を覆うように配置してもよい。
(Description of modification)
Each embodiment has been described above. The LED light emitting device 100 in the first embodiment shown in FIG. 1 and the LED light emitting device 400 in the fourth embodiment shown in FIG. This embodiment is different only in that the arrangement is set upside down. However, the configuration in which the heat generated by the phosphor layer 30 is dissipated by the fluid F of the solvent 20 is not changed, and is regarded as the same effect. be able to. Further, the arrangement of the phosphor layer 30 is not limited to the vertical position of the container 18, and the same effect can be obtained by providing the phosphor layer 30 at an intermediate position of the container 18. Further, in each embodiment, the phosphor layer 30 is disposed so as to cover all the optical paths of light emitted from the LED element 60 and passing through the container 18, but the container bottom 181 or the container upper part having translucency. As long as the solvent 20 is sandwiched between 182 and the phosphor layer 30, the phosphor 30 may be disposed so as to cover a part of the light path of the light passing through the container 18 instead of the whole.

また、蛍光体層30を容器18の各部分に配置する構成は、図8に示す第3実施形態のLED発光装置300のように、蛍光体層30の配置に制限がある場合を除き、図6に示す第2実施形態におけるLED発光装置200や、図12に示す第5施形態におけるLED発光装置500にも適用することができる。   Moreover, the structure which arrange | positions the fluorescent substance layer 30 in each part of the container 18 is a figure except the case where arrangement | positioning of the fluorescent substance layer 30 has a restriction | limiting like the LED light-emitting device 300 of 3rd Embodiment shown in FIG. The LED light-emitting device 200 in the second embodiment shown in FIG. 6 and the LED light-emitting device 500 in the fifth embodiment shown in FIG.

なお、以上の説明において青色発光素子とYAG系蛍光体の組み合わせを中心に説明したが、本発明の範囲はこれに限らず、例えば発光素子として近紫外光を発光する窒化物半導体発光素子を用い、赤色蛍光体としてEuを添加したCaAlSiN3:Euと、緑色蛍光体として(BaSr)2SiO4:Euと、青色蛍光体としてSr10(PO4)6Cl2:Eu等々を使用して実現することも可能である。   In the above description, the combination of the blue light emitting element and the YAG phosphor has been mainly described. However, the scope of the present invention is not limited to this, and for example, a nitride semiconductor light emitting element that emits near ultraviolet light is used as the light emitting element. It is also possible to use CaAlSiN3: Eu to which Eu is added as a red phosphor, (BaSr) 2SiO4: Eu as a green phosphor, Sr10 (PO4) 6Cl2: Eu as a blue phosphor, and the like.

以上の説明から明らかな様に、本発明のLED発光装置によれば、LED発光装置における蛍光体層の発熱は速やかに外部へ放散され蛍光体層の波長変換効率の低下を生じないので、LED発光装置としての発光効率に優れた、照明装置としての応用範囲が広いLED発光装置を実現することが出来る。   As is apparent from the above description, according to the LED light-emitting device of the present invention, the heat generation of the phosphor layer in the LED light-emitting device is quickly dissipated to the outside, and the wavelength conversion efficiency of the phosphor layer does not decrease. An LED light-emitting device that is excellent in light-emitting efficiency as a light-emitting device and has a wide application range as a lighting device can be realized.

1、100、200、300、400 LED発光装置
2、60 LED素子
3、30 蛍光体層
5、50 基板
6 放熱層
7、70、80 蛍光体粒子
8 支持部材
9、90 空気層
10、11、12、13、15 波長変換部材
14 光出射面
16 光入射面
18 容器
20、20h、20f 溶媒
40 支持部材
40b 支持部材凸部
40u、40g 支持部材辺
40s、40ss 集合支持部材
41 支持部材開口部
50s 集合基板
180 容器側部
180s 集合容器側部
180sb 容器側部凸部
181 容器底部
181s 集合容器底部
182 容器上部
182s 集合容器上部
183 容器開口部
1, 100, 200, 300, 400 LED light emitting device 2, 60 LED element 3, 30 Phosphor layer 5, 50 Substrate 6 Heat radiation layer 7, 70, 80 Phosphor particle 8 Support member 9, 90 Air layer 10, 11, 12, 13, 15 Wavelength conversion member 14 Light exit surface 16 Light entrance surface 18 Container
20, 20h, 20f Solvent 40 Support member 40b Support member convex part 40u, 40g Support member side 40s, 40ss Collective support member 41 Support member opening 50s Collective substrate 180 Container side part 180s Collecting container side part 180sb Container side convex part 181 Container bottom 181s Collecting container bottom 182 Container upper part 182s Collecting container upper part 183 Container opening

Claims (2)

基板上に実装されたLED素子と、前記基板上に前記LED素子を囲んで形成された支持部材と、該支持部材上に配置された波長変換部材と、該波長変換部材と前記LED素子との間の空気層と、を有するLED発光装置において、
前記波長変換部材は、上部及び底部に透光性部材を有する密閉された容器と、該容器内にあって該容器上部又は該容器下部に固定されている蛍光体層と、該蛍光体層と接するとともに前記容器内に満たされた溶媒と、によって構成され、
該溶媒の熱容量は、前記蛍光体層の熱容量よりも大きく、
前記溶媒は、前記蛍光体層が有する蛍光体粒子と異なる蛍光体粒子を含有し、
該異なる蛍光体粒子は、蛍光体粉末が樹脂によってカプセル状に包含されたものであること、
を特徴とするLED発光装置。
An LED element mounted on a substrate, a support member formed on the substrate so as to surround the LED element, a wavelength conversion member disposed on the support member, and the wavelength conversion member and the LED element In an LED light emitting device having an air layer between,
The wavelength conversion member includes: a sealed container having a translucent member at the top and bottom; a phosphor layer in the container and fixed to the top of the container or the bottom of the container; and the phosphor layer; A solvent that is in contact with and filled in the container,
Heat capacity of the solvent is much larger than the thermal capacity of the phosphor layer,
The solvent contains phosphor particles different from the phosphor particles included in the phosphor layer,
The different phosphor particles are phosphor powders that are encapsulated by a resin ,
LED light emitting device characterized by the above.
前記溶媒は、メチル系シリコーンオイルであって、
前記蛍光体層は、シリコーン樹脂中に蛍光体を混入させたものであること、
を特徴とする請求項1に記載のLED発光装置。
The solvent is a methyl silicone oil,
The phosphor layer is a mixture of a phosphor in a silicone resin;
The LED light-emitting device according to claim 1.
JP2013195062A 2013-09-20 2013-09-20 LED light emitting device Active JP6249699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195062A JP6249699B2 (en) 2013-09-20 2013-09-20 LED light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195062A JP6249699B2 (en) 2013-09-20 2013-09-20 LED light emitting device

Publications (2)

Publication Number Publication Date
JP2015061014A JP2015061014A (en) 2015-03-30
JP6249699B2 true JP6249699B2 (en) 2017-12-20

Family

ID=52818282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195062A Active JP6249699B2 (en) 2013-09-20 2013-09-20 LED light emitting device

Country Status (1)

Country Link
JP (1) JP6249699B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4141974A1 (en) 2016-03-24 2023-03-01 Sony Group Corporation Light emitting device, display apparatus, and illumination apparatus
DE102017109485A1 (en) * 2017-05-03 2018-11-08 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543992A (en) * 1991-08-15 1993-02-23 Unitika Ltd Fibrous ultra-magnetostrictive material and its production
WO2005038935A1 (en) * 2003-10-15 2005-04-28 Nichia Corporation Light-emitting device
JP2005294185A (en) * 2004-04-05 2005-10-20 Nichia Chem Ind Ltd Light emitting device
JP5073972B2 (en) * 2006-06-21 2012-11-14 株式会社野田スクリーン Light emitting diode package
JP5480466B2 (en) * 2007-06-26 2014-04-23 パナソニック株式会社 Light emitting device
US8390193B2 (en) * 2008-12-31 2013-03-05 Intematix Corporation Light emitting device with phosphor wavelength conversion
JP5053418B2 (en) * 2010-05-17 2012-10-17 シャープ株式会社 Light emitting device, lighting device, and vehicle headlamp
JP5549539B2 (en) * 2010-10-28 2014-07-16 日本電気硝子株式会社 Wavelength conversion element, light source including the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015061014A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6969806B2 (en) Light emitting element package and lighting equipment
TWI574437B (en) Light emitting device and method of manufacturing the light emitting device
US9420642B2 (en) Light emitting apparatus and lighting apparatus
JP5895597B2 (en) Light emitting device
JP5895598B2 (en) Light emitting device
JP2007088472A (en) Light emitting diode package and method for manufacture it
JP6587499B2 (en) Light emitting device and manufacturing method thereof
JP6295171B2 (en) Light emitting unit and semiconductor light emitting device
JP6107415B2 (en) Light emitting device
JP2010245481A (en) Light emitting device
JP2005093681A (en) Light-emitting device
JP6755090B2 (en) Light emitting device and manufacturing method of light emitting device
JP5527456B2 (en) Method for manufacturing light emitting device
JP2013038215A (en) Wavelength conversion member
JP2007066939A (en) Semiconductor light emitting device
JP2013074273A (en) Led light emitting device
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
JP2011171504A (en) Light-emitting device
JP6249699B2 (en) LED light emitting device
TW201417355A (en) Light emitting arrangement
TWM450828U (en) LED module with separate heat-dissipation and electrical conduction paths, and related heat dissipation board
JP2012119544A (en) Led light emitting body
JP2013236047A (en) Integral high efficiency multilayer type lighting device
JP2018032693A (en) Light-emitting device, and illumination apparatus
JP2017163002A (en) Light-emitting device and illuminating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171121

R150 Certificate of patent or registration of utility model

Ref document number: 6249699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250