JP6186326B2 - 高圧燃料供給ポンプ - Google Patents

高圧燃料供給ポンプ Download PDF

Info

Publication number
JP6186326B2
JP6186326B2 JP2014182850A JP2014182850A JP6186326B2 JP 6186326 B2 JP6186326 B2 JP 6186326B2 JP 2014182850 A JP2014182850 A JP 2014182850A JP 2014182850 A JP2014182850 A JP 2014182850A JP 6186326 B2 JP6186326 B2 JP 6186326B2
Authority
JP
Japan
Prior art keywords
valve
damper
fuel
pressure
supply pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014182850A
Other languages
English (en)
Other versions
JP2016056720A (ja
Inventor
真悟 田村
真悟 田村
菅波 正幸
正幸 菅波
町村 英紀
英紀 町村
悟史 臼井
悟史 臼井
斉藤 淳治
淳治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014182850A priority Critical patent/JP6186326B2/ja
Publication of JP2016056720A publication Critical patent/JP2016056720A/ja
Application granted granted Critical
Publication of JP6186326B2 publication Critical patent/JP6186326B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、筒内(シリンダ)に直接燃料を噴射する高圧燃料噴射弁を備えた内燃機関の燃料供給システムに用いて好適な高圧燃料供給ポンプに関する。
特許第4686501号公報に記載されている従来の高圧燃料供給ポンプでは、ポンピング動作により発生する燃料脈動を低減するための金属ダイアフラムダンパがダンパカバー内周面にダンパホルダを介して固定されている。
特許第4686501号公報
ダンパカバーにダイアフラムダンパを、例えばダンパホルダを用いて固定する場合、ダイアフラムダンパの上面および下面を燃料が通過できるように構成しないと、ダイアフラムダンパによる燃料圧力脈動低減効果が最大限機能しない。
このため、ダンパカバー内周面に複数の燃料通路を構成しなければならず、このためダンパカバーが大型化し、結果高圧燃料供給ポンプの重量が増加してしまうという課題がある。
さらに、ダイアフラムダンパは、ダンパホルダをダンパカバー内周面に圧入することにより、ダンパカバーに一体化する様に保持されるが、ダンパカバーの内周に形成される燃料通路により圧入接触面の一部が欠如することとなる。その結果、圧入保持力が不十分となり、ダイアフラムダンパの保持が不確実となる可能性があり高圧燃料供給ポンプの運転中に異音の発生原因となる恐れがあった。
ダンパホルダ環状外周部に燃料通路穴を開口し、ダンパカバー内側に環状燃料通路を構成することでダンパカバーを小型化でき、その結果軽量化を達成できる。さらにダンパホルダ環状外周部が全周に渡りダンパカバー内周面と圧入嵌合する範囲を有することによりダイアフラムダンパの固定を確実なものとする。
本発明によれば、ダンパカバーを小型化でき、ダイアフラムダンパを確実にダンパカバーに保持することができる。
本発明が実施された第一実施例の高圧燃料供給ポンプを用いた燃料供給システムの一例である。 本発明が実施された第一実施例の高圧燃料供給ポンプの全体横断面図である。 本発明が実施された第一実施例の高圧燃料供給ポンプの全体縦断面図である。 本発明が実施された第一実施例の高圧燃料供給ポンプのエンジンへの取り付け状態を説明する外観図である。 本発明が実施された第一実施例のリリーフ弁機構を説明する図である。 本発明が実施された第一実施例の電磁駆動型吸入弁機構を説明する図である。 本発明が実施された第二実施例の高圧燃料供給ポンプの全体縦断面図である。 本発明が実施された第三実施例の高圧燃料供給ポンプの全体縦断面図である。 本発明のダンパ部分の分解断面斜視図である。 本発明のダンパ部分の分解斜視図である。
以下図面に示す実施例に基づき本発明を説明する。
図1から図6に基づき第1の実施例を説明する。
ポンプハウジング1には加圧室11を形成するためのカップ型の凹所11Aが設けられている。凹所11A(加圧室11)の開口部にはシリンダ6が嵌合されている。ホルダ7をねじ部1bにて螺合することによってシリンダ6の端部がホルダ7によってポンプハウジング1の加圧室11の開口部に設けた段付部16Aに押し付けられる。
シリンダ6とポンプハウジング1は段付部16Aで圧接され、金属接触による燃料シール部を形成する。シリンダ6には中心にプランジャ2の貫通孔(摺動孔とも呼ぶ)が設けられている。プランジャ2はシリンダ6の貫通孔に往復動可能に遊嵌されている。ホルダ7の外周には加圧室11側の位置にシールリング62が装着されている。シールリング62はホルダ7の外周とポンプハウジング1の凹所11Aの内周壁との間を燃料の漏れないようにシール部を形成する。
ホルダ7の反シリンダ6側には内側筒状部71と外側筒状部72の二重の筒状部が形成されている。ホルダ7の内側筒状部71にはプランジャシール装置13が保持されており、プランジャシール装置13はホルダ7の内周とプランジャ2の周面との間に燃料溜り部67を形成している。燃料溜り部67にはプランジャ2とシリンダ6の摺動面から漏れる燃料が捕獲される。
プランジャシール装置13は後述するカム5側から燃料溜り67に潤滑オイルが侵入することも防止している。
ホルダ7の反シリンダ6側に形成された外側筒状部72はエンジンブロック100に形成された取付け孔100Aに挿入される。ポンプハウジング1の環状突起11Bの外周にはシールリング61が取付けられている。シールリング61は取付け孔100Aから潤滑オイルが大気中に漏れるのを防止し、また大気から水が浸入するのを防止する。
高圧燃料供給ポンプのエンジンへの固定は、ハウジングに一体成形されたフランジ41、ボルト42により行われる。ボルト42はエンジン側に形成されたそれぞれのねじに螺合され、フランジ41をエンジンに押し付けることで、高圧燃料供給ポンプをエンジンに固定する。
ポンプハウジング1の下端面101Aはエンジンブロックの取付け孔100Aの周囲の平面100Bに当接している。ポンプハウジング1の下端面101Aの中心部には環状突起11Bが形成されている。
プランジャ2はシリンダ6に滑合する大径部2aの直径よりもシリンダから反加圧室側に延びる小径部2bの直径の方が小さく形成されている。その結果プランジャシール装置13の外径を小さくでき、この部分でホルダ7に二重の筒状部71,72を形成するスペースが確保できる。直径が細くなっているプランジャ2の小径部2bの先端部にはリテーナ15がリテーナホルダ16により固定されている。ホルダ7とリテーナ15との間にはばね4が設けられている。
ばね4の一端はホルダ7の内周側筒状部71の周りで外周筒状部72の内側に装着されている。ばね4の他端は有底筒状の金属で構成されるリテーナ15の内側に配置される。リテーナ15の筒状部31Aは取付け穴100Aの内周部に遊嵌されている。
タペット3の底部31Bの内表面にはプランジャ2の下端部21Aが当接している。タペット3の底部31Bの中央部には回転ローラ3Aが取付けられている。ローラ3Aはカム5の表面にばね4の力を受けて押し付けられている。その結果カム5が回転するとカム5のプロフィールに沿ってタペット3とプランジャ2が上下に往復動する。プランジャ2が往復動するとプランジャ2の加圧室側端部2Bは加圧室11に入ったり出たりする。プランジャ2の加圧室側端部2Bが加圧室11に進入するとき加圧室11内の燃料が高圧に加圧されて高圧通路に吐出される。またプランジャ2の加圧室側端部2Bが加圧室11から後退するとき加圧室11内に吸入通路30aから燃料が吸入される。カム5はエンジンのクランクシャフトあるいはオーバヘッドカムシャフトによって回転される。
カム5は図3に示す3葉カム(カム山が3つ)以外にも、2葉カム、4葉カムでも良い。
ポンプハウジング1にはダンパカバー14が固定されており、ダンパカバー14とポンプハウジング1との間に区画形成される低圧室10c,10dには、燃料圧力脈動を低減するための圧力脈動低減機構9が収容されている。
圧力脈動低減機構9はその上下両面にはそれぞれ低圧室10c,10dが設けられている。
ダンパカバー14は圧力脈動低減機構9を収容する低圧室10c,10dを形成する機能を有する。
図2に示す吐出口12は、ポンプハウジング1にねじ止若しくは溶接によって固定されたジョイント103で形成されている。
高圧燃料供給ポンプではジョイント101の低圧燃料口10a−低圧燃料通路10e−低圧室10d−吸入通路30a−加圧室11−吐出口12に至る燃料通路構成となっている。また、低圧室10d−低圧燃料通路10e−環状低圧通路10h−ホルダ7に設けられた溝7a−燃料溜り部67(環状低圧室10f)は連通されている。この結果、プランジャ2が往復動すると燃料溜り部67(環状低圧室10f)の容積が増減して、低圧室10dと燃料溜り部67(環状低圧室10f)との間で燃料が行き来する。これによりプランジャと2とシリンダ6の摺動熱で暖められた燃料溜り部67(環状低圧室10f)の燃料の熱は、低圧室10dの燃料と熱交換され、冷却される。
電磁駆動型吸入弁機構300は電磁的に駆動されるプランジャロッド301を備える。プランジャロッド301の先端にはバルブ303が設けられ、電磁駆動型吸入弁機構300の端部に設けられたバルブハウジング314に形成されたバルブシート314Sと対面している。
プランジャロッド301の他端には、プランジャロッド付勢ばね302が設けられており、バルブ303がバルブシート314Sから離れる方向にプランジャロッドを付勢している。バルブハウジング314の先端内周部にはバルブストッパS0が固定されている。バルブ303はバルブシート314SとバルブストッパS0との間に往復動可能に保持されている。バルブ303とバルブストッパS0との間にはバルブ付勢ばねS4が配置されており、バルブ303はバルブ付勢ばねS4によってバルブストッパS0から離れる方向に付勢されている。
バルブ303とプランジャロッド301の先端とは互いに反対方向にそれぞれのばねで付勢されているが、プランジャロッド付勢ばね302の方が強いばねで構成してあるので、プランジャロッド301がバルブ付勢ばねS4の付勢力に抗してバルブ303がバルブシートから離れる方向に押し、結果的にバルブ303をバルブストッパS0に押し付けている。
このため、プランジャロッド301は、電磁駆動型吸入弁機構300がOFF時(電磁コイル304に通電されていないとき)には、プランジャロッド付勢ばね302によってプランジャロッド301を介して、バルブ303を開弁する方向に付勢している。従って電磁駆動型吸入弁機構300がOFF時には、プランジャロッド301、バルブ303は開弁位置に維持される。
加圧室11の出口には吐出弁ユニット8が設けられている(図2参照)。吐出弁ユニット8は吐出弁シート8a,吐出弁シート8aと接離する吐出弁8b,吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c,吐出弁8bと吐出弁シート8aとを収容する吐出弁ホルダ8dから構成されている。
なお、吐出弁ホルダ8dの内部には、吐出弁8bのストロークを規制するスットパーを形成する段付部8fが設けられている。
加圧室11と吐出口12に燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、吐出口12の燃料圧力よりも大きくなった時に始めて、吐出弁8bは吐出弁ばね8cに逆らって開弁し、加圧室11内の燃料は吐出口12を経て高圧容積室23としてのコモンレールへと高圧吐出される。吐出弁8bは開弁した際、吐出弁ストッパ8fと接触し、ストロークが制限される。したがって、吐出弁8bのストロークは吐出弁ストッパ8dによって適切に決定される。これによりストロークが大きすぎて、吐出弁8bの閉じ遅れにより、吐出口12へ高圧吐出された燃料が、再び加圧室11内に逆流してしまうのを防止でき、高圧ポンプの効率低下が抑制できる。また、吐出弁8bが開弁および閉弁運動を繰り返す時に、吐出弁8bがストローク方向にのみ運動するように、吐出弁ホルダ8dの内周面にてガイドしている。以上のようにすることで、吐出弁ユニット8は燃料の流通方向を制限する逆止弁となる。
これらの構成により、加圧室11は、電磁駆動型吸入弁機構300,吐出弁ユニット8,プランジャ2,シリンダ6,ポンプハウジング1にて構成される。
燃料は燃料タンク20から低圧燃料供給ポンプ21にて、吸入配管28を通してポンプの低圧燃料口10aに導かれる。低圧燃料供給ポンプ21は、エンジンコントロールユニット27(以後、ECUと称す)からの信号によってポンプハウジング1への吸入燃料を一定の圧力に調圧する。
経路1を通して加圧室で加圧された高圧燃料が吐出口12から高圧燃料容積室23へ供給される。高圧燃料容積室23には、高圧燃料噴射弁24,圧力センサ26が装着されている。高圧燃料噴射弁24は、内燃機関の気筒数に合わせて装着されており、ECU27の信号に基づいて内燃機関の燃焼室に燃料を噴射する。
電磁駆動型吸入弁機構300は環状に形成されたコイル304の内周側に、電磁駆動機構部のボディを兼ねた有底のカップ状のヨーク305を備える。ヨーク305は内周部に固定コア306、とアンカー307がプランジャロッド付勢ばね302を挟んで収納されている。図6(A)に詳細に示されるように固定コア306はヨーク305の有底部に圧入によって強固に固定されている。アンカー307はプランジャロッド301の反バルブ側端部に圧入により固定され、固定コア306との間に磁気空隙GPを介して対面している。コイル304はカップ状のサイドヨーク304Yの中に収納されており、サイドヨーク304Yの開放端部の内周面をヨーク305の環状フランジ部305Fの外周部で圧入嵌合することで両者が固定されている。ヨーク305とサイドヨーク304Y、固定コア306、アンカー307によって磁気空隙GPを横切る閉磁路CMPがコイル304の周囲に形成されている。ヨーク305の磁気空隙GPの周囲に対面する部分は肉厚が薄く形成されており、磁気絞り305Sを形成している。これにより、ヨーク305を通って漏洩する磁束が少なくなり、磁気空隙GPを通る磁束を増加することができる。
図6(A)に示すようにヨーク305の開放側端部筒状部305Gの内周部には軸受部314Bを有するバルブハウジング314が圧入により固定されており、プランジャロッド301はこの軸受314Bを貫通してバルブハウジング314の反軸受314B側端部内周部に設けられたバルブ303のところまで延びている。
プランジャロッド301の先端部とバルブストッパS0の間にはバルブ303がバルブ付勢ばねS4を挟んで往復動可能に装着されている。バルブ303は一側の面がバルブハウジング314に形成されたバルブシート314Sに対面し、他側の面がバルブストッパS0に対面する環状面部303Rを備える。環状面部303Rの中心部にはプランジャロッド301の先端まで延びる有底の筒状部を有し、有底の筒状部は底部平面部303Fと円筒部303Hとから構成されている。円筒部303Hはバルブシート314Sの内側においてバルブハウジング314に形成される開口部314Pを通って低圧燃料口10a内まで突出している。
プランジャロッド301の先端は低圧燃料口10aでバルブ303のプランジャロッド側端部の平面部303Fの表面に当接している。バルブハウジング314の軸受314Bと開口部314Pとの間の筒状部には周方向に4つの燃料通孔314Qが等間隔に設けられている。この4つの燃料通孔314Qはバルブハウジング314の内外の低圧燃料口10aを連通している。円筒部303Hの外周面と開口部314Pの周面との間にはバルブシート314Sと環状面部303Rとの間の環状燃料通路10Sに繋がる筒状の燃料導入通路10pが形成されている。
バルブストッパS0は環状面部S3の中心部にバルブ303の有底筒状部側に突出する円筒面部SGを備えた突出部STを有し、当該円筒面部SGがバルブ303の軸方向へのストロークをガイドするガイド部として機能する。
バルブ付勢ばねS4はバルブストッパS0の突出部STのバルブ側端面SHとバルブ303の有底筒状部の底面との間に保持されている。
この実施例ではバルブ303が閉弁した瞬間にはプランジャロッド301は電磁力で図面右方向に吸引されるのでその先端はバルブ303の平面部303Fから離れ両者間に隙間が形成される。このとき低圧燃料口10a内の圧力はピストンプランジャ2が下死点から上昇中のため環状低圧室10fの容積が増加した分だけダンパ室10dおよび低圧燃料口10aから燃料を補充することになるので低圧燃料口10a内の圧力はその分だけ管状低圧室の容積が減少していたときより低くなる。この低くなった圧力はバルブ303の平面部303Fのプランジャ301の先端が接触していた面積部分にも作用するので加圧室側と低圧室側の圧力差が大きくなり、バルブ303の閉弁動作はより素早くなる。
≪燃料吸入状態≫
ピストンプランジャ2が上死点位置から下死点に下降する吸入工程では、コイル304は非通電状態である。プランジャロッド付勢ばね302はバルブ303に向かってプランジャロッド301を付勢する。一方バルブ付勢ばねS4はプランジャロッド301に向かってバルブ303を付勢する。プランジャロッド付勢ばね302の付勢力がバルブ付勢ばねS4の付勢力より大きく設定されているので両ばねの付勢力はこのときバルブ303を開弁方向に付勢する。また低圧室10d内に位置するバルブ303の平面部303Fに代表されるバルブ303の外表面に作用する燃料の静圧と加圧室内の燃料の圧力との圧力差によってバルブ303は開弁方向の力を受ける。さらに燃料導入通路10pを通って矢印R4に沿って加圧室11に流入する燃料流とバルブ303の円筒部303Hの周面との間に発生する流体摩擦力はバルブ303を開弁方向に付勢する。さらに、バルブシート314Sとバルブ303の環状面部303Rとの間に形成される環状燃料通路10Sを通る燃料流の動圧はバルブ303の環状面部303Rに作用してバルブ303を開弁方向に付勢する。重量数ミリグラムのバルブ303はこれらの付勢力によって、ピストンプランジャ2が下降し始めると素早く開弁し、ストッパSTに衝突するまでストロークする。
このときプランジャロッド301およびアンカー307の周囲は滞留した燃料で満たされていること、および軸受314Bとの摩擦力が作用することによって、プランジャロッド301およびアンカー307はバルブ303の開弁速度よりわずかに図面左方向へのストロークが遅れる。その結果プランジャロッド301の先端面とバルブ303の平面部303Fとの間にわずかな隙間ができる。このためプランジャロッド301から付与される開弁力が一瞬低下する。しかし、この隙間には低圧室10d内の燃料の圧力が遅れなく作用するので、プランジャロッド301(プランジャロッド付勢ばね302)から付与される開弁力の低下をこのバルブ303を開弁する方向の流体力が補う。かくして、バルブ303の開弁時にはバルブ303の低圧室10d側の全表面に流体の静圧および動圧が作用するので、開弁速度が速くなる。
バルブ303の開弁時は、バルブ303の円筒部303Hの内周面をバルブストッパS0の突出部STの円筒面SGによって形成されるバルブガイドでガイドされ、バルブ303は径方向に変位することなくスムースにストロークする。バルブガイドを形成する円筒面SGはバルブシート314が配置された面を挟んでその上流側および下流側に形成されており、バルブ303のストロークを十分に支持できるだけでなく、バルブ303の内周側のデッドスペースを有効に利用できるので、吸入弁部INVの軸方向の寸法を短くできる。
また、バルブ付勢ばねS4はバルブストッパS0の端面SHとバルブ303の平面部303FのバルブストッパS0側底面部との間に設置されているので、開口部314Pとバルブの円筒部303Hとの間に形成される燃料導入通路10pの通路面積を十分確保しながら開口部314Pの内側にバルブ303とバルブ付勢ばねS4を配置できる。また燃料導入通路10pを形成する開口部314Pの内側に位置するバルブ303の内周側のデッドスペースを有効に利用してバルブ付勢ばねS4を配置できるので、吸入弁部INVの軸方向の寸法を短くできる。
バルブ303はその中心部にバルブガイド(SG)を有し、バルブガイド(SG)のすぐ外周でバルブストッパS0の環状面部S3の受け面S2に接触する環状突起部303Sを有する。さらにその径方向外側の位置にバルブシート314Sが形成されており、環状空隙SGPはさらにその半径方向外側まで形成されている。また、環状空隙SGPの内側でバルブシート314Sの内側にストッパS0の受け面S2に接触する環状突起部303Sを設けたので、後述する閉弁動作時に環状空隙SGPへ加圧室側の流体圧力を速やかに作用させてバルブ303をバルブシート314Sに押し付ける際の閉弁速度を上げることができる。
≪燃料スピル状態≫
ピストンプランジャ2が下死点位置から転じて上死点方向に上昇し始めるが、コイル304は非通電状態であるので、一端加圧室11内に吸入された燃料の一部が環状燃料通路10Sおよび燃料導入通路10Pを通して低圧燃料口10aにスピル(溢流)される。環状燃料通路10Sにおける燃料の流れが矢印R4方向からR5方向へ切り替わる際、一瞬燃料の流れが止り、環状空隙SGPの圧力が上がるがこのときはプランジャ付勢ばね302がバルブ303をストッパS0に押し付ける。むしろ、バルブシート314Sの環状燃料通路10Sに流れ込む燃料の動圧によってバルブ303をストッパS0側に押し付ける流体力と環状空隙SGPの外周を流れる燃料流の吸出し効果でバルブ303とストッパS0とを引き付けるように作用する流体力によってバルブ303はしっかりとストッパS0に押し付けられる。
燃料流がR5方向に切り替わった瞬間から加圧室11内の燃料は、環状燃料通路10Sおよび燃料導入通路10Pの順で低圧燃料口10aに流れる。ここで、燃料通路10Sの燃料流路断面積は燃料導入通路10Pの燃料流路断面積よりも小さく設定されている。すなわち、環状燃料通路10Sで最も燃料流路断面積が小さく設定されている。そのため、環状燃料通路10Sで圧力損失が発生し加圧室11内の圧力が上昇し始めるが、その流体圧力はストッパS0の加圧室側の環状面で受けて、バルブ303には作用しにくい。
≪燃料吐出状態≫
前述の燃料スピル状態においてエンジン制御装置ECUからの指令に基づきコイル304に通電されると、閉磁路CMPが図6(A)に示すごとく生起される。閉磁路CMPが形成されると磁気空隙GPにおいて、固定コア306とアンカー307の対抗面間に磁気吸引力が発生する。この磁気吸引力はプランジャロッド付勢ばね302の付勢力に打勝ってアンカー307とこれに固定されているプランジャロッド301を固定コア305に引き付ける。このとき、磁気空隙GP、プランジャロッド付勢ばね302の収納室306K内の燃料は燃料通路301Kおよびアンカー307の周囲を通して燃料通路314Kから低圧通路に排出される。これにより、アンカー307とプランジャロッド301はスムースに固定コア306側に変位する。アンカー307が固定コア306に接触すると、アンカー307とプランジャロッド301は運動を停止する。
プランジャロッド301が固定コア306に引き寄せられて、バルブ303をストッパS0側に押し付けていた付勢力がなくなるので、バルブ303はバルブ付勢ばねS4の付勢力によってストッパS0から離れる方向に付勢されバルブ303は閉弁運動を開始する。このとき、環状突起部303Sの外周側に位置する環状空隙SGP内の圧力は、加圧室11内の圧力上昇に伴って低圧燃料口10a側の圧力よりも高くなり、かくしてバルブ303の閉弁運動を助ける。バルブ303がシート314Sに接触し、閉弁状態となる。ピストンプランジャ2が引き続いて上昇するので加圧室11の容積が減少し、加圧室11内の圧力が上昇すると吐出弁ユニット8は高圧燃料を吐出する。
バルブ303がシート314Sに接触し完全な閉弁状態になった瞬間はプランジャロッド301が固定コア306側に完全に引き寄せられてプランジャロッド301の先端がバルブ303の低圧燃料口10a側端面から離れる。これにより、バルブ303の閉弁動作時にバルブ303がプランジャロッド301から反閉弁方向へ力を受けることがないので、閉弁動作が速くなる。また、バルブ303の閉弁動作時にバルブ303がプランジャロッド301の衝突することがなく打撃音が発生しないので静粛なバルブ機構が得られる。
バルブ303が完全に閉弁し加圧室11内の圧力が上昇して高圧吐出が開始された後、コイル304への通電は断たれる。固定コア306とアンカー307の対抗面間に発生していた磁気吸引力が消滅し、アンカー307とプランジャロッド301はプランジャロッド付勢ばね302の付勢力によってバルブ303側へ移動を開始し、プランジャロッド301がバルブ303の底部平面部303Fと接触すると運動を止める。既に加圧室11内の圧力による閉弁力がプランジャロッド付勢ばね302の作用力よりも十分大きくなっているので、プランジャロッド301がバルブ303の低圧口10a側表面を押してもバルブ303は開弁することはない。この状態はピストンプランジャ2が上死点から下死点方向へ転じた瞬間にプランジャロッド301がバルブ303を開弁方向へ付勢する準備動作となる。プランジャロッド301とバルブ303の側端面との隙間は数十〜数百ミクロンオーダのわずかな空隙であることと、加圧室11内の圧力でバルブ303が付勢されてバルブ303が剛体となっていることにより、プランジャロッド301のバルブ303へ衝突するときの衝突音はその周波数が可聴周波数より高くまたのエネルギーも小さいので騒音にはならない。
エンジン制御装置ECUからの指令に基づきコイル304に通電するタイミングを制御する事により、高圧燃料される燃料を調節する事ができる。ピストンプランジャ2が下死点から上死点へと上昇運動に転じた直後にバルブ303が閉弁するよう通電タイミングを制御すれば、スピルされる燃料が少なく高圧吐出される燃料が多くなる。ピストンプランジャ2が上死点から下死点へと下降運動に転じた直前にバルブ303が閉弁するよう通電タイミングを制御すれば、スピルされる燃料が多く高圧吐出される燃料が少なくなる。
ダンパカバー14は有底の筒状に形成されており、ポンプハウジング1に形成された筒状の凸壁の内周にねじ止めで固定されている。低圧通路としての吸入通路は吸入ジョイント10a、ダンパ室10b、10c環状低圧室10fとダンパ室10bとを接続する縦通路10eおよび吸入ジョイント10aと縦通路10eとを接続する接続通路10dとから構成されている。ダンパ室10b、10cには金属ダイアフラムダンパ9が収納されており、プランジャ2の往復運動に伴ってポンプ内で発生する圧力脈動が燃料吸入口10a波及するのを低減させている。
金属ダイアフラムダンパ9は2組の金属ダイアフラム9a、9bからなり、周囲が溶接でシール固定され、内部に不活性ガス(アルゴンやヘリウム)が注入されている。
金属ダイアフラムダンパ9は圧力脈動の低減量に応じ、設置個数を増減させて使用する。複数の金属ダイアフラムダンパ9を使用する場合は、互いに特定の間隔を保つように周縁部に支持部材を配置する。複数配置された金属ダイアフラムダンパ9はそれぞれ同じ圧力が作用するように均圧通路を形成すると良い。
ポンプハウジング1の内周に設けたねじ部1cにダンパカバー14の外周に刻設したねじ14fを螺合し、ダンパカバー14とポンプハウジング1を圧接させることでダンパカバー14をポンプハウジング1に固定している。
ダンパカバー14の外周に形成した環状の凹所にはシールリング320が装着され、ダンパカバー外側円筒面シール部14bが形成されている。シールリング320はダンパカバー14の外周壁とポンプハウジング1の内周面1fとの間を燃料が漏れないようにシールし、ダンパ室10b、10cが密閉される。これにより、吸入ジョイント10aから低圧吸入通路10dまでの吸入通路内にダンパ室が10b、10c画成され、圧力脈動低減機構が形成される。図8に示すように、吸入ジョイント10aはダンパカバーの底の部分(頂上壁)に一体形成することもできる。もちろんべったいに形成して、ダンパカバー14に吸入ジョイント10aを溶接等で接合してもよい。
本実施例では、ダンパカバー14とダンパホルダ321の燃料通路構造について、図3、図9及び図10を用いてさらに詳しく述べる。
金属ダイアフラムダンパ9はダンパカバー14のとダンパホルダ321の間に隙間なく設置することで保持、固定されている。
ダンパホルダ321はダンパカバー14内周面に圧入され、ダンパカバー内側円筒面圧入部14aを構成している。
ダンパホルダ321の環状外周部には1つまたは複数の燃料通路穴321aが開口しており、吸入通路10d内の低圧燃料をダンパカバー14の内側に設けられた環状燃料通路14cへ送ることができる。
ダンパカバー14の環状燃料通路14cから金属ダイアフラムダンパ9上面の燃料通路10cへは1つまたは複数の燃料通路穴14dが縦に開口しており、吸入通路10d内の低圧燃料を燃料通路10cへ送ることができる。ダンパカバーダンパ押さえ弧状突起14e
これらの構造を採用することにより、ダンパカバー14外周径を小さくしても属ダイアフラムダンパ9上面部に低圧燃料を供給する燃料通路を構成できる。また、ダンパカバー14内壁面とダンパホルダ321外壁面を全周に渡り圧入嵌合することで、金属ダイアフラムダンパ9の固定に関するロバスト性を向上させた構造を提供することができる。
上記の吸入工程,戻し工程、および吐出工程の3つの工程中、吸入通路30a(低圧室10d)には常に燃料が出入りするため、燃料圧力に周期的な脈動が生じる。この圧力脈動は圧力脈動低減機構9にて吸収低減され、低圧燃料供給ポンプ21からポンプハウジング1へ至る吸入配管28への圧力脈動の伝播を遮断し、吸入配管28の破損等を防止すると同時に、安定した燃料圧力で加圧室11に燃料を供給することを可能としている。低圧室10cは低圧室10dと接続しているので、圧力脈動低減機構9の両面に燃料は行き渡り効果的に燃料の圧力脈動を抑える。
シリンダ6の下端とプランジャシール装置13の間には燃料溜り67としての環状低圧室10fが存在し、環状低圧室10fは低圧室10d−低圧燃料通路10e−環状低圧通路10h−ホルダ7に設けられた溝7を解して低圧室10dと接続されている。プランジャ2がシリンダ6内で摺動運動を繰り返すと、大径部2aと小径部2bとの結合部は環状低圧室10f内で上下運動を繰り返し、環状低圧室10fは容積変化する。吸入工程では環状低圧室10fの容積は減少し、環状低圧室10f内の燃料は低圧通路11eを通って低圧室10dへと流れる。戻し工程、および吐出工程では環状低圧室10fの容積は増加し、低圧室10d内の燃料は低圧通路11eを通って環状低圧室10fへと流れる。
低圧室10dに着目すると、吸入工程では低圧室10dから加圧室11に燃料は流入する一方、環状低圧室10fから低圧室10dに燃料が流入する。戻し工程では、加圧室11から低圧室10dに燃料は流入する一方、低圧室10dから環状低圧室10fに燃料が流入する。吐出工程では、環状低圧室10fから低圧室10dに燃料は流入する。このように、環状低圧室10fは低圧室10dへの燃料の出入りを助ける作用があるので、低圧
室10dで発生する燃料の圧力脈動を低減する効果がある。
図2に示すように、吐出弁ユニット8の上流と吐出弁ユニット8の下流の低圧室10dは、リリーフ通路211−リリーフ通路210−リリーフ通路212−図示しない低圧室10dの経路で接続されている。リリーフ通路210はリリーフ通路211とは異なるリリーフ通路開口部210cを有している。燃料の流れを吐出弁ユニット8の下流から低圧室10dへの一方向のみに制限するため、リリーフ弁機構200は、開口部210cからリリーフ通路210に挿入され、リリーフ通路210内周部とリリーフ弁ハウジング圧入部206aとで圧入される。
エンジンに燃料を供給する高圧燃料噴射装置(23,24,30)の故障や、高圧燃料供給ポンプなどを制御するECU27等の故障により発生した高圧燃料容積室23内の異常高圧が、リリーフ弁202のセット開弁圧以上になると、燃料は吐出弁8bの下流側からリリーフ流路211を通り、リリーフ弁202へと達する。そして、リリーフ弁202を通過した燃料は、リリーフばねアジャスタ205に空けられた逃がし通路208から、リリーフ通路212を通過し、低圧部である低圧室10dへ開放される。これにより、高圧燃料容積室23等の高圧部の保護がなされる。
以下、リリーフ弁機構200について説明する。リリーフ弁202は、押し付け力を発生するリリーフばね204によりリリーフ弁シート201に押し付けられており、吸入室内とリリーフ通路内との間の圧力差が規定の圧力以上になるとリリーフ弁202がリリーフ弁シート201から離れ、開弁するようにセット開弁圧を設定している。ここで、リリーフ弁202が開き始める時の圧力をセット開弁圧と定義する。
リリーフ弁機構200は、リリーフ弁シート201と一体であるリリーフ弁ハウジング206,リリーフ弁202,リリーフ押さえ203,リリーフばね204,リリーフばねアジャスタ205からなる。リリーフ弁機構200は、サブアセンブリとしてポンプハウジング1の外部で組み立て、その後にポンプハウジング1に圧入によって固定する。圧入部位はリリーフ通路210の内周部とリリーフ弁ハウジング圧入部206aである。
まず、リリーフ弁ハウジング206に、リリーフ弁202,リリーフ押さえ203,リリーフばね204の順に順次挿入し、リリーフばねアジャスタ205をリリーフ弁ハウジング206に圧入固定する。このリリーフばねアジャスタ205の固定位置によって、リリーフばね204のセット荷重を決定する。リリーフ弁202の開弁圧力は、このリリーフばね204のセット荷重によって決定される。
こうして組立てられ、ユニット化されたリリーフ弁機構200は、リリーフ弁機構200を挿入するためにポンプハウジング1に設けられたリリーフ通路210に挿入される。このとき、リリーフ弁機構200は出口側が段部210bと接触するまで挿入され、リリーフ通路210にリリーフ弁ハウジング206aが圧入されることによって固定される。このとき、リリーフ弁機構200は、リリーフ弁機構200の出口側から挿入される。また、圧入部は、吐出弁ユニット8の下流の高圧燃料がリリーフ通路212へ流れることを防止する機能を有する。開口部210cには、シール部材207が開口部210cにねじ部213により固定され、シール部材のシート面207aとリリーフ通路開口部のシート面210aを、ねじの推力によって圧着させ、高圧燃料を外部に対してシールする。
リリーフ弁機構は上記で述べたように、リリーフ通路210内に設けられており、リリーフ弁機構200の入口側は吐出弁ユニット8の下流側となるため高圧であり、出口側は吐出弁ユニット8の上流側となるため低圧となる。そのため、リリーフ弁機構200の入口側の高圧と出口側の低圧との差圧により、リリーフ弁機構200の入口側から出口側に向かって力が生じる。リリーフ弁機構200の出口側が挿入方向と同一方向であるため、リリーフ弁機構200はリリーフ通路210の段部210bと接触しており、段部210bがストッパの役割を果たすので抜けることが無いのでリリーフ弁機構200がシール部材207に接触し、シール部材シート面207aとリリーフ通路開口部のシート面210aの接触面圧を低下させる恐れは無く、シール部材207によるシール性の信頼性を高めることができる。
プランジャ2とシリンダ6は内燃機関が運転されている場合は摺動運動を繰り返す。摺動部であるプランジャ2の大径部2aの外形とシリンダ6の内径のクリアランス(隙間)は、例として8〜10μm程度に設定されている。通常はこのクリアランスは薄い膜状となった燃料によって満たされており、これによってスムーズな摺動を確保している。この燃料の薄膜が何らかの原因で途切れてしまうとプランジャ2とシリンダ6は摺動運動中にロックを起こして固着してしまので、燃料を高圧に加圧する事ができなくなってしまうという問題がある。高圧燃料供給ポンプが燃料を高圧に加圧して吐出している状態では、加圧室11内の燃料の圧力が高くなって、極微小の高圧燃料がクリアランスを通して環状低圧室10fへと圧送され易いので、燃料の薄膜切れは起こりにくい。また、プランジャ2とシリンダ6の摺動運動によって発生する熱も、加圧された高圧燃料によって高圧燃料供給ポンプの外部へと持ち去られるのでクリアランス中の燃料の薄膜が温度上昇によって蒸気化してしまうことで発生する薄膜切れも生じない。
本実施例では、ダンパカバー14とポンプハウジング1をねじで螺合させることで接合する構造としたが、接合構造は圧入嵌合、溶接、またはその他の接合方法を用いても良い。
本実施例では、ダンパカバー14とポンプハウジング1の密閉空間をシールリング320を用いてシールする構造としたが、シール構造はガスケットシール、圧入嵌合シール、金属接触シール、またはその他のシール方法を用いても良い。
図7により第2実施例について説明する。
実施例1との違いは、金属ダイアフラムダンパ9を複数個設置させて使用していることである。金属ダイアフラムダンパ9は圧力脈動の低減量に応じ、設置個数を増減させことができ、複数の金属ダイアフラムダンパ9を使用する場合は、互いに特定の間隔を保つように周縁部に支持部材322を配置する。これにより圧力脈動低減効果を大きくすることができる。
1 ポンプハウジング
1c ポンプハウジングねじ部
1f ポンプハウジングシール部
2 プランジャ
2a 大径部
2b 小径部
3 タペット
5 カム
6 シリンダ
7 ホルダ
8 吐出弁機構
9 金属ダイアフラムダンパ
9a 金属ダイアフラムダンパ上部部品
9b 金属ダイアフラムダンパ下部部品
10a 低圧燃料口
10c,10d 低圧室
10e 低圧燃料通路
10f 環状低圧室
11 加圧室
12 吐出口
13 プランジャシール装置
14 ダンパカバー
14a ダンパカバー内側円筒面圧入部
14b ダンパカバー外側円筒面シール部
14c ダンパカバー内側円筒面環状燃料通路
14d ダンパカバー内側縦穴燃料通路
14e ダンパカバーダンパ押さえ弧状突起
20 燃料タンク
21 低圧燃料供給ポンプ
23 高圧燃料容積室
24 高圧燃料噴射弁
26 センサ
27 エンジンコントロールユニット(ECU)
200 リリーフ弁機構
300 電磁駆動型吸入弁機構
320 シールリング
321 ダンパホルダ
321a ダンパホルダ燃料通路穴
322 ダンパ支持部材
323 吸入口

Claims (5)

  1. 加圧室へ燃料を吸入する吸入流路と、
    前記加圧室から前記燃料を吐出する吐出流路とを有し、
    前記加圧室内を往復動するプランジャによって燃料の吸入・吐出を行ない、前記吸入流路にプランジャのポンピング動作により発生する脈動を打ち消すためのダイアフラムダンパを有する高圧燃料供給ポンプにおいて、
    吸入通路内にポンプハウジングとダンパカバーにより構成される低圧室を有し、
    前記ダンパカバー内に前記ダイアフラムダンパが環状外周部を有するダンパホルダを介し固定され、
    前記ダンパカバーは、前記ダイアフラムダンパ両表面が連通可能な様に前記ダンパホルダ環状外周部とダンパカバー内側のそれぞれに連通穴が構成され、
    前記ダンパカバー内側に設けられた連通穴は、前記ダンパホルダと前記ダイアフラムダンパにより形成される空間と、前記ダンパカバーと前記ダイアフラムダンパにより形成される空間とを連通する縦穴であり、
    前記ダンパカバーには、前記縦穴に隣接して前記ダイアフラムダンパを押える突起を有することを特徴とする高圧燃料供給ポンプ。
  2. 請求項1に記載の高圧燃料供給ポンプにおいて、
    前記ポンプハウジングと前記ダンパカバーがねじ嵌合にて固定されることを特徴とする高圧燃料供給ポンプ。
  3. 請求項1に記載の高圧燃料供給ポンプにおいて、
    前記ポンプハウジングと前記ダンパカバーが溶接接合にて固定されることを特徴とする高圧燃料供給ポンプ。
  4. 請求項1に記載の高圧燃料供給ポンプにおいて、
    前記ダンパホルダ環状外周部が全周に渡り前記ダンパカバー内周面と圧入嵌合する範囲を有することを特徴とする高圧燃料供給ポンプ。
  5. 請求項1乃至のいずれかに記載の高圧燃料供給ポンプにおいて、
    前記ダンパカバーに吸入口を有することを特徴とする高圧燃料供給ポンプ。
JP2014182850A 2014-09-09 2014-09-09 高圧燃料供給ポンプ Active JP6186326B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014182850A JP6186326B2 (ja) 2014-09-09 2014-09-09 高圧燃料供給ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014182850A JP6186326B2 (ja) 2014-09-09 2014-09-09 高圧燃料供給ポンプ

Publications (2)

Publication Number Publication Date
JP2016056720A JP2016056720A (ja) 2016-04-21
JP6186326B2 true JP6186326B2 (ja) 2017-08-23

Family

ID=55757828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014182850A Active JP6186326B2 (ja) 2014-09-09 2014-09-09 高圧燃料供給ポンプ

Country Status (1)

Country Link
JP (1) JP6186326B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012211A1 (ja) * 2016-07-13 2018-01-18 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
DE102017202848A1 (de) * 2017-02-22 2018-08-23 Robert Bosch Gmbh Kraftstoffhochdruckpumpe
KR101986017B1 (ko) 2017-09-20 2019-09-03 주식회사 현대케피코 고압연료펌프
KR101986018B1 (ko) 2017-09-20 2019-06-04 주식회사 현대케피코 고압연료펌프
KR102540496B1 (ko) * 2021-08-30 2023-06-07 주식회사 현대케피코 맥동 체적 확장형 고압펌프

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945504B2 (ja) * 2008-04-17 2012-06-06 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
JP2010185410A (ja) * 2009-02-13 2010-08-26 Denso Corp ダンパ装置及びこれを用いた高圧ポンプ
IT1396142B1 (it) * 2009-11-03 2012-11-16 Magneti Marelli Spa Pompa carburante con dispositivo smorzatore perfezionato per un sistema di iniezione diretta
JP2012149652A (ja) * 2012-05-16 2012-08-09 Hitachi Automotive Systems Ltd 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ

Also Published As

Publication number Publication date
JP2016056720A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6193402B2 (ja) 高圧燃料供給ポンプ
JP5401360B2 (ja) 高圧燃料供給ポンプ
WO2012165555A1 (ja) 電磁吸入弁を備えた高圧燃料供給ポンプ
US9169816B2 (en) High-pressure fuel supply pump having electromagnetically-driven intake valve
JP6186326B2 (ja) 高圧燃料供給ポンプ
US20150017039A1 (en) High-pressure fuel supply pump having an electromagnetically-driven inlet valve
JP5905046B2 (ja) 電磁吸入弁を備えた高圧燃料供給ポンプ
US20210207567A1 (en) Fuel supply pump
JP6709282B2 (ja) 高圧燃料供給ポンプ及びその組み立て方法
JP6098481B2 (ja) 高圧ポンプ
US11002236B2 (en) High-pressure fuel supply pump
JP7198363B2 (ja) 電磁吸入弁及び高圧燃料供給ポンプ
WO2015072080A1 (ja) 高圧ポンプ
JP2019002308A (ja) 高圧燃料供給ポンプ
WO2022014150A1 (ja) 燃料ポンプ
WO2018225479A1 (ja) 高圧燃料ポンプ
JP7482313B2 (ja) 燃料ポンプ
JP7518980B2 (ja) 燃料ポンプ
WO2024201699A1 (ja) バルブ機構及び燃料ポンプ
JP2019203437A (ja) 高圧燃料供給ポンプ
WO2022249550A1 (ja) 電磁弁機構及び燃料ポンプ
WO2022130698A1 (ja) 燃料ポンプ
JP5530876B2 (ja) 高圧燃料供給ポンプ
JP6047648B2 (ja) 電磁吸入弁を備えた高圧燃料供給ポンプ
JP2023071061A (ja) 燃料ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6186326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250