JP6158332B2 - Vertical circulation method and vertical circulation device for closed water area - Google Patents

Vertical circulation method and vertical circulation device for closed water area Download PDF

Info

Publication number
JP6158332B2
JP6158332B2 JP2015527318A JP2015527318A JP6158332B2 JP 6158332 B2 JP6158332 B2 JP 6158332B2 JP 2015527318 A JP2015527318 A JP 2015527318A JP 2015527318 A JP2015527318 A JP 2015527318A JP 6158332 B2 JP6158332 B2 JP 6158332B2
Authority
JP
Japan
Prior art keywords
water
flow
upflow
generators
upward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015527318A
Other languages
Japanese (ja)
Other versions
JPWO2015008788A1 (en
Inventor
純貴 原
純貴 原
伸弘 弓削
伸弘 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO PLAN CO., LTD.
YUGE, Kei
Original Assignee
ECO PLAN CO., LTD.
YUGE, Kei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO PLAN CO., LTD., YUGE, Kei filed Critical ECO PLAN CO., LTD.
Publication of JPWO2015008788A1 publication Critical patent/JPWO2015008788A1/en
Application granted granted Critical
Publication of JP6158332B2 publication Critical patent/JP6158332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • E02B1/003Mechanically induced gas or liquid streams in seas, lakes or water-courses for forming weirs or breakwaters; making or keeping water surfaces free from ice, aerating or circulating water, e.g. screens of air-bubbles against sludge formation or salt water entry, pump-assisted water circulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/001Build in apparatus for autonomous on board water supply and wastewater treatment (e.g. for aircrafts, cruiseships, oil drilling platforms, railway trains, space stations)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Microbiology (AREA)
  • Cleaning Or Clearing Of The Surface Of Open Water (AREA)

Description

この発明は、例えば、ダム、湖沼、水源地、上下水道施設、運河、内湾、港湾、水産養殖場や溜池などの閉鎖水域の水質改善を計るための閉鎖水域の上下循環方法および上下循環装置に係り、特に、水中に正多角形状に配置された複数の各上昇流発生装置で発生させた上昇流により、水面に同心円状に拡散する拡散流をそれぞれ発生させ、各拡散流同士の相互干渉を利用して、各上昇流発生装置が配置された正多角形状の中心部に、水面から水底に向かう連続的、加速的かつ集中的な下降流を誘起させて、上昇流と下降流による上下循環流により閉鎖水域の水質改善を計るようにした閉鎖水域の上下循環方法および上下循環装置に関するものである。   The present invention relates to a method for vertically circulating a closed water area and a vertical circulation device for improving the water quality of a closed water area such as a dam, a lake, a water source, a water supply / sewerage facility, a canal, an inner bay, a harbor, an aquaculture farm or a pond. In particular, the upward flow generated by each of the multiple upward flow generators arranged in the shape of a regular polygon in water generates a diffusion flow that diffuses concentrically on the surface of the water. Utilizing the center of the regular polygonal shape where each upflow generator is arranged, a continuous, accelerated and concentrated downflow from the water surface to the bottom of the water is induced to circulate up and down by the upflow and downflow. The present invention relates to a method for vertically circulating a closed water area and a vertical circulation device for improving the water quality of the closed water area by flow.

生物の身体を構成する主要元素である窒素NやリンPが過剰に供給され蓄積している水域は、富栄養化水域と呼ばれる。20世紀後半以降に見られた経済活動の発達、都市化、人口増加等に伴って、ダム、湖沼、水源池、貯水池、運河、内湾、港湾、水産養殖場や溜池等多くの水域が、先進国・途上国の別なく、富栄養化の傾向を示すようになっている。富栄養化した水域では、植物プランクトンが大増殖するなど、有機汚濁と呼ばれる水質汚濁現象が生じる。植物プランクトンの異常な増殖は、魚介類や養殖魚を窒息させたり、発がん性のある物質を放出したり、カビ臭を発生したりして、水源としての利用を難しくする。また、増殖した植物プランクトンが枯死した残滓は、有機物として大量に水底に沈降、堆積する。これが水中の好気性微生物により分解を受ける際に、底層の酸素が大量に消費されるため、水域内の底層貧酸素・底層無酸素層発生の原因となる。
水塊が停滞的で上下循環が滞る富栄養化水域では、このように底層の貧酸素化、無酸素化がしばしば発生する。この状況下で底層・水底が酸欠状態になると、底層水、底泥が嫌気分解を生じて黒色汚泥となり、硫化物を発生し、硫化水素臭を発するようになる。この段階に至ると、水域は底生魚介類が消失した死の水域となり、嫌気性分解を生じている水底の堆積層では、栄養塩類の水中への溶出が盛んとなる。これによって水質・底質のさらなる悪化、アオコの異常大発生あるいは大規模な“水の華”状態の発生等々、水域環境保全上不都合な状態が継続するようになり、水域環境がさらに悪化してゆく。
以上のように、水中の、とりわけ底層の溶存酸素が欠乏、逼迫する状態は、大量の水を人為的に貯留するダムや貯水地などでは、内外を問わず夏場・高水温期を中心に、ほとんど例外なく生じている。このことは、内湾、養殖場水域などでも水質保全上の大きな問題となっている。世界の閉鎖性水域、富栄養化水域では、全く同様な水質環境悪化の問題を抱えており、底層に対して酸素を補給するための対策を必要としている。
A water area in which nitrogen N and phosphorus P, which are main elements constituting a living body, are excessively supplied and accumulated is called an eutrophic water area. With the development of economic activities, urbanization, population growth, etc. seen since the latter half of the 20th century, many water bodies such as dams, lakes, water source ponds, reservoirs, canals, inner bays, harbors, aquaculture farms and reservoirs have advanced. Regardless of the country or developing country, the trend toward eutrophication is being shown. In the eutrophied water area, a water pollution phenomenon called organic pollution occurs, for example, phytoplankton grows greatly. Abnormal growth of phytoplankton makes it difficult to use as a water source by suffocating seafood and farmed fish, releasing carcinogenic substances, and generating a musty odor. In addition, the residue from which the grown phytoplankton has died settles and accumulates on the bottom of the water in large quantities as organic matter. When this is decomposed by aerobic microorganisms in the water, a large amount of oxygen is consumed in the bottom layer, which causes the generation of bottom anoxic and bottom anoxic layers in the water area.
In the eutrophied water area where the water mass is stagnant and the vertical circulation is stagnant, the bottom layer is often hypoxic and oxygen-free. Under these conditions, when the bottom layer and water bottom are in an oxygen deficient state, the bottom layer water and bottom mud are anaerobically decomposed to black sludge, generating sulfides and producing a hydrogen sulfide odor. When this stage is reached, the water area becomes a dead water area where benthic seafood has disappeared, and in the sediment layer of the bottom where anaerobic decomposition occurs, elution of nutrients into the water becomes active. As a result, water quality / bottom quality is further deteriorated, abnormal conditions of blue sea urchins or large-scale “water bloom” conditions continue to be inconvenient for water environment conservation, and the water environment is further deteriorated. go.
As mentioned above, underwater, especially in the bottom, where the dissolved oxygen is deficient and tight, dams and reservoirs that artificially store a large amount of water, mainly in the summer and high water temperature periods, both inside and outside, It happens almost without exception. This is a major problem in water quality conservation in inner bays and farm waters. The world's closed waters and eutrophication waters have exactly the same problem of deterioration of the water quality environment, and it is necessary to take measures to supply oxygen to the bottom layer.

前述のとおり、水塊が停滞している富栄養化水域では、底層の貧酸素・無酸素化が進み、水質、底質が悪化して水域環境が悪化する。このような問題点の直接の原因は何かと言えば、水体が停滞して上下循環が生じなくなっており、表層の酸素が底層まで供給される系が全く閉ざされてしまっていることである。したがって、この点に着目して改善を行えば、底層へ酸素を供給する系が開かれることになり、問題点が解決方向へ向かうことになる。従来、水域の水質環境保全の一環として、上下循環の促進を目的とする対策が色々試みられている。結局、表層の比較的溶存酸素豊富な水塊と、底層の貧酸素・無酸素の水塊とが上下に循環・混合すれば、底層〜表層の溶存酸素濃度も平均化されてゆき、底層の貧酸素・無酸素が解消方向に向かう。このことから、「上下循環」促進が、底層の貧酸素・無酸素に対する取り組みやすい有効な対策の一つであると考えられている。   As described above, in the eutrophic water area where the water mass is stagnant, the bottom layer is becoming hypoxic and anoxic, and the water quality and bottom quality are deteriorated to deteriorate the water environment. The direct cause of this problem is that the water body has stagnated and no vertical circulation has occurred, and the system for supplying surface oxygen to the bottom layer has been completely closed. Therefore, if improvement is made paying attention to this point, the system for supplying oxygen to the bottom layer will be opened, and the problem will be directed toward the solution. Conventionally, various measures aimed at promoting vertical circulation have been tried as part of water quality environmental conservation in water areas. After all, if the water layer rich in dissolved oxygen on the surface layer and the anoxic / anoxic water mass on the bottom layer are circulated and mixed up and down, the dissolved oxygen concentration from the bottom layer to the surface layer is also averaged. Anoxia and anoxia are heading toward elimination. For this reason, it is considered that promotion of “up-and-down circulation” is one of the effective measures that are easy to tackle for the hypoxia and anoxia of the bottom layer.

以上のような水域における水質環境問題を解消方向へ導くために従来用いられて来た上下循環促進手法の具体的な例を挙げると、図12〜図19の通りである。
図12は従来の間欠式空気揚水筒と呼ばれる対策装置の概形を示したものである。図中、101は水域の水体、102は水底、103は水面、104は陸岸、105は間欠式空気揚水筒本体、106は間欠式空気揚水筒本体105の下部に設けられた空気室、107は陸岸に置かれた空気圧縮機、108は圧縮空気送気ホース、109はシンカー、110は係留索、111は空気弾の上昇に伴って間欠式空気揚水筒本体105下端から筒内へ吸い込まれる水流、112は間欠式空気揚水筒本体105によって間欠的に水面へ吹き上げられた混気水塊を示す。
図12に示す間欠式空気揚水筒おいては、空気圧縮機107による圧縮空気を間欠式空気揚水筒本体105の下部の空気室106へ送り込み、この空気量が一定レベルに達すると、その空気塊が逆サイフォン現象によって間欠式空気揚水筒本体105の中央筒内部に流入し、空気弾を形成してその浮力により上昇し、間欠式空気揚水筒本体105内の水を上方へ連行する。間欠的に水面まで持ち上げられた混気水塊112は水面103に達した後、間欠式空気揚水筒本体105の中心線から放射状に拡散する。この方式は、従来、ダム、貯水地、水源地、湖沼などの水質環境保全の目的で用いられている(例えば、非特許文献1参照。)。
A specific example of the vertical circulation promotion technique that has been used in the past to guide the water quality environment problem in the water area as described above is as shown in FIGS.
FIG. 12 shows an outline of a countermeasure device called a conventional intermittent air pump. In the figure, 101 is a water body in a water area, 102 is a water bottom, 103 is a water surface, 104 is a shore, 105 is an intermittent air pump cylinder body, 106 is an air chamber provided at the lower part of the intermittent air pump cylinder body 105, 107 Is an air compressor placed on the shore, 108 is a compressed air supply hose, 109 is a sinker, 110 is a mooring line, and 111 is sucked into the cylinder from the lower end of the intermittent air pump cylinder body 105 as the air bullet rises. The water flow 112 is an air-mixed water mass intermittently blown up to the water surface by the intermittent air pump cylinder body 105.
In the intermittent air pumping cylinder shown in FIG. 12, the compressed air by the air compressor 107 is sent to the air chamber 106 below the intermittent air pumping cylinder main body 105, and when this air amount reaches a certain level, the air mass Flows into the center cylinder of the intermittent air pumping cylinder main body 105 due to the reverse siphon phenomenon, forms air bullets and rises by its buoyancy, and entrains the water in the intermittent air pumping cylinder main body 105 upward. The air-mixed water mass 112 that is intermittently lifted up to the water surface reaches the water surface 103 and then diffuses radially from the center line of the intermittent air pump cylinder body 105. Conventionally, this method is used for the purpose of protecting the water environment such as a dam, a reservoir, a water source, and a lake (for example, see Non-Patent Document 1).

図13は従来の散気板型曝気方式と呼ばれる装置の概形を示したものである。図中、201は水域の水体、202は水底、203は水面、204は陸岸、205は散気板装置、206は散気板装置用空気室、207は陸岸に置かれた空気圧縮機、208は圧縮空気送気ホース、213は散気板装置用架台、214は散気板装置の作動によって水面へ持ち上げられた混気水塊を示す。
図13に示す散気板形曝気方式では、空気圧縮機207による圧縮空気を散気板装置205の散気板装置用空気室206へ送り、これによって散気板装置205からある程度微細な上昇気泡流ができ、これによって水域内の水塊が連行されて上昇連行流を形成する。このような散気装置によって、比較的強い上昇連行流ができることは知られており、この方式、あるいは原理的に同様な上昇流発生、ないし曝気法は、従来、汚水処理場や貯水地等で広く用いられている(例えば、非特許文献1参照。)。
FIG. 13 shows an outline of an apparatus called a conventional diffuser plate type aeration system. In the figure, 201 is a body of water, 202 is a water bottom, 203 is a water surface, 204 is a shore, 205 is a diffuser plate device, 206 is an air chamber for the diffuser plate device, and 207 is an air compressor placed on the shore. , 208 is a compressed air supply hose, 213 is a stand for the diffuser plate device, and 214 is a mixed water mass lifted to the water surface by the operation of the diffuser plate device.
In the diffuser plate type aeration method shown in FIG. 13, compressed air from the air compressor 207 is sent to the diffuser plate device air chamber 206 of the diffuser plate device 205, and thereby air bubbles rising to some extent from the diffuser plate device 205. A flow is created, which entrains the water mass in the body of water and forms an updraft. It is known that such a diffuser can produce a relatively strong updraft, and this method, or in principle the same upflow generation or aeration method, has conventionally been used in sewage treatment plants and reservoirs. Widely used (for example, see Non-Patent Document 1).

図14は従来のポンプ・ダクト方式を用いた装置(その1)の概形を示したものである。図中、301は水域の水体、302は水底、303は水面、304は陸岸、305はポンプ・ダクト方式本体をなすポンプ・浮体装置、305’はポンプ、310は係留索、315は電源ケーブル、316はポンプ・浮体装置305上のポンプ305’の作動により、底層水を取水して表層へ送るためのフレキシブル・ダクト、317はフレキシブル・ダクト316に吸い込まれる底層水、318はフレキシブル・ダクト316内を上方へ送られる底層水塊の移動の向き、319は表層へ放流される底層水を示す。
図14に示すポンプ・ダクト方式では、ポンプ・浮体装置305上のポンプ305’によって、ポンプ・浮体装置305から底層へ垂下したフレキシブル・ダクト316の下から底層付近に停滞している貧酸素水塊などを吸い込んで上方へ送り、水面303付近で水平方向に放流するという方式である。この方式は、従来、貯水地、湖沼、ダム等の底層貧酸素化抑止を目的として用いられたことがある(例えば、非特許文献2参照。)。
FIG. 14 shows an outline of a conventional apparatus (part 1) using a pump / duct system. In the figure, 301 is a body of water body, 302 is a bottom of water, 303 is a water surface, 304 is a shore, 305 is a pump / floating device forming a pump / duct type body, 305 ′ is a pump, 310 is a mooring cable, 315 is a power cable 316 is a flexible duct for taking the bottom layer water and sending it to the surface layer by the operation of the pump 305 ′ on the pump / floating device 305, 317 is the bottom layer water sucked into the flexible duct 316, 318 is the flexible duct 316 The direction of movement of the bottom layer water mass sent upward in the inside, 319 indicates the bottom layer water discharged to the surface layer.
In the pump / duct system shown in FIG. 14, the anoxic water mass stagnating near the bottom layer from the bottom of the flexible duct 316 hanging from the pump / floating device 305 to the bottom layer by the pump 305 ′ on the pump / floating body device 305. Is sucked and sent upward and discharged in the horizontal direction near the water surface 303. Conventionally, this method has been used for the purpose of suppressing bottom layer hypoxia in reservoirs, lakes, dams, etc. (see, for example, Non-Patent Document 2).

図15は従来のポンプ・ダクト方式を用いた装置(その2)の概形を示したものである。図中、401は水域の水体、402は水底、403は水面、404は陸岸、405はポンプ・ダクト方式(その2)本体をなすポンプ・浮体装置、405’はポンプ、410は係留索、415は電源ケーブル、420はポンプ・浮体装置405上のポンプ405’の作動により、底層へ送るために取水される表層水、421は表層水420を取水し、底層まで送って放流するためのフレキシブル・ダクト、422はフレキシブル・ダクト421内を下方へ送られる表層水塊の移動の向き、423は底層へ放流される表層水を示す。
図15に示すポンプ・ダクト方式は、ポンプ・浮体装置405上のポンプ405’によって、溶存酸素濃度の高い表層水420を吸い込み、ポンプ・浮体装置405から下方へ垂下したフレキシブル・ダクト421を通して下方へ送り、底層へ放流するという方式である。この方式も、従来、貯水地、湖沼、ダム等の底層貧酸素化抑止を目的として用いられたことがある(例えば、非特許文献2参照。)。
FIG. 15 shows an outline of a conventional apparatus (part 2) using a pump / duct system. In the figure, 401 is the water body of the water area, 402 is the bottom of the water, 403 is the water surface, 404 is the shore, 405 is the pump / duct system (part 2), the pump / floating device that forms the body, 405 ′ is the pump, 410 is the mooring line, 415 is a power cable, 420 is surface water taken to be sent to the bottom layer by operation of the pump 405 ′ on the pump / floating device 405, 421 is water for taking surface water 420, flexible to be sent to the bottom layer and discharged. Duct 422 indicates the direction of movement of the surface water mass sent downward in the flexible duct 421, and 423 indicates the surface water discharged to the bottom layer.
The pump / duct system shown in FIG. 15 sucks the surface water 420 having a high dissolved oxygen concentration by the pump 405 ′ on the pump / floating device 405, and moves downward through the flexible duct 421 hanging downward from the pump / floating device 405. It is a method of feeding and discharging to the bottom layer. This method has also been used for the purpose of suppressing bottom layer hypoxia in reservoirs, lakes, dams, etc. (see Non-Patent Document 2, for example).

図16は従来の深層曝気装置と呼ばれる方式装置の一例としての概形を示したものである。図中、501は水域の水体、502は水底、503は水面、504は陸岸、524は一例としての深層曝気装置本体部、525は深層曝気装置の部分としての上昇管、526は上昇管525内に散気を行う散気装置、527は深層曝気装置の部分としての下降管、528は深層曝気装置の部分としての浮上槽・浮体、529は管長調整用ワイヤ、530はカウンターウエイト、507は陸岸に置かれた空気圧縮機、508は圧縮空気送気ホース、509はシンカー、510は係留索、531は深層曝気装置作動の根幹をなす管内水の動きの方向、532は同管内水が底層に至り、下降管527から底層放流される水塊を示す。
図16に示す深層曝気装置は、水面503と水底502との間に上昇管525と下降管527との2本の管を一体型に構成し、上昇管525内下部に上昇管525内散気用の散気装置526を設け、散気により上昇管525内水に対する曝気効果を上げながら上昇流を生成し、これによって上昇管525内上端の水面部に達した上昇流が管内流れの連続の条件に基づいて隣り合う下降管527内を流れ下るようにし、下降管527内の下端で、底層付近に達した下降流を下降管527下端開ロ部から底層内へ放流するものである。その主旨は、底層の低酸素・貧酸素水を吸引して散気方式によりエアレーション効果を上げながら(溶存酸素濃度を上げながら)水面レベルまで上昇させ、これを順次連続的に底層へ送り込んで放流するというものである。散気装置526により上昇流が生じるため、特に追加の動力を用いなくても上昇した水塊を(下降管527を経由して)底層へ送り込み、底層放流ができる点が、この装置の一つの特徴となっている。この方式もダム水域などにおいて用いられている(例えば、非特許文献1参照。)。
FIG. 16 shows an outline as an example of a system apparatus called a conventional deep layer aeration apparatus. In the figure, 501 is a body of water, 502 is a water bottom, 503 is a water surface, 504 is a shore, 524 is a deep aeration apparatus main body as an example, 525 is a riser pipe as a part of the deep aeration apparatus, 526 is a riser pipe 525 A diffuser for aerating the inside, 527 is a downcomer as a part of the deep aeration apparatus, 528 is a floating tank / floating body as a part of the deep aeration apparatus, 529 is a wire for adjusting the pipe length, 530 is a counterweight, 507 is An air compressor placed on the shore, 508 is a compressed air supply hose, 509 is a sinker, 510 is a mooring line, 531 is a direction of movement of pipe water that forms the basis of deep aeration apparatus operation, and 532 is water in the pipe A water mass that reaches the bottom layer and is discharged from the downcomer pipe 527 is shown.
In the deep layer aeration apparatus shown in FIG. 16, two pipes, an ascending pipe 525 and a descending pipe 527, are integrally formed between a water surface 503 and a water bottom 502, and air diffused in the ascending pipe 525 at the lower part of the ascending pipe 525. An aeration device 526 is provided for generating an upward flow while increasing the aeration effect on the water in the riser pipe 525 by the aeration, so that the upward flow reaching the water surface at the upper end in the riser 525 is a continuous flow in the pipe. Based on the conditions, it flows down in the adjacent descending pipes 527, and at the lower end in the descending pipe 527, the downflow that has reached the vicinity of the bottom layer is discharged into the bottom layer from the bottom opening of the lowering pipe 527. The main point is that the low-oxygen and low-oxygen water in the bottom layer is sucked up and raised to the water surface level while increasing the aeration effect (increasing the dissolved oxygen concentration) by the aeration method, and this is successively sent to the bottom layer and discharged. It is to do. Since the upflow is generated by the diffuser 526, one of the features of this device is that the rising water mass can be sent to the bottom layer (via the downcomer 527) and the bottom layer can be discharged without using any additional power. It is a feature. This method is also used in dam waters (see Non-Patent Document 1, for example).

図17は従来のポンプ駆動流動促進装置の概形を示したものである。図中、601は水域の水体、602は水底、603は水面、604は陸岸、605はポンプ駆動流動促進装置本体、605’はポンプ浮体装置、605’’は駆動水ホース、610は係留索、615は電源ケーブル、613はポンプ駆動流動促進装置本体605の水底設置用架台、633はポンプ駆動流動促進装置本体605に吸い込まれる底層水、634はポンプ駆動流動促進装置本体605から吐き出される噴流状の表層・底層のミキシング流を示す。
図17に示すポンプ駆動流動促進装置は、表層に近い層から取水した水を駆動水として駆動水ポンプにより整流円筒内に水噴流ポンプの原理による吐出流をつくり、これによって、停滞水塊を動かし、上下循環を促進するものである。この方式は、閉鎖水域の底層貧酸素解消などに広く用いられた(例えば、非特許文献3参照。)。
FIG. 17 shows an outline of a conventional pump-driven flow promoting device. In the figure, 601 is a body of water body, 602 is a water bottom, 603 is a water surface, 604 is a shore, 605 is a pump drive flow promotion device body, 605 ′ is a pump floating body device, 605 ″ is a drive water hose, and 610 is a mooring cable. , 615 is a power cable, 613 is a base for installing the bottom of the pump-driven flow promoting device main body 605, 633 is bottom water sucked into the pump-driven flow promoting device main body 605, 634 is a jet flow discharged from the pump-driven flow promoting device main body 605 Shows the mixing flow of the surface and bottom layers.
The pump-driven flow promoting device shown in FIG. 17 creates a discharge flow based on the principle of a water jet pump in a rectifying cylinder by a drive water pump using water taken from a layer close to the surface as drive water, thereby moving a stagnant water mass. It promotes vertical circulation. This method has been widely used to eliminate bottom layer poor oxygen in a closed water area (see, for example, Non-Patent Document 3).

図18は従来のプロペラ式水流発生方式の一例を示したものである。図中、701は水域の水体、702は水底、703は水面、704は陸岸、705は浮体、710は係留索、715は電源ケーブル、735は水中プロペラ駆動用電動機、736は水中プロペラ、737は水中プロペラ736によって生成された回転流を示す。
図18に示す回転流737は、水面703上に置かれた水中プロペラ駆動用電動機735によって同軸上に取り付けられた水中プロペラ736を回転させ、これによって生じる水中プロペラ736後流の状況を示している。プロペラ後流である回転流737は、強い旋回流を伴い、プロペラ軸方向に強い軸方向流れを生じる。この方式は、そのような比較的強い水流発生が求められるところへ広く使用された(例えば、非特許文献4参照。)。
FIG. 18 shows an example of a conventional propeller-type water flow generation method. In the figure, 701 is a body of water body, 702 is a water bottom, 703 is a water surface, 704 is a shore, 705 is a floating body, 710 is a mooring cable, 715 is a power cable, 735 is an electric motor for driving an underwater propeller, 736 is an underwater propeller, 737 Indicates the rotational flow generated by the underwater propeller 736.
A rotating flow 737 shown in FIG. 18 shows the state of the downstream flow of the underwater propeller 736 generated by rotating the underwater propeller 736 coaxially mounted by the underwater propeller driving motor 735 placed on the water surface 703. . The rotating flow 737 that is the propeller wake is accompanied by a strong swirling flow and generates a strong axial flow in the propeller axial direction. This method has been widely used where such a relatively strong water flow is required (see, for example, Non-Patent Document 4).

図19は従来の翼車式またはパドル・ホイール式の曝気装置の例である。図中、801は水域の水体、802は水底、803は水面、804は陸岸、805は浮体、810は係留索、815は電源ケーブル、838は電動式翼車またはパドル・ホイール、838’は電動式翼車またはパドル・ホイールの回転方向、839は翼車またはパドル・ホイール回転駆動用電動機、840は電動式翼車またはパドル・ホイール838によって生成された表層の流れを示す。
図19に示す翼車式またはパドル・ホイール式の曝気装置は、浮体805上の軸受で固定された水平軸回りに回転する電動式翼車またはパドル・ホイール838が、比較的水深の浅い養殖池等における水の停滞解消を目的として、図19に示されるような要領で、曝気を促進すると共に、表層水の流動促進を図るものである。エビ等の養殖池において広く用いられている(例えば、非特許文献5,6参照。)。
FIG. 19 shows an example of a conventional impeller type or paddle wheel type aeration apparatus. In the figure, 801 is a body of water, 802 is the bottom of the water, 803 is the water surface, 804 is the shore, 805 is a floating body, 810 is a mooring line, 815 is a power cable, 838 is an electric impeller or paddle wheel, 838 'is The direction of rotation of the electric impeller or paddle wheel, 839 indicates a motor for driving the impeller or paddle wheel rotation, and 840 indicates a surface flow generated by the electric impeller or paddle wheel 838.
In the aeration apparatus of the impeller type or paddle wheel type shown in FIG. 19, the electric impeller or paddle wheel 838 that rotates around the horizontal axis fixed by the bearing on the floating body 805 has a relatively shallow water culture pond. For the purpose of resolving the stagnation of water, etc., the aeration is promoted and the flow of surface water is promoted in the manner shown in FIG. It is widely used in aquaculture ponds such as shrimp (see, for example, Non-Patent Documents 5 and 6).

有田正光、「水圏の環境」、東京電機大学出版局、1999年12月20日、第1版、p.262−264Masamitsu Arita, “Environment in the hydrosphere”, Tokyo Denki University Press, December 20, 1999, first edition, p. 262-264 “うみすまし技術開発”、[online]、横浜国立大学水環境研究室、[平成26年7月11日検索]、インターネット<URL:http://www.cvg.ynu.ac.jp/G2/umisumashi.html>“Umisumashi Technology Development”, [online], Yokohama National University Water Environment Laboratory, [searched on July 11, 2014], Internet <URL: http://www.cvg.ynu.ac.jp/G2 /umisumashi.html> 本田広徳,奈須健,葛西宏直,吉永勝利、「富栄養化汚濁水域の自然浄化手法について(−ジェット・ストリーマーによる閉鎖水域の直接浄化技術−)」、環境浄化技術、2011年11月1日、第10巻、第6号、p.82−88Hironori Honda, Ken Nasu, Hironori Kasai, Masaru Yoshinaga, “Natural purification method of eutrophied polluted water area (-Direct purification technology of closed water area by Jet Streamer)”, Environmental purification technology, November 1, 2011, Vol. 10, No. 6, p. 82-88 “スクリュー形曝気機「スパロータ」エース”、[online]、株式会社日立プラントサービス、[平成26年7月10日検索]、インターネット<URL:http://www.hitachi-hps.co.jp/products/wastewater/sparotor_ace/index.html>“Screw-type aerator“ Sparotor ”Ace”, [online], Hitachi Plant Service, Ltd. [searched on July 10, 2014], Internet <URL: http://www.hitachi-hps.co.jp/ products / wastewater / sparotor_ace / index.html> 井手哲夫、「水処理光学・理論と応用」、技報堂出版、1999年6月15日、第2版、p.257Tetsuo Ide, “Water Treatment Optics / Theory and Applications”, Gigodo Publishing, June 15, 1999, 2nd edition, p. 257 “パドルホイールエアレーター TA66H”、[online]、株式会社林養魚場、[平成26年7月10日検索]、インターネット<URL:http://hayashitrout.com/wheel.html>“Paddle Wheel Aerator TA66H”, [online], Hayashi Fish Farm, [searched on July 10, 2014], Internet <URL: http://hayashitrout.com/wheel.html>

従来の技術に掲げた図12〜図19は、停滞的な閉鎖水域における水の上下循環促進に用いられる手法の数例であるが、これらには、それぞれ以下に掲げるような難点を有している。   12 to 19 shown in the prior art are several examples of techniques used for promoting the vertical circulation of water in a stagnant closed water area, each of which has the following drawbacks. Yes.

(1)<間欠式空気掲水筒(図12)>上昇した水塊が水面で放射状に拡散した後、強制対流の一環として同心円の周緑から規則的、スピーディーに下降すれば、水体の上下循環促進にある程度の効果を有し得ると言えるが、同心円(半径r)の周緑では、半径rの拡大につれて流動範囲はrに比例して増大し、これに伴って流速は急激に低下する。したがって、底層水が水面に持ち上げられる効果は一応明らかと言えるが、下降流が水底に達して再び上昇流に取り込まれるという効率的な下向き流れを加速的集中的に発揮している個所は見出されない。(1) <Intermittent pneumatic water bottle (Fig. 12)> After the rising water mass diffuses radially on the surface of the water, if it descends regularly and speedily from the concentric greenery as part of forced convection, the vertical circulation of the water body Although it can be said that it can have a certain effect on the promotion, in the surrounding green of the concentric circle (radius r), the flow range increases in proportion to r 2 as the radius r increases, and the flow velocity rapidly decreases accordingly. . Therefore, it can be said that the effect that the bottom layer water is lifted to the water surface is obvious, but there is a place where the downward flow reaches the bottom of the water and is taken into the upward flow again, and an efficient downward flow is demonstrated at an accelerated concentration. Not.

(2)<散気板型曝気方式(図13)>散気板気泡による上昇流は、上昇気泡流のごく近傍に限られており、上昇気泡流から離れた広い水体範囲にわたって上下循環流が形成されるとは言えない。上下循環に直接貢献する加速的集中的な下降流ができるところは無い。 (2) <Air diffuser type aeration system (FIG. 13)> The upward flow caused by the air diffuser bubble is limited to the vicinity of the upward bubble flow, and the up and down circulation flows over a wide range of water body away from the upward bubble flow. It cannot be said that it is formed. There is no place where an accelerating and concentrated downflow that directly contributes to the vertical circulation is possible.

(3)<ポンプ・ダクト方式(図14、図15)>これらは、“ポンプ・ダクトを介して底層の貧酸素水塊を持ち上げて直接表層へ放流すれば、あるいは逆に、表層の酸素豊富な水塊をポンプ・ダクトを介して直接底層の貧酸素層に送り込めば、上下の溶存酸素濃度の差が解消されてゆく筈である”、との考えに基づいて考案された水塊移送の方法である。しかしながら、底層から持ち上げられ、表層に放流された低温水塊は、水温密度差の原理によって大部分が元の底層へ戻ろうとするため、上下循環の効果は必ずしも有効に発揮されない。また、逆に、高温表層水をポンプで吸い込み、フレキシブル・ダクトを介して底層へ放流する、という案についても、同じ原理的な理由により、フレキシブル・ダクトの下端から底層低温水層内へ放流された高温表層水は、水温密度差の原理によって元の表層へ戻ろうとするため、上下循環の作用効果は必ずしも有効には発揮されない。結局、異水温同士の水塊は単に放流・置換しただけでは、殆ど効果的に互いに混合拡散せず、水温密度差の原理に基づいて再分離し、原水温層へ戻ろうとする傾向を示し、結局、上下循環促進の意義が十分全うされないままの事態が続くおそれが強い。(理由:低温水と高温水との乱流(不可逆)混合が生じない場合には、低温水と高温水とが水温密度差の原理によって容易に再分離し、それぞれが元の水温層へ戻ろうとする傾向を持ち続けることによる。) (3) <Pump and duct system (FIGS. 14 and 15)> These are: “If the bottom of the hypoxic water mass is lifted and discharged directly to the surface layer via the pump duct, or conversely, the surface layer is rich in oxygen. The water mass transfer was devised based on the idea that the difference in dissolved oxygen concentration between the top and bottom would be eliminated if a simple water mass was sent directly to the anoxic layer at the bottom through the pump duct. It is a method. However, the low-temperature water mass lifted from the bottom layer and discharged to the surface layer mostly returns to the original bottom layer by the principle of the difference in water temperature density, so that the effect of the vertical circulation is not always effectively exhibited. Conversely, the idea of sucking high temperature surface water with a pump and discharging it to the bottom layer through the flexible duct is discharged from the lower end of the flexible duct into the bottom layer low temperature water layer for the same principle. Since the high temperature surface water tends to return to the original surface layer by the principle of the difference in water temperature density, the effect of the vertical circulation is not always effectively exhibited. In the end, the water masses of different water temperatures are simply discharged and replaced, but they do not effectively mix and diffuse with each other, re-separate based on the principle of water temperature density difference, and tend to return to the raw water temperature layer, After all, there is a strong possibility that the situation of the promotion of vertical circulation will not be fully fulfilled. (Reason: When turbulent (irreversible) mixing of low-temperature water and high-temperature water does not occur, low-temperature water and high-temperature water are easily re-separated by the principle of water temperature density difference, and each returns to the original water temperature layer. By continuing to have a tendency to try.)

(4)<深層曝気装置(図16)>本上下循環装置では、底層水を汲み上げつつ、曝気効果を及ぼし、散気装置による上昇流効果(エアリフト効果)をそのまま利用して曝気水の底層再送り込みを行うという方式であるが、上昇管の他に下降管まで準備する必要がある。そのため、構造的、機構的に相対的に大規模、精密かつ複雑な調整を要し、初期コスト、メンテナンスコスト共に大である。したがって、上下循環促進対策とはいえ、どのような水域にも容易に適用できる方式ではないという大きな難点がある。 (4) <Deep-layer aeration device (FIG. 16)> This vertical circulation device exerts an aeration effect while pumping up the bottom-layer water, and uses the ascending flow effect (air lift effect) of the aeration device as it is. Although it is a method of feeding, it is necessary to prepare a down pipe in addition to the up pipe. Therefore, structurally and mechanically relatively large scale, precise and complicated adjustment is required, and both initial cost and maintenance cost are large. Therefore, although it is a vertical circulation promotion measure, there is a great difficulty that it is not a method that can be easily applied to any water area.

(5)<ポンプ駆動流動促進装置(図17)>駆動水ポンプを用いて整流円筒内に噴流による方向性の乱流混合流をつくり、これによって、上下循環を促進するものである。これは、乱流不可逆混合流れであるため、図12〜図15等の場合に懸念されたような吐出水の原水温層回帰の傾向はない。しかしながら、駆動水ポンプを浮体上に別設置とすると初期コストが大きくなり、また、吸水管におけるゴミの防除対策が非常に重要であり、清掃・メンテナンスコストも大きいという点が問題とされている。 (5) <Pump-driven flow promoting device (FIG. 17)> A directional turbulent mixed flow is created in the flow straightening cylinder using a driven water pump, thereby promoting vertical circulation. Since this is a turbulent irreversible mixed flow, there is no tendency of the raw water temperature stratification of the discharged water which is concerned in the case of FIGS. However, when the drive water pump is separately installed on the floating body, the initial cost is increased, and the countermeasure for controlling dust in the water absorption pipe is very important, and the cleaning and maintenance costs are also high.

(6)<プロペラ式水流発生方式(図18)>本方式を水深の浅い養殖池などで使用すると、プロペラ生成流による土砂の巻き上げ(水底の洗掘)を生じて水域の様相が変化するなど、上下循環促進より以前に深刻な水域環境上の諸問題を引き起こす虞があり、採否あるいは設置角度設定に当たっては慎重な検討を要する。局所的に強い流れを必要とする個所には適用できるともいえるが、上下循環の目的に対して何処にでも随時有効に使用できる対策装置とはいえないという難点がある。 (6) <Propeller-type water flow generation method (Fig. 18)> If this method is used in a shallow pond, etc., it will cause sediments to be rolled up by the propeller-generated flow (scouring the bottom of the water), resulting in changes in the water surface. This may cause serious problems in the water environment prior to the promotion of vertical circulation, and careful consideration is required when setting the acceptance or installation angle. Although it can be said that it can be applied to a place requiring a strong local flow, there is a problem that it cannot be said to be a countermeasure device that can be effectively used at any time for the purpose of vertical circulation.

(7)<翼車式またはパドル・ホイール式曝気装置(図19)>水深の浅い養殖場などには広く用いられており、曝気の促進、表層水の流動促進には有効である。しかし、水深が相対的に深くなると、底層水の停滞解消や底層への酸素補給には直接有効には機能し難くなるため、水深の浅い水域以外では、底層貧酸素、無酸素解消の対策装置としては決め手を欠くことになり、水深がより深いところへの対策を別途求める必要が生じる。 (7) <Impeller type or paddle wheel type aeration apparatus (FIG. 19)> Widely used in aquaculture farms with shallow water depth, etc., and effective in promoting aeration and surface water flow. However, if the water depth becomes relatively deep, it will be difficult to function effectively for eliminating the stagnation of the bottom water and replenishing oxygen to the bottom layer. As a result, the decisive factor will be lacking, and it will be necessary to separately seek countermeasures for deeper water.

以上、従来用いられて来た技術の難点を述べたが、これらを整理して述べると、次の通りである。
1)上下循環という目的から、上昇流に伴って下降流も生じることが望ましいが、集中的な下降流が生じるものは、上記手法(1)〜(7)のうちでは、(4)だけに限られる。
2)上昇流生成に応じて、集中的な下降流を生じるのは(4)であるが、(4)には問題点として、構造的、機構的に規模が大きく、精密かつ複雑な調整を要し、初期コスト、メンテナンスコスト共に大、どのような水域にも容易に適用できる方式ではないという難点があると共に、下降管を設けなければ目標とする下降流を生じさせることができないという大きな難点がある。
3)以上を要するに、従来の手法の中には、『上昇流の生成に応じて集中的加速的な下降流を生じ、明らかに表層/底層間の上下循環促進に有効であると述べ得る手法は見当たらない。また、装置として構造上、機器構成上簡易的であって精密な調整個所も摩耗個所もなく、初期コストが低廉で、耐久性が大であり、メンテナンス、ゴミ対策が簡単で、ランニングコストも低い、と述べ得る方式も見当たらない』と言える。
As mentioned above, although the difficulty of the technique used conventionally was described, when these are summarized and described, it is as follows.
1) For the purpose of vertical circulation, it is desirable that a downward flow is also generated along with the upward flow. However, in the above methods (1) to (7), only (4) is the one that causes the concentrated downward flow. Limited.
2) It is (4) that produces a concentrated downflow according to the upflow generation. However, (4) has a problem in that it has a structurally and mechanically large scale and requires precise and complicated adjustment. In short, both initial cost and maintenance cost are large, and there is a difficulty that it is not a method that can be easily applied to any water area, and a major difficulty that a target downflow cannot be generated unless a downcomer is provided. There is.
3) To sum up, in the conventional methods, “a method that produces a concentrated and accelerating downward flow according to the generation of the upward flow and can clearly be said to be effective in promoting the vertical circulation between the surface layer and the bottom layer. Is not found. In addition, the structure of the device is simple in terms of equipment configuration, there are no precise adjustment points or wear points, the initial cost is low, the durability is high, maintenance and dust countermeasures are simple, and the running cost is low. I don't see any method that can be said.

この発明は、上記のような課題に鑑み、その課題を解決すべく創案されたものであって、その目的とするところは、水中に正多角形状に配置された複数の各上昇流発生装置で発生させた上昇流により、水面に同心円状に拡散する拡散流をそれぞれ発生させ、各拡散流同士の相互干渉を利用して、各上昇流発生装置が配置された正多角形状の中心部に、水面から水底に向かう連続的、加速的かつ集中的な下降流を誘起させて、上昇流と下降流による上下循環流により閉鎖水域の水質改善を計ることのできる閉鎖水域の上下循環方法および上下循環装置を提供することにある。   In view of the above-described problems, the present invention has been devised to solve the problems. The object of the present invention is a plurality of ascending flow generators arranged in a regular polygon shape in water. With the generated upward flow, a diffusion flow that diffuses concentrically on the water surface is generated, and using the mutual interference between the diffusion flows, the center of the regular polygonal shape where each upward flow generation device is arranged, Vertical and vertical circulation methods and vertical circulation in a closed water area that can induce continuous, accelerated and concentrated downward flow from the surface of the water to the bottom of the water and improve the water quality of the closed water area by up and down flow due to upward and downward flow To provide an apparatus.

以上の課題を達成するために、請求項1の発明は、水中に正多角形状に上向きに配置された複数の各上昇流発生装置で上昇流を発生させて、各上昇流発生装置の上方水面に上昇流で生起される同心円状に拡散する拡散流をそれぞれ発生させ、隣り合う各拡散流同士の相互干渉を利用して、各上昇流発生装置が配置された正多角形状の中心部に、水面から水底に向かう連続的、加速的かつ集中的な下降流を誘起させて、上昇流と下降流による上下循環流により閉鎖水域の水質改善を計る手段よりなるものである。   In order to achieve the above object, the invention according to claim 1 is directed to generate an upward flow with each of the plurality of upward flow generators arranged upward in a regular polygonal shape in the water, so that the upper water surface of each upward flow generator In the center of the regular polygonal shape in which each upflow generator is arranged, using the mutual interference between adjacent diffusion flows, respectively, It consists of means for inducing continuous, accelerating and concentrated downflow from the water surface to the bottom of the water and improving the water quality in the closed water area by up-down and down-flow flows.

以上の課題を達成するために、請求項2の発明は、水中に正多角形状に上向きに配置された複数の各上昇流発生装置の隣り合う配置間隔Lと、各上昇流発生装置の上昇流を発生する筒体の直径Dとは、L/D=4〜25の範囲内にあり、水中に正多角形状に配置された複数の各上昇流発生装置で上昇流を発生させて、各上昇流発生装置の上方水面に上昇流で生起される同心円状に拡散する拡散流をそれぞれ発生させ、隣り合う各拡散流同士の相互干渉を利用して、各上昇流発生装置が配置された正多角形状の中心部に、水面から水底に向かう連続的、加速的かつ集中的な下降流を誘起させて、上下循環流により閉鎖水域の水質改善を計る手段よりなるものである。   In order to achieve the above-described problems, the invention of claim 2 is characterized in that the adjacent arrangement interval L of each of the plurality of upward flow generators arranged upward in a regular polygon shape in water and the upward flow of each upward flow generator The diameter D of the cylindrical body that generates the pressure is in the range of L / D = 4 to 25, and the upward flow is generated by each of the multiple upward flow generators arranged in a regular polygonal shape in the water. A regular polygon in which each upflow generator is arranged by generating concentrically diffusing diffusion flows generated in the upward flow on the upper water surface of the flow generator and utilizing mutual interference between adjacent diffusion flows. It consists of means for inducing a continuous, accelerating and intensive downward flow from the water surface to the bottom of the water at the center of the shape to improve the water quality of the closed water area by the vertical circulation flow.

以上の課題を達成するために、請求項3の発明は、水中に正多角形状に配置された複数の上昇流発生装置によりそれぞれ上昇流を発生させて、複数の上昇流発生装置のそれぞれの上方水面に上昇流により生起される同心円状に拡散する拡散流を発生させ、隣り合う拡散流同士の相互干渉により正多角形状の中心部に水面から水底に向かう下降流を誘起させて、上昇流と下降流とによる上下循環流を形成する閉鎖水域の上下循環方法である。   In order to achieve the above-described problems, the invention of claim 3 generates an upward flow by each of the plurality of upward flow generators arranged in a regular polygonal shape in the water, and each of the upward flows of the plurality of upward flow generators. A concentric diffusing flow generated by the upflow on the water surface is generated, and a downward flow from the water surface to the bottom is induced in the center of the regular polygon shape by mutual interference between adjacent diffusion flows. This is a vertical circulation method in a closed water area that forms a vertical circulation flow with a downward flow.

以上の課題を達成するために、請求項4の発明は、水中に正多角形状に配置された複数の上昇流発生装置であり、それぞれ上昇流を発生させて、それぞれの上方水面に上昇流で生起される同心円状に拡散する拡散流を発生させ、隣り合う拡散流同士の相互干渉により正多角形状の中心部に水面から水底に向かう下降流を誘起させて、上昇流と下降流とによる上下循環流を形成する複数の上昇流発生装置を備えた閉鎖水域の上下循環装置である。   In order to achieve the above-described problems, the invention of claim 4 is a plurality of upward flow generators arranged in a regular polygonal shape in water, each generating an upward flow and generating an upward flow on each upper water surface. A concentric circular diffusion flow is generated, and a downward flow from the water surface to the bottom is induced in the center of the regular polygon shape by mutual interference between adjacent diffusion flows. It is the up-and-down circulation device of the closed water area provided with the several upflow generator which forms a circulation flow.

課題を解決するための手段よりなるこの発明によれば、次に掲げる極めて新規的有益なる効果を奏するものである。
《1》上昇流の生成に伴って集中的加速的な下降流を生じ、明らかに表層/底層間の上下循環促進に有効な方式である。
《2》装置として構造上、機器構成上比較的簡単なものを使用でき、初期コストを低廉できる。
《3》摩耗個所がなく、耐久性大である。
《4》メンテナンス、ゴミ対策問題が簡単である。
《5》下降流の流量推定が容易である。
《6》エネルギー消費量(ランニングコスト)が低い。
According to the present invention comprising means for solving the problems, the following extremely novel and beneficial effects are achieved.
<< 1 >> Concentrated accelerating downflow is generated as the upflow is generated, and is clearly an effective method for promoting vertical circulation between the surface layer and the bottom layer.
<< 2 >> A device that is relatively simple in terms of structure and device configuration can be used as the device, and the initial cost can be reduced.
<3> No wear points and high durability.
<< 4 >> Maintenance and dust countermeasure problems are simple.
<5> It is easy to estimate the flow rate of the downward flow.
<6> Low energy consumption (running cost).

この発明を実施するための形態を示す上昇流発生装置を使用して下降流を生じさせる場合の全体概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole conceptual diagram in the case of producing a downflow using the upflow generator which shows the form for implementing this invention. この発明を実施するための形態を示す3基の上昇流発生装置を使用して水面に同心円状の拡散流を生成した平面図である。It is the top view which produced | generated the concentric circular diffusion flow on the water surface using the three upflow generators which show the form for implementing this invention. 図2Aの概略側面図である。It is a schematic side view of FIG. 2A. この発明を実施するための形態を示す4基の上昇流発生装置を使用して下降流を生じさせたときの実験説明図である。It is experiment explanatory drawing when a downward flow is produced using the four upflow generators which show the form for implementing this invention. この発明を実施するための形態を示す4基の上昇流発生装置を正方形状に配置して水面に同心円状の拡散流を生成した平面図である。It is the top view which arrange | positioned four upflow generators which show the form for implementing this invention in square shape, and produced | generated the concentric circular diffusion flow on the water surface. 4基の上昇流発生装置を正三角形状に配置して水面に同心円状の拡散流を生成した平面図である。It is the top view which arrange | positioned four upflow generators in the shape of an equilateral triangle, and produced | generated the concentric circular diffusion flow on the water surface. この発明を実施するための形態を示す5基の上昇流発生装置を正三角形状に配置して水面に同心円状の拡散流を生成した平面図である。It is the top view which arrange | positioned the five upward flow generators which show the form for implementing this invention in the equilateral triangle shape, and produced | generated the concentric circular diffusion flow on the water surface. 5基の上昇流発生装置を正方形状と正三角形状に配置して水面に同心円状の拡散流を生成した平面図である。It is the top view which has arrange | positioned five upward flow generators in square shape and equilateral triangle shape, and produced | generated the concentric circular diffusion flow on the water surface. 5基の上昇流発生装置を正五角形状に配置して水面に同心円状の拡散流を生成した平面図である。It is the top view which has arrange | positioned five upward flow generators in regular pentagon shape, and produced | generated the concentric circular diffusion flow on the water surface. この発明を実施するための形態を示す上昇流発生装置の配置と下降流量の増加効果(その1「60°系」)を示す一覧図である。It is a list figure which shows the arrangement effect of the upflow generation device which shows the form for carrying out this invention, and the increase effect of the descending flow rate (the 1 "60 degrees system"). この発明を実施するための形態を示す上昇流発生装置の配置と下降流量の増加効果(その2「90°系」)を示す一覧図である。It is a list figure which shows arrangement of an upflow generation device which shows a form for carrying out this invention, and an increase effect of downflow (part 2 “90 ° system”). この発明を実施するための形態を示す上昇流発生装置の複数個組合わせ基数と下降流生成効率の関係図である。FIG. 3 is a relationship diagram of a plurality of combined radixes of a rising flow generator and a downward flow generation efficiency showing an embodiment for carrying out the present invention. この発明を実施するための形態を示す3基の上昇流発生装置の組合せ一体型上下循環装置の斜視図である。It is a perspective view of the combination up-and-down circulation device of the three upflow generators which shows the form for carrying out this invention. この発明を実施するための形態を示す別の3基の上昇流発生装置の組合せ一体型上下循環装置の斜視図である。It is a perspective view of another combination up-and-down circulation device of three upflow generators which shows a form for carrying out this invention. この発明を実施するための形態を示す各上昇流発生装置の配置間隔と上昇流発生装置の円筒型の直径との関係図である。It is a related figure of the arrangement interval of each upflow generator which shows the form for carrying out this invention, and the cylindrical diameter of an upflow generator. 従来の間欠式空気揚水筒の説明図である。It is explanatory drawing of the conventional intermittent type air pump. 従来の散気板型曝気方式の説明図である。It is explanatory drawing of the conventional diffuser plate type aeration system. 従来のポンプ・ダクト方式の説明図である。It is explanatory drawing of the conventional pump duct system. 従来のポンプ・ダクト方式の説明図である。It is explanatory drawing of the conventional pump duct system. 従来の深層曝気装置の説明図である。It is explanatory drawing of the conventional deep layer aeration apparatus. 従来のポンプ駆動流動促進装置の説明図である。It is explanatory drawing of the conventional pump drive flow promotion apparatus. 従来のプロペラ式水流発生方式の説明図である。It is explanatory drawing of the conventional propeller type water flow generation system. 従来の翼車式またはパドル・ホイール式曝気装置の説明図である。It is explanatory drawing of the conventional impeller type or a paddle wheel type aeration apparatus.

1 水域の水体
2 水底
3 水面
4 陸岸
5 上昇流発生装置
5a 散気式円筒形上昇流発生装置模型
6 同心円状の拡散流
7 空気圧縮機
8 圧縮空気送気ホース
8a 圧縮空気分配ホース
9 シンカー
10 係留索
14 水流
15 上昇流
16 混気水塊
42 下降流
44,52 空気吹込装置
45,53 空気分岐管
46,54 連結材
47,55 固縛装置
48,56 浮力材
49 水流方向センサー・トレーサー
DESCRIPTION OF SYMBOLS 1 Water body 2 Bottom of water 3 Water surface 4 Land coast 5 Upflow generator 5a Air diffuser type cylindrical upflow generator model 6 Concentric diffusion flow 7 Air compressor 8 Compressed air supply hose 8a Compressed air distribution hose 9 Sinker DESCRIPTION OF SYMBOLS 10 Mooring line 14 Water flow 15 Upflow 16 Mixed water mass 42 Downflow 44,52 Air blowing device 45,53 Air branch pipe 46,54 Connecting material 47,55 Clamping device 48,56 Buoyant material 49 Water flow direction sensor / tracer

以下、図面に記載の発明を実施するための形態に基づいて、この発明をより具体的に説明する。
本発明の閉鎖水域の循環方法では、閉鎖された水域の水体1(図1参照。)の上下循環流により、水質改善を計るために、水中には複数の上昇流発生装置5(図1参照。)が配置される。複数の上昇流発生装置5は正多角形状に配置される。本発明の閉鎖水域の上下循環装置は、この正多角形状に配置された複数の上昇流発生装置5により構成される。各上昇流発生装置5は正多角形状の各頂点位置に配置される。最小単位の正多角形状としては正三角形で、正方形、正五角形、正六角形などと順次、増やしたものが含まれる。また、この正三角形の単位を複数組み合わせたり、正三角形と正方形のように異なる正多角形同士の複数の組み合わせもある。さらに、正多角形状には、多角形の各辺および各頂点の内角が同一である他に、各辺および各頂点の内角の製作誤差が±20%までが含まれる。
Hereinafter, the present invention will be described more specifically based on embodiments for carrying out the invention described in the drawings.
In the closed water area circulation method of the present invention, a plurality of upward flow generators 5 (see FIG. 1) are used in the water in order to improve the water quality by the vertical circulation flow of the water body 1 (see FIG. 1) in the closed water area. .) Is arranged. The plurality of upward flow generators 5 are arranged in a regular polygonal shape. The vertical circulation device in the closed water area of the present invention is constituted by a plurality of upward flow generating devices 5 arranged in this regular polygonal shape. Each upflow generator 5 is arranged at each vertex position of a regular polygon shape. The regular polygon shape of the minimum unit is a regular triangle, and includes a square, a regular pentagon, a regular hexagon, and the like that are sequentially increased. There are also a plurality of combinations of equilateral triangle units, and a plurality of combinations of different regular polygons such as regular triangles and squares. Further, the regular polygon shape includes the same internal angles of each side and each vertex of the polygon, and includes a manufacturing error of ± 20% for the internal angles of each side and each vertex.

図1は、上昇流発生装置5が正三角形状に水体1の水中に配置にされる場合の閉鎖水域の上下循環装置の全体概念図を示す。各上昇流発生装置5は、水底2に設置された例えば円盤形のシンカー9に係留索10を介して、水中に上向きに係留されている。各上昇流発生装置5には例えば散気式円筒型上昇流発生装置が使用される。散気式円筒型上昇流発生装置は、開口部が上向きに配置された筒体である。各上昇流発生装置5は、気泡を通じて上昇流15を発生させるものである。気泡は、陸岸4に置かれた空気圧縮機7から圧縮空気送気ホース8により送られる圧縮空気によって発生させる。この気泡の上昇に伴って、各上昇流発生装置5の円筒形の下端開口部から水流14が筒内へ吸い込まれる。水中に配置された各上昇流発生装置5の円筒型の上端開口部からは、真上の水面3の方向に向かって水と気泡の混気水塊が出て、混気水塊による上向きの流れ、つまり上昇流15が発生する。各上昇流発生装置5の真上の水面3には、水中を上昇した混気水塊16が現れて、水面3は波立つ。   FIG. 1 shows an overall conceptual diagram of an up-and-down circulation device in a closed water area when an upflow generator 5 is arranged in the water of a water body 1 in a regular triangle shape. Each ascending flow generator 5 is moored upward in water via a mooring line 10 in a disk-shaped sinker 9 installed on the bottom 2 of the water. For each upflow generator 5, for example, a diffused cylindrical upflow generator is used. The diffused cylindrical upflow generator is a cylindrical body in which an opening is arranged upward. Each upward flow generator 5 generates an upward flow 15 through bubbles. Bubbles are generated by compressed air sent by a compressed air supply hose 8 from an air compressor 7 placed on the shore 4. As the bubbles rise, the water flow 14 is sucked into the cylinder from the cylindrical lower end opening of each upflow generator 5. From the cylindrical upper end opening of each upward flow generating device 5 arranged in the water, a mixed water mass of water and bubbles emerges in the direction of the water surface 3 directly above, and the upward mixed water mass is directed upward. A flow, that is, an upward flow 15 is generated. On the water surface 3 directly above each upflow generator 5, an air-mixed water mass 16 rising in the water appears, and the water surface 3 undulates.

水面3に現れた混気水塊16は、同心円状にその周囲に拡散する。これにより、水面3には、水中から現れた混気水塊16による上昇流15によって、同心円状の拡散流6が生起される。各上昇流発生装置5の真上の水面3で発生した同心円状の拡散流6は、その周囲に同心円状を保った状態で拡がる。同心円状に拡がった各拡散流6は、隣り合う拡散流6同士がぶつかり合って相互干渉する。相互干渉する各拡散流6は、各同心円状の拡散流6の中心を結ぶ線を中心に左右方向に分かれる。そのうちの一方の拡散流6は、相互干渉によって、上昇流発生装置5が配置された正三角形状の中心部X(中心軸X−X)に向かって流れる。   The air-mixed water mass 16 that appears on the water surface 3 diffuses concentrically around it. As a result, a concentric diffusion flow 6 is generated on the water surface 3 by the upflow 15 caused by the mixed water mass 16 appearing from the water. The concentric diffused flow 6 generated on the water surface 3 directly above each upward flow generating device 5 spreads while maintaining a concentric shape around it. The diffusion flows 6 that are concentrically expanded collide with each other because the adjacent diffusion flows 6 collide with each other. The diffusion flows 6 that interfere with each other are divided in the left-right direction around a line connecting the centers of the concentric diffusion flows 6. One of the diffusion flows 6 flows toward the center portion X (center axis XX) of the equilateral triangle shape where the upward flow generation device 5 is disposed by mutual interference.

各拡散流6は、水面3の正三角形状の中心部Xに向かって、その周囲から連続的に集まってくる。正三角形状では、1基の上昇流発生装置5で発生した混気水塊16の1/6、つまり3基の上昇流発生装置5からは合計で1/2(1基の上昇流発生装置5で発生する混気水塊16による上昇流15の1/2)相当の混気水塊16の拡散流6が、正三角形状の中心部Xに向かって連続的に集まる。正三角形状の中心部Xにその全周囲から集まった水は行き場を失い、流体の連続性からその水面3から水底2に向かって流れる。このようにして、拡散流6の相互干渉によって正三角形状の中心部X(中心軸X−X)には、下向きの下降流42が発生することになる。   Each diffusion flow 6 gathers continuously from the periphery toward the center portion X of the equilateral triangle shape of the water surface 3. In the equilateral triangle shape, 1/6 of the mixed water mass 16 generated by one upflow generator 5, that is, a total of 1/2 (one upflow generator from the three upflow generators 5). The diffusion flow 6 of the mixed water mass 16 corresponding to 1/2 of the upward flow 15 generated by the mixed water mass 16 generated in 5 is continuously gathered toward the center portion X of the equilateral triangle shape. The water collected from the entire circumference of the equilateral triangular center X loses its destination and flows from the water surface 3 toward the bottom 2 due to the continuity of the fluid. In this way, a downward downward flow 42 is generated in the center portion X (center axis XX) of the equilateral triangle shape due to the mutual interference of the diffusion flow 6.

つまり、正三角形状の各頂点位置に対応する箇所の各上昇流発生装置5によって強制的に生じさせた上昇流15は、水面3で同心円状の拡散流6となって周囲に拡がる。そして、隣り合う拡散流6同士が相互干渉することで、正三角形状の中心部Xに下降流42が誘起されるのである。この上昇流15と下降流42とにより、閉鎖された水域の水体1には上下循環流が生じる。この上下循環流を通じて閉鎖水域の水体1の水質改善が計られることになる。   That is, the upward flow 15 forcibly generated by the upward flow generating devices 5 at the locations corresponding to the positions of the apexes of the equilateral triangle shape spreads around the water surface 3 as a concentric circular diffusion flow 6. And the adjacent downward flow 6 mutually interferes, and the downward flow 42 is induced in the center part X of equilateral triangle shape. Due to the upward flow 15 and the downward flow 42, a vertical circulation flow is generated in the water body 1 in the closed water area. Through this vertical circulation, the water quality of the water body 1 in the closed water area will be improved.

一方、相互干渉で正三角形状の外側に向かって流れた残りの拡散流6は、さらに拡散しながら、水面3から徐々に下降し始める。このとき、正三角形状の外側の水中に別の上昇流発生装置5を配置して、別の上昇流発生装置5と既にある2基の上昇流発生装置5とによって新たに正三角形を造ることにより、同様に、下降流42を生じさせることができる。3基の上昇流発生装置5を使用した場合には、1基の上昇流発生装置5で発生する上昇流15の1/2の下降流42を誘起させるが、4基の上昇流発生装置5を使用して、2つの正三角形あるいは1つの正方形を造るように配置した場合には、1基の上昇流発生装置5で発生する上昇流15と同量の下降流42を誘起させることが可能となる。複数の上昇流発生装置5の組み合わせについては後述する。   On the other hand, the remaining diffusion flow 6 that has flowed toward the outside of the equilateral triangle shape due to mutual interference begins to gradually descend from the water surface 3 while further diffusing. At this time, another upflow generator 5 is arranged in the water outside the equilateral triangle, and a new equilateral triangle is formed by another upflow generator 5 and the two existing upflow generators 5. Thus, the downward flow 42 can be generated in the same manner. When three upflow generators 5 are used, a downflow 42 that is 1/2 of the upflow 15 generated by one upflow generator 5 is induced, but four upflow generators 5 are used. Can be used to induce the same amount of the downward flow 42 as the upward flow 15 generated by one upward flow generation device 5 when arranged so as to form two equilateral triangles or one square. It becomes. A combination of the plurality of upflow generators 5 will be described later.

以上のように、複数基の上昇流発生装置5を近接設置して、各基で生成する流れを流体力学的に干渉させ、この複数基の対流系を組合せると、相互干渉の効果として、中心部X(中心軸X−X)に集中的かつ加速的な下降流42を生じることになる。言い換えれば、単基使用では明確にできない下向き流れは、複数基の上昇流発生装置5を近接して組み合わせて設置すれば、複数基の流れの干渉効果として、上昇流15に基づく下向き流れが非常に明確に生じることが分かる。この下向き流れは、あたかも見えない下向きダクトが設けられているかのように下向き流れの区画域内を流れ、ここを通過する明確な下向き集中的かつ加速的な流れとして形成される。   As described above, when a plurality of upflow generators 5 are installed close to each other, the flow generated by each group is hydrodynamically interfered, and the combination of the plurality of convection systems results in mutual interference. A concentrated and accelerating downward flow 42 is generated in the central portion X (central axis XX). In other words, the downward flow that cannot be clearly defined by the use of a single unit, if a plurality of upflow generators 5 are installed in close proximity to each other, the downward flow based on the upflow 15 is extremely effective as an interference effect of the multiple units of flow. It can be seen that this occurs clearly. This downward flow is formed as a clear downward concentrated and accelerating flow that flows through and passes through the downward flow compartment as if there is a downward duct that is not visible.

以上のように、上昇流発生装置5を複合的に組合せて配置し、これらの上昇流15により水面3上で生起させた複数の同心円状の拡散流6を相互干渉させることによって、集中的な下降流42が生成されることを、流動シミュレーション計算によって検証した。次に、これを実際の物理現象として確かめるため、小型の円形水槽を用い、小型模型を使用して水流の可視化実験を行った。
用いた上昇流発生装置5の模型は4基である。これは、図4A(n=4)に示される組合わせ配置に相当している。この実験において水面下を撮影した写真例を図3に掲げる。この写真において、1は実験水槽(直径約1.5m×深さ約80cmの円筒型)の水体、2は水底、3は水面、5aは散気式円筒型上昇流発生装置模型、8は圧縮空気送気ホース、9はシンカー、10は係留索、49は水流方向センサー・トレーサーを示す。
4基の散気式円筒形上昇流発生装置模型5aの配置点の中点を通る鉛直軸上に水面3上から水中へ水流方向センサー・トレーサー49としての「吹き流し」(微細な軽いビニール紐の繊維を束ねて、水中で流れの方向になびくようにしたもの)を下ろし、この水流方向センサー・トレーサー49の穂先の向きを観察した。この水流方向センサー・トレーサー49を着水した時は、ビニール繊維の浮力で水流方向センサー・トレーサー49の穂先はすべて上方(水面)に向いていたが、水流実験開始後、これらの水流方向センサー・トレーサー49の穂先は、写真に見られるとおり、すべて下向きになびいている。これは水中のこの位置に生じた集中的な下降流42の向きを示すものと判断された。また、これ以外にもインク流しによる可視化観察(動画撮影)でも同様の結果を得た。また、水流実験終了後、水槽内の水が静止すると、水流方向センサー・トレーサー49の穂先はすべて上方(水面側)に向いた。このことからも、本実験における複数基の散気式円筒形上昇流発生装置模型5aの配置点の中点領域に水面3から水底2へ向かう下向きの水流つまり下降流42が生じたことが分かる。
以上の通り、上昇流発生装置5の複数基組み合わせ配置を行うことにより、複数基の上昇流発生装置5の配置点の中心部Xの軸上に集中的な下降流42が生成されることが検証された。
As described above, the upflow generators 5 are combined and arranged, and a plurality of concentric diffusion flows 6 generated on the water surface 3 by these upflows 15 are caused to interfere with each other. The generation of the downflow 42 was verified by flow simulation calculation. Next, in order to confirm this as an actual physical phenomenon, a small circular aquarium was used and a water flow visualization experiment was conducted using a small model.
There are four models of the upward flow generator 5 used. This corresponds to the combination arrangement shown in FIG. 4A (n = 4). An example of a photograph taken under the surface of the water in this experiment is shown in FIG. In this photograph, 1 is a water body of an experimental water tank (a cylinder of about 1.5 m in diameter and about 80 cm in depth), 2 is a water bottom, 3 is a water surface, 5a is a diffused cylindrical upflow generator model, and 8 is a compression model. An air supply hose, 9 is a sinker, 10 is a mooring line, and 49 is a water flow direction sensor / tracer.
“Blow-off” as a water flow direction sensor / tracer 49 on the vertical axis passing through the midpoint of the four diffused cylindrical upflow generator models 5a from the water surface 3 to the water. The fibers were bundled and fluttered in the direction of flow in water), and the direction of the tip of this water flow direction sensor / tracer 49 was observed. When the water flow direction sensor / tracer 49 was landed, the tips of the water flow direction sensor / tracer 49 were all upward (water surface) due to the buoyancy of the vinyl fibers. The tips of the tracer 49 are all fluttering downward as seen in the photo. This was determined to indicate the direction of concentrated downflow 42 occurring at this location in the water. In addition to this, the same result was obtained in visualization observation (moving image shooting) using an ink sink. Further, after the water flow experiment was completed, when the water in the water tank stopped, all the tips of the water flow direction sensor / tracer 49 faced upward (water surface side). This also shows that a downward water flow, that is, a downward flow 42 from the water surface 3 toward the bottom 2 occurred in the midpoint region of the arrangement point of the plurality of diffused cylindrical upflow generator models 5a in this experiment. .
As described above, when a plurality of upflow generators 5 are combined and arranged, a concentrated downflow 42 is generated on the axis of the central portion X of the arrangement point of the plurality of upflow generators 5. Verified.

上昇流発生装置5の複数基組み合わせによる集中的な下降流42の生成、つまり、組合わせ配置基数nと下降流42の生成点の数について、以下説明する。
前述までに、複数基の上昇流発生装置5を組合わせ干渉させることにより、集中的加速的な下降流42を生成させ得ること、またこのような下降流42を生成させる方式について説明した。また、このような現象が生じることの検証例として、可視化モデル実験の結果を引用して説明した。次に、上昇流発生装置5を複数基組み合わせることによる下降流42の生成の説明として、組合わせ配置個数nを、n=3〜5の範囲で変更した場合、下降流42がどのように生じるかについての説明を以下に掲げる。
The generation of the concentrated downward flow 42 by the combination of the plurality of upward flow generators 5, that is, the number of generation points of the combination arrangement radix n and the downward flow 42 will be described below.
Up to this point, it has been explained that a concentrated and accelerated downflow 42 can be generated by combining and interfering with a plurality of upflow generators 5 and a method of generating such downflow 42. In addition, as a verification example of the occurrence of such a phenomenon, the result of the visualization model experiment has been cited and explained. Next, as an explanation of the generation of the downward flow 42 by combining a plurality of upward flow generators 5, how the downward flow 42 is generated when the combination arrangement number n is changed in the range of n = 3-5. The following is an explanation of this.

(1)n=3について(図2A、図2B)
組合わせ基数nの最少値であるn=3について、図2Aおよび図2Bを参照して説明する。
図2Aおよび図2Bは、水域を上から見て3基の上昇流発生装置5を、各中心軸が正三角形の各頂点を通る位置にそれぞれ置いて作動させると、各上昇流発生装置5の上方水面3の中心軸の周囲に同心円状の拡散流6が外側に向かって拡がり、それぞれの同心円状の拡散流6の外周が互いに接するようになった場合を図示している。
図中、正三角形状の中心部Xは、正三角形状に配置された3基の上昇流発生装置5によって水面まで持ち上げられた水流が略正三角形状の狭間に落ち込み、水底2へ向かって下向きに送り出される水流の中心軸を示す。
図中、各3基の上昇流発生装置5によって生じた上昇流15が水面3に到達して、同心円状の拡散流6となってその周囲に拡がって流れる場合、互いの同心円状の拡散流6の接点で囲まれた領域内の水面3の流れは、弧状曲線からなる略正三角形状の中心部Xに向かって集まり、その中心部Xへ吸い込まれ、水底2へ向かって下降してゆく。このとき、1基の上昇流発生装置5が水面まで押し上げた混気水塊16のうち、水底2へ向かって下降する水量は、円形を60度の中心角で切り取った扇形状領域内の放射状流れに限られる。したがって、その量は、中心角360度で生じている全方位放射水流量の全量を1とすると、中心角60度の範囲の水量は、
1×(60°/360°)=1/6 ・・・(a)
と算定される。1基の上昇流発生装置5が水面3へ持ち上げた水量の1/6が寄与するということは、これが3基であるから、(60°/360°)×3基=3/6=1/2、よって正三角形状の中心部Xの狭間の中心を流れ下る下降流42の流量は、1基の上昇流15の流量を1とすると、その1/2となる。(たとえば、出力3.7kW(空気量500L/分)のエア・コンプレッサーを用いて、3基の上昇流発生装置5を駆動した場合の1基当たりの動水流量が、夏期、72万(トン/日)程度と測定された實例があるが、これでゆくと、3基の組合わせて発揮される下降流42の流量は、36万(トン/日)と概算される。)
(1) n = 3 (FIGS. 2A and 2B)
The minimum value n = 3 of the combined radix n will be described with reference to FIGS. 2A and 2B.
2A and 2B show that when the three upflow generators 5 are operated with the respective central axes passing through the vertices of an equilateral triangle when the water area is viewed from above, each of the upflow generators 5 is operated. The case where the concentric diffusion flow 6 spreads outward around the central axis of the upper water surface 3 and the outer circumferences of the respective concentric diffusion flows 6 come into contact with each other is illustrated.
In the figure, the center portion X of the equilateral triangle has a water flow lifted up to the water surface by the three upflow generators 5 arranged in the equilateral triangle shape and falls downward toward the bottom 2 of the water. The central axis of the water flow sent out to is shown.
In the figure, when the upflow 15 generated by each of the three upflow generators 5 reaches the water surface 3 and becomes a concentric diffusion flow 6 and spreads around it, the concentric diffusion flows of each other The flow of the water surface 3 in the region surrounded by the contact points 6 gathers toward the central part X of a substantially equilateral triangle formed by an arcuate curve, is sucked into the central part X, and descends toward the water bottom 2. . At this time, the amount of water descending toward the bottom 2 of the mixed water mass 16 pushed up to the water surface by one upflow generator 5 is a radial shape in a fan-shaped region obtained by cutting a circle at a central angle of 60 degrees. Limited to flow. Therefore, when the total amount of omnidirectional radiant water flow occurring at a central angle of 360 degrees is 1, the amount of water in the range of the central angle of 60 degrees is
1 × (60 ° / 360 °) = 1/6 (a)
Is calculated. The fact that 1/6 of the amount of water lifted by the one upflow generator 5 to the water surface 3 contributes is because there are three, so (60 ° / 360 °) × 3 units = 3/6 = 1 / 2. Therefore, the flow rate of the downward flow 42 flowing down the center of the center portion X of the equilateral triangle is 1/2 of the flow rate of one upward flow 15. (For example, when three upflow generators 5 are driven using an air compressor with an output of 3.7 kW (air volume: 500 L / min), the dynamic water flow rate per unit is 720,000 (tons in the summer). (There is an example measured to the extent of / day), but in this case, the flow rate of the downflow 42 exerted in combination with the three units is estimated to be 360,000 (tons / day).)

(2)n=4について(図4A、図4B)
組合わせ基数n=4について、図4Aおよび図4Bを参照して説明する。
図4Aは、水域を上から見て4基の上昇流発生装置5を、各中心軸が正方形の各頂点を通る位置にそれぞれ置いて作動させると、各基毎に成長する同心円状の拡散流6の外周が互いに接するようになった場合を図示している。
図4Aは、上昇流発生装置5の4基を以て基本組合せ単位とする図(以下、「90°系」と略称する。)を掲げている。図中、正方形状の中心部Xは、同心円状の拡散流6の外周同士の4つの接点によって水面まで持ち上げられた水流が略正方形状の狭間に落ち込み、水底へ向かって下向きに送り出される水流の中心軸X−Xを示す。
図4Bは、水域を上から見て4基の上昇流発生装置5を、各中心軸が2個の正三角形で構成される平行四辺形の各頂点を通る位置にそれぞれ置いて作動させると、4基の上昇流発生装置5による上昇流15が水面に到達して、同心円状の拡散流6となって流れ、同心円状の拡散流6の3つの接点で囲まれた2個の正三角形状の領域内の水面流れがそれぞれの領域の中心部Xの狭間へ吸い込まれ、水底へ向かって下降してゆくことを示している(以下、「60°系」と略称する。)。
図4Bの「60°系」では、平行四辺形が2個の正三角形で構成されることから、下降流量寄与の議論がそのまま成り立ち、中心部Xを中心軸とする下降流42が2個所に形成され、そのそれぞれに上記(a)の推算則が成り立つ。すなわち、図4Bに対しては、
[(60°/360°)×3]×2=1 ・・・(b)
が成り立つ。
つぎに、図4Aの場合は、各4基の上昇流15が水面に到達して、同心円状の拡散流6となって流れる場合、同心円状の拡散流6の4つの接点で囲まれた領域内の水面3の流れは略十字状の中心部Xの狭間へ吸い込まれ、水底2へ向かって下降してゆく。このとき、1基の上昇流発生装置5が水面3まで押し上げた混気水塊16のうち、水底2へ向かって流れる下降流42の水量は、円形を90度の中心角で切り取った扇形状領域内の放射状流れに限られる。したがって、その量は、中心角360度で生じている放射水流量の全量を1とすると、中心角90度の範囲の水量は、
1×(90°/360°)=1/4 ・・・(c)
と算定される。1基の上昇流発生装置5が水面へ持ち上げた水量の1/4が寄与するということは、今の場合これが4基であるから、(90°/360°)×4基=1である。よって、略十字状の中心部Xの狭間の中心を流れ下る下降流42の流量は、1基の上昇流流量を1とすると、その同量1となる。(たとえば、1基当たりの動水流量が、夏期、72万(トン/日)程度と測定された例があるとすれば、これでゆくと、4基の組合わせて発揮される下降流42の水流の流量は、72万(トン/日)と推算されることになる。)
(2) n = 4 (FIGS. 4A and 4B)
The combination radix n = 4 will be described with reference to FIGS. 4A and 4B.
FIG. 4A shows a concentric diffused flow that grows for each base when the four upward flow generators 5 are operated with the central axes passing through the vertices of a square when viewed from above the water area. The case where the outer periphery of 6 comes in contact with each other is illustrated.
FIG. 4A is a diagram (hereinafter, abbreviated as “90 ° system”) in which four units of the upflow generator 5 are used as basic combination units. In the figure, the center X of the square shape is a stream of water that is raised up to the water surface by four contact points between the outer circumferences of the concentric circular flow 6 and falls into a substantially square narrow space and is sent downward toward the bottom of the water. A central axis XX is shown.
FIG. 4B shows that the four upward flow generators 5 viewed from the top of the water area are operated by placing each central axis at a position passing through each vertex of a parallelogram formed of two regular triangles. The upflow 15 generated by the four upflow generators 5 reaches the water surface and flows as a concentric circular diffusion flow 6, and two equilateral triangular shapes surrounded by three contact points of the concentric circular diffusion flow 6. It is shown that the water surface flow in each region is sucked into the gap between the central portions X of the respective regions and descends toward the bottom of the water (hereinafter referred to as “60 ° system”).
In the “60 ° system” of FIG. 4B, the parallelogram is composed of two equilateral triangles, so the discussion of the downward flow contribution holds as it is, and the downward flow 42 with the central portion X as the central axis is at two locations. Each of them is formed, and the above-described estimation rule (a) holds. That is, for FIG. 4B,
[(60 ° / 360 °) × 3] × 2 = 1 (b)
Holds.
Next, in the case of FIG. 4A, when each of the four upward flows 15 reaches the water surface and flows as a concentric diffusion flow 6, a region surrounded by the four contact points of the concentric diffusion flow 6. The flow of the inner water surface 3 is sucked into the space between the substantially cross-shaped central portions X and descends toward the water bottom 2. At this time, the amount of water of the downward flow 42 flowing toward the bottom 2 of the mixed water mass 16 pushed up to the water surface 3 by one upflow generator 5 is a fan shape obtained by cutting a circle at a central angle of 90 degrees. Limited to radial flow in the region. Therefore, when the total amount of radiant water flow generated at the central angle of 360 degrees is 1, the amount of water in the range of the central angle of 90 degrees is
1 × (90 ° / 360 °) = 1/4 (c)
Is calculated. The fact that ¼ of the amount of water lifted to the water surface by one upflow generator 5 contributes is (90 ° / 360 °) × 4 units = 1 because this is four in this case. Accordingly, the flow rate of the downward flow 42 flowing down the center between the substantially cross-shaped central portions X is equal to 1 when one upward flow rate is 1. (For example, if there is an example in which the flow rate of water per unit is measured to be about 720,000 (tons / day) in the summer, the downward flow 42 that is exhibited in combination with four units will be obtained. The flow rate of water flow is estimated to be 720,000 (tons / day).)

(3)n=5について(図5A、図5B、図5C)
組合わせ基数n=5について、図5A、図5Bおよび図5Cを参照して説明する。
図5A〜図5Cは、水域を上から見て5基の上昇流発生装置5を、各中心軸がそれぞれ図示するような形状に配置して作動させると、各基毎に成長する同心円状の拡散流6の外周が互いに接するようになった場合を図示している。図5Aは上述の「60°系」、図5Bは「60°系」と「90°系」の複合系、図5Cは、「60°系」でも「90°系」でもない「花びら状円周接触」の接触条件を持つ場合を示している。
図4A、図4B迄に述べたところからも明らかなように、図5Aは「60°系」の正三角形×3個に分解できる。したがって、前述の推算則(a)が成り立ち、この場合は、
[(60°/360°)×3]×3=1.5 ・・・(d)
の倍率となる。
図5Bは「60°系」と「90°系」の混合系であるが、「60°系」については推算則(a)が、「90°系」については推算則(c)が成り立つので、下降流42の流量の推算にはこれらを用いて簡単に行うことができる。
次に図5Cであるが、対流系の接触条件を「60°系」、「90°系」のように分類して整理する際の問題として、これらの条件に当てはまらない接触条件であり、上昇流発生装置5が円周上に等間隔に並んで接触している場合はどうなるかという問題がある。この接触条件の分類名を、仮に「花びら環状接触系」と呼ぶとすると、上昇流発生装置5の基数n毎に推算値が変わり、「60°系」や「90°系」のような単純化ができない。
いま、図5Cの接触条件に対して、下降流42の流量推算に必要な角度値を求めると、図中に記入したようになる。言い換えると、1基の上昇流発生装置5が水面3へ持ち上げた上昇流15の水流流量を1とした場合、n=5の「花びら環状接触」では、このうちのどれだけが下降流42の流量に寄与するかは、これらの角度値を用いて、以下のように推算される。
[(54°×2/360°)×5]=1.5 ・・・(e)
すなわち、n=5の「花びら環状接触」では、1基の上昇流発生装置5が水面3へ持ち上げる水流流量総量を1とした場合、下降流流量は1.5倍となることが分かる。
(3) n = 5 (FIGS. 5A, 5B, and 5C)
The combination radix n = 5 will be described with reference to FIGS. 5A, 5B, and 5C.
FIGS. 5A to 5C show concentric circles that grow for each base when the five upward flow generating devices 5 as viewed from above the water area are arranged and operated in shapes as shown in the respective central axes. The case where the outer periphery of the diffusion flow 6 comes into contact with each other is illustrated. 5A is the above-mentioned “60 ° system”, FIG. 5B is a combined system of “60 ° system” and “90 ° system”, and FIG. 5C is a “petal circle that is neither“ 60 ° system ”nor“ 90 ° system ”. The case where the contact condition of “circumferential contact” is shown is shown.
4A and 4B, FIG. 5A can be decomposed into “60 ° system” regular triangles × 3 pieces. Therefore, the above-mentioned estimation rule (a) holds, and in this case,
[(60 ° / 360 °) × 3] × 3 = 1.5 (d)
It becomes the magnification of.
FIG. 5B is a mixed system of “60 ° system” and “90 ° system”, but the estimation rule (a) is established for “60 ° system” and the estimation rule (c) is established for “90 ° system”. The estimation of the flow rate of the downward flow 42 can be easily performed using these.
Next, as shown in FIG. 5C, as a problem when sorting and arranging the convective contact conditions such as “60 ° system” and “90 ° system”, it is a contact condition that does not apply to these conditions. There is a problem of what happens when the flow generators 5 are in contact with each other at equal intervals on the circumference. If the classification name of the contact condition is referred to as “petal ring contact system”, the estimated value changes for each radix n of the upflow generator 5, and a simple value such as “60 ° system” or “90 ° system” is used. Cannot be converted.
Now, when the angle value necessary for estimating the flow rate of the descending flow 42 is obtained with respect to the contact condition of FIG. 5C, it is entered in the figure. In other words, when the water flow rate of the upflow 15 lifted to the water surface 3 by one upflow generator 5 is 1, in the “petal ring contact” with n = 5, how many of these are the downflow 42. Whether to contribute to the flow rate is estimated as follows using these angle values.
[(54 ° × 2/360 °) × 5] = 1.5 (e)
That is, in the “petal ring contact” with n = 5, when the total amount of water flow rate that one upflow generator 5 lifts to the water surface 3 is 1, the downflow rate is 1.5 times.

(4)n=3〜11に対する下降流動水流量の傾向について
以上、組合わせ基数nを3〜5と変更した場合に発生する下降流42の流量について述べたが、これらの下降流量の倍率ηを組合わせ基数nを横軸に一覧図で示すと図8のようになる。図中、右手方向に上昇する直線は、上昇流発生装置5の組合わせにおいて、ある複数組合わせ基数nを変更すると、生成する下降流42の発生地点の数が何ヶ所となるかの個数η、言い換えれば、1基の上昇流発生装置5が水面3へ持ち上げた上昇流15の水流流量を1とした場合、ある組合せによって生じる加速的集中的な下降流42の動水流量はその何倍になるかを示している。
例えばn=10の場合、60°系、90°系の組合わせを併せて、合計5基による上昇流15の流量を、全部下向きに流動させたと同等の下向き流れを生成させることができることが分かる。なお、n=9、10、11等に対して、複合組合せの配列方式を変更すると、下降流42の発生地点の数が変化する。どのような組合わせに対してどう変化するかを調べて見ると、概括的に言えることは、複数基の配列を2列を中心とした層の薄い配列にすると図の直線のように変化するが、層を3層にし、さらに縦横双方に3層以上にすると、ηの値が増加している。すなわち、「60°系」にせよ「90°系」にせよ、隣り合う上昇流発生装置5との組合せによる流体力学的干渉作用を、縦方向にも、横方向にも利用する配列を狙えば、高いη値が得られることがわかる。
以上、上昇流発生装置5を複数基組み合わせることによる集中的な下降流42の生成、および、これらによる下降流42の発生倍率ηの推算の考え方について述べたが、これらを用いて、ある水域における、水体1の上下循環を促進したい場合、これを効率的に行う手法として、ここに述べる本上下循環装置の方式、手法を活用することができる。
(4) Trend of Downward Flowing Water Flow Rate for n = 3-11 The flow rate of the downward flow 42 generated when the combination radix n is changed to 3-5 has been described above. FIG. 8 shows a list of the combined radix n on the horizontal axis. In the figure, the straight line rising in the right-hand direction is the number η of the number of generation points of the downward flow 42 to be generated when a plurality of combination radix n is changed in the combination of the upward flow generator 5. In other words, when the water flow rate of the upward flow 15 lifted to the water surface 3 by one upflow generation device 5 is 1, the dynamic water flow rate of the accelerated concentrated downward flow 42 generated by a certain combination is several times that. Shows how it will be.
For example, in the case of n = 10, it can be seen that a downward flow equivalent to the case where all of the flow rates of the upward flow 15 by a total of 5 units are flowed downward can be generated by combining a combination of 60 ° system and 90 ° system. . In addition, if the arrangement | sequence system of a composite combination is changed with respect to n = 9, 10, 11, etc., the number of the generation | occurrence | production points of the downward flow 42 will change. By examining how it changes for what kind of combination, what can be generally said is that if the arrangement of multiple groups is made a thin arrangement of layers centering on two rows, it changes like the straight line in the figure However, the value of η increases when the number of layers is three and when the number of layers is three or more in both the vertical and horizontal directions. In other words, whether it is a “60 ° system” or a “90 ° system”, if an arrangement that utilizes the hydrodynamic interference action in combination with the adjacent upward flow generator 5 in both the vertical and horizontal directions is aimed at. It can be seen that a high η value is obtained.
As described above, the generation of the concentrated downflow 42 by combining a plurality of the upflow generators 5 and the idea of estimating the generation rate η of the downflow 42 by these have been described. When the vertical circulation of the water body 1 is desired to be promoted, the method and method of the vertical circulation device described here can be used as a method for efficiently performing this.

下降流動水流量の概算法について
上昇流発生装置5を複数基組み合わせる場合の例として、3基を正三角形の中心軸に関して軸対称に設置した場合の強制対流を概念的に図1に示したが、これらは、複数個の上昇流発生装置5が近接して設置された各強制対流が互いにどのように干渉し合うかを示している。
これらにより、複合組合わせ配置に対する下降流42の動水流量を概算する方法を、「60°系」および「90°系」に分けて説明する。
About the method of estimating the downward flow water flow rate As an example of combining a plurality of upflow generators 5, forced convection in the case where three units are installed axisymmetrically with respect to the central axis of an equilateral triangle is conceptually shown in FIG. 1. These show how the forced convections in which a plurality of upflow generators 5 are installed close to each other interfere with each other.
By these, the method of estimating the dynamic water flow rate of the downward flow 42 with respect to the composite combination arrangement will be described separately for “60 ° system” and “90 ° system”.

1)「60°系」複合組合わせ配置に対する下向き動水流量の概算
各上昇流発生装置5が水面へ持ち上げる上昇流15の流量を1としたとき、これらの複合組合わせ配置によって生じる下降流42の流量は、これに対してどの位の倍率ηと推定されるかについて少し詳しく説明する。
まず、「60°系」複合組合わせ配置について説明すると、「60°系」の複合組合わせ配置の基本は、前項までに述べた通り、水底2の正三角形の頂点を通る3本の鉛直軸にそれぞれの中心軸を持つ上昇流発生装置5×3基の配置となる。これを図1を用いて説明する。中心軸a−a、同b−b、同c−cを持つ3基の上昇流発生装置5(それぞれ(A)、(B)、(C)と記す。)がつくる同心円状の拡散流6(それぞれ(A)、(B)、(C)と記す。)が互いに近接して、水面3内の記号でいえば、線分AB、BC、CAのそれぞれの中心で接している状態が図1である。
ある単一の上昇流発生装置5により発生させた上昇流15は、水面3へ到達すると、その水面到達点から水面3内を周囲360°方向へ向かって同心円状の拡散流6になって拡散する。図1の水面3内の点Aを例にとって述べれば、上昇流発生装置5(A)の上向き流量の全量1は、水面到達後、均等に360°方向へ向かって同心円状に拡散しようとする。図1における各上昇流発生装置5の機体の同心円状の拡散流6には、水面3内の拡散流れの方向を便宜上60°毎に6個の矢印の位置で区切って図示している。例えば、点Aから周囲へ向かって水平に流れる上昇流15は360°方向へ均等に拡散するので、点Aを中心とする水面3内の6個の矢印の位置で区切られた扇形部分(拡散流6(A)の水面3でいえば、拡散流6(A)内のCAを結ぶ線とABを結ぶ線との間の扇形部分と同形×6個の扇形部分(中心角はすべて60°))は、形状、流量分布共に6個が全く合同であり、流量の360°範囲内の総合計が1である。同心円状の拡散流6(A)の水面3部分を流れる上昇流15は、隣り合う同心円状の拡散流6(B)、6(C)と拡散流6(A)とがそれぞれ接する点(それぞれ接点AB、接点CAと記す。)で区切られた範囲内の拡散流(A)の上縁(接点CA〜接点ABの円弧)を経由して下降流42に転じる。
したがって、強制対流の拡散流6(A)から見て、水面へ到達した上昇流量1のうち、少なくともその1/6が下降流42に転じることになる。これと全く同じことが同心円状の拡散流6のB、ならびにCにも生じるため、3基の上昇流発生装置5(A、B、C)の発生する上昇流15の流量が下降流42に転じる割合は、少なくとも次の程度となる。
[1基の上昇流発生装置5が発生する上昇流15の流量(1)×そのうち下降流42に転じる割合(1/6)]×寄与する上昇流発生装置5の基本構成機体数(3)
=[(1)×(1/6)]×(3)
=(1/6)×3
=1/2 ・・・(式1)
ここに、(1/6)とは、意味の上から=(60°/360°)と書き換えてもよい。
以上から、1基の上昇流発生装置5が水面へ持ち上げた水量の1/6が寄与するということは、これが3基合計されると、1×(60°/360°)×3基=3/6=1/2である。よって、3基の上昇流発生装置5の機体に囲まれた略正三角形状の狭間の中心部Xを流れ下る下降流42の流量は、1基の上昇流流量を1とすると、その1/2となる。たとえば、出力3.7kW(空気量500L/分)のエア・コンプレッサーを用いて、3基の上昇流発生装置5を駆動した場合の1基当たりの水面到達の動水流量が、夏期、72万(トン/日)と測定された気泡駆動式の上昇流発生装置の実績がある。これでゆくと、これを3基組合わせた複合組み合わせ配置1セットによって発揮される下向き動水流量は、72万(トン/日)×(1/2)=36万(トン/日)と推算されることになる。このように、「60°系」の複合組合わせ配置に対しては、この複合組合わせの基本構成(3個の正三角形配置)をNセット組み合わせて応用する場合、1基当たリの上昇流量を1とすると、生成される下向き流量の合計量は、上記(式1)で示される倍率0.5を(η60°≡0.5)と書けば、
生成される下向き流量の合計量(1に対する倍率)
=(η60°)×N ・・・(式2)
と書き表すことができる。
1) Approximation of downward dynamic water flow rate for “60 ° system” composite combination arrangement When the flow rate of upflow 15 lifted to the water surface by each upflow generator 5 is 1, downflow 42 generated by these composite combination arrangements It will be described in a little more detail how much magnification η is estimated for this flow rate.
First, the “60 ° system” composite combination arrangement will be described. The basics of the “60 ° system” composite combination arrangement are the three vertical axes passing through the vertices of the equilateral triangle of the bottom 2 as described above. 5 × 3 ascending flow generators having respective central axes are arranged. This will be described with reference to FIG. Concentric diffused flow 6 produced by three upflow generators 5 (represented as (A), (B), and (C), respectively) having central axes aa, b-b, and c-c. (Represented as (A), (B), and (C), respectively) are close to each other, and the symbols in the water surface 3 are in contact with the centers of the line segments AB, BC, and CA. 1.
When the upflow 15 generated by a single upflow generator 5 reaches the water surface 3, it diffuses as a concentric diffusion flow 6 in the direction of 360 ° around the water surface 3 from the water surface arrival point. To do. Taking the point A in the water surface 3 in FIG. 1 as an example, the total amount 1 of the upward flow rate of the upward flow generator 5 (A) tries to diffuse concentrically in the direction of 360 ° after reaching the water surface. . In the concentric diffused flow 6 of the airframe of each upward flow generating device 5 in FIG. 1, the direction of the diffused flow in the water surface 3 is illustrated by dividing the direction of six arrows every 60 ° for convenience. For example, the upward flow 15 that flows horizontally from the point A to the surroundings diffuses evenly in the 360 ° direction, so that the fan-shaped portion (diffusion) delimited by the positions of six arrows in the water surface 3 with the point A as the center. Speaking of the water surface 3 of the stream 6 (A), the fan-shaped part between the line connecting the CA and the line connecting AB in the diffusion flow 6 (A) × six fan-shaped parts (all central angles are 60 °). )) Is totally congruent in both shape and flow distribution, and the total in the 360 ° range of flow is 1. The rising flow 15 flowing through the water surface 3 of the concentric circular diffusion flow 6 (A) is a point where adjacent concentric diffusion flows 6 (B) and 6 (C) and the diffusion flow 6 (A) are in contact with each other (respectively It turns to the downward flow 42 via the upper edge of the diffusion flow (A) within the range defined by the contact AB and the contact CA) (contact CA to arc of contact AB).
Therefore, as seen from the diffusion flow 6 (A) of forced convection, at least one-sixth of the ascending flow rate 1 reaching the water surface turns into the descending flow 42. Exactly the same thing occurs in B and C of the concentric circular diffusion flow 6, so the flow rate of the upflow 15 generated by the three upflow generation devices 5 (A, B, C) is changed to the downflow 42. The turning ratio is at least as follows.
[Flow rate of upflow 15 generated by one upflow generator 5 (1) × the ratio of turning to downflow 42 (1/6)] × contributing number of basic components of upflow generator 5 (3)
= [(1) x (1/6)] x (3)
= (1/6) x 3
= 1/2 (Formula 1)
Here, (1/6) may be rewritten as (= 60 ° / 360 °) in terms of meaning.
From the above, the fact that 1/6 of the amount of water lifted to the water surface by one upflow generator 5 contributes is that when 3 units are added, 1 × (60 ° / 360 °) × 3 units = 3 / 6 = 1/2. Therefore, the flow rate of the downward flow 42 flowing down the central portion X between the substantially equilateral triangles surrounded by the bodies of the three upward flow generation devices 5 is 1 / 2 For example, when the three upflow generators 5 are driven using an air compressor with an output of 3.7 kW (air amount 500 L / min), the water flow rate reaching the water surface per unit is 720,000 in the summer. There is a track record of a bubble-driven upflow generator measured as (ton / day). Then, the downward dynamic water flow rate exhibited by one set of the combined combination arrangement in which three of these are combined is estimated to be 720,000 (tons / day) × (1/2) = 360,000 (tons / day). Will be. In this way, for the “60 ° system” composite combination arrangement, when N sets are applied in combination with the basic configuration (three equilateral triangle arrangements) of this composite combination, the rise of one unit is increased. Assuming that the flow rate is 1, the total amount of the downward flow rate to be generated can be calculated by writing the magnification 0.5 shown in the above (Equation 1) as (η60 ° ≡0.5).
Total amount of downward flow generated (magnification for 1)
= (Η60 °) × N (Expression 2)
Can be written as:

2)「90°系」複合組合わせ配置に対する下向き動水流量の概算
次に「90°系」複合組合わせ配置について説明すると、「90°系」の複合組合わせ配置の基本は、前項までに述べた通り、水底2の正方形の各頂点を通る4本の鉛直軸にそれぞれの中心軸を持つ上昇流発生装置5の4基の配置となる。4基の上昇流発生装置5(それぞれ(A)、(B)、(C)、(D)と記す。)がつくる同心円状の拡散流6(それぞれ(A)、(B)、(C)、(D)と記す。)が互いに近接し、中心部X(X−X軸)に関して軸対称に接している状態(n=4)である。前項の場合と同様、ある単一の上昇流発生装置5が発生した上昇流15は、水面3へ到達するとその水面到達点から水面3内を周囲360°方向へ向かって同心円状の拡散流6となって周囲に拡散する。前項同様、例えば装置Aの上向き流量の全量1は水面到達後、均等に360°方向へ向かって放射状に拡散しようとする。図4Aにおいて、各上昇流発生装置5の機体の同心円状の拡散流6には、水面3内の拡散流れの方向を、便宜上22.5°毎に流れの方向を示す16個の矢印で分けて図示している。
例えば、ある機体の中心軸上の水面に相当する高さの点から周囲へ向かって水平に流れる上昇流量は360°方向へ均等に拡散するので、中心軸を中心とする水面3内の16個の矢印で区切られた16個の扇形部分(扇形の中心角=22.5°)は、形状、流量分布共に16個が全く合同であり、流量の360°範囲内の総合計が1である。ある同心円状の拡散流(例えば6(A))の水面部分を流れる上昇流15の流量は、隣り合う同心円状の拡散流(例えば6(B)、6(C)、あるいは6(D))と拡散流6(A)とが接する2点で区切られた範囲内の拡散流6(A)の上縁を経由して下降流42に転じる。
したがって、同心円状の拡散流6(A)から見て、上昇流量1のうち、22.5°で区切られた扇形区画4個分(すなわち90°)、すなわち、全量1の1/4が下降流42に転じることになる。これと全く同じことが同心円状の拡散流6(B)、6(C)、ならびに6(D)それぞれについても生じるため、4基の上昇流発生装置5(A、B、C、D)の発生する上昇流15の流量が下降流42に転じる割合は、少なくとも次の程度と算定される。
[1基の上昇流発生装置5が発生する上昇流15の流量(1)×そのうち下降流42に転じる割合(1/4)]×寄与する基本構成機体数(4)
=[(1)×(1/4)]×(4)
=(1/4)×4
=1 ・・・(式3)
ここに、(1/4)とは、意味の上から=(90°/360°)と書き換えてもよい。
以上から、1基の上昇流発生装置5が水面へ持ち上げた水量の1/4が寄与するということは、これが4基合計されると、1×(90°/360°)×4基=4/4=1である。よって、4基の上昇流発生装置5の機体に囲まれた略正方形状の狭間の中心を流れ下る下降流の流量は、1基の上昇流流量を1とすると、その1と同量となる。このように、「90°系」の複合組合わせ配置に対しては、この複合組合わせの基本構成(4個の正方形配置構成)をNセット組み合わせて応用する場合、1基当たりの上昇流量を1とすると、生成される下向き流量の合計量は、上記(式2)で示される倍率1.0を(η90°≡1.0)と書けば、
生成される下向き流量の合計量(1に対する倍率)
=(η90°)×N ・・・(式4)
と書き表すことができる。
なお、前項と同様に、たとえば、出力3.7kW(空気量500L/分)のエア・コンプレッサーを用いて、3基の上昇流発生装置5を駆動した場合の1基当たりの水面到達の動水流量が、夏期、72万(トン/日)と測定された気泡駆動式の上昇流発生装置5の実績に基づいてこれらの上昇流発生装置5を4基用いたとして予測すると、この上昇流発生装置5の機体要素を4基組合わせた複合組み合わせ配置1セットによって発揮される下向き動水流量は、(式4)でN=1とした場合に相当し、72万(トン/日)と概算されることになる。
2) Approximate downward water flow rate for the “90 ° system” composite combination arrangement Next, the “90 ° system” composite combination arrangement will be described. As described above, there are four arrangements of the upward flow generating device 5 having the central axes on the four vertical axes passing through the apexes of the square of the bottom 2. Concentric diffusion flows 6 (respectively (A), (B), (C)) produced by four upward flow generators 5 (respectively denoted as (A), (B), (C), (D)), respectively. , (D)) are close to each other and are in axial symmetry with respect to the central portion X (XX axis) (n = 4). As in the case of the previous section, when the upflow 15 generated by a single upflow generator 5 reaches the water surface 3, the concentric diffused flow 6 from the water surface arrival point toward the surrounding 360 ° direction around the water surface 3 And diffuses around. As in the previous section, for example, the total amount 1 of the upward flow rate of the device A tries to spread radially in the direction of 360 ° after reaching the water surface. In FIG. 4A, in the concentric diffusion flow 6 of the airframe of each upflow generator 5, the direction of the diffusion flow in the water surface 3 is divided by 16 arrows indicating the flow direction every 22.5 ° for convenience. Are shown.
For example, ascending flow that flows horizontally from the point corresponding to the water surface on the central axis of a certain aircraft to the surroundings spreads evenly in the direction of 360 °, so 16 pieces in the water surface 3 centering on the central axis Sixteen fan-shaped parts (sector-shaped central angle = 22.5 °) separated by arrows in the figure are totally congruent in both shape and flow rate distribution, and the total in the 360 ° range of flow rate is 1. . The flow rate of the upflow 15 flowing through the water surface of a certain concentric diffusion flow (for example, 6 (A)) is equal to the adjacent concentric diffusion flow (for example, 6 (B), 6 (C), or 6 (D)). And the diffusion flow 6 (A) turn to the downward flow 42 via the upper edge of the diffusion flow 6 (A) within a range defined by two points where the diffusion flow 6 (A) contacts.
Accordingly, when viewed from the concentric circular flow 6 (A), the upward flow 1 is reduced by 4 fan sections (ie 90 °) divided by 22.5 °, that is, 1/4 of the total amount 1 is lowered. It will turn to stream 42. Exactly the same thing occurs for each of the concentric diffusion flows 6 (B), 6 (C), and 6 (D), so that the four upflow generators 5 (A, B, C, D) The rate at which the flow rate of the generated upflow 15 turns to the downflow 42 is calculated to be at least as follows.
[Flow rate of upflow 15 generated by one upflow generator 5 (1) × the ratio of turning to downflow 42 (1/4)] × number of contributing basic components (4)
= [(1) x (1/4)] x (4)
= (1/4) x 4
= 1 (Formula 3)
Here, (1/4) may be rewritten as (= 90 ° / 360 °) in terms of meaning.
From the above, the fact that ¼ of the amount of water lifted to the water surface by one upflow generator 5 contributes is that when 4 units are added up, 1 × (90 ° / 360 °) × 4 units = 4 / 4 = 1. Therefore, the flow rate of the downward flow flowing down the center of the substantially square gap surrounded by the airframes of the four upward flow generation devices 5 is the same as 1 when the upward flow rate of one unit is 1. . In this way, for the “90 ° system” composite combination arrangement, when applying the basic composition (four square arrangement arrangements) of this composite combination in combination with N sets, the ascending flow rate per unit is increased. Assuming that the total amount of downward flow rate generated is 1, the magnification 1.0 shown in (Equation 2) is written as (η90 ° ≡1.0),
Total amount of downward flow generated (magnification for 1)
= (Η90 °) × N (Formula 4)
Can be written as:
As in the previous section, for example, using the air compressor with an output of 3.7 kW (air quantity 500 L / min), the moving water reaching the water surface per unit when the three upflow generators 5 are driven. Assuming that four of these upflow generators 5 are used based on the results of the bubble-driven upflow generator 5 whose flow rate was measured as 720,000 (tons / day) in the summer, this upflow generation The downward dynamic water flow rate exerted by one set of the combined combination arrangement in which four airframe elements of the device 5 are combined corresponds to the case where N = 1 in (Equation 4), and is estimated to be 720,000 (tons / day). Will be.

3)「60°系」・「90°系」の混合複合組合わせ配置セットにおける下向き動水流量の概算以上の通り、「60°系」(基本単位構成(3基))については前出(式1)、(式2)、「90°系」(基本単位構成(4基))については(式3)、(式4)の考え方によって下向き動水流量の概算が可能である。したがって、「60°系」と「90°系」とが混在した形で複合的に組み合わされた配置において生成される下向き動水流量の総計は、(式2)、(式4)から以下のように推算される。
生成される下向き動水流量の総合計量(1に対する倍率)λ
=[(η60°)×N十[(η90°)×N] ・・・(式5)
ただしここに、
(η60°)≡0.5 ・・・・((式1)参照)
(η90°)≡1.0 ・・・・((式3)参照)
=「60°系」で構成される基本単位のセット数
=「90°系」で構成される基本単位のセット数
3) “60 ° system” (basic unit configuration (3 units)) as mentioned above (as above), as described above for the approximate 60 ° system and 90 ° system mixed combined arrangement set. For Formula 1), Formula 2 and “90 ° system” (basic unit configuration (4 units)), it is possible to estimate the downward dynamic water flow rate based on the concepts of Formula 3 and Formula 4. Therefore, the total amount of downward dynamic water flow generated in an arrangement in which the “60 ° system” and the “90 ° system” are mixed and combined is calculated from (Equation 2) and (Equation 4) as follows: It is estimated as follows.
Total measurement of the downward flow rate of water generated (multiplier to 1) λ
= [(Η60 °) × N 30 + [(η90 °) × N 4 ] (Formula 5)
However, here
(Η60 °) ≡0.5 (Refer to (Formula 1))
(Η90 °) ≡1.0 (see (Equation 3))
N 3 = number of sets of basic units composed of “60 ° system” N 4 = number of sets of basic units composed of “90 ° system”

4)「60°系」・「90°系」の混成複合組合わせ配置における重畳効果
前項3)に記載した記号の意味を説明すると、次のようになる。
=4;N=0 よって(式5)から、λ=[0.5×4]十[1.0×0]=2
=4;N=0 よって(式5)から、λ=[0.5×4]十[1.0×0]=2
=2;N=1 よって(式5)から、λ=[0.5×2]十[1.0×1]=2
同様に、
=6;N=2 よって(式5)から、λ=[0.5×6]十[1.0×2]=5
=0;N=4 よって(式5)から、λ=[0.5×0]十[1.0×4]=4
と算定される。
なお、『60°系」《基本単位構成(3基)》+「90°系」《基本単位構成(4基)》の<N=6;N=2>は、《基本単位構成(3基)》×6セット+《基本単位構成(4基)》×2セット、によって集中的に生じる下降流42の生成点の個数の意味ではあるが、これを生成させるのに必要な上昇流発生装置5の機体基数が<《3基》×6セット+《4基》×2セット=18基+8基=26基必要!>を必ずしも意味するものではないことに注意する必要がある。実際、ここに得られたλ=[0.5×6]十[1.0×2]=5という倍率は、上昇流発生装置5の機体基数は合計わずか10基で達成されている。下向きの流れを形成する、いわゆる流体コンベヤー現象は、近接配置による条件が成立する地点で発生し、平面的配置における条件が成立すれば生じることとなるからである。より簡単な例で説明すれば、図2Aと図4Aとを対比説明すると、図2Aでは、「60°系」基本単位構成(上昇流発生装置×3基)で1個の下降流42の生成点(中心部X)を生じているが、図4Aでは、基本構成に上昇流発生装置5を1基追加して合計4基の上昇流発生装置5を近接配置することにより、下降流42の生成点(中心部X)を2個生じている。言い換えると、上昇流発生装置×3基で1セットの下降流42の生成点(中心部X)が成立する「60°系」の近接配置に対し、別個に1基を近づけると、流れの相互干渉によって図2Aの流量条件に等しい「60°系」の下降流42の生成点(中心部X)がもう1個成立する。したがって、合計2個の下降流42の生成点(中心部X)を生成させるのに必要な上昇流発生装置5の基数は、<3基+3基=6基>ではなく、<3基+1基=4基〉で達成されることがわかる。この上昇流発生基数節減効果は、効果としては上昇流発生装置5の配列の重畳効果、現象としては上昇流発生装置5による流動の相互干渉効果によって生じている。このように、複数配置を適切に利用することにより、使用する上昇流発生装置5の基数に対比して、生成された下降流42の動水流量を効果的に増加させることが可能となる。
4) Superposition effect in the hybrid composite combination arrangement of “60 ° system” and “90 ° system” The meanings of the symbols described in the previous section 3) are explained as follows.
N 3 = 4; N 4 = 0 Therefore, from (Equation 5), λ = [0.5 × 4] + [1.0 × 0] = 2
N 3 = 4; N 4 = 0 Therefore, from (Equation 5), λ = [0.5 × 4] + [1.0 × 0] = 2
N 3 = 2; N 4 = 1 Therefore, from (Expression 5), λ = [0.5 × 2] + [1.0 × 1] = 2
Similarly,
N 3 = 6; N 4 = 2 Therefore, from (Expression 5), λ = [0.5 × 6] + [1.0 × 2] = 5
N 3 = 0; N 4 = 4 Therefore, from (Equation 5), λ = [0.5 × 0] + [1.0 × 4] = 4
Is calculated.
Note that <N 3 = 6; N 4 = 2> in “60 ° system” << basic unit configuration (3 units) >> + “90 ° system” << basic unit configuration (4 units) >> is << basic unit configuration ( 3)) × 6 sets + << basic unit configuration (4) >> × 2 sets, which means the number of generation points of the downward flow 42 intensively generated, but the upward flow necessary to generate this The machine base number of the generator 5 is <<< 3 units> × 6 sets + <4 units> × 2 sets = 18 units + 8 units = 26 units are required! Note that it does not necessarily mean>. In fact, the magnification of λ = [0.5 × 6] + [1.0 × 2] = 5 obtained here is achieved with a total of only 10 airframe bases of the upflow generator 5. This is because the so-called fluid conveyor phenomenon, which forms a downward flow, occurs at a point where the condition of the close arrangement is satisfied, and occurs when the condition of the planar arrangement is satisfied. 2A and FIG. 4A are compared. In FIG. 2A, one downflow 42 is generated in a “60 ° system” basic unit configuration (upflow generators × 3). In FIG. 4A, one upflow generator 5 is added to the basic configuration, and a total of four upflow generators 5 are arranged close to each other. Two generation points (center X) are generated. In other words, if one unit is brought close to a close arrangement of “60 ° system” in which the generation point (center part X) of one set of the downflow 42 is established by three upflow generators, the mutual flow will be obtained. Due to the interference, another generation point (center X) of the “60 ° system” descending flow 42 equal to the flow rate condition of FIG. 2A is established. Therefore, the radix of the upflow generator 5 necessary for generating the generation points (central portion X) of the two downflows 42 in total is not <3 + 3 = 6> but <3 + 1 = 4 units>. This effect of reducing the number of generated wakes is caused by a superposition effect of the arrangement of the upward flow generators 5 as an effect, and as a phenomenon by a mutual interference effect of flow by the upward flow generator 5. As described above, by appropriately using a plurality of arrangements, it is possible to effectively increase the water flow rate of the generated downward flow 42 as compared with the radix of the upward flow generation device 5 to be used.

複数基を組合わせて下降流発生装置とする方法について
以上、本上下循環装置の要素である上昇流発生装置5を、「60°系」配置の基本としては3基、「90°系」配置の基本としては4基を複合的に組み合わせて、水域の上下循環を行わせる下降流42の発生装置として使用できることについて述べたが、これを実行する方法について、2,3の実施例を述べる。
「60°系」としては上昇流発生装置5を3基、「90°系」としては4基を、所定の距離をおいて水域に直接個々に設置して、複合組み合わせ配置の効果を挙げることももちろん可能である。「60°系」では3基を正三角形の各頂点またはそれに近く配置した鉛直軸位置に、「90°系」では4基を正方形の各頂点またはそれに近く配置した鉛直軸位置に、集中的かつ加速的な下降流を効果的に生成させることができる。
図9は、構成機体3基を部材によって一体型に構成して、水域への設置を行う案を実施例として示したものである。図中、2は水底、5は散気式円筒型の上昇流発生装置、44は上昇流発生装置5に空気を吹き込む空気吹込装置、45は上昇流発生装置5の空気吹込装置44へ空気を送るための空気分岐管、46は上昇流発生装置5の筒体を連結する連結材、47は連結材46を上昇流発生装置5の筒体に固定する固縛装置、48は上昇流発生装置5および付属部材の水中重量を支えて水中に浮揚させるために用いる浮力材、8は圧縮空気送気ホース、8aは空気分岐管45から空気吹込装置44へ圧縮空気を送る圧縮空気分配ホース、9はシンカー、10は係留索である。図9は、上昇流発生装置5を個々に所定の位置に設置するのに代えて、所定の位置に配置・設置する作業をまとめて行うのを便利とする目的で、基本配置(例えば)「60°系」《基本単位構成(3基)》を一体型として水域内への設置作業を合理化する意味から行う具体的実施例である。
さらに図10は、前図と目的は同様であり、構成機体3基を部材によって一体型に構成して、水域への設置を簡略化する案のもう一つの実施例である。図中、2は水底、5は散気式円筒型の上昇流発生装置、52は上昇流発生装置5に空気を吹き込む空気吹込装置、53は上昇流発生装置5の空気吹込装置52へ空気を送るための空気分岐管、54は上昇流発生装置5の筒体を連結する連結材、55は連結材54を上昇流発生装置5の筒体に固定する固縛装置、56は上昇流発生装置5および付属部材の水中重量を支えて水中に浮揚させるために用いる浮力材、8は圧縮空気送気ホース、8aは空気分岐管53から空気吹込装置52へ圧縮空気を送る圧縮空気分配ホース、9はシンカー、10は係留索である。図10は、図9と同様、上昇流発生装置5を一体型として水域内への設置作業を簡易化するための具体的実施例である。図9との相違点は、同図における浮力材48が各上昇流発生装置5の筒体自体に固定されているのに対し、本図10では、浮力材56が、3基の上昇流発生装置5を正三角形状に連結する連結材54に取り付けられており、浮力材56が、複数基を組み合わせた一体型装置として構成された構造体へ、広く分散配置、固定されている点である。これらはいずれも「60°系」・3基の機体を一体型とする実施例であるが、これら以外にも、「90°系」・4基を一体型としてまとめた構造体とする案、重畳効果によって下向きの動水流量を効果的に増幅させるのに用いる多数基複合型の要素機器を同形の部分複合型装置としてまとめて設置する案などがある。
About a method of combining a plurality of units to form a downward flow generator As described above, three upward flow generators 5 which are elements of the vertical circulation device are basically arranged in a “60 ° system”, and “90 ° system” is arranged. As the basis of the above, it has been described that four units can be combined and used as a generator for generating the downward flow 42 that causes the vertical circulation of the water area, but a few examples will be described as to how to perform this.
3 units of upflow generator 5 as “60 ° system” and 4 units as “90 ° system” are directly installed in the water area at a predetermined distance, and the effect of the combined combination arrangement is shown. Of course it is possible. In the “60 ° system”, the three units are concentrated on the vertical axis positions arranged at or near each vertex of the equilateral triangle, and in the “90 ° system”, the four groups are concentrated on the vertical axis positions arranged at or near each vertex of the square. An accelerating downflow can be generated effectively.
FIG. 9 shows, as an example, a plan for constructing three structural bodies in one body with members and installing them in a water area. In the figure, 2 is a water bottom, 5 is a diffused cylindrical upflow generator, 44 is an air blowing device for blowing air into the upflow generating device 5, and 45 is air into the air blowing device 44 of the upflow generating device 5. An air branch pipe for feeding, 46 is a connecting material for connecting the cylinders of the upward flow generating device 5, 47 is a lashing device for fixing the connecting material 46 to the cylinder of the upward flow generating device 5, and 48 is an upward flow generating device. 5 and a buoyancy material used for supporting the underwater weight of the accessory member and floating in the water, 8 is a compressed air supply hose, 8a is a compressed air distribution hose for sending compressed air from the air branch pipe 45 to the air blowing device 44, 9 Is a sinker and 10 is a mooring line. FIG. 9 shows a basic arrangement (for example) “in order to make it convenient to collectively perform the work of arranging and installing the upflow generators 5 at predetermined positions instead of individually installing the upflow generators 5 at predetermined positions. This is a specific example in which the “60 ° system” << basic unit configuration (3 units) >> is integrated to simplify installation work in the water area.
Further, FIG. 10 is the same as the previous figure, and is another example of a plan for simplifying the installation in the water area by configuring the three structural bodies in one body with members. In the figure, 2 is a water bottom, 5 is a diffused cylindrical upflow generator, 52 is an air blowing device for blowing air into the upflow generating device 5, and 53 is air into the air blowing device 52 of the upflow generating device 5. An air branch pipe for feeding, 54 is a connecting material for connecting the cylinders of the upward flow generating device 5, 55 is a lashing device for fixing the connecting material 54 to the cylinder of the upward flow generating device 5, and 56 is an upward flow generating device. 5 and a buoyancy material used for supporting the underwater weight of the accessory member to float underwater, 8 is a compressed air supply hose, 8a is a compressed air distribution hose for sending compressed air from the air branch pipe 53 to the air blowing device 52, 9 Is a sinker and 10 is a mooring line. FIG. 10 shows a specific embodiment for simplifying the installation work in the water area by integrating the upflow generator 5 as in FIG. The difference from FIG. 9 is that the buoyancy material 48 in FIG. 9 is fixed to the cylinder body of each upflow generator 5, whereas in FIG. 10, the buoyancy material 56 generates three upflows. It is attached to a connecting member 54 that connects the device 5 in an equilateral triangle shape, and the buoyancy material 56 is widely distributed and fixed to a structure configured as an integrated device combining a plurality of units. . These are all examples in which the “60 ° system” and three aircrafts are integrated, but in addition to these, the “90 ° system” and four units are integrated into a unified structure, There is a plan to collectively install multiple-group composite element devices used to effectively amplify the downward water flow rate by the superposition effect as a partial composite device of the same shape.

複数基の組合わせ配置と下降流発生機能について(表1(図6、図7))
本上下循環装置の要素である上昇流発生装置5を、「60°系」配置の基本としては3基、「90°系」配置の基本としては4基を、複合的に組み合わせて、水域の上下循環に適用する下降流42の発生装置として使用できることについて、前項には基本配置を一体型として設置する実施例について述べた。本項では、このような一体型装置を用いて、下降流42を発生させる方法についての留意事項を述べる。
図6に示す表1(その1)および図7に示す表2(その2)は、本上下循環装置の配置と下降流量の増幅作用について説明したものである。表1(その1))は「60°系」配置に関するもの、表2(その2)は「90°系」配置に関するものである。表1(その1)中、たとえば3基を一体型として構成した機体(図9および図10に例示されている。)を、実際に設置する基本配置のセットであるという意味で「実セット」と記載している。“実2セット”、“実3セット”とは、実際に設置する基本配置のセット(図9、図10のような)を“2セット”、あるいは“3セット”という意味である。
表1(その1)の挿図中左端は、実2セットの配置例であり、正三角形が上昇流発生装置5の要素機体3基で構成される実セットである。この図は、この実セットを2セット基本配置の1スパンだけ平行移動的にずらして設置することを表している(機体の上昇流発生装置5は60°回転させている。)。ここで、実セットの中心点には、実セットによって生じる下降流42の発生中心の中心部Xが+印で示されている。しかし、実セットを構成する各3基の上昇流発生装置5の機体の並び方、および間隔(スパン)から見て、実セット2個の中間に位置している着色されていない2個の正三角形領域は、実は実スパンの条件と全く同一な流体工学的条件下にある。したがって、これら2個の正三角形の中心にも実セットと全く同一の条件による下降流42が誘起されることになる。言い換えれば、ここでは、実セット×2セットを作動させることにより、全く同一の流量条件による下降流42が4ヶ所に誘起される。この現象は、隣接境界面に鏡を立てた際の鏡像の位置に生じるため、ここでは、鏡像効果による下降流42と呼ぶものとする。この場合の鏡像効果による下降流42まで含めた下降流量の増幅率は、[下降流42が4ヶ所に誘起される/実2セット=増幅率2.0]となる。同様の議論を進めてゆくと、表1(その1)中、中央の挿図は、実3セットの配置例であるが、このような配置の場合には、鏡像効果による下降流生成の効果は正三角形×5個に及ぶこととなり、増幅率は[下降流42が8ヶ所に誘起される/実3セット=増幅率2.67]となる。さらに、表1(その1)中、右端の挿図は、実4セットの配置例であるが、このように配置すると、実4セットの作動により、鏡像効果による下降流42の生成の効果は正三角形×8個に及ぶこととなり、増幅率は[下降流42が(4+8=)12ヶ所に誘起される/実4セット=増幅率3.0]となる。このように、実セットを適切に配置することにより、鏡像効果による下降流42の誘起によって、上下循環に有効な下降流42を効果的に生成させることができることがわかる。表2(その2)も、表1(その1)と同様な、鏡像効果による下降流誘起の効果を、「90°系」に対して説明したものである。挿図の着色部分は実セット、非着色の正方形部分は、上述と同じ理由によって鏡像効果によって増加した下降流生成点を示している。表1および表2に例示した配置以外にも、ほとんど無数に多くの配置が考えられ、鏡像効果によって生じる下降流42の増幅が可能であることは、論をまたないところである。なお、表1および表2の下段には、下向き動水流量試算例を示した。これは、たとえば、3.7kW(空気量500NL/min)のエア・コンプレッサーを用いて、3基の気泡駆動式の上昇流発生装置5を作動させた場合の水面3(海面)到達の動水流量が、夏期、装置1基当たり72万(トン/日)であったという実績)に基づいて試算した、各実セット配置例に対する下向き動水流量である。「60°系」「90°系」いずれに対しても、一日あたり100〜数百万トンの下向き動水効果は、十分な意味でこのような装置の射程内にあることがわかる。
Combination arrangement of multiple units and downflow generation function (Table 1 (FIGS. 6 and 7))
Ascending flow generator 5 which is an element of the vertical circulation device is combined with three units as the basis of the “60 ° system” arrangement and four units as the basis of the “90 ° type” arrangement, Regarding the fact that it can be used as a generator of the downward flow 42 applied to the vertical circulation, the previous section described an embodiment in which the basic arrangement is installed as an integrated type. In this section, considerations regarding a method for generating the downward flow 42 using such an integrated apparatus will be described.
Table 1 (No. 1) shown in FIG. 6 and Table 2 (No. 2) shown in FIG. 7 explain the arrangement of the vertical circulation device and the amplifying operation of the descending flow rate. Table 1 (No. 1) relates to the “60 ° system” arrangement, and Table 2 (No. 2) relates to the “90 ° system” arrangement. In Table 1 (No. 1), for example, “actual set” in the sense that it is a set of basic arrangements in which three bodies (illustrated in FIGS. 9 and 10) configured as an integrated type are actually installed. It is described. “Actual 2 sets” and “Actual 3 sets” mean a set of basic layouts (as shown in FIGS. 9 and 10) that are actually installed are “2 sets” or “3 sets”.
The left end in the inset of Table 1 (No. 1) is an example of arrangement of two actual sets, and an equilateral triangle is an actual set composed of three element bodies of the upflow generator 5. This figure shows that this actual set is installed by shifting in parallel movement by one span of two sets of basic arrangements (the upward flow generating device 5 of the fuselage is rotated by 60 °). Here, at the center point of the actual set, the center X of the generation center of the downward flow 42 generated by the actual set is indicated by +. However, two non-colored equilateral triangles located in the middle of the two real sets as seen from the arrangement of the three upflow generators 5 constituting the real set and the interval (span). The region is actually under fluidic conditions exactly the same as the actual span conditions. Therefore, a downward flow 42 is induced at the center of these two equilateral triangles under exactly the same conditions as the actual set. In other words, here, by operating the actual set × 2 sets, the downward flow 42 under exactly the same flow rate condition is induced at four locations. Since this phenomenon occurs at the position of the mirror image when the mirror is set up on the adjacent boundary surface, it is referred to as the downward flow 42 due to the mirror image effect here. In this case, the amplification factor of the downward flow rate including the downward flow 42 due to the mirror image effect is [the downward flow 42 is induced at four locations / actual two sets = amplification factor 2.0]. When proceeding with the same discussion, the center inset in Table 1 (Part 1) is an example of an arrangement of three actual sets. In such an arrangement, the effect of generating the downward flow by the mirror image effect is The number of equilateral triangles will be 5 and the amplification factor will be [downflow 42 is induced in eight places / actual 3 sets = amplification factor 2.67]. Furthermore, in Table 1 (Part 1), the rightmost inset is an example of the arrangement of four actual sets. However, when arranged in this way, the effect of generating the downward flow 42 by the mirror image effect is positive due to the operation of the actual four sets. The number of triangles is 8 and the amplification factor is [downflow 42 is induced at (4 + 8 =) 12 locations / actual 4 sets = amplification factor 3.0]. Thus, it can be seen that by properly arranging the actual set, the downward flow 42 effective for the vertical circulation can be effectively generated by the induction of the downward flow 42 by the mirror image effect. Table 2 (Part 2) also explains the effect of inducing downflow by the mirror image effect, similar to Table 1 (Part 1), for the “90 ° system”. The colored part of the inset shows the actual set, and the non-colored square part shows the downward flow generation point increased by the mirror image effect for the same reason as described above. In addition to the arrangements illustrated in Tables 1 and 2, almost unlimited arrangements are conceivable, and it is possible to amplify the downflow 42 caused by the mirror image effect. In the lower part of Table 1 and Table 2, an example of trial calculation of downward dynamic water flow rate is shown. This is because, for example, the moving water reaching the water surface 3 (sea surface) when the three bubble-driven upflow generators 5 are operated using an air compressor of 3.7 kW (air amount 500 NL / min). This is the downward dynamic water flow rate for each actual set arrangement example calculated based on the actual flow rate of 720,000 (tons / day) per unit in the summer. It can be seen that, for both “60 ° system” and “90 ° system”, the downward hydrodynamic effect of 100 to several million tons per day is well within the range of such a device.

従来技術の難点の排除
(1)上昇流発生装置5の複数基、少なくとも3基以上を組み合わせ、これら複数基の近接配置によって生じる流体工学的相互干渉を利用して、これら複合組み合わせ配置の中心に加速的かつ集中的に、強制的に下降流42を生成させる。これを、表層水塊を効果的に底層へ誘導する方法として利用し、効果的に上下循環を促進する。
(2)複数基の上昇流発生装置5の相互間に生じる流体工学的な流れの相互干渉によって、加速的かつ集中的な下降流42が自然に形成されることを利用するため、人為的な下降流専用の管路や、ダクト類を特設することなく表層水塊を底層へ送り込むことができる。
(3)複数基の上昇流発生装置5の近接配置の基本形は、鉛直中心軸が、1)3基による正三角形の各頂点位置(この配置を「60°系接触」と呼ぶ。)、2)4基による正方形の各頂点位置(この配置を「90°系接触」と呼ぶ。)、および、3)正n角形の各頂点位置(この配置を「花びら環状接触」と呼ぶ。)の3種とする。
(4)複数n基の近接配置法には各種の配列法も考えられるが、基本的に近接接触配置であり、その構成はこれら要素1)2)3)に分解して考えることができる。1)2)の要素は組合わせて併用できることは図や表に示されるとおりである。
(5)上昇流発生装置5には、円形断面筒体(直径D×高さh)を用いるが、高さh/直径Dの比は、実用機としては、およそ2〜25程度の範囲内にあるものとする。また例えばエアーノズルとして、複合ベンチュリー型加速ノズルを用いる。
(6)前記1)の正三角形の一辺の長さ、2)の正方形の一辺の長さ、すなわち筒体間隔(スパン)をLxと書くと、良好な下降流生成性能を発揮するために、上昇流発生装置5の筒体直径Dに対し、Lx/D比は、高々25以下程度とする。
(7)これらの数値限定に応じて基本形において生成される強制下降流(下向き動水流量)の流量推算は、要素1)2)3)に基づき、別項に掲げる推算式によってごく簡略に行うことができる。
(8)複数基の上昇流発生装置の配列において、3基基本配置(「60°系」)、4基基本配置(「90°系」)相互間の配列の仕方により、3基基本配置、あるいは4基基本配置の外側に、基本配置と流体力学的に同等な、見かけ上の3基配置、あるいは、見かけ上の4基配置が、付加的に構成されることがある。これは原理的にも各基本配置と全く同等な流体工学的理由により、それぞれが見かけ上の下降流生成効果を発揮する。これによって、配列された複数基の上昇流発生装置群は、実際に設置された装置のセット数よりも下降流42の流量が増幅された合計流量となる。(この原因となる外部の見かけ上の基本配置効果による下降流量の増幅効果を、ここでは便宜上、鏡像効果による下降流量の増幅と呼んでいる。)
Eliminating the difficulties of the prior art (1) Combining a plurality of upflow generators 5, at least three or more, and utilizing the fluid engineering mutual interference caused by the close arrangement of these multiple units, at the center of these combined combination arrangements The downward flow 42 is forcibly and intensively generated. This is utilized as a method of effectively guiding the surface water mass to the bottom layer, and effectively promotes vertical circulation.
(2) Since the use of the fact that the accelerating and concentrated downflow 42 is naturally formed by the mutual interference of the fluidic flows generated between the plurality of upflow generators 5 is artificial, The surface water mass can be sent to the bottom layer without special pipes or ducts for downflow.
(3) The basic shape of the close arrangement of the plurality of upward flow generators 5 is 1) the vertical center axis is 1) each vertex position of an equilateral triangle with 3 units (this arrangement is referred to as “60 ° system contact”), 2 3) 4 vertex positions of the square (this arrangement is referred to as “90 ° contact”), and 3) 3 vertex positions of the regular n-gon (this arrangement is referred to as “petal ring contact”). Seed.
(4) Various arrangement methods are conceivable as the proximity arrangement method of a plurality of n groups, but the arrangement is basically proximity contact arrangement, and the configuration can be considered by disassembling these elements 1), 2) and 3). 1) The elements of 2) can be used in combination as shown in the figures and tables.
(5) The upward flow generator 5 uses a circular cross-section cylinder (diameter D × height h), but the ratio of height h / diameter D is in the range of about 2 to 25 as a practical machine. It shall be in For example, a composite venturi type acceleration nozzle is used as an air nozzle.
(6) When the length of one side of the regular triangle of 1), the length of one side of the square of 2), that is, the cylinder interval (span) is written as Lx, For the cylinder diameter D of the upward flow generator 5, the Lx / D ratio is at most about 25 or less.
(7) Estimating the flow rate of forced downward flow (downward dynamic water flow rate) generated in the basic form in accordance with these numerical limits should be very simply based on the estimation formulas listed in the other paragraphs based on elements 1), 2) and 3). Can do.
(8) In the arrangement of a plurality of upflow generators, the three basic arrangements (“60 ° system”), the four basic arrangements (“90 ° system”), and the three basic arrangements, Alternatively, an apparent three-group arrangement or an apparent four-group arrangement that is hydrodynamically equivalent to the basic arrangement may be additionally formed outside the four-group basic arrangement. In principle, each of them exhibits an apparent downward flow generation effect for fluid engineering reasons that are exactly the same as each basic arrangement. As a result, the plurality of upward flow generating device groups arranged has a total flow rate in which the flow rate of the downward flow 42 is amplified more than the number of sets of devices actually installed. (For the sake of convenience, the amplifying effect of the descending flow rate due to the external apparent basic arrangement effect that causes this is called a descending flow rate amplification due to the mirror image effect.)

筒体間スパン選定について
以上、前項に述べた上昇流発生装置5を3基、あるいは同4基を、複合的に組み合わせて、本上下循環装置の基本形となる「60°系」(正三角形・3点配置)あるいは「90°系」(正方形・4点配置)が構成される。このとき、これらの複数基相互間の筒体間隔(スパン)Lは、図11に示される通り、L(「60°系」)、あるいはL(「90°系」)と表しているが、これらはどのように決まるであろうか。先に掲げた「60°系」(正三角形・3点配置)や「90°系」(正方形・4点配置)の上昇流15によって生じる表面3の同心円状の拡散流6の相互干渉とこれによる下降流42の発生は、筒体間隔(スパン)Lのかなり広い範囲にわたって生じるものではあるが、同心円状の拡散流6の半径が大となるに従って、干渉によって生じる下降流42の流路断面積も大となり、下降流42の流速も低下する。いま、筒体間隔(スパン)Lxと筒体直径Dの比=Lx/Dを採って、これを横軸にとり、下降流の発生状況との関係を調査した結果の一例を示すと、図11の通りである。ここに、同図中、
領域Hは下降流発生個所の流路断面積が狭くなり過ぎて下降流42の溢流・損失傾向が見られる領域、
領域Jは下降流路断面積が増大して下降流42の流速が低下し、下降流発生装置としての機能が低下傾向にあると見られる領域、
Kは、発明者らが行った小型模型実験における実験点のLx/D位置であることを示す。以上から、実用上考えられる[筒体間隔(スパン)L/筒体直径D]の選定領域は、ほぼ4〜25程度以下と考えてよいであろう。
About the span selection between cylinders As mentioned above, the “60 ° system” (regular triangle, the basic shape of this vertical circulation device is obtained by combining three or four of the upward flow generators 5 described in the previous section in combination. 3-point arrangement) or “90 ° system” (square, 4-point arrangement). At this time, the cylinder interval (span) L between these plural groups is expressed as L 3 (“60 ° system”) or L 4 (“90 ° system”) as shown in FIG. But how are these determined? The mutual interference of the concentric diffusion flow 6 on the surface 3 caused by the upward flow 15 of the “60 ° system” (equilateral triangle, three points arrangement) and the “90 ° system” (square, four points arrangement) mentioned above and this The downward flow 42 is generated over a considerably wide range of the cylinder interval (span) L. However, as the radius of the concentric diffusion flow 6 becomes larger, the flow break of the downward flow 42 caused by interference occurs. The area also increases, and the flow velocity of the downward flow 42 also decreases. Now, taking the ratio of the cylinder interval (span) Lx and the cylinder diameter D = Lx / D, taking this as the horizontal axis, an example of the results of investigating the relationship with the downflow generation state is shown in FIG. It is as follows. Here, in the figure,
The region H is a region where the flow cross-sectional area of the portion where the downward flow is generated becomes too narrow, and the overflow / loss tendency of the downward flow 42 is seen.
Region J is a region where the cross-sectional area of the downward flow path is increased, the flow velocity of the downward flow 42 is decreased, and the function as the downward flow generation device is likely to be reduced.
K indicates the Lx / D position of the experimental point in the small model experiment conducted by the inventors. From the above, the selection region of [cylinder interval (span) L / cylinder diameter D] considered practically may be considered to be approximately 4 to 25 or less.

本発明の閉鎖水域の上下循環方法および上下循環装置は、例えば、ダム、湖沼、水源地、上下水道施設、運河、内湾、港湾、水産養殖場や溜池などの閉鎖水域の水質改善を計るための方法および装置として有用である。   The vertical circulation method and vertical circulation device of the closed water area of the present invention are intended to improve the water quality of closed water areas such as dams, lakes, water sources, water and sewage facilities, canals, inner bays, harbors, aquaculture farms and ponds, for example. Useful as a method and apparatus.

Claims (6)

水中に正多角形状に上向きに配置された複数の各上昇流発生装置で上昇流を発生させて、各上昇流発生装置の上方水面に上昇流で生起される同心円状に拡散する拡散流をそれぞれ発生させ、隣り合う各拡散流同士が、各上昇流発生装置が配置された正多角形状の中心部に向かってその周囲から連続的に集まると、正多角形状の中心部にその全周囲から集まった水が行き場を失い、流体の連続性からその水面から水底に向かって流れるという相互干渉を利用して、各上昇流発生装置が配置された正多角形状の中心部に、水面から水底に向かう連続的、加速的かつ集中的な下降流を誘起させて、上昇流と下降流による上下循環流により閉鎖水域の水質改善を計るようにしたことを特徴とする閉鎖水域の上下循環方法。 The upward flow is generated by a plurality of upward flow generators arranged in a regular polygon shape upward in the water, and the concentric diffused flow generated by the upward flow is generated on the upper water surface of each upward flow generator. When the adjacent diffusion flows are continuously gathered from the periphery toward the center of the regular polygon where the upflow generators are arranged, they gather at the center of the regular polygon from the entire periphery. The water is lost from where it goes and from the continuity of the fluid, it flows from the water surface to the bottom of the water. An up-and-down circulation method for closed water areas characterized by inducing continuous, accelerated and concentrated down-flow and improving water quality in the closed water areas by up-down and up-down circulation flows. 水中に正多角形状に上向きに配置された複数の各上昇流発生装置の隣り合う配置間隔Lと、各上昇流発生装置の上昇流を発生する筒体の直径Dとは、L/D=4〜25の範囲内にあり、水中に正多角形状に配置された複数の各上昇流発生装置で上昇流を発生させて、各上昇流発生装置の上方水面に上昇流で生起される同心円状に拡散する拡散流をそれぞれ発生させ、隣り合う各拡散流同士が、各上昇流発生装置が配置された正多角形状の中心部に向かってその周囲から連続的に集まると、正多角形状の中心部にその全周囲から集まった水が行き場を失い、流体の連続性からその水面から水底に向かって流れるという相互干渉を利用して、各上昇流発生装置が配置された正多角形状の中心部に、水面から水底に向かう連続的、加速的かつ集中的な下降流を誘起させて、上昇流と下降流による上下循環流により閉鎖水域の水質改善を計るようにしたことを特徴とする閉鎖水域の上下循環方法。 The adjacent arrangement interval L of each of the plurality of upward flow generators arranged upward in a regular polygonal shape in water and the diameter D of the cylinder that generates the upward flow of each upward flow generator are L / D = 4 A concentric circle generated in the upward flow on the upper water surface of each upward flow generator by generating the upward flow with each of the multiple upward flow generators arranged in a regular polygonal shape in water within the range of ˜25 When each of the adjacent diffusion flows is continuously gathered from the periphery toward the center of the regular polygon where the upflow generators are arranged, the center of the regular polygon is generated. In the center of the regular polygonal shape where each upflow generator is placed, using the mutual interference that water collected from the entire circumference loses its place and flows from the water surface toward the bottom due to the continuity of the fluid. , Continuous, accelerating and focused from the surface to the bottom By inducing a downward flow, vertical circulation method of the closed water area, characterized in that it has to measure the water quality of the closed water area by the vertical circulation flow by upflow and downflow. 水中に正多角形状に配置された複数の上昇流発生装置によりそれぞれ上昇流を発生させて、前記複数の上昇流発生装置のそれぞれの上方水面に前記上昇流により生起される同心円状に拡散する拡散流を発生させ、隣り合う拡散流同士が、各上昇流発生装置が配置された正多角形状の中心部に向かってその周囲から連続的に集まると、正多角形状の中心部にその全周囲から集まった水が行き場を失い、流体の連続性からその水面から水底に向かって流れるという相互干渉により前記正多角形状の中心部に水面から水底に向かう下降流を誘起させて、前記上昇流と前記下降流とによる上下循環流を形成する閉鎖水域の上下循環方法。 Diffusion in which concentric circles are generated by the upflow generated on the upper water surfaces of the plurality of upflow generators by generating upflows by a plurality of upflow generators arranged in a regular polygonal shape in water. When the adjacent diffusion flows are continuously gathered from the periphery toward the center of the regular polygon where the upflow generators are arranged, the center of the regular polygon is The gathered water loses its place and induces a downward flow from the water surface to the water bottom in the center of the regular polygon shape by mutual interference that flows from the water surface toward the water bottom due to the continuity of the fluid. A vertical circulation method in a closed water area that forms a vertical circulation flow with a downward flow. 水中に正多角形状に配置された複数の上昇流発生装置であり、それぞれ上昇流を発生させて、それぞれの上方水面に前記上昇流で生起される同心円状に拡散する拡散流を発生させ、隣り合う拡散流同士が、各上昇流発生装置が配置された正多角形状の中心部に向かってその周囲から連続的に集まると、正多角形状の中心部にその全周囲から集まった水が行き場を失い、流体の連続性からその水面から水底に向かって流れるという相互干渉により前記正多角形状の中心部に水面から水底に向かう下降流を誘起させて、前記上昇流と前記下降流とによる上下循環流を形成する複数の上昇流発生装置を備えた閉鎖水域の上下循環装置。 A plurality of upward flow generators arranged in a regular polygonal shape in water, each generating an upward flow, generating a concentric diffused flow generated in the upward flow on each upper water surface, When the matching diffusion flows gather continuously from the periphery toward the center of the regular polygon where the upflow generators are arranged, the water gathered from all around the center of the regular polygon forms a destination. Loss and up-and-down circulation by the upflow and the downflow by inducing a downflow from the water surface to the bottom of the regular polygonal shape by mutual interference that flows from the water surface toward the bottom of the water due to the continuity of the fluid An up-and-down circulation device for a closed water area comprising a plurality of upflow generators for forming a flow. 前記複数の上昇流発生装置は、開口部が上向きに配置された筒体である請求項4記載の閉鎖水域の上下循環装置。   The up-and-down circulation device for a closed water area according to claim 4, wherein the plurality of upward flow generating devices are cylindrical bodies having openings arranged upward. 前記複数の上昇流発生装置の隣り合う配置間隔Lと、前記筒体の直径Dとは、L/D=4〜25の範囲内にある請求項5記載の閉鎖水域の上下循環装置。   The vertical circulation device for a closed water area according to claim 5, wherein an arrangement interval L between the plurality of upflow generators and a diameter D of the cylindrical body are in a range of L / D = 4 to 25.
JP2015527318A 2013-07-18 2014-07-16 Vertical circulation method and vertical circulation device for closed water area Active JP6158332B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013149984 2013-07-18
JP2013149984 2013-07-18
PCT/JP2014/068909 WO2015008788A1 (en) 2013-07-18 2014-07-16 Vertical circulation method for closed water area and vertical circulation device

Publications (2)

Publication Number Publication Date
JPWO2015008788A1 JPWO2015008788A1 (en) 2017-03-02
JP6158332B2 true JP6158332B2 (en) 2017-07-05

Family

ID=52346236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015527318A Active JP6158332B2 (en) 2013-07-18 2014-07-16 Vertical circulation method and vertical circulation device for closed water area

Country Status (3)

Country Link
JP (1) JP6158332B2 (en)
KR (1) KR20160032232A (en)
WO (1) WO2015008788A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6661129B2 (en) * 2017-04-25 2020-03-11 株式会社エコ・プラン Diffusion apparatus and diffusion method
CN107055831B (en) * 2017-06-01 2023-06-06 福建环卫士环保研究院有限公司 Plug flow circulation system
CN112154964B (en) * 2020-10-14 2022-05-13 武汉中科瑞华生态科技股份有限公司 Aquaculture waste water circulation treatment's fish-vegetable intergrowth system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213897A (en) * 1986-03-12 1987-09-19 Jiyabara:Kk Method and apparatus for aerating dam reservoir
JPH0751033B2 (en) * 1988-10-13 1995-06-05 海洋工業株式会社 Fishing ground raising method and device
JPH03292835A (en) * 1990-04-12 1991-12-24 Hisao Makino Aquatic resource rearing on continental shelf
JPH04200796A (en) * 1990-11-30 1992-07-21 Nobuo Goto Air blowoff apparatus in liquid
JPH04110199U (en) * 1991-02-19 1992-09-24 海洋工業株式会社 pumping device
JPH05169095A (en) * 1991-03-26 1993-07-09 Kaiyo Kogyo Kk Method and device for wide-area water purification
JPH05301096A (en) * 1991-06-11 1993-11-16 Kaiyo Kogyo Kk Method for controlling intermittent air lift device and system therefor
JP3158262B2 (en) * 1992-08-21 2001-04-23 海洋工業株式会社 Current generation method and facilities in aquaculture area
JPH07994A (en) * 1993-06-16 1995-01-06 Marsima Aqua Syst Corp Pneumatic water lifting cylinder
JP2008043918A (en) * 2006-08-21 2008-02-28 Best Tech:Kk Contact aeration method and equipment for organic wastewater
JP4728911B2 (en) * 2006-08-22 2011-07-20 株式会社丸島アクアシステム Distributed air diffuser
JP2009207971A (en) * 2008-03-03 2009-09-17 Marsima Aqua System Corp Air lift device
JP4990259B2 (en) * 2008-11-17 2012-08-01 株式会社丸島アクアシステム Air pumping equipment

Also Published As

Publication number Publication date
JPWO2015008788A1 (en) 2017-03-02
KR20160032232A (en) 2016-03-23
WO2015008788A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
Boyd Pond water aeration systems
KR101469426B1 (en) A Floating Type Water Purification Facility
Roy et al. Diversified aeration facilities for effective aquaculture systems—a comprehensive review
CN204362765U (en) A kind of lifting type aerating aerator
CN102531178A (en) Combination device for treating cultivation wastewater of solar ecological compound purification pond
JP6158332B2 (en) Vertical circulation method and vertical circulation device for closed water area
CN203079757U (en) Water-pumping flowing aeration device
WO2014169622A1 (en) Low-power consumption and high-efficiency water body aeration and oxygenation device
CN106719246A (en) Batch production shrimp ecosystem and method based on air lift circulation
CN103755046B (en) In-situ mechanical mixing nitrogen-supply integrated lake reservoir water quality improving device
CN201248320Y (en) Underwater oxygen-increasing machine
CN101659481A (en) Oxygen-enriched purification system with millipore aeration
CN206423377U (en) A kind of circulating oxygen-increasing device of cultivating pool
CN109548727B (en) Deepwater net cage with pulley lifting mechanism
CN207418403U (en) Control phytem system based on floating on water photo-voltaic power generation station
CN105417743A (en) Intermittent mechanical mixing-surface layer oxygenation integrated pilot plant test device
CN105198072B (en) Floatation type is aerated dissolved oxygen biological cycle water treatment facilities and water treatment system
CN201458839U (en) Microporous aeration and purification system
CN105357959A (en) Dual water tank for cultivation and air lift apparatus provided therein
CN215946892U (en) A multi-functional water quality guarantee device for river lake water
CN203269664U (en) Water aeration oxygenation device with low power consumption and high efficiency
CN205258117U (en) Float formula aeration dissolved oxygen biological cycle water treatment facilities and water processing system
JP2001292658A (en) Large-scale oceanic fishing ground system
CN105417682B (en) A kind of reoxygenation devices and methods therefor of unpowered river surface water
Singh Design characteristics of circular stepped cascade pump aeration system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170607

R150 Certificate of patent or registration of utility model

Ref document number: 6158332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250