JPH05301096A - Method for controlling intermittent air lift device and system therefor - Google Patents

Method for controlling intermittent air lift device and system therefor

Info

Publication number
JPH05301096A
JPH05301096A JP16651491A JP16651491A JPH05301096A JP H05301096 A JPH05301096 A JP H05301096A JP 16651491 A JP16651491 A JP 16651491A JP 16651491 A JP16651491 A JP 16651491A JP H05301096 A JPH05301096 A JP H05301096A
Authority
JP
Japan
Prior art keywords
value
water
water quality
intermittent air
air pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16651491A
Other languages
Japanese (ja)
Inventor
Michio Makino
道男 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaiyo Kogyo KK
Original Assignee
Kaiyo Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaiyo Kogyo KK filed Critical Kaiyo Kogyo KK
Priority to JP16651491A priority Critical patent/JPH05301096A/en
Publication of JPH05301096A publication Critical patent/JPH05301096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To automatically keep water quantity in the vicinity of set value by comparing the measured water quality value with the preset water quality value and controlling charge of a water-quality improver by difference thereof. CONSTITUTION:When pH of a lake is 4.5, high-concentration line water (pH 9) is continuously injected into the respective pumping devices 2a, 2b, 2c and pH is regulated to 6. In the case of regulating the set value of pH to 6, when the value of a pH sensor reaches 6, output of comparison value 5 is inputted to a controller 9. When a pump 8 of chemicals is stopped, a pumping device 2 performs only circulation of water and pH regulation is stopped. Thereby supply of chemicals to the pumping device 2 unnecessary for pH regulation is automatically stopped. Further, when pH value is lowered, supply of chemicals is restarted. Accordingly, water quality is automatically controlled by comparing the measured value based on the various sensors with the preset value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水質の改善状態を検
出して間欠空気揚水装置の運転又は停止を管理すること
を目的とした間欠空気揚水装置における管理方法及び管
理システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a management method and a management system for an intermittent air pumping apparatus for detecting the improved state of water quality and managing the operation or stoppage of the intermittent air pumping apparatus.

【0002】[0002]

【従来の技術】従来、間欠空気揚水装置による溶存酸素
量の改善(特公平3−7440号)及び間欠空気揚水装
置を用いたBOD値、COD値、又はPH値の改善(特
開昭62−6010号)が知られていた。
2. Description of the Related Art Conventionally, the amount of dissolved oxygen is improved by an intermittent air pumping device (Japanese Patent Publication No. 3-7440) and the BOD value, COD value, or PH value is improved by using an intermittent air pumping device (JP-A-62-62). No. 6010) was known.

【0003】[0003]

【発明により解決すべき課題】前記従来の装置は、各所
のダム、湖・沼などに設置して夫々多大の成果を揚げて
いる。然し乍ら、前記装置1基の能力は、1万トン乃至
数百万トンに及ぶけれども、水量の大きいダム、湖・沼
等の水質改善には、暫々数基乃至数十基を必要とするこ
とが明らかである。因みに、現に設置したダム等におい
ても、1箇所数基以上のものが多々ある。然して、ダ
ム、湖・沼等の形状、水深などによっては、複数基を常
時運転する必要がないもの、又は季節によって出力低下
をさせてもよい場合などが考えられ、現に人力制御して
いるが、設置基数の増大による労力の増大と、制御精度
の向上の点で問題点があった。
The above-mentioned conventional devices have been installed in dams, lakes, swamps, etc. at various places and have achieved great results. However, although the capacity of one of the above-mentioned devices reaches 10,000 to several million tons, it is necessary to temporarily require several to several dozen to improve the water quality of dams, lakes, swamps, etc. with a large amount of water. Is clear. By the way, there are many dams and the like that are actually installed at more than one site. However, depending on the shape of dams, lakes, swamps, etc., the depth of water, etc., it may not be necessary to operate multiple units at all times, or the output may be reduced depending on the season. However, there is a problem in that labor is increased due to an increase in the number of installed bases and control accuracy is improved.

【0004】また、ダム、湖・沼等は、交通不便の人家
のない地域が多く、駐留管理が困難な場合もあり、遠隔
管理が望まれる場合も少なくない。
In many areas such as dams, lakes, and swamps, there are no inhabited houses for inconvenient transportation, and it may be difficult to manage the station, and remote management is often desired.

【0005】[0005]

【課題を解決する為の手段】然るにこの発明は、適所に
配置した各種センサーと、予め定めた設定値とにより、
自動制御を可能にし、前記従来の問題点を解決したので
ある。
SUMMARY OF THE INVENTION However, according to the present invention, various sensors arranged at appropriate positions and predetermined set values are provided.
This enabled automatic control and solved the above-mentioned conventional problems.

【0006】即ちこの発明の管理方法は、測定した水質
値と、予め設定した水質値とを比較し、その異同によ
り、加圧空気の給送及び/又は水質改善剤の投入を制御
することを特徴とした間欠空気揚水装置における管理方
法である。また水質値は、溶存酸素量、BOD値、CO
D値、PH値、導電率、クロロフィルa値、濁度、全リ
ン値、全窒素値の一部又は全部としたものである。次に
水質改善剤は、凝集剤、殺藻剤、PH調整剤、高濃度酸
素水の一部又は全部としたものである。更に、PH調整
剤は、高濃度アルカリ水、石灰粉末としたものである。
That is, the management method of the present invention compares the measured water quality value with a preset water quality value and controls the feeding of pressurized air and / or the feeding of the water quality improving agent based on the difference. This is a characteristic management method for the intermittent air pumping system. The water quality values are the dissolved oxygen content, BOD value, CO
It is a part or all of the D value, PH value, conductivity, chlorophyll a value, turbidity, total phosphorus value, and total nitrogen value. Next, the water quality improving agent is a coagulant, an algicidal agent, a pH adjusting agent, or a part or all of high-concentration oxygen water. Further, the pH adjusting agent is a highly concentrated alkaline water or lime powder.

【0007】この発明の管理システムは、適所に配置し
た水質センサーを比較器に接続し、比較器の出力を間欠
空気揚水装置の制御系に接続したことを特徴とする間欠
空気揚水装置の管理システムであり、他の発明は、適所
に配置した水質センサー及び揚水筒内流速センサーを比
較器に接続し、比較器の出力を間欠空気揚水装置の制御
系に接続したことを特徴とする間欠空気揚水装置の管理
システムである。また制御系は、加圧空気の給送量制御
手段及び圧力制御手段と、水質改善剤の投与制御手段の
一部又は全部を具備したものである。
The management system of the present invention is characterized in that a water quality sensor arranged at an appropriate position is connected to a comparator, and an output of the comparator is connected to a control system of the intermittent air pumping apparatus. Another invention is that the intermittent air pumping is characterized in that the water quality sensor and the pumping in-cylinder flow velocity sensor, which are arranged in appropriate places, are connected to a comparator, and the output of the comparator is connected to the control system of the intermittent air pumping device. It is a device management system. Further, the control system includes a supply amount control means and a pressure control means for the pressurized air and a part or all of the water quality improving agent administration control means.

【0008】前記各発明に、更に、水温センサー及び/
又は監視カメラを用いることもできる。
In each of the above inventions, a water temperature sensor and / or
Alternatively, a surveillance camera can be used.

【0009】前記における高濃度酸素水は、例えば酸素
を飽和近くまで溶解した水であり、アルカリ水は、石灰
を飽和近くまで溶解した水である。また、凝集剤として
は、硫酸バン土、高分子凝集剤などがあり、殺藻剤とし
ては硫酸銅がある。何れにしても、目的物以外に悪影響
を及ぼさない濃度で使用することは勿論である。
The high-concentration oxygen water mentioned above is, for example, water in which oxygen is dissolved to near saturation, and the alkaline water is water in which lime is dissolved to near saturation. In addition, examples of flocculants include vanadium sulfate and polymer flocculants, and examples of algaecides include copper sulfate. In any case, it is needless to say that it is used at a concentration that does not adversely affect other than the intended product.

【0010】前記システムは、例えばダム、湖・沼の管
理棟内に設置し、必要に応じ管理責任者(市・町・村の
管理者)の常住室まで有線、又は無線により送ることが
できる。
The above-mentioned system can be installed, for example, in a dam, lake / marsh management building, and can be sent by wire or wireless to the permanent residence of the manager (city / town / village manager) if necessary. ..

【0011】[0011]

【実施例1】図1において、湖1に揚水装置2(2a、
2b、2c)を適宜設置し、各揚水装置2a、2b、2
cには流速センサー3(3a、3b、3c)を設置し、
湖1の適所に溶存酸素センサー4(4a、4b、4c、
4d)と、PHセンサー、BODセンサー、CODセン
サー、藻類センサーなどの一部又は全部を設置する。前
記各センサー3、4の出力は、比較器5の入力に接続す
る。一方比較器5には、設定器6によって、予め設定さ
れた流速、溶存酸素量又はPHなどの値が記憶されてい
るので、前記設定値と、記憶値とを比較し、その差が一
定値を超えた場合には、制御器9に入力し、制御器9の
出力がコンプレッサー7、薬剤ポンプ8又は記録・発振
器10に入力し、コンプレッサー7の停止又は気圧制
御、薬剤ポンプ8の停止又は給送量制限を行うと共に、
前記自動機器の状態を記録し、かつ管理本部11に報告
する。前記比較器5、制御器9、コンプレッサー7、薬
剤ポンプ8及び記録・発振器10により、制御装置12
を形成する。
[Embodiment 1] In FIG. 1, a water pumping device 2 (2a,
2b, 2c) are installed appropriately and each pumping device 2a, 2b, 2
The flow velocity sensor 3 (3a, 3b, 3c) is installed in c,
Dissolved oxygen sensor 4 (4a, 4b, 4c,
4d) and a part or all of PH sensor, BOD sensor, COD sensor, algae sensor, etc. are installed. The output of each of the sensors 3 and 4 is connected to the input of the comparator 5. On the other hand, the comparator 5 stores values such as the flow velocity, the amount of dissolved oxygen, and the pH set in advance by the setter 6. Therefore, the set value is compared with the stored value, and the difference is a constant value. When it exceeds the limit, the controller 9 is input, and the output of the controller 9 is input to the compressor 7, the drug pump 8 or the recording / oscillator 10, and the compressor 7 is stopped or the air pressure is controlled, and the drug pump 8 is stopped or supplied. While limiting the amount of delivery,
The state of the automatic device is recorded and reported to the management headquarters 11. The control device 12 includes the comparator 5, the controller 9, the compressor 7, the drug pump 8, and the recording / oscillator 10.
To form.

【0012】前記において、各揚水装置2a、2b、2
cの空気室に加圧空気を給送すると、加圧空気は一旦空
気室に留った後、気泡となって揚水筒内へ放出される
(例えば、20秒前後の間隔で放出される)。この放出
時間が短いと、揚水筒の上端から放出される気泡が連続
的又は連続に近い状態になるので(例えば、間隔は5秒
以上が好ましい)、揚水筒上端付近には、水底の水が連
続的に上昇し、水面付近の水と混合するが、この混合水
の温度が水底水の温度に近くなる。例えば、水面水温2
0℃の時に、水底水温10℃ならば、混合水の水温は1
5℃前後となる。従って混合水は、比重差によって直ち
に下降するので、広範囲に拡散することがむつかしくな
る。従って、循環の影響力は揚水筒を中心とする直径5
m〜20m位の範囲に止まる。このような場合には、溶
存酸素量の改善も小範囲に止まることになり、所期の目
的を達成できない。前記に反し、放出間隔が1分以上に
もなると、気泡の上昇による揚水筒内の揚水量が激減す
ることになるので、拡散水も少量となり、これも所期の
目的を達成することができない。実験の結果によれば、
揚水筒内の流速は0〜2.0m/sec であるから、流速を
0.5m/sec 〜2.0m/sec にすれば、揚水筒による揚
水効率が高く保たれると共に、揚水量も間欠的になり、
水面の水との混合状態が良好になる。従って、水面の水
温と、混合水の水温との温度差が0.5℃〜1.0℃と
なり、混合水はその温度に見合う水深に沿って拡散す
る。このような拡散は、しばしば数百mから2000m
にも及ぶことが確認されている。
In the above, each pumping device 2a, 2b, 2
When the pressurized air is fed to the air chamber of c, the pressurized air once stays in the air chamber and is then released as bubbles into the pumping cylinder (for example, released at intervals of about 20 seconds). .. If this discharge time is short, the bubbles discharged from the upper end of the pump will be continuous or nearly continuous (for example, the interval is preferably 5 seconds or more). It rises continuously and mixes with water near the water surface, but the temperature of this mixed water becomes close to the temperature of the bottom water. For example, water surface temperature 2
If the bottom water temperature is 10 ℃ at 0 ℃, the water temperature of the mixed water is 1 ℃.
It will be around 5 ° C. Therefore, the mixed water immediately descends due to the difference in specific gravity, making it difficult to diffuse over a wide range. Therefore, the influence of circulation is 5
It stops in the range of m to 20m. In such a case, the improvement of the dissolved oxygen amount is limited to a small range, and the intended purpose cannot be achieved. Contrary to the above, if the discharge interval is more than 1 minute, the amount of pumped water in the pumping cylinder will be drastically reduced due to the rise of bubbles, and the amount of diffused water will also be small, which also cannot achieve the intended purpose. .. According to the results of the experiment,
The flow velocity in the pump is 0 to 2.0 m / sec. Therefore, if the flow velocity is set to 0.5 m / sec to 2.0 m / sec, the pumping efficiency by the pump will be kept high and the pumping volume will be intermittent. Become
The mixing state with water on the surface of the water becomes good. Therefore, the temperature difference between the water temperature on the water surface and the water temperature of the mixed water is 0.5 ° C. to 1.0 ° C., and the mixed water diffuses along the water depth corresponding to the temperature. Such diffusion is often hundreds to 2000 meters
It has been confirmed to extend to

【0013】前記実施例に使用する間欠空気揚水装置2
は、図3のように、湖1へ設置される。即ち、下部揚水
筒13の下部に空気室14を嵌装すると共に、索条15
を介して重錘16を連結し、重錘16を水底17に定着
させる。前記下部揚水筒13の上部に、上部揚水筒18
(4本よりなる)の下部を連結し、上部揚水筒18の上
部外側に浮子19を取付け、前記重錘16と浮子19に
より揚水装置を垂直に保持する。前記空気室14へホー
ス20を介して矢示21のように加圧空気を給送する
と、加圧空気は空気室へ溜り、所定量溜る毎に、下部揚
水筒13内へ排出される。そこで、排出された空気は、
大気泡23となって下部揚水筒13内を矢示22のよう
に上昇し、大気泡23の上昇に伴い、下部揚水筒13の
下端から、矢示24のように吸水する。前記大気泡23
は、分割して気泡25として各上部揚水筒18内を上昇
し、その上端から放出される。従って、下部揚水筒13
内を上昇した水(最大流速1.2m/sec )も各上部揚水
筒18に分割され、その上端から放出される。放出され
た水(例えば水温10℃)は、水面の水(例えば水温2
0℃)と混合し、混合水(例えば水温19.5℃)は、
水温に見合う水深(例えば水面下1m)に沿って矢示2
6のように拡散する。前記拡散した水は、隣接拡散水と
衝突し、又は岸に衝突して、矢示27のように下降し、
揚水装置2の下部方向へ流動して、矢示24のように下
部揚水筒13の下端から吸上げられる。
Intermittent air pumping apparatus 2 used in the above embodiment
Are installed in Lake 1, as shown in FIG. That is, the air chamber 14 is fitted in the lower portion of the lower pumping cylinder 13, and the rope 15
The weight 16 is connected to the bottom 16 by fixing the weight 16 to the water bottom 17. An upper pumping cylinder 18 is provided above the lower pumping cylinder 13.
The lower part (composed of four pieces) is connected, and the float 19 is attached to the upper outside of the upper pumping cylinder 18, and the weight 16 and the float 19 hold the pumping device vertically. When the pressurized air is fed to the air chamber 14 through the hose 20 as shown by the arrow 21, the pressurized air accumulates in the air chamber and is discharged into the lower pumping cylinder 13 every time a predetermined amount is accumulated. Therefore, the discharged air is
The air bubbles 23 become large bubbles 23 and rise in the lower pumping cylinder 13 as shown by the arrow 22, and as the large bubbles 23 rise, water is absorbed from the lower end of the lower pumping cylinder 13 as shown by the arrow 24. The large bubble 23
Is divided and rises as bubbles 25 in each upper pumping cylinder 18 and is discharged from the upper end thereof. Therefore, the lower pumping cylinder 13
The water rising in the inside (maximum flow velocity 1.2 m / sec) is also divided into each upper pumping cylinder 18 and discharged from the upper end thereof. The released water (for example, water temperature 10 ° C) is the water on the surface (for example, water temperature 2
0 ° C) and mixed water (for example, water temperature 19.5 ° C)
Shown along the depth of water that corresponds to the water temperature (for example, 1 m below the water surface) 2
It spreads like 6. The diffused water collides with adjacent diffused water, or collides with the shore, and descends as shown by an arrow 27,
It flows toward the lower part of the pumping device 2 and is sucked up from the lower end of the lower pumping cylinder 13 as shown by an arrow 24.

【0014】前記のように、湖1の大量水は緩徐に上下
対流を生じるので、長時間(例えば120時間〜240
時間)の間に全水混合状態となり、溶存酸素量及びPH
はもとより水温もほぼ一定になる。
As described above, since a large amount of water in the lake 1 causes up-and-down convection slowly, it takes a long time (for example, 120 hours to 240 hours).
During the time), all water is mixed and the dissolved oxygen amount and PH
Not to mention the water temperature is almost constant.

【0015】前記のように十分の拡散により、溶存酸素
量の改善と、PH調整、BOD値、COD値の改善など
が行われ、強力な揚水の循環によって速かに効果が上
る。例えば、水量100万トンに対し、直径50cm、長
さ10mの揚水筒1本を具備した揚水装置により1週間
で溶存酸素量を改善した報告がある。また、同一装置に
より、水面の水温20℃、水底の水温10℃の湖の水温
が1週間で、水面の水温20℃、水底の水温18℃にな
ったとの報告もある。
As described above, by sufficiently diffusing, the amount of dissolved oxygen is improved, the pH is adjusted, the BOD value and the COD value are improved, and the powerful pumping circulation has a quick effect. For example, there is a report that the amount of dissolved oxygen is improved in one week by a pumping device equipped with one pumping cylinder having a diameter of 50 cm and a length of 10 m for a water amount of 1 million tons. It is also reported that with the same device, the water temperature of the lake at a water temperature of 20 ° C and the water temperature of the water bottom of 10 ° C was changed to 20 ° C at the water surface and 18 ° C at the water bottom in one week.

【0016】前記のように、一定期間の運転により所期
の目的を達成した場合には、酸素センサー、温度センサ
ー、その他の測定値に基づき揚水装置の運転を停止した
り(例えば冬季に停止することもある)、運転台数を増
減するなどの処置をとることによって(例えば水位変
動、貯水量変動、その他能力過多)、最少の運転費によ
り最大の効果をあげることができる。然して、ダム、湖
・沼等の水質は、流入水により絶えず悪化しているの
で、悪化速度に対応して揚水装置の運転基数を増減し、
外界の状況(例えば、降雨の有無)により運転基数を増
減するなどの措置も必要である。
As described above, when the intended purpose is achieved by operating for a certain period of time, the operation of the pumping device is stopped based on the measured values of the oxygen sensor, the temperature sensor, and the like (for example, it is stopped in winter). However, by taking measures such as increasing or decreasing the number of operating vehicles (for example, water level fluctuation, water storage fluctuation, and other excessive capacity), the maximum effect can be achieved with the minimum operating cost. However, since the water quality of dams, lakes, swamps, etc. is constantly deteriorating due to inflow water, the number of pumping units operating is increased or decreased in response to the rate of deterioration,
It is also necessary to take measures such as increasing or decreasing the number of operating units depending on the external conditions (for example, the presence or absence of rainfall).

【0017】[0017]

【実施例2】湖1(水量100万m3 )のPHが4.5
の場合に、各揚水装置2a、2b、2cに高濃度石灰水
(PH9)を毎秒100cc注入し、毎秒の揚水量1.0
3(直径50cm、長さ10mの揚水筒)とすれば、1
40時間でPH6にすることができる。そこで、PHの
設定値を6としておけば、PHセンサーの値が6となっ
た時に、比較器5の出力が制御器9に入力し、薬剤ポン
プ8を停止すれば、前記揚水装置2は、爾後水の循環の
み行い、PH調整は中止される。かくてPH調整の必要
でない揚水装置2への薬剤の給送は、自動的に中止され
る。また、PH値が低下すれば、再び薬剤給送を開始す
ることになる。
[Example 2] PH of Lake 1 (water volume of 1 million m 3 ) was 4.5.
In this case, 100cc of high-concentration lime water (PH9) is injected into each pumping device 2a, 2b, 2c every second, and the amount of pumped water per second is 1.0
m 3 (50 cm diameter, 10 m long pumping cylinder)
It can reach PH6 in 40 hours. Therefore, if the set value of PH is set to 6, when the value of the PH sensor becomes 6, the output of the comparator 5 is input to the controller 9 and the medicine pump 8 is stopped. After that, only the circulation of water is performed, and the PH adjustment is stopped. Thus, the delivery of the medicine to the water pumping device 2 which does not require PH adjustment is automatically stopped. Further, if the PH value decreases, drug delivery will be started again.

【0018】[0018]

【発明の効果】この発明によれば、各種センサーによる
測定値と、予め定めた設定値との比較によって自動制御
するので、水質が常時設定値付近を保つことになり、所
期の目的を自動的に達成できる効果がある。
According to the present invention, since the automatic control is performed by comparing the measured value by various sensors with the preset value, the water quality is always kept near the preset value, and the intended purpose is automatically determined. There is an effect that can be achieved.

【0019】然して総ての動作は自動化される為に、少
数の管理者により、大容量水のダム、湖・沼等の水質を
容易、かつ確実に管理し得る効果がある。
However, since all the operations are automated, there is an effect that a small number of managers can easily and surely manage the water quality of large-capacity dams, lakes, swamps, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の概略を示す図FIG. 1 is a diagram showing an outline of the present invention.

【図2】同じく管理システムのブロック図FIG. 2 is a block diagram of the management system.

【図3】同じく揚水装置の使用状態図[Fig. 3] Similarly, a usage state diagram of the water pumping device

【符号の説明】[Explanation of symbols]

1 湖 2a、2b、2c 揚水装置 3a、3b、3c 流速センサー 4a、4b、4c、4d 溶存酸素センサー 5 比較器 6 設定器 7 コンプレッサー 8 薬剤ポンプ 9 制御器 10 発振器 11 管理本部 12 制御装置 13 下部揚水筒 14 空気室 16 重錘 18 上部揚水筒 19 浮子 23 大気泡 25 気泡 1 Lake 2a, 2b, 2c Pumping device 3a, 3b, 3c Flow velocity sensor 4a, 4b, 4c, 4d Dissolved oxygen sensor 5 Comparator 6 Setting device 7 Compressor 8 Drug pump 9 Controller 10 Oscillator 11 Management headquarters 12 Controller 13 Lower part Pumping cylinder 14 Air chamber 16 Weight 18 Upper pumping cylinder 19 Float 23 Large air bubble 25 Air bubble

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 測定した水質値と、予め設定した水質値
とを比較し、その異同により、加圧空気の給送及び/又
は水質改善剤の投入を制御することを特徴とした間欠空
気揚水装置における管理方法
1. Intermittent air pumping characterized by comparing the measured water quality value with a preset water quality value and controlling the feeding of pressurized air and / or the feeding of a water quality improving agent based on the difference. Device management method
【請求項2】 水質値は、溶存酸素量、BOD値、CO
D値、PH値、導電率、クロロフィルa値、濁度、全リ
ン値、全窒素値の一部又は全部とした請求項1記載の間
欠空気揚水装置における管理方法
2. Water quality values include dissolved oxygen content, BOD value, CO
The management method for an intermittent air pumping device according to claim 1, wherein a part or all of D value, PH value, conductivity, chlorophyll a value, turbidity, total phosphorus value, and total nitrogen value are used.
【請求項3】 水質改善剤は、凝集剤、殺藻剤、PH調
整剤、高濃度酸素水の一部又は全部とした請求項1記載
の間欠空気揚水装置における管理方法
3. The management method in an intermittent air pumping apparatus according to claim 1, wherein the water quality improving agent is a coagulant, an algicidal agent, a pH adjusting agent, or a part or all of high-concentration oxygen water.
【請求項4】 PH調整剤は、高濃度アルカリ水、石灰
粉末とした請求項3記載の間欠揚水装置における管理方
4. The management method in an intermittent pumping apparatus according to claim 3, wherein the pH adjusting agent is highly concentrated alkaline water or lime powder.
【請求項5】 適所に配置した水質センサーを比較器に
接続し、比較器の出力を間欠空気揚水装置の制御系に接
続したことを特徴とする間欠空気揚水装置の管理システ
5. A management system for an intermittent air pumping device, characterized in that a water quality sensor arranged in a proper position is connected to a comparator, and an output of the comparator is connected to a control system of the intermittent air pumping device.
【請求項6】 適所に配置した水質センサー及び揚水筒
内流速センサーを比較器に接続し、比較器の出力を間欠
空気揚水装置の制御系に接続したことを特徴とする間欠
空気揚水装置の管理システム
6. A control of an intermittent air pumping device, characterized in that a water quality sensor and a pumping cylinder flow velocity sensor, which are arranged at appropriate positions, are connected to a comparator, and the output of the comparator is connected to a control system of the intermittent air pumping device. system
【請求項7】 制御系は、加圧空気の給送量制御手段及
び圧力制御手段と、水質改善剤の投与制御手段の一部又
は全部を具備した請求項5又は6記載の間欠空気揚水装
置の管理システム
7. The intermittent air pumping apparatus according to claim 5, wherein the control system comprises a feed amount control means and a pressure control means for the pressurized air, and a part or all of the administration control means for the water quality improving agent. Management system
JP16651491A 1991-06-11 1991-06-11 Method for controlling intermittent air lift device and system therefor Pending JPH05301096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16651491A JPH05301096A (en) 1991-06-11 1991-06-11 Method for controlling intermittent air lift device and system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16651491A JPH05301096A (en) 1991-06-11 1991-06-11 Method for controlling intermittent air lift device and system therefor

Publications (1)

Publication Number Publication Date
JPH05301096A true JPH05301096A (en) 1993-11-16

Family

ID=15832739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16651491A Pending JPH05301096A (en) 1991-06-11 1991-06-11 Method for controlling intermittent air lift device and system therefor

Country Status (1)

Country Link
JP (1) JPH05301096A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810795A (en) * 1994-07-04 1996-01-16 Takeshi Ichikawa Automatic purifying device for lake and pond
JPH08312599A (en) * 1995-05-11 1996-11-26 Mitsubishi Heavy Ind Ltd Drive controller of water flow generator
JPH10109094A (en) * 1996-10-04 1998-04-28 Mori Plant:Kk Treatment of waste water or the like of barn
JP2004512938A (en) * 2000-11-06 2004-04-30 キム バッキ Apparatus and method for improving water quality of a reservoir
JP2004249248A (en) * 2003-02-21 2004-09-09 Yokogawa Electric Corp Water cleaning system
JP2004290863A (en) * 2003-03-27 2004-10-21 Narasaki Seisakusho:Kk Method and apparatus for improving water quality in bottom water area
JP2005313064A (en) * 2004-04-28 2005-11-10 Yokogawa Electric Corp Water quality conservation system
JP2011143400A (en) * 2009-12-17 2011-07-28 Marsima Aqua System Corp Lifting type aeration/circulation apparatus
JPWO2015008788A1 (en) * 2013-07-18 2017-03-02 株式会社エコ・プラン Vertical circulation method and vertical circulation device for closed water area
JP2018123538A (en) * 2017-01-31 2018-08-09 中国電力株式会社 Proliferation suppression system for water bloom and method for suppressing proliferation of water bloom

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810795A (en) * 1994-07-04 1996-01-16 Takeshi Ichikawa Automatic purifying device for lake and pond
JPH08312599A (en) * 1995-05-11 1996-11-26 Mitsubishi Heavy Ind Ltd Drive controller of water flow generator
JPH10109094A (en) * 1996-10-04 1998-04-28 Mori Plant:Kk Treatment of waste water or the like of barn
JP2004512938A (en) * 2000-11-06 2004-04-30 キム バッキ Apparatus and method for improving water quality of a reservoir
JP2004249248A (en) * 2003-02-21 2004-09-09 Yokogawa Electric Corp Water cleaning system
JP2004290863A (en) * 2003-03-27 2004-10-21 Narasaki Seisakusho:Kk Method and apparatus for improving water quality in bottom water area
JP2005313064A (en) * 2004-04-28 2005-11-10 Yokogawa Electric Corp Water quality conservation system
JP2011143400A (en) * 2009-12-17 2011-07-28 Marsima Aqua System Corp Lifting type aeration/circulation apparatus
JPWO2015008788A1 (en) * 2013-07-18 2017-03-02 株式会社エコ・プラン Vertical circulation method and vertical circulation device for closed water area
JP2018123538A (en) * 2017-01-31 2018-08-09 中国電力株式会社 Proliferation suppression system for water bloom and method for suppressing proliferation of water bloom

Similar Documents

Publication Publication Date Title
JPH05301096A (en) Method for controlling intermittent air lift device and system therefor
US4732689A (en) Feeder assembly for adding dissolvable agent to a flowing liquid
US4436675A (en) Multistage water purification apparatus
JP2021506345A (en) High efficiency air lift pump
JPH1085788A (en) Nitrification and denitrification method
KR102220051B1 (en) Oxygen dissolving device for fish farm
US3976575A (en) Liquid aeration device
JP4055077B2 (en) Operation method of membrane separation activated sludge treatment equipment
CN206470587U (en) Sewage treatment intelligent control system
JP3375348B2 (en) Oxygen replenishment equipment for wastewater purification equipment
CN215977501U (en) Constant-pressure water supply device
CN113636660B (en) Corridor type aeration tank
SU1374187A1 (en) Liquid level regulator
JPH0647598Y2 (en) Sewage treatment equipment
JPS582496A (en) Exposure and constant discharge pump device
KR100344494B1 (en) Unelectrified water sterilization System
JPS5936319Y2 (en) Batch type activated sludge treatment equipment
JPH064168Y2 (en) Control device for chemical injection into boiler
JPH05154486A (en) Equipment for measuring chlorine demand
JP2001300575A (en) Sludge outflow preventive device
JPH04354586A (en) Method and equipment for regulating ph of effluent water discharged from pond and lagoon or the like
JPH0422878Y2 (en)
JPH1133578A (en) Inclusive immobilization carrier, its preparation and apparatus
JPS608880B2 (en) Wastewater treatment method
JP2001314739A (en) Device for dissolving gas into liquid