JP2005313064A - Water quality conservation system - Google Patents

Water quality conservation system Download PDF

Info

Publication number
JP2005313064A
JP2005313064A JP2004133059A JP2004133059A JP2005313064A JP 2005313064 A JP2005313064 A JP 2005313064A JP 2004133059 A JP2004133059 A JP 2004133059A JP 2004133059 A JP2004133059 A JP 2004133059A JP 2005313064 A JP2005313064 A JP 2005313064A
Authority
JP
Japan
Prior art keywords
water
oxygen
aeration
circulation means
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004133059A
Other languages
Japanese (ja)
Other versions
JP4305956B2 (en
Inventor
Katsutomo Tanaka
克知 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004133059A priority Critical patent/JP4305956B2/en
Publication of JP2005313064A publication Critical patent/JP2005313064A/en
Application granted granted Critical
Publication of JP4305956B2 publication Critical patent/JP4305956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water quality conservation system which can efficiently control operation of an oxygen-dissolved water supply device by detecting supply effect of oxygen, and is effective in a phytoplankton measure. <P>SOLUTION: The water quality conservation system for maintaining the water quality of a water area having density stratification different in water temperature, salt concentration, or suspended solid concentration in a good condition comprises an aeration circulation means for discharging air into a water area having an arbitrary depth, and an oxygen-dissolved water supply means for sucking water from the water area below the air exhaust part of the aeration circulation means to dissolve oxygen into the sucked water, and exhausting the obtained oxygen-dissolved water to the water area below the air exhaust part of the aeration circulation means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は海(港湾)、湖沼、ダム、濠等の閉鎖性水域における溶存酸素濃度や底層の水質を良好な状態に維持するための水質保全システムに関するものである。   The present invention relates to a water quality conservation system for maintaining dissolved oxygen concentration and bottom layer water quality in a closed state such as seas (ports), lakes, dams, and dredgings.

海(港湾)、湖沼、河川、ダム、濠等には生活排水や産業排水等が流入しており、こうした排水中には有機物、栄養塩類が含まれている。この富栄養化による植物プランクトンの増殖は、それ自体が浄水場において凝集障害、ろ過障害、異臭味などの問題を引き起こすとともに、長期的には、死骸や排泄物が底層に堆積して、有機汚泥となる。
水中の微生物はこれらを分解するために溶存酸素を消費するので、底層の水への酸素供給が消費量より少ないと、貧酸素状態となってしまう。
Domestic wastewater and industrial wastewater flow into the sea (ports), lakes, rivers, dams, dredging, etc., and these wastewater contains organic matter and nutrient salts. The growth of phytoplankton due to eutrophication itself causes problems such as coagulation failure, filtration failure, and off-flavor in water purification plants, and in the long term, dead bodies and excrement accumulate in the bottom layer and organic sludge. It becomes.
Since microorganisms in water consume dissolved oxygen to decompose them, if the amount of oxygen supplied to the water in the bottom layer is less than the consumption, it becomes in an oxygen-poor state.

底層水が貧酸素状態に陥ると、底泥中の有機物は嫌気分解され、硫化物やメタンガス等の、生物にとって有害な物質が生成される。
また、底泥が酸素不足になると、底泥中の鉄、マンガン、ヒ素、リンなどの栄養塩類や金属が溶出し易くなり、水中の栄養塩濃度を高め、アオコの発生や赤潮を引き起こすなど、環境悪化の原因となる。
When bottom water falls into an anoxic state, organic matter in the bottom mud is anaerobically decomposed, and substances harmful to living organisms such as sulfides and methane gas are generated.
In addition, when the bottom mud becomes deficient in oxygen, nutrients such as iron, manganese, arsenic, and phosphorus in the bottom mud and metals are more likely to elute, increasing the concentration of nutrients in the water and causing the occurrence of red sea bream and red tides. It causes environmental deterioration.

図3は、港湾、湖沼、ダム湖等(以下総称して湖沼1という)における水温の分布状態の一例を示すもので、夏季は水面付近は温度Tが高く、水深が下がると急に温度が低下する温度躍層Aが形成された状態を模式的に示している。実線Cは温度分布曲線を示しており、水底は温度が一番低くなっている。   Fig. 3 shows an example of the distribution of water temperature in harbors, lakes, dam lakes, etc. (hereinafter collectively referred to as Lake 1). In summer, the temperature T is high near the water surface, and the temperature suddenly increases as the water depth decreases. The state where the temperature rising layer A which falls is formed is shown typically. A solid line C indicates a temperature distribution curve, and the bottom of the water has the lowest temperature.

こうした状態では、下層の温度が低く密度が大きい水は水塊を形成しており、表層付近の水温が高く密度が小さい水との混ざり合いはほとんどない。これを密度成層と呼んでいる。
従って、表層付近の溶存酸素濃度の高い水は、底層へ供給されることはなく、底層の貧酸素状態は解消されない状態となっている。
In such a state, water having a low temperature and a high density forms a water mass, and there is almost no mixing with water having a high water temperature and a low density near the surface layer. This is called density stratification.
Therefore, water having a high dissolved oxygen concentration in the vicinity of the surface layer is not supplied to the bottom layer, and the poor oxygen state of the bottom layer is not eliminated.

このような現象は、水温の差(温度躍層A)による場合だけでなく、汽水域のように塩分濃度の急激な変化が起こる塩分躍層の形成によっても生ずる。   Such a phenomenon occurs not only due to the difference in water temperature (temperature jump layer A), but also due to the formation of a salt jump layer in which the salt concentration rapidly changes as in a brackish water area.

図4は、このように貧酸素状態となった底層の水に酸素を供給する、従来の装置の例を示すもので、曝気装置によるものと、水流発生装置によるものとを例示している。図4では、湖沼1の左側に曝気装置による酸素供給技術を、右側に水流発生装置による酸素供給技術を示している。   FIG. 4 shows an example of a conventional apparatus that supplies oxygen to the water in the bottom layer that has become poorly oxygenated as described above, and illustrates an apparatus using an aeration apparatus and an apparatus using a water flow generator. In FIG. 4, the oxygen supply technique by the aeration apparatus is shown on the left side of the lake 1 and the oxygen supply technique by the water flow generator is shown on the right side.

まず、曝気装置による酸素供給技術について説明する。図に示す曝気装置は、全層曝気と呼ばれ、エア・コンプレッサ2により水底まで空気を送り、この圧縮空気を散気板3から水底に放出するもので、底層の溶存酸素増加、及び連行水による温度躍層の破壊によって、上層からの溶存酸素を水底に供給することを狙ったものである。また、水の循環により、表層水温の低下、植物プランクトンの有光層以深への引き込み、藻類の拡散などを生じさせ、植物プランクトン対策として有効である。   First, an oxygen supply technique using an aeration apparatus will be described. The aeration apparatus shown in the figure is called full-layer aeration, and sends air to the bottom of the water by the air compressor 2 and releases this compressed air from the diffuser plate 3 to the bottom of the water. Increase in dissolved oxygen in the bottom layer and entrained water The aim is to supply dissolved oxygen from the upper layer to the bottom of the water by the destruction of the thermocline due to. Moreover, the circulation of water causes a decrease in surface water temperature, drawing phytoplankton deeper into the lighted layer, spreading algae, etc., and is effective as a phytoplankton countermeasure.

しかしながら、こうした方法では、連行水による底泥の巻き上げが起こり、下層部から上層部へ栄養塩を供給してしまい、水域全体の水質を悪化させてしまうという問題がある。また、底泥の巻き上げを防止するために、空気の放出位置を高く設定した浅層曝気と呼ばれる装置もあるが、このような装置では、底層の水に酸素を供給することはできない。   However, in such a method, the bottom mud is rolled up by the entrained water, and there is a problem that nutrient salts are supplied from the lower layer to the upper layer, thereby deteriorating the water quality of the entire water area. In addition, in order to prevent the bottom mud from rolling up, there is a device called shallow aeration in which the air release position is set high, but such a device cannot supply oxygen to the water in the bottom layer.

次に、水流発生装置による酸素供給技術について説明する。図4の右側に示すように、この酸素供給技術においては、水流発生装置を構成するポンプ4によって溶存酸素の豊富な表層の水を吸い、水底に放出することにより、周囲の水を連行水として、下層水と混合させ、底層へ溶存酸素供給を行うものである。   Next, an oxygen supply technique using a water flow generator will be described. As shown on the right side of FIG. 4, in this oxygen supply technique, the surrounding water is taken as entrained water by sucking the surface layer rich in dissolved oxygen with the pump 4 constituting the water flow generator and releasing it to the bottom of the water. It is mixed with the lower layer water to supply dissolved oxygen to the bottom layer.

しかしながら、表層水は温度が高く密度が小さいため、底層の温度が低く密度の高い水とは混ざることがないうえ、前述の場合と同様に、底泥の巻き上げが起こり、水域全体の水質を悪化させてしまうという欠点がある。   However, the surface water has a high temperature and a low density, so it does not mix with the water with a low bottom layer temperature and a high density, and as in the case described above, the bottom mud rolls up and deteriorates the water quality of the entire water area. There is a disadvantage of letting it.

図5は、酸素溶解水供給方法と呼ばれるもので、貧酸素状態になっている底層の水を汲み上げ、その水に酸素溶解手段5により酸素を溶かし込んで、溶存酸素濃度を上昇させた後に、元の底層に戻すように構成したものである。
この様に、温度の低い水を、元の温度の低い水域に戻す構成にすれば、密度の違いにより混ざり合わないと云うこともなく、また、温度が高いことによる上昇流の発生もないため、底泥を巻き上げてしまうこともない。
FIG. 5 shows an oxygen-dissolved water supply method. After the bottom layer water in an oxygen-poor state is pumped up, oxygen is dissolved in the water by the oxygen-dissolving means 5 to increase the dissolved oxygen concentration. It is configured to return to the original bottom layer.
In this way, if it is configured to return the low-temperature water to the original low-temperature water area, it will not be mixed due to the difference in density, and no upward flow will occur due to the high temperature. No bottom mud is rolled up.

しかしながら、図5に示す装置では、底層の水に効率よく酸素を供給することができるが、酸素の供給効果を客観的に評価する方法がなく、酸素溶解水供給装置を効率よく動作させることができない。従来、酸素溶解水供給装置の運転制御にタイマを使用した例もあるが、一定時間間隔で運転と停止を繰り返すだけのものであり、酸素の供給効果(水質の改善度合)を検出するものではない。
また、上層から下層への水の循環が発生しないので、植物プランクトン対策としての光合成の抑制効果を望むことはできない。
However, the apparatus shown in FIG. 5 can efficiently supply oxygen to the water in the bottom layer, but there is no method for objectively evaluating the effect of supplying oxygen, and the oxygen-dissolved water supply apparatus can be operated efficiently. Can not. Conventionally, there is an example where a timer is used to control the operation of the oxygen-dissolved water supply device. However, the operation is only repeated at regular intervals, and the oxygen supply effect (water quality improvement degree) is not detected. Absent.
In addition, since water does not circulate from the upper layer to the lower layer, it cannot be desired to suppress the photosynthesis as a measure against phytoplankton.

特開2003−071494号公報JP 2003-071494 A

上記したように、従来の連行水を伴う酸素供給方法では、連行水による底泥の巻き上げが起こり、水域全体の水質を悪化させてしまうという問題があり、また、貧酸素状態になっている底層の水を汲み上げ、その水に酸素溶解手段により酸素を溶かし込んだ後、元の底層に戻すようにした酸素供給方法では、酸素の供給効果を客観的に評価する方法がなく、酸素溶解水供給装置を効率よく動作させることができないとともに、上層から下層への水の循環が発生せず、植物プランクトン対策として効果を望むことができないという問題がある。   As described above, in the conventional oxygen supply method with entrained water, the bottom mud is rolled up by the entrained water, and there is a problem that the water quality of the entire water area is deteriorated, and the bottom layer in an oxygen-poor state In the oxygen supply method in which water is pumped up, oxygen is dissolved in the water by oxygen dissolving means, and then returned to the original bottom layer, there is no method for objectively evaluating the effect of supplying oxygen, and oxygen dissolved water supply There is a problem that the apparatus cannot be operated efficiently, and water is not circulated from the upper layer to the lower layer, and an effect cannot be expected as a phytoplankton countermeasure.

本発明は、上記のような問題点を解決するためになされたもので、酸素の供給効果を検出して、酸素溶解水供給装置の運転を効率よく制御することができるとともに、植物プランクトン対策としても有効である水質保全システムを提供することを目的としたものである。   The present invention has been made to solve the above problems, and can detect the effect of supplying oxygen to efficiently control the operation of the oxygen-dissolved water supply device, and as a measure against phytoplankton. The purpose is to provide an effective water quality conservation system.

このような目的を達成するために、本発明の水質保全システムは、次に示す構成を有するものである。   In order to achieve such an object, the water quality maintenance system of the present invention has the following configuration.

(1)水質保全システムは、水温または塩分濃度または浮遊物質濃度が異なる密度成層を有する水域の水質を良好な状態に維持するための水質保全システムにおいて、任意の水深の水域に空気を放出する曝気循環手段と、前記曝気循環手段の空気吐出部より下の水域から水を吸引するとともに、この吸引した水に酸素を溶解させ、得られた酸素溶解水を前記曝気循環手段の空気吐出部より下の水域に吐出させる酸素溶解水供給手段とを具備することを特徴とする。 (1) The water quality preservation system is an aeration system that releases air to a water area of an arbitrary depth in a water quality preservation system for maintaining the water quality of water areas having density stratification with different water temperatures, salinity concentrations or suspended solids concentrations. The water is sucked from the water means below the circulation means and the air discharge part of the aeration circulation means, oxygen is dissolved in the sucked water, and the obtained oxygen-dissolved water is below the air discharge part of the aeration circulation means. And an oxygen-dissolved water supply means for discharging into the water area.

(2)前記酸素溶解水供給手段は、前記曝気循環手段の空気吐出部より下の任意の水深の水域から水を吸引する吸引手段と、吸引した水に酸素を溶解させる酸素溶解手段と、得られた酸素溶解水を前記吸引手段により水を吸引した水深の水域に吐出させる吐出手段とから構成されることを特徴とする(1)に記載の水質保全システム。 (2) The oxygen-dissolved water supply means includes a suction means for sucking water from a water area at an arbitrary depth below the air discharge portion of the aeration circulation means, an oxygen dissolving means for dissolving oxygen in the sucked water, and (1) The water quality maintenance system according to (1), characterized by comprising discharge means for discharging the obtained oxygen-dissolved water to a deep water area where water is sucked by the suction means.

(3)前記曝気循環手段の空気吐出部より下の水域における水の導電率を測定する第1の導電率計を具備し、この第1の導電率計の出力に応じて前記酸素溶解水供給手段の動作を制御することを特徴とする(1)または(2)に記載の水質保全システム。 (3) A first conductivity meter for measuring the conductivity of water in the water area below the air discharge portion of the aeration circulation means is provided, and the oxygen-dissolved water supply is provided according to the output of the first conductivity meter. The water quality maintenance system according to (1) or (2), wherein the operation of the means is controlled.

(4)前記第1の導電率計は、前記酸素溶解水供給手段により吸引された水の導電率を測定することを特徴とする(3)に記載の水質保全システム。 (4) The water quality maintenance system according to (3), wherein the first conductivity meter measures the conductivity of water sucked by the oxygen-dissolved water supply means.

(5)前記曝気循環手段の空気吐出部より上の水域における水の導電率を測定する第2の導電率計を具備し、この第2の導電率計の出力に応じて前記曝気循環手段の動作を制御することを特徴とする(3)または(4)に記載の水質保全システム。 (5) A second conductivity meter for measuring the conductivity of water in the water area above the air discharge portion of the aeration circulation means is provided, and according to the output of the second conductivity meter, the aeration circulation means The water quality maintenance system according to (3) or (4), wherein the operation is controlled.

(6)前記第2の導電率計は、水域における表層付近の水の導電率を測定することを特徴とする(5)に記載の水質保全システム。 (6) The water quality maintenance system according to (5), wherein the second conductivity meter measures the conductivity of water near the surface layer in a water area.

(7)前記曝気循環手段が水深の異なる複数の空気吐出部を有する多段式曝気循環手段であり、前記第2の導電率計の出力に応じて前記多段式曝気循環手段における空気吐出部の位置およびまたは空気吐出の有無を制御することを特徴とする(5)または(6)に記載の水質保全システム。 (7) The aeration / circulation means is a multi-stage aeration / circulation means having a plurality of air discharge sections having different water depths, and the position of the air discharge section in the multi-stage aeration / circulation means according to the output of the second conductivity meter. And the presence or absence of air discharge is controlled, The water quality maintenance system as described in (5) or (6) characterized by the above-mentioned.

(8)前記第1の導電率計の出力に応じて前記多段式曝気循環手段における空気吐出部の位置およびまたは空気吐出の有無を制御することを特徴とする(7)に記載の水質保全システム。 (8) The water quality maintenance system according to (7), wherein the position of the air discharge unit and / or the presence / absence of air discharge in the multistage aeration / circulation means are controlled in accordance with the output of the first conductivity meter. .

本発明によれば、水温または塩分濃度または浮遊物質濃度が異なる密度成層を有する水域の水質を良好な状態に維持するための水質保全システムにおいて、任意の水深の水域に空気を放出する曝気循環手段と、前記曝気循環手段の空気吐出部より下の水域から水を吸引するとともに、この吸引した水に酸素を溶解させ、得られた酸素溶解水を前記曝気循環手段の空気吐出部より下の水域に吐出させる酸素溶解水供給手段とを具備しているので、従来のように、酸素を溶解させる際や酸素溶解水を水中に排出する際に連行水を伴うことがなく、連行水により底泥を巻き上げ、水域全体の水質を悪化させてしまうことがないとともに、曝気循環手段の空気吐出部より上の部分では水の循環を発生させ、植物プランクトン対策としても有効である水質保全システムを提供することができる。   According to the present invention, in the water quality maintenance system for maintaining the water quality of the water area having the density stratification with different water temperature, salinity concentration or suspended solids concentration, the aeration circulation means for releasing air to the water area of any depth And water from the water area below the air discharge part of the aeration circulation means, oxygen is dissolved in the sucked water, and the obtained oxygen-dissolved water is the water area below the air discharge part of the aeration circulation means The oxygen-dissolved water supply means to be discharged into the water is not accompanied by entrained water when the oxygen is dissolved or the oxygen-dissolved water is discharged into the water. Water that does not deteriorate the water quality of the entire body of water and causes water circulation above the air discharge part of the aeration and circulation means, which is also effective as a phytoplankton countermeasure. It is possible to provide a conservation system.

また、酸素の供給効果を底層の水の導電率の変化として捉え、導電率計の出力に応じて酸素溶解水供給手段の動作を制御するようにしているので、安価な導電率計により酸素の供給効果を検出することができ、酸素溶解水供給手段の運転を効率よく制御することができる。   In addition, the oxygen supply effect is considered as a change in the conductivity of the water in the bottom layer, and the operation of the oxygen-dissolved water supply means is controlled according to the output of the conductivity meter. The supply effect can be detected, and the operation of the oxygen-dissolved water supply means can be controlled efficiently.

さらに、表層付近または曝気循環手段の空気吐出部より上の水域における水の導電率を測定して、曝気循環手段の動作を制御するようにしているので、この導電率変化から曝気循環手段による底泥の巻き上げを検知することができ、底泥の巻き上げを発生することなく、有効な植物プランクトン対策を行うことができる。   Furthermore, since the conductivity of water is measured in the vicinity of the surface layer or in the water area above the air discharge part of the aeration circulation means, the operation of the aeration circulation means is controlled. It is possible to detect the rolling up of mud and to take effective phytoplankton countermeasures without causing the rolling up of the bottom mud.

以下、本発明に係る水質保全システムの実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a water quality maintenance system according to the present invention will be described with reference to the drawings.

図1は本発明の水質保全システムの一実施例を示す構成図である。図において、前記図2〜図4と同様のものは、同一符号を付して示す。6は曝気循環手段であり、ここでは、水深の異なる複数の空気吐出部を有する多段式曝気循環手段を例示している。曝気循環手段6は、その空気吐出部が密度成層より上の水域に位置するように設置されている。7は酸素溶解水供給手段であり、ポンプ4および酸素溶解手段5、底層水の吸引部71、酸素溶解水の吐出部72より構成されている。吸引部71および吐出部72は曝気循環手段6の空気吐出部(密度成層)より下の水域に位置するように配置されている。8は吸引部71を介して汲み上げられた水における導電率を測定する第1の導電率計、9は表層付近の水の導電率を測定する第2の導電率計である。10は任意の水深から水を取水する選択取水設備である。   FIG. 1 is a block diagram showing an embodiment of the water quality maintenance system of the present invention. In the figure, the same components as those in FIGS. 2 to 4 are denoted by the same reference numerals. Reference numeral 6 denotes aeration circulation means, and here, a multi-stage aeration circulation means having a plurality of air discharge portions with different water depths is illustrated. The aeration circulation means 6 is installed so that the air discharge part is located in the water area above the density stratification. Reference numeral 7 denotes oxygen-dissolved water supply means, which includes a pump 4 and oxygen dissolver 5, a bottom water suction part 71, and an oxygen-dissolved water discharge part 72. The suction part 71 and the discharge part 72 are arranged so as to be located in a water area below the air discharge part (density stratification) of the aeration circulation means 6. Reference numeral 8 denotes a first conductivity meter that measures the conductivity of water pumped up through the suction unit 71, and reference numeral 9 denotes a second conductivity meter that measures the conductivity of water near the surface layer. Reference numeral 10 denotes a selective water intake facility for taking water from an arbitrary depth.

すなわち、曝気循環手段6は密度成層より上の水域において曝気動作を行って、水の循環を発生し、表層水温の低下、植物プランクトンの有光層以深への引き込み、藻類の拡散など、植物プランクトン対策を行い、また、酸素溶解水供給手段7は密度成層より下の水域において、貧酸素水の吸引および酸素溶解水の吐出を行って、底層の水に酸素を供給し、これらが協同して、全体の水質保全(改善)を行っている。   That is, the aeration and circulation means 6 performs aeration operation in the water area above the density stratification to generate water circulation, lowering the surface water temperature, drawing the phytoplankton deeper into the lighted layer, spreading algae, etc. In addition, the oxygen-dissolved water supply means 7 sucks the oxygen-poor water and discharges the oxygen-dissolved water in the water area below the density stratification, and supplies oxygen to the water in the bottom layer. The entire water quality is preserved (improved).

また、第1の導電率計8の出力は酸素溶解水供給手段7の運転制御に利用されており、底層より汲み上げた水の導電率が一定値より低下すると、酸素溶解水供給手段7の運転または酸素溶解手段5への酸素の供給が停止される。   The output of the first conductivity meter 8 is used to control the operation of the oxygen-dissolved water supply means 7. When the conductivity of the water pumped from the bottom layer falls below a certain value, the operation of the oxygen-dissolved water supply means 7 is performed. Alternatively, the supply of oxygen to the oxygen dissolving means 5 is stopped.

ここで、底層の水への酸素供給と水の導電率との関係は、次の通りである。
前記したように、底層水(底泥)が酸素不足になると、底泥中の鉄、マンガン、ヒ素、リンなどの栄養塩類や金属が溶出し易くなり、底層の水の導電率は上昇する。これに対して、底層水に酸素が供給され、貧酸素状態が改善されると、これらの栄養塩類や金属の溶出が抑制され、底層の水の導電率は低下する。
溶出金属の一種であるマンガンの濃度と水の導電率との相関関係の例を図2に示す。
Here, the relationship between the oxygen supply to the water in the bottom layer and the conductivity of the water is as follows.
As described above, when the bottom layer water (bottom mud) becomes deficient in oxygen, nutrient salts such as iron, manganese, arsenic, and phosphorus in the bottom mud and metals are likely to elute, and the conductivity of the bottom layer water increases. On the other hand, when oxygen is supplied to the bottom layer water and the poor oxygen state is improved, elution of these nutrient salts and metals is suppressed, and the conductivity of the bottom layer water is lowered.
An example of the correlation between the concentration of manganese, which is a type of eluted metal, and the conductivity of water is shown in FIG.

したがって、栄養塩類や金属の溶出と底層水の導電率とは一定の相関関係を有しており、底層水の導電率を測定することにより、底層水中の栄養塩類や金属溶出の抑制度合、すなわち、水質の改善度合(酸素の供給効果)を知ることができる。   Therefore, there is a certain correlation between the elution of nutrients and metals and the conductivity of the bottom water, and by measuring the conductivity of the bottom water, the degree of suppression of the elution of nutrients and metals in the bottom water, that is, The degree of improvement in water quality (oxygen supply effect) can be known.

この結果、第1の導電率計8の出力を利用して酸素溶解水供給手段7の運転制御を行えば、酸素の供給効果を検出して、酸素溶解水供給装置の運転を効率よく制御することができる。また、導電率計は、溶存酸素計などに比べて、安価に入手できるものであり、設備費用を低減することができる。   As a result, if the operation control of the oxygen-dissolved water supply means 7 is performed using the output of the first conductivity meter 8, the effect of supplying oxygen is detected and the operation of the oxygen-dissolved water supply device is efficiently controlled. be able to. In addition, the conductivity meter can be obtained at a lower cost than a dissolved oxygen meter and the equipment cost can be reduced.

さらに、第2の導電率計9の出力は曝気循環手段6の運転制御に利用されており、表層付近の水の導電率が一定値より上昇すると、曝気循環手段6の運転の停止または空気吐出部の切り換えが行われる。   Further, the output of the second conductivity meter 9 is used for operation control of the aeration circulation means 6, and when the conductivity of water near the surface layer rises above a certain value, the operation of the aeration circulation means 6 is stopped or the air is discharged. The parts are switched.

ここで、表層付近の水の導電率を監視すると、曝気循環手段6による底泥の巻き上げを検知することができる。すなわち、曝気動作に伴う水の循環により、底泥の巻き上げが発生すると、底層に溶出していた栄養塩が表層付近に拡散するので、表層付近の水の導電率が上昇する。   Here, when the conductivity of the water near the surface layer is monitored, the raising of the bottom mud by the aeration circulation means 6 can be detected. That is, when the bottom mud is rolled up due to the circulation of water accompanying the aeration operation, the nutrient salt eluted in the bottom layer is diffused near the surface layer, so that the conductivity of water near the surface layer is increased.

したがって、第2の導電率計9の出力を利用して曝気循環手段6の運転制御を行えば、底泥の巻き上げを検知して、底泥の巻き上げを発生することなく、有効な植物プランクトン対策を行うことができる。
図に示す、多段式曝気循環手段の場合には、導電率の上昇とともに、空気吐出部の位置を上に移動させる。これにより、水の循環する深さを浅くして、循環による影響を低減することができる。
Therefore, if the operation control of the aeration and circulation means 6 is performed using the output of the second conductivity meter 9, it is possible to detect an effective phytoplankton measure without detecting the raising of the bottom mud and generating the raising of the bottom mud. It can be performed.
In the case of the multistage aeration and circulation means shown in the figure, the position of the air discharge part is moved upward as the conductivity increases. Thereby, the depth which water circulates can be made shallow, and the influence by circulation can be reduced.

また、密度成層の形成される水深は季節などにより変化するので、その水深に合わせて空気吐出部の位置を上下させることができ、より効率的な運転が可能となる。
さらに、空気吐出部の移動だけではなく、曝気循環手段6の運転を完全に停止させ、酸素溶解水供給手段7のみによる酸素供給に切り換えることもできる。
Further, since the water depth at which the density stratification is formed changes depending on the season, the position of the air discharge unit can be moved up and down in accordance with the water depth, and more efficient operation is possible.
Furthermore, not only the movement of the air discharge unit, but also the operation of the aeration and circulation means 6 can be completely stopped and switched to oxygen supply only by the oxygen-dissolved water supply means 7.

なお、上記の説明においては、曝気循環手段6をその空気吐出部が密度成層より上の水域に位置するように設置した場合を例示したが、曝気循環手段6の設置位置はこれに限られるものではなく、任意の水深の水域に設置することができるものである。
この場合、酸素溶解水供給手段7における吸引部71および吐出部72の設置位置は、曝気循環手段6の空気吐出部より下の水域に位置するように決定される。
In the above description, the case where the aeration circulation means 6 is installed so that the air discharge portion thereof is located in the water area above the density stratification is exemplified, but the installation position of the aeration circulation means 6 is limited to this. Rather, it can be installed in a water area of any depth.
In this case, the installation positions of the suction part 71 and the discharge part 72 in the oxygen-dissolved water supply means 7 are determined so as to be located in the water area below the air discharge part of the aeration circulation means 6.

上記の説明においては、第1の導電率計8を水上に配置し、吸引部71を介して汲み上げられた水における導電率を測定する場合を例示したが、第1の導電率計8の測定位置はこれに限られるものではなく、底層の水における導電率を直接測定するように構成しても、同様の動作を行うことができる。   In the above description, the case where the first conductivity meter 8 is placed on the water and the conductivity in the water pumped up via the suction part 71 is measured is exemplified. However, the measurement of the first conductivity meter 8 is performed. The position is not limited to this, and the same operation can be performed even if the electrical conductivity in the water in the bottom layer is directly measured.

さらに、第2の導電率計9を表層付近に配置し、表層付近における水の導電率を測定する場合を例示したが、第2の導電率計9の測定位置はこれに限られるものではなく、曝気循環手段6の空気吐出部より上の水域であれば、任意の位置における水の導電率を測定するように構成しても、同様の動作を行うことができる。   Furthermore, although the case where the second conductivity meter 9 is arranged near the surface layer and the conductivity of water near the surface layer is measured is exemplified, the measurement position of the second conductivity meter 9 is not limited to this. If the water area is above the air discharge part of the aeration and circulation means 6, the same operation can be performed even if it is configured to measure the conductivity of water at an arbitrary position.

また、上記の説明においては、第2の導電率計の出力により曝気循環手段6の運転を制御する場合を例示したが、合わせて、第1の導電率計の出力により曝気循環手段6の運転を制御するように構成することもできる。
この場合、第1の導電率計の出力(底層の水の導電率)が一定値より上昇すると、曝気循環手段6の運転の停止または空気吐出部の切り換えが行われる。
Further, in the above description, the case where the operation of the aeration circulation means 6 is controlled by the output of the second conductivity meter is exemplified. In addition, the operation of the aeration circulation means 6 is controlled by the output of the first conductivity meter. It can also be configured to control.
In this case, when the output of the first conductivity meter (the conductivity of the water in the bottom layer) rises above a certain value, the operation of the aeration / circulation means 6 is stopped or the air discharge unit is switched.

このように、第1の導電率計の出力により曝気循環手段6の運転を制御すると、底層の水に栄養塩類が多く溶出している間は、深い層からの水の循環を停止して、溶出物質の拡散を未然に防止することができる。   Thus, when the operation of the aeration circulation means 6 is controlled by the output of the first conductivity meter, the circulation of water from the deep layer is stopped while a lot of nutrient salts are eluted in the bottom layer water, Diffusion of the eluted substance can be prevented beforehand.

本発明の水質保全システムの一実施例を示す構成図。The block diagram which shows one Example of the water quality maintenance system of this invention. マンガン濃度と水の導電率との相関関係を示す構成図。The block diagram which shows the correlation of manganese concentration and the electrical conductivity of water. 湖沼などに形成される温度躍層の説明図。Explanatory drawing of the thermocline formed in lakes and marshes. 従来の水中への酸素供給装置の一例を示す構成図。The block diagram which shows an example of the oxygen supply apparatus to the conventional water. 従来の水中への酸素供給装置の他の例を示す構成図。The block diagram which shows the other example of the conventional oxygen supply apparatus to water.

符号の説明Explanation of symbols

1 湖沼
2 エア・コンプレッサ
3 散気板
4 ポンプ
5 酸素溶解手段
6 曝気循環手段
7 酸素溶解水供給手段
71 底層水の吸引部
72 酸素溶解水の吐出部
8 第1の導電率計
9 第2の導電率計
10 選択取水設備
DESCRIPTION OF SYMBOLS 1 Lake 2 Air compressor 3 Air diffuser plate 4 Pump 5 Oxygen dissolution means 6 Aeration circulation means 7 Oxygen dissolved water supply means 71 Bottom water suction part 72 Oxygen dissolved water discharge part 8 First conductivity meter 9 Second Conductivity meter 10 Select water intake equipment

Claims (8)

水温または塩分濃度または浮遊物質濃度が異なる密度成層を有する水域の水質を良好な状態に維持するための水質保全システムにおいて、任意の水深の水域に空気を放出する曝気循環手段と、前記曝気循環手段の空気吐出部より下の水域から水を吸引するとともに、この吸引した水に酸素を溶解させ、得られた酸素溶解水を前記曝気循環手段の空気吐出部より下の水域に吐出させる酸素溶解水供給手段とを具備することを特徴とする水質保全システム。   In the water quality maintenance system for maintaining the water quality of the water area having density stratification with different water temperature, salinity concentration or suspended solid concentration, the aeration circulation means for releasing air to the water area of any depth, and the aeration circulation means Oxygen-dissolved water that sucks water from the water area below the air discharge section, and dissolves oxygen in the sucked water, and discharges the obtained oxygen-dissolved water to the water area below the air discharge section of the aeration circulation means A water quality maintenance system comprising a supply means. 前記酸素溶解水供給手段は、前記曝気循環手段の空気吐出部より下の任意の水深の水域から水を吸引する吸引手段と、吸引した水に酸素を溶解させる酸素溶解手段と、得られた酸素溶解水を前記吸引手段により水を吸引した水深の水域に吐出させる吐出手段とから構成されることを特徴とする請求項1に記載の水質保全システム。   The oxygen-dissolved water supply means includes a suction means for sucking water from a water area at an arbitrary depth below the air discharge part of the aeration circulation means, an oxygen dissolving means for dissolving oxygen in the sucked water, and the obtained oxygen The water quality maintenance system according to claim 1, further comprising discharge means for discharging dissolved water to a deep water area where water is sucked by the suction means. 前記曝気循環手段の空気吐出部より下の水域における水の導電率を測定する第1の導電率計を具備し、この第1の導電率計の出力に応じて前記酸素溶解水供給手段の動作を制御することを特徴とする請求項1または2に記載の水質保全システム。   A first conductivity meter for measuring the conductivity of water in the water area below the air discharge portion of the aeration circulation means, and the operation of the oxygen-dissolved water supply means according to the output of the first conductivity meter; The water quality maintenance system according to claim 1 or 2, wherein the water quality control system is controlled. 前記第1の導電率計は、前記酸素溶解水供給手段により吸引された水の導電率を測定することを特徴とする請求項3に記載の水質保全システム。   The water quality maintenance system according to claim 3, wherein the first conductivity meter measures the conductivity of water sucked by the oxygen-dissolved water supply means. 前記曝気循環手段の空気吐出部より上の水域における水の導電率を測定する第2の導電率計を具備し、この第2の導電率計の出力に応じて前記曝気循環手段の動作を制御することを特徴とする請求項3または4に記載の水質保全システム。   A second conductivity meter for measuring the conductivity of water in the water area above the air discharge portion of the aeration circulation means is provided, and the operation of the aeration circulation means is controlled according to the output of the second conductivity meter. The water quality maintenance system according to claim 3 or 4, wherein 前記第2の導電率計は、水域における表層付近の水の導電率を測定することを特徴とする請求項5に記載の水質保全システム。   The water quality maintenance system according to claim 5, wherein the second conductivity meter measures the conductivity of water near a surface layer in a water area. 前記曝気循環手段が水深の異なる複数の空気吐出部を有する多段式曝気循環手段であり、前記第2の導電率計の出力に応じて前記多段式曝気循環手段における空気吐出部の位置およびまたは空気吐出の有無を制御することを特徴とする請求項5または6に記載の水質保全システム。   The aeration / circulation means is a multistage aeration / circulation means having a plurality of air discharge sections with different water depths, and the position of the air discharge section and / or air in the multistage aeration / circulation means according to the output of the second conductivity meter. The water quality maintenance system according to claim 5 or 6, wherein the presence or absence of discharge is controlled. 前記第1の導電率計の出力に応じて前記多段式曝気循環手段における空気吐出部の位置およびまたは空気吐出の有無を制御することを特徴とする請求項7に記載の水質保全システム。
8. The water quality maintenance system according to claim 7, wherein the position of the air discharge unit and / or the presence / absence of air discharge in the multi-stage aeration / circulation unit are controlled in accordance with the output of the first conductivity meter.
JP2004133059A 2004-04-28 2004-04-28 Water quality conservation system Expired - Fee Related JP4305956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133059A JP4305956B2 (en) 2004-04-28 2004-04-28 Water quality conservation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133059A JP4305956B2 (en) 2004-04-28 2004-04-28 Water quality conservation system

Publications (2)

Publication Number Publication Date
JP2005313064A true JP2005313064A (en) 2005-11-10
JP4305956B2 JP4305956B2 (en) 2009-07-29

Family

ID=35441061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133059A Expired - Fee Related JP4305956B2 (en) 2004-04-28 2004-04-28 Water quality conservation system

Country Status (1)

Country Link
JP (1) JP4305956B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196108A (en) * 2006-01-25 2007-08-09 Penta Ocean Constr Co Ltd Water quality improvement method and its apparatus
JP2009045564A (en) * 2007-08-21 2009-03-05 Yokogawa Electric Corp Oxygen dissolved water supply apparatus
JP2011194354A (en) * 2010-03-23 2011-10-06 Satoru Takamori Apparatus for improving quality of water in dam lake, river or lake
CN103588308A (en) * 2013-11-12 2014-02-19 西安建筑科技大学 Moveable type in-situ water quality improvement system through water lifting and aeration
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae
JP2020138199A (en) * 2019-02-27 2020-09-03 中国電力株式会社 Water quality management system and water quality management method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128196A (en) * 1982-01-27 1983-07-30 C T I Sci Syst:Kk Preventing method of degration in water quality in closed sea area as well as lake and pond
JPS58153574A (en) * 1982-03-09 1983-09-12 Syst Kagaku Consultant Kk Method for controlling purifying device for sewage in storage pond or the like
JPH05293490A (en) * 1992-04-21 1993-11-09 Kubota Corp Method for treating organic waste water
JPH05301096A (en) * 1991-06-11 1993-11-16 Kaiyo Kogyo Kk Method for controlling intermittent air lift device and system therefor
JPH0747393A (en) * 1993-08-05 1995-02-21 Dam Suigenchi Kankyo Seibi Center Diffuser type water stream generating device provided in water
JPH07251196A (en) * 1994-03-14 1995-10-03 Pub Works Res Inst Ministry Of Constr Multistage diffuser equipment
JP2002263691A (en) * 2001-03-09 2002-09-17 Sangaku Renkei Kiko Kyushu:Kk Bottom water cleaning method for cleaning bottom area of eutrophicating closed water area and bottom water cleaning equipment
JP2003071494A (en) * 2001-09-05 2003-03-11 Yokogawa Electric Corp Apparatus and method for removing water bloom
JP2003088886A (en) * 2001-09-19 2003-03-25 Yokogawa Electric Corp Method and device for increasing dissolved oxygen
JP2004249248A (en) * 2003-02-21 2004-09-09 Yokogawa Electric Corp Water cleaning system
JP2004290893A (en) * 2003-03-27 2004-10-21 Chuden Gijutsu Consultant Kk Method and apparatus for improving/purifying bottom mud
JP2005040705A (en) * 2003-07-22 2005-02-17 Marsima Aqua System Corp Float type air diffusion device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128196A (en) * 1982-01-27 1983-07-30 C T I Sci Syst:Kk Preventing method of degration in water quality in closed sea area as well as lake and pond
JPS58153574A (en) * 1982-03-09 1983-09-12 Syst Kagaku Consultant Kk Method for controlling purifying device for sewage in storage pond or the like
JPH05301096A (en) * 1991-06-11 1993-11-16 Kaiyo Kogyo Kk Method for controlling intermittent air lift device and system therefor
JPH05293490A (en) * 1992-04-21 1993-11-09 Kubota Corp Method for treating organic waste water
JPH0747393A (en) * 1993-08-05 1995-02-21 Dam Suigenchi Kankyo Seibi Center Diffuser type water stream generating device provided in water
JPH07251196A (en) * 1994-03-14 1995-10-03 Pub Works Res Inst Ministry Of Constr Multistage diffuser equipment
JP2002263691A (en) * 2001-03-09 2002-09-17 Sangaku Renkei Kiko Kyushu:Kk Bottom water cleaning method for cleaning bottom area of eutrophicating closed water area and bottom water cleaning equipment
JP2003071494A (en) * 2001-09-05 2003-03-11 Yokogawa Electric Corp Apparatus and method for removing water bloom
JP2003088886A (en) * 2001-09-19 2003-03-25 Yokogawa Electric Corp Method and device for increasing dissolved oxygen
JP2004249248A (en) * 2003-02-21 2004-09-09 Yokogawa Electric Corp Water cleaning system
JP2004290893A (en) * 2003-03-27 2004-10-21 Chuden Gijutsu Consultant Kk Method and apparatus for improving/purifying bottom mud
JP2005040705A (en) * 2003-07-22 2005-02-17 Marsima Aqua System Corp Float type air diffusion device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
田中克知、柴田省三、石井浩市: "貧酸素水域への酸素供給技術の開発", 横河技報, vol. 47, JPN6009002685, 21 April 2003 (2003-04-21), JP, pages 45 - 48, ISSN: 0001231924 *
田中克知、柴田省三、石井浩市: "貧酸素水域への酸素供給技術の開発(その2)", 横河技報, vol. 48, JPN6009002684, 20 April 2004 (2004-04-20), JP, pages 53 - 56, ISSN: 0001231925 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196108A (en) * 2006-01-25 2007-08-09 Penta Ocean Constr Co Ltd Water quality improvement method and its apparatus
JP2009045564A (en) * 2007-08-21 2009-03-05 Yokogawa Electric Corp Oxygen dissolved water supply apparatus
JP2011194354A (en) * 2010-03-23 2011-10-06 Satoru Takamori Apparatus for improving quality of water in dam lake, river or lake
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae
CN103588308A (en) * 2013-11-12 2014-02-19 西安建筑科技大学 Moveable type in-situ water quality improvement system through water lifting and aeration
JP2020138199A (en) * 2019-02-27 2020-09-03 中国電力株式会社 Water quality management system and water quality management method
JP7480524B2 (en) 2019-02-27 2024-05-10 中国電力株式会社 Water quality control system and water quality control method

Also Published As

Publication number Publication date
JP4305956B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP3925711B2 (en) Oxygen supply device for water
JP4305956B2 (en) Water quality conservation system
JP4769325B1 (en) Water quality improvement device for dam lakes, rivers or lakes
EP3433211B1 (en) Remediation and/or restoration of an anoxic body of water
JP2009022847A (en) Aeration mixing and circulation equipment
JP2005193140A (en) Method and apparatus for supplying oxygen into water
JP2008100176A (en) Method for eliminating oxygen-poor water area in dam lake, lake, marsh or the like
JP5093580B2 (en) Oxygen dissolved water supply device
JP2004249248A (en) Water cleaning system
JP4817311B2 (en) Improvement treatment method and improvement treatment apparatus for anoxic water quality environment
JP2002263691A (en) Bottom water cleaning method for cleaning bottom area of eutrophicating closed water area and bottom water cleaning equipment
JP2007125529A (en) Method and device for removing iron and manganese
JP2003088886A (en) Method and device for increasing dissolved oxygen
JianChao et al. Constraining release of pollutants from anoxic bottom sediment via water-lifting aeration in a source water reservoir, East China
JP2005143403A (en) Drifting installation for utilizing ocean deep water
JPH11131437A (en) Method and device for improving bottom sediment of dam lake, lake, and harbor
FI59777C (en) FOERFARANDE FOER FOERBAETTRANDE AV DET EKOLOGISKA TILLSTAONDET FOER EN TERMISKT AVLAGRAD VATTENBASSAENG
Chaaya et al. A review of artificial destratification techniques for cold water pollution mitigation
JP2007069064A (en) Gas dissolved water supply system
JPH03143600A (en) Method and device for improving environment of bottom layer part of water basin
JP2000024678A (en) Purifying method for lake, marsh or river
JP2006102682A (en) Forced-circulation of water of lakes and marshes type light shield method, and apparatus therefor
JP4547962B2 (en) Method for purifying contaminated soil and groundwater
CN108751434A (en) Method and system for handling brine waste
CN103880154B (en) A kind of integrated oxygen enrichment bio-reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees