JP4817311B2 - Improvement treatment method and improvement treatment apparatus for anoxic water quality environment - Google Patents

Improvement treatment method and improvement treatment apparatus for anoxic water quality environment Download PDF

Info

Publication number
JP4817311B2
JP4817311B2 JP2006222192A JP2006222192A JP4817311B2 JP 4817311 B2 JP4817311 B2 JP 4817311B2 JP 2006222192 A JP2006222192 A JP 2006222192A JP 2006222192 A JP2006222192 A JP 2006222192A JP 4817311 B2 JP4817311 B2 JP 4817311B2
Authority
JP
Japan
Prior art keywords
water
oxygen
gas
poor
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006222192A
Other languages
Japanese (ja)
Other versions
JP2008043882A (en
Inventor
俊直 後田
博文 井澤
敏子 橋本
裕二 藤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Original Assignee
Hiroshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture filed Critical Hiroshima Prefecture
Priority to JP2006222192A priority Critical patent/JP4817311B2/en
Publication of JP2008043882A publication Critical patent/JP2008043882A/en
Application granted granted Critical
Publication of JP4817311B2 publication Critical patent/JP4817311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

湖沼、ため池、修景池、水路、内湾その他の閉鎖性水域又は流出入のない水槽内において発生する貧酸素化した水質環境(以下、貧酸素化水質環境に同じ。)に対して、ガス透過性膜を水中設置して酸素を気泡状とすることなく膜面から直接水中に溶解補給する酸素富化処理を施す水質環境の改善処理方法及び改善処理装置に係り、詳しくは、前記貧酸素化水質環境に対して、ガス透過性膜を用いてマット状、袋状、筒状又はチューブ状に立体形成し、かつ、排気側を大気開放して保形支持した中空膜構造体を水中設置し、貧酸素水との間に気液分離界面を形成し、常圧下で通気することにより、該貧酸素水を動かすことなく原位置のままで貧酸素抑制又は水質改善を推進するとともに、自然浄化機能の賦活を増補するための貧酸素化水質環境の改善処理方法及び改善処理装置に関する。 Gas permeation to a poorly oxygenated water environment (hereinafter the same as an oxygen-poor water environment) generated in lakes, ponds, scenic ponds, waterways, inner bays, other closed water areas, or water tanks without inflow and outflow The present invention relates to a water quality environment improvement treatment method and an improvement treatment device for performing oxygen enrichment treatment in which oxygen- containing treatment is performed by installing an oxygen-containing membrane in water and dissolving and replenishing oxygen directly from the membrane surface into water without forming bubbles . Installed in water a hollow membrane structure that is three-dimensionally formed into a mat, bag, tube, or tube using a gas permeable membrane, and supported by holding the exhaust side open to the atmosphere. By forming a gas-liquid separation interface with anoxic water and venting under normal pressure, the anoxic water can be kept in situ without moving the anoxic water and promoted to suppress anoxia or improve water quality. Hypoxic water ring to augment functional activation Regarding improvement processing method and an improved apparatus.

従来より、湖沼、ため池、修景池、水路、内湾その他の閉鎖性水域で発生する貧酸素化状態を改善するために、エアレーションその他の酸素富化処理を施す水質環境の改善処理方法や装置の提案が知られている(例えば、特許文献1及び2を参照)。
特開2005−185970号公報 特開2004−130272号公報
In order to improve the poor oxygen state that occurs in closed waters such as lakes, ponds, scenic ponds, waterways, inner bays, etc. Proposals are known (see, for example, Patent Documents 1 and 2).
JP 2005-185970 A JP 2004-130272 A

上記従来技術は、いずれも水域に垂直方向の流れ場、すなわち上下方向の水循環を作り、成層化ひいては貧酸素化を解消しようとしている。   All of the above prior arts attempt to eliminate stratification and thus poor oxygenation by creating a vertical flow field in the water area, that is, a water circulation in the vertical direction.

ところで、閉鎖性水域では水の流れが滞りやすく、また夏季には躍層が発達し上下の混合が起こりにくくなる。底層では有機物が堆積しその分解が盛んに行われるため酸素が消費され、極めて溶存酸素量の少ない領域が形成される〔貧酸素水塊〕。   By the way, in a closed water area, the flow of water is likely to stagnate, and in summer, a striking layer develops so that upper and lower mixing is less likely to occur. In the bottom layer, organic matter accumulates and its decomposition is actively performed, so that oxygen is consumed and a region with a very small amount of dissolved oxygen is formed [anoxic water mass].

このため、以下に列挙した水質環境への負影響が生起することが知られている。
(1)水中や底に生息する生物の大量死が発生する。
(2)底層が嫌気性(還元状態)になることにより硫化水素が発生し魚類の斃死(ヘドロの蓄積へ進行)や悪臭が起こる。
(3)リン等栄養塩類の溶出による富栄養化やアオコの発生が増大する。
(4)Fe,Mn等金属類の溶出により赤水が発生する。
For this reason, it is known that the negative effects on the water quality environment listed below occur.
(1) Mass death of organisms that inhabit the water and bottom occurs.
(2) When the bottom layer becomes anaerobic (reduced state), hydrogen sulfide is generated, causing fish drowning (progressing to accumulation of sludge) and bad odor.
(3) Eutrophication due to elution of nutrient salts such as phosphorus, and the occurrence of aquatic plants increase.
(4) Red water is generated by elution of metals such as Fe and Mn.

こうしたなかで、上記従来技術より前からエアレーション(曝気)による酸素富化処理があった。   Under these circumstances, there has been an oxygen enrichment process by aeration (aeration) prior to the prior art.

しかしながら、酸素供給手法としては動的な供給であり、気泡の上昇により水質の悪い底層水や底質の汚染物質を巻き上げてしまい二次汚染を引き起こすという問題がある。また、水面に気泡が現れるため景観を害するという問題もある。   However, the oxygen supply method is a dynamic supply, and there is a problem in that the rise of bubbles causes the formation of bottom water with poor water quality or pollutants in the bottom, causing secondary contamination. In addition, there is a problem that the landscape is harmed because bubbles appear on the water surface.

また、生態系への影響が看過できない。例えば、過飽和ガスにより魚類にガス病を発生させるおそれがある。底泥の巻き上げも生態系には負影響を及ぼす。   In addition, the impact on the ecosystem cannot be overlooked. For example, there is a risk of causing gas diseases in fish due to supersaturated gas. Rolling up the bottom mud also has a negative impact on the ecosystem.

さらに、強制的に酸素含有ガス(大気を含む)を圧送するので装置コスト及び運転コスト(エネルギコストを含む)の負担が大きく、気泡が浮上するので酸素の供給ロスも大きいという問題がある。   Furthermore, since the oxygen-containing gas (including the atmosphere) is forcibly pumped, there is a problem that the apparatus cost and the operation cost (including the energy cost) are large, and the bubbles rise, so that the oxygen supply loss is also large.

上記従来技術においても動力源を用いるので、装置コスト(運転コスト)は無視できない。また、上下方向(深浅方向)の水循環を推進したからといっても、装置周辺でいわゆるショートサーキットが起こり易く、水平方向(成層方向)への酸素供給については波及効果が小さいものと推認される。   Since the power source is also used in the above prior art, the apparatus cost (operating cost) cannot be ignored. Moreover, even if the water circulation in the vertical direction (deep shallow direction) is promoted, so-called short circuits are likely to occur around the device, and it is assumed that the ripple effect is small for oxygen supply in the horizontal direction (stratification direction). .

本発明が解決しようとする問題点を以下に列挙する。
(1)現場の水(貧酸素水)を動かすことなくソフト(静的又は準静的)な酸素供給を
おこなう。
(2)生態系への影響を極力回避する。
(3)貧酸素水中への酸素供給ロスをなくす。
(4)装置系の運転コストを極力低減して省エネルギを達成する。
(5)景観を害すことがない。
(6)電気その他のエネルギ供給が難しい地域に対しても機動的に適用可能とする(立地条件の緩和)。
The problems to be solved by the present invention are listed below.
(1) Provide soft (static or quasi-static) oxygen supply without moving on-site water (anoxic water).
(2) Avoid the impact on the ecosystem as much as possible.
(3) Eliminate loss of oxygen supply to poor oxygen water.
(4) Energy saving is achieved by reducing the operating cost of the system as much as possible.
(5) Does not harm the landscape.
(6) It can be applied flexibly to areas where it is difficult to supply electricity or other energy (relaxation of site conditions).

こうしたなかで、本発明者らは、設備コストやランニングコストの削減(省エネルギを含む。)に関する経済効果と、電気その他のエネルギ供給が難しい地域に対しても機動的に適用可能な立地性を兼備したガス透過性膜を用いた酸素富化処理(隔膜処理に同じ)による貧酸素化水質環境の改善処理技術について調査研究を進めてきた。   Under these circumstances, the present inventors have achieved an economic effect related to reduction in equipment cost and running cost (including energy saving) and a location that can be applied flexibly to areas where it is difficult to supply electricity or other energy. We have been conducting research on improvement technology for anoxic water environment by oxygen enrichment using the gas permeable membrane (same as membrane treatment).

ここでは、従来的な曝気処理と同程度の処理能力が約束されなければならないが、ガス透過性膜を用いた酸素富化処理(隔膜処理に同じ)により達成可能である。酸素供給効率が良いからである。そして、調査研究の成果物のひとつとして本発明を完成するに至ったものである。   Here, a processing capability comparable to that of a conventional aeration process must be promised, but this can be achieved by an oxygen enrichment process using a gas permeable membrane (same as a diaphragm process). This is because the oxygen supply efficiency is good. As a result of research, the present invention has been completed.

本発明はこのような事情に鑑みなされたものであって、従来的な曝気手段や水循環手段を排してガス透過性膜を用いて酸素供給することにより、上記課題を解消し、貧酸素抑制又は水質改善するとともに、自然浄化機能の賦活を増補することを実現可能とした貧酸素化水質環境の改善処理方法及び改善処理装置を提供するものである。   The present invention has been made in view of such circumstances. By eliminating conventional aeration means and water circulation means and supplying oxygen using a gas-permeable membrane, the above-mentioned problems are solved and anoxic suppression is achieved. Alternatively, it is an object of the present invention to provide an improvement treatment method and an improvement treatment apparatus for an anoxic water quality environment capable of improving water quality and enhancing the activation of a natural purification function.

課題を解決するために本発明は、エアレーションその他の酸素富化処理を施す水質環境の改善処理方法において、
貧酸素化した水質環境(以下、貧酸素化水質環境に同じ。)に対して酸素を供給することにより、貧酸素抑制又は水質改善するとともに、自然浄化機能の賦活を増補する貧酸素化水質環境の改善処理方法であって、
貧酸素化水質環境に対してガス透過性膜を用いて気液分離界面を形成し、大気又は酸素含有ガスと貧酸素水との気液間で隔膜接触させ、かつ、該貧酸素水中へ酸素を拡散供給又は浸透供給することを特徴とするものである。
In order to solve the problem, the present invention relates to a method for improving the water quality environment in which aeration or other oxygen enrichment treatment is performed.
Oxygen-suppressed water quality environment (hereinafter the same as the oxygen-reduced water quality environment) provides oxygen-suppressed water quality environment that enhances the activation of natural purification function while suppressing or improving water quality. Improved processing method,
A gas-liquid separation interface is formed using a gas permeable membrane for an anoxic water quality environment, a diaphragm contact is made between the gas and liquid of the atmosphere or oxygen-containing gas and the oxygen-poor water, and oxygen is introduced into the oxygen-poor water. Is supplied by diffusion or permeation.

また、貧酸素化した水質環境(以下、貧酸素化水質環境に同じ。)に対して酸素を供給することにより、貧酸素抑制又は水質改善するとともに、自然浄化機能の賦活を増補する貧酸素化水質環境の改善処理装置であって、
貧酸素化水質環境下で水中設置され、気液分離界面を隔膜形成するためにガス透過性膜を用いて立体形成した中空膜構造体と、該中空膜構造体の内部空間へ系外から大気又は酸素含有ガスを導入するための酸素源導入手段を具備してなり、
前記中空膜構造体を介して大気又は酸素含有ガスと貧酸素水とを隔膜接触させ、かつ、該貧酸素水中へ酸素を拡散供給又は浸透供給するようにしたことを特徴とするものである。
In addition, oxygen is supplied to an oxygen-poor water environment (hereinafter the same as an oxygen-poor water environment), thereby suppressing anoxia or improving the water quality and enhancing the activation of the natural purification function. A water quality improvement treatment device,
A hollow membrane structure that is installed in water in an oxygen-reduced water environment and is three-dimensionally formed using a gas-permeable membrane to form a gas-liquid separation interface, and an air from outside the system to the internal space of the hollow membrane structure Or comprising an oxygen source introduction means for introducing an oxygen-containing gas,
The air or oxygen-containing gas and the poor oxygen water are brought into diaphragm contact via the hollow membrane structure, and oxygen is diffused or permeated into the poor oxygen water.

本発明の効果に関し、以下に列挙する。いずれも隔膜処理であることの有利性を支持するものである。   The effects of the present invention are listed below. All support the advantage of being a diaphragm treatment.

(1)現場の水(貧酸素水)を動かすことなくソフト(静的又は準静的)に酸素を供給可能であり、水温成層を維持し、水質の悪い底層水及び底質の汚染物質の巻き上げがなく、汚染や悪臭被害が防止できる。   (1) Oxygen can be supplied softly (static or quasi-static) without moving the on-site water (anoxic water), maintaining the water temperature stratification, and the poor quality of the bottom water and bottom pollutants There is no hoisting and pollution and odor damage can be prevented.

(2)気液間での平衡状態の移行により貧酸素水に酸素を供給すると同時に、逆に水中で過剰となった炭酸ガス等は膜を介して気相側に除去されるため、底層水のガス濃度が自然に近い状態で維持され、生態系への影響を極力回避することができる。   (2) Since oxygen is supplied to the oxygen-poor water by the transition of the equilibrium state between the gas and liquid, conversely, excess carbon dioxide in the water is removed to the gas phase side through the membrane. The gas concentration is maintained in a state close to nature, and the impact on the ecosystem can be avoided as much as possible.

(3)貧酸素水中への酸素供給ロスがない。   (3) There is no loss of oxygen supply to the oxygen-poor water.

(4)酸素源(大気を含む)を導入する際にコンプレッサ等大型の圧送装置は不要であり、装置系の運転コストを極力低減して省エネルギを達成することができる。   (4) When introducing an oxygen source (including the atmosphere), a large-sized pumping device such as a compressor is unnecessary, and the operation cost of the device system can be reduced as much as possible to achieve energy saving.

(5)気泡が発生しないので水面に影響を及ぼすことがなく、景観を害さない。   (5) Since no bubbles are generated, the water surface is not affected and the landscape is not harmed.

(6)電気その他のエネルギ供給が難しい地域に対しても機動的に適用可能(立地条件を緩和可能)である。   (6) It can be applied flexibly to areas where it is difficult to supply electricity or other energy (location conditions can be relaxed).

本発明の最良実施形態は、図1に改善処理方法の原理的説明図を示すように、上記構成の改善処理方法において、湖沼、ため池、修景池、水路、内湾その他の閉鎖性水域又は水槽内において発生する貧酸素化水質環境Wに対して、ガス透過性膜を用いてマット状、袋状、筒状又はチューブ状(図示の符号10)に立体形成した中空膜構造体10(1)を水中設置するとともに、該中空膜構造体10(1)の内部空間へ系外から大気又は酸素含有ガスを導入するものとしている〔図示の送気管20(2)〕。装置構成例については、後述の実施例1を参照されたい。   As shown in FIG. 1, the best embodiment of the present invention is a lake, a pond, a scenic pond, a waterway, an inner bay, or other closed water areas or aquariums. Hollow membrane structure 10 (1) which is three-dimensionally formed into a mat, bag, tube or tube (symbol 10 in the figure) using a gas permeable membrane against the poorly oxygenated water environment W generated inside Is installed in water, and air or oxygen-containing gas is introduced into the internal space of the hollow membrane structure 10 (1) from outside the system [the air supply pipe 20 (2) shown in the figure]. Refer to Example 1 described later for an example of the device configuration.

また、上記構成の改善処理装置において、湖沼、ため池、修景池、水路、内湾その他の閉鎖性水域又は水槽内において発生する貧酸素化水質環境に対する装置構成は、
中空膜構造体が、ガス透過性膜を用いてマット状、袋状、筒状又はチューブ状に立体形成し、かつ、保形支持したものであり、酸素源導入手段が、前記中空膜構造体の内部空間に接続し系外から大気又は酸素含有ガスを給排可能に経路構成したものである。
Moreover, in the improvement processing apparatus of the said structure, the apparatus structure with respect to the anoxic water quality environment which generate | occur | produces in a lake, a pond, a scenic pond, a waterway, an inner bay other closed water area, or a water tank,
The hollow membrane structure is three-dimensionally formed into a mat shape, bag shape, cylinder shape or tube shape using a gas permeable membrane, and is shape-supported, and the oxygen source introducing means is the hollow membrane structure body. It is connected to the internal space of the system, and is configured to be able to supply and discharge air or oxygen-containing gas from outside the system.

さらに、上記構成の改善処理装置において、水槽内で発生する貧酸素化水質環境に対する装置構成は、中空膜構造体が、水槽の側壁間に膜体管路を貫通形成するとともに、該管路両端を大気開放又は酸素源導入手段に接続して槽内処理環境を創出するものである。 〔後述の実施例2を参照〕。   Furthermore, in the improvement processing apparatus having the above-described configuration, the apparatus configuration for the poor oxygenated water environment generated in the water tank is such that the hollow membrane structure penetrates the membrane body pipe between the side walls of the water tank, and both ends of the pipe Is connected to the open air or oxygen source introducing means to create a treatment environment in the tank. [See Example 2 below].

なお、ガス透過性膜は、酸素透過膜であって、公知素材であるシリコン樹脂、及び布帛の表面にシリコン樹脂を被覆したもの等を用いることができる。   The gas permeable membrane may be an oxygen permeable membrane, which is a known material such as a silicon resin, or a cloth coated with a silicon resin.

以下に、好適な中空膜構造体(図1参照)を用いた処理プロセスを要約しておく。   The processing process using a suitable hollow membrane structure (see FIG. 1) is summarized below.

貧酸素化した水中(W)に、ガス透過性膜を用いてチューブ状に形成した中空膜構造体1(以下、隔膜チューブ10)を設置して気液分離する。隔膜チューブ10内に系外から大気導入して静置すると、該ガス透過性膜を介して内側(隔膜チューブ10内)の空気と外側の水(貧酸素水)とは気液平衡状態へ移行する。すなわち、隔膜チューブ10内の大気酸素が酸素濃度の低い(貧酸素化している)水側に自然拡散によって移動し、貧酸素水中(W)に供給される。なお、隔膜チューブ10内へは系外から送気管20(2)を介してフレッシュエアを適宜導入する。   A hollow membrane structure 1 (hereinafter referred to as a diaphragm tube 10) formed in a tube shape using a gas permeable membrane is installed in the oxygen-depleted water (W) to perform gas-liquid separation. When air is introduced into the diaphragm tube 10 from outside the system and allowed to stand, the air inside (diaphragm tube 10) and the outside water (anoxic water) shift to a gas-liquid equilibrium state via the gas permeable membrane. To do. That is, atmospheric oxygen in the diaphragm tube 10 moves to the low oxygen concentration (poor oxygenated) water side by natural diffusion and is supplied to the oxygen poor water (W). In addition, fresh air is appropriately introduced into the diaphragm tube 10 from outside the system through the air supply tube 20 (2).

本発明の一実施例を添付図面を参照して以下説明する。   An embodiment of the present invention will be described below with reference to the accompanying drawings.

本発明方法を実施するための技術手段として具体化した装置構成〔以下、第1実施例装置。〕を図2(a)(b)に示す。   Apparatus configuration embodied as technical means for carrying out the method of the present invention [hereinafter referred to as the first embodiment apparatus. Is shown in FIGS. 2 (a) and 2 (b).

図示するように、第1実施例装置X1は、貧酸素水域Wに水中設置され、気液分離界面を隔膜形成するためにガス透過性膜を用いて立体形成した中空膜構造体1と、該中空膜構造体1の内部空間へ系外から大気又は酸素含有ガスを導入するための酸素源導入手段2を具備している。   As shown in the figure, the first embodiment apparatus X1 is a submerged hollow membrane structure 1 that is installed in water in an oxygen-deficient water area W and is three-dimensionally formed using a gas permeable membrane to form a gas-liquid separation interface. Oxygen source introduction means 2 for introducing air or oxygen-containing gas from outside the system into the internal space of the hollow membrane structure 1 is provided.

中空膜構造体1は、ガス透過性膜を用い筒状又はチューブ状に管路形成した複数の隔膜チューブ111 (膜体管路群)を支持枠体112 により保形支持して酸素供給ユニット11を構成している。   The hollow membrane structure 1 is formed by supporting a plurality of diaphragm tubes 111 (membrane body conduit groups) formed in a cylindrical or tube shape using a gas permeable membrane by a support frame 112 and supporting the oxygen supply unit 11. Is configured.

酸素源導入手段2は、酸素供給ユニット11(中空膜構造体1)に接続し系外から大気又は酸素含有ガスを給排可能に経路構成したものである〔図示では給排気配管21〕。   The oxygen source introduction means 2 is connected to the oxygen supply unit 11 (hollow membrane structure 1) and has a path configuration capable of supplying or discharging air or oxygen-containing gas from outside the system [supply / exhaust pipe 21 in the figure].

そして、酸素供給ユニット11(1)を介して大気又は酸素含有ガスと貧酸素水(W)とを隔膜接触させ、かつ、該貧酸素水中(W)へ酸素を拡散供給又は浸透供給するようにしている。   Then, the atmosphere or oxygen-containing gas and the poor oxygen water (W) are brought into diaphragm contact via the oxygen supply unit 11 (1), and oxygen is supplied to the poor oxygen water (W) by diffusion or permeation. ing.

本発明方法を実施するための技術手段として具体化した他の装置構成〔以下、第2実施例装置。〕を図3に示す。   Other apparatus configuration embodied as technical means for carrying out the method of the present invention [hereinafter, second embodiment apparatus. Is shown in FIG.

図示するように、第2実施例装置X2は、水槽3内で発生する貧酸素水域Wに対して、中空膜構造体1を水槽3の側壁間に架設することにより、槽内処理環境を創出するようにしている。   As shown in the figure, the second embodiment apparatus X2 creates an in-bath treatment environment by installing the hollow membrane structure 1 between the side walls of the aquarium 3 with respect to the anoxic water area W generated in the aquarium 3. Like to do.

図示の中空膜構造体1は、水槽3の側壁間に貫通形成した膜体管路12であって、該管路12両端を大気開放又は酸素源導入手段〔図示省略〕に接続したものである。   A hollow membrane structure 1 shown in the figure is a membrane pipe 12 that is formed so as to penetrate between the side walls of a water tank 3, and both ends of the pipe 12 are connected to the atmosphere or oxygen source introduction means (not shown). .

参考までに、実験的事実に基づく第2実施例類似装置(実験系)と一般的な水槽(対照系)との効果の対比を表1に示す。なお、実験系で用いた第2実施例類似装置(図示省略)は、第2実施例装置X2の基本構成(図3)に加えて、底泥を敷設し、閉蓋して貧酸素化水質環境(槽内処理環境)を模擬的に創出したものである。   For reference, Table 1 shows a comparison of the effects of the second embodiment similar apparatus (experimental system) and a general water tank (control system) based on experimental facts. In addition, in addition to the basic configuration (FIG. 3) of the second embodiment apparatus X2, the second embodiment similar apparatus (not shown) used in the experimental system is laid with bottom mud, closed and covered with anoxic water quality. The environment (treatment environment in the tank) is created in a simulated manner.

Figure 0004817311
Figure 0004817311

表1から理解されるように、底質は酸化状態に移行し、水の色、臭気、ガスの発生、P濃度、Fe濃度を指標とする水質浄化が確認された。   As can be understood from Table 1, the bottom sediment shifted to an oxidized state, and water purification using water color, odor, gas generation, P concentration, and Fe concentration as indicators was confirmed.

本発明は、極めて簡素な手法により低コスト(省エネルギを含む)で実施可能な貧酸素化抑制・改善技術であり、水質浄化処理の分野での新たな処理手法の確立及び技術開発に寄与するものであり、産業上の利用価値が高い。   The present invention is a technique for suppressing and improving hypoxia that can be carried out at a low cost (including energy saving) by an extremely simple method, and contributes to the establishment and technical development of a new treatment method in the field of water purification treatment. It has a high industrial utility value.

特に、環境対策上、既存のエアレーションや強制循環処理の代替処理法として適用可能であり、コスト削減や環境保全の観点からも有用であり、地域性(立地条件)に係る制限も少ないので利用先が拡大できる等、行政施策としての推進が期待できる。   In particular, it can be applied as an alternative to existing aeration and forced circulation treatments for environmental measures, is useful from the viewpoint of cost reduction and environmental conservation, and has few restrictions on locality (location conditions), so it can be used Can be expected to be promoted as an administrative measure.

改善処理方法の原理的説明図である。It is a principle explanatory drawing of the improvement processing method. 第1実施例装置の装置構成説明図である。It is apparatus explanatory drawing of a 1st Example apparatus. 第2実施例装置の装置構成説明図である。It is apparatus explanatory drawing of a 2nd Example apparatus.

符号の説明Explanation of symbols

1 中空膜構造体
10 隔膜チューブ
11 酸素供給ユニット
111 隔膜チューブ(膜体管路群)
112 支持枠体
12 膜体管路
2 酸素源導入手段
20 送気管
21 給排気配管
3 水槽
X1 第1実施例装置
X2 第2実施例装置
W 貧酸素化水質環境(貧酸素水域)
1 Hollow membrane structure
10 Diaphragm tube
11 Oxygen supply unit
111 Diaphragm tube (membrane body duct group)
112 Support frame
12 Membrane conduit 2 Oxygen source introduction means
20 Air pipe
21 Supply / exhaust piping 3 Water tank
X1 Example 1 device
X2 Second Example Equipment W Anoxic Water Environment (Anoxic Water Area)

Claims (3)

湖沼、ため池、修景池、水路、内湾その他の閉鎖性水域又は流出入のない水槽内において発生する貧酸素化した水質環境(以下、貧酸素化水質環境に同じ。)に対して、ガス透過性膜を水中設置して酸素を気泡状とすることなく膜面から直接水中に溶解補給する酸素富化処理を施す水質環境の改善処理方法において、
前記貧酸素化水質環境に対して、ガス透過性膜を用いてマット状、袋状、筒状又はチューブ状に立体形成し、かつ、排気側を大気開放して保形支持した中空膜構造体を水中設置し、貧酸素水との間に気液分離界面を形成し、常圧下で通気することにより、該貧酸素水を動かすことなく原位置のままで貧酸素抑制又は水質改善を推進するとともに、自然浄化機能の賦活を増補するための貧酸素化水質環境の改善処理方法であって、
前記中空膜構造体の中空部へ系外から大気又は大気組成の酸素含有ガスを常圧導入して、大気又は大気組成の酸素含有ガスと前記貧酸素水との気液間で隔膜接触させ、常圧下での気液平衡反応を駆動力として、該貧酸素水中に酸素を拡散供給又は浸透供給し、かつ、該貧酸素水中の酸素濃度その他のガス濃度と導入した大気組成のガス分圧とが平衡状態に移行した自然的な水質環境を創出することを特徴とする貧酸素化水質環境の改善処理方法。
Gas permeation to a poorly oxygenated water environment (hereinafter the same as an oxygen-poor water environment) generated in lakes, ponds, scenic ponds, waterways, inner bays, other closed water areas, or water tanks without inflow and outflow In the improvement method of the water quality environment where oxygen-enriching treatment is carried out by dissolving and replenishing water directly from the membrane surface without installing oxygen in the form of bubbles in the water,
A hollow membrane structure that is three-dimensionally formed in a mat shape, bag shape, tube shape, or tube shape using a gas permeable membrane, and that supports the shape by opening the exhaust side to the atmosphere with respect to the poor oxygenated water quality environment. Is installed in water, a gas-liquid separation interface is formed with the poor oxygen water, and aeration is performed under normal pressure to promote the suppression of poor oxygen or the improvement of water quality without moving the poor oxygen water. A method for improving the anoxic water quality environment to augment the activation of the natural purification function,
The oxygen-containing gas in the hollow portion atmospheric or atmospheric composition from the outside of the system into the hollow membrane structure by atmospheric introduction, by membrane contact between liquid and oxygen-containing gas in the atmosphere or atmospheric composition and the poor oxygen water The gas-liquid equilibrium reaction under normal pressure is used as a driving force, oxygen is diffused or permeated into the oxygen-poor water, and the gas partial pressure of the atmospheric composition introduced with the oxygen concentration and other gas concentrations in the oxygen-poor water A method for improving the anoxic water quality environment, characterized by creating a natural water quality environment in which the water and water have shifted to an equilibrium state .
湖沼、ため池、修景池、水路、内湾その他の閉鎖性水域又は流出入のない水槽内において発生する貧酸素化した水質環境(以下、貧酸素化水質環境に同じ。)に対して、ガス透過性膜を水中設置して酸素を気泡状とすることなく膜面から直接水中に溶解補給する酸素富化処理を施す水質環境の改善処理装置において、
前記貧酸素化水質環境に対して、ガス透過性膜を用いて貧酸素水との間に気液分離界面を形成し、常圧下で通気することにより、該貧酸素水を動かすことなく原位置のままで貧酸素抑制又は水質改善を推進するとともに、自然浄化機能の賦活を増補するための貧酸素化水質環境の改善処理装置であって、
前記貧酸素化水質環境下で水中設置され、ガス透過性膜を用いてマット状、袋状、筒状又はチューブ状に立体形成し、かつ、排気側を大気開放して保形支持した中空膜構造体と、該中空膜構造体の中空部へ系外から大気又は大気組成の酸素含有ガスを常圧導入可能に経路構成した酸素源導入手段を具備してなり、
前記中空膜構造体を介して大気又は大気組成の酸素含有ガスと貧酸素水との気液間で隔膜接触させ、常圧下での気液平衡反応を駆動力として、該貧酸素水中へ酸素を拡散供給又は浸透供給し、かつ、該貧酸素水中の酸素濃度その他のガス濃度と導入した大気組成のガス分圧とが平衡状態に移行した自然的な水質環境を創出するようにしたことを特徴とする貧酸素化水質環境の改善処理装置。
Gas permeation to a poorly oxygenated water environment (hereinafter the same as an oxygen-poor water environment) generated in lakes, ponds, scenic ponds, waterways, inner bays, other closed water areas, or water tanks without inflow and outflow In a water quality environment improvement treatment apparatus that performs oxygen enrichment treatment in which a water-soluble membrane is installed in water and dissolved and replenished directly into the water from the membrane surface without bubbling oxygen ,
With respect to the oxygen-poor water environment, a gas-liquid separation interface is formed between the oxygen-poor water using a gas permeable membrane, and aeration is performed under normal pressure without moving the oxygen- poor water. An anoxic water quality environment improvement treatment device for promoting anoxic suppression or water quality improvement as it is, and augmenting the activation of the natural purification function,
A hollow membrane that is installed in water in the above oxygen-reduced water quality environment, is three-dimensionally formed into a mat shape, bag shape, tube shape, or tube shape using a gas permeable membrane, and is held in shape by opening the exhaust side to the atmosphere A structure, and oxygen source introduction means configured to allow passage of atmospheric pressure or oxygen-containing gas having an atmospheric composition from outside the system to the hollow portion of the hollow membrane structure,
Through the hollow membrane structure, a diaphragm contact is made between the gas and liquid of the atmosphere or oxygen-containing gas having atmospheric composition and the oxygen-poor water, and oxygen is supplied to the oxygen-poor water using a gas-liquid equilibrium reaction under normal pressure as a driving force. It is characterized by creating a natural water quality environment in which diffusion supply or osmosis supply is performed and the oxygen concentration or other gas concentration in the oxygen-poor water and the gas partial pressure of the introduced atmospheric composition shift to an equilibrium state. An oxygen-improving water quality improvement treatment device.
水槽内で発生する貧酸素化水質環境に対する装置構成であって、
中空膜構造体が、水槽の側壁間に膜体管路を貫通形成するとともに、該管路両端を大気開放又は酸素源導入手段に接続したものである
請求項2記載の貧酸素化水質環境の改善処理装置。
It is a device configuration for the anoxic water quality environment generated in the aquarium,
The hollow membrane structure is formed by penetrating a membrane pipe between the side walls of the water tank and connecting both ends of the pipe to the open air or oxygen source introduction means. Improvement processing device.
JP2006222192A 2006-08-17 2006-08-17 Improvement treatment method and improvement treatment apparatus for anoxic water quality environment Expired - Fee Related JP4817311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222192A JP4817311B2 (en) 2006-08-17 2006-08-17 Improvement treatment method and improvement treatment apparatus for anoxic water quality environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222192A JP4817311B2 (en) 2006-08-17 2006-08-17 Improvement treatment method and improvement treatment apparatus for anoxic water quality environment

Publications (2)

Publication Number Publication Date
JP2008043882A JP2008043882A (en) 2008-02-28
JP4817311B2 true JP4817311B2 (en) 2011-11-16

Family

ID=39178127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222192A Expired - Fee Related JP4817311B2 (en) 2006-08-17 2006-08-17 Improvement treatment method and improvement treatment apparatus for anoxic water quality environment

Country Status (1)

Country Link
JP (1) JP4817311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043777A (en) * 2012-12-07 2013-04-17 同济大学 Backflow type hydrogen matrix bio-membrane reactor with carbon dioxide serving as carbon source

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020087A (en) * 2009-07-17 2011-02-03 Ihi Corp Method and apparatus for supplying underwater gas
JP6858146B2 (en) * 2018-02-20 2021-04-14 栗田工業株式会社 Aerobic biological treatment equipment and its operation method
CN114431184B (en) * 2022-02-25 2023-03-28 山东交通学院 Aquatic animal breeding equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264147A (en) * 1975-11-21 1977-05-27 Tatsuo Sumino Method of purifying waste water from river sewerage*etc*
DE2940446C2 (en) * 1979-10-05 1982-07-08 B. Braun Melsungen Ag, 3508 Melsungen Cultivation of animal cells in suspension and monolayer cultures in fermentation vessels
JPH0720593B2 (en) * 1990-11-01 1995-03-08 荏原インフイルコ株式会社 Solid-liquid separation integrated biological treatment method and biological treatment apparatus
JPH05169084A (en) * 1991-12-20 1993-07-09 Nichimo Co Ltd Oxygen replenishing device
JPH07284641A (en) * 1994-04-14 1995-10-31 Mayekawa Mfg Co Ltd Water treating device for water tank
JP3388017B2 (en) * 1994-04-28 2003-03-17 株式会社東芝 Water quality improvement device
JPH1034184A (en) * 1996-07-26 1998-02-10 Yonden Gijutsu Consultant:Kk Bottom sediment improving apparatus
JPH10192846A (en) * 1997-01-14 1998-07-28 Yusuke Inoue Apparatus for making dissolved oxygen enriched water
JP2000050764A (en) * 1998-08-11 2000-02-22 Able Kk Dissolved oxygen feeder and feeding method
JP4325973B2 (en) * 2001-10-31 2009-09-02 有限会社中島工業 Gas permeable material for oxygen replenisher in water and its structure
JP2003153644A (en) * 2001-11-19 2003-05-27 Nakajima Kogyo:Kk Container for transportation of live bait and live fish provided with oxygen supplementing function
JP4078130B2 (en) * 2002-06-21 2008-04-23 株式会社大林組 Underwater air supply system
JP2007301522A (en) * 2006-05-15 2007-11-22 Matsushita Electric Ind Co Ltd Oxygen-enriched water producing vessel
JP4868307B2 (en) * 2006-06-15 2012-02-01 有限会社中島工業 Water purification system and water purification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043777A (en) * 2012-12-07 2013-04-17 同济大学 Backflow type hydrogen matrix bio-membrane reactor with carbon dioxide serving as carbon source

Also Published As

Publication number Publication date
JP2008043882A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JP2009202038A (en) Floating body type water purifier by water circulation, filtration, and aeration using photovoltaic power generation
JP2005152763A (en) Gas-liquid mixed solution containing ultrafine bubble for reactor, production method of the same, chemical reactor apparatus, and bioreactor apparatus
JP4817311B2 (en) Improvement treatment method and improvement treatment apparatus for anoxic water quality environment
CN104681843B (en) Forward osmosis membrane-microorganism fuel battery
CN204958480U (en) Absorption - electrolysis - aeration is device of integration processing eutrophic water in coordination
CN110422961B (en) Water environment ecological restoration equipment
CN105293673A (en) Ultramicro bubble water purification device
JP2010264384A (en) Method for removing water bloom
JP2004290893A (en) Method and apparatus for improving/purifying bottom mud
CN105060412B (en) The device of absorption electrolysis aeration collaboration integrated treatment eutrophication water
KR101334446B1 (en) The dissolved oxygen supply of a lake and dam and algae growth control unit
JP4949742B2 (en) Waste water treatment method and waste water treatment equipment
BR112017023185B1 (en) equipment and process for massive dissolution of gases in liquids
JP2010247132A (en) Apparatus for treating forced foaming-type organic liquid mixture and treatment method
CN102923839A (en) Submersible aerobic biofilm water body pollution processing device
JP2008178792A (en) Biological reaction method and biological reaction apparatus
US8920983B2 (en) Microbial fuel cell aerator
KR20120134651A (en) An apparatus of water circulation using solar energy and multi-circulation flow
JP4231249B2 (en) High oxygen water production apparatus and bottom purification method
US10683221B2 (en) Gas injection and recycling apparatus and methods
CN202898101U (en) Submersible water pollution treatment device with aerobic biological film
CN205710084U (en) A kind of water treatment facilities
CN206467045U (en) A kind of environmental monitoring aerator
CN114249414B (en) Cruising type water body restoration device for river and lake bottom mud
CN205710115U (en) A kind of soaked datatron of aeration type oxygen rich air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees