JP2010247132A - Apparatus for treating forced foaming-type organic liquid mixture and treatment method - Google Patents

Apparatus for treating forced foaming-type organic liquid mixture and treatment method Download PDF

Info

Publication number
JP2010247132A
JP2010247132A JP2009113039A JP2009113039A JP2010247132A JP 2010247132 A JP2010247132 A JP 2010247132A JP 2009113039 A JP2009113039 A JP 2009113039A JP 2009113039 A JP2009113039 A JP 2009113039A JP 2010247132 A JP2010247132 A JP 2010247132A
Authority
JP
Japan
Prior art keywords
foam
liquid
tank
foaming
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009113039A
Other languages
Japanese (ja)
Inventor
Kinichi Takahashi
金一 高橋
Kunihiro Michimoto
邦浩 道本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009113039A priority Critical patent/JP2010247132A/en
Publication of JP2010247132A publication Critical patent/JP2010247132A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Treatment Of Sludge (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for treating a forced foaming-type organic liquid mixture treatment which is capable of a stable continuous operation free from operation stops of the apparatus caused by abnormal foaming, which is capable of treating without dilution even though it is a high concentration mixture liquid, which produces a treatment solution which is stable without rotting for a long time, which can be reused and free from secondary pollution; and a treatment method. <P>SOLUTION: A liquid inlet (29) and a liquid mixture supplying valve (30) are provided at the ceiling of a foaming tank (1) having a sealed structure. From the bottom of the foaming tank (1), a foam generator (13), a foam-liquid kneader (15) and a circulation pump (16) are serially connected to the ceiling part liquid inlet (29). Also, at the lower part of the foaming tank (1), an aeration pipe (7) and an aeration blower (6) are placed. The upper part of the foaming tank (1) and the upper part of a foam receiving tank (10) having a sealed structure are connected to each other with a foam-liquid separator (8). An exhaust fan (19) is connected to the ceiling of the foam receiving tank (10) by connecting it to the foam-liquid kneader (15) via a foam supplying valve (14) from the bottom of the foam receiving tank (10). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は畜産廃液や生活・産業廃液及びその他の有機物混合液を、微生物を利用して短時間に再利用可能な処理液にする有機物混合液の処理に関する。  The present invention relates to treatment of an organic substance mixed liquid that makes a livestock waste liquid, a living / industrial waste liquid, and other organic substance mixed liquid into a processing liquid that can be reused in a short time using microorganisms.

これまでの家畜の糞尿液や人間の生活廃水及び産業分野での有機物を含んだ廃水等有機物混合液の処理方法としては、大きく分けて物理化学的処理方法と生物処理方法とがある。  Conventional methods for treating a mixture of organic matter such as livestock manure, human life wastewater, and wastewater containing organic matter in the industrial field can be broadly divided into physicochemical treatment methods and biological treatment methods.

この二つの処理方法のうち、生物処理方法は好気性処理(活性汚泥法、生物膜法、酸化池法)、嫌気性処理(嫌気性消化法、嫌気性ラグーン法)、特定微生物による処理等があり、いずれの方法も微生物の代謝反応を利用して主として有機物を除くために利用され、中でも特に処理後の残渣物による二次公害が少ないとされ、処理効率が高いと言われる活性汚泥法が最も普及してきた。  Of these two treatment methods, biological treatment methods include aerobic treatment (activated sludge method, biofilm method, oxidation pond method), anaerobic treatment (anaerobic digestion method, anaerobic lagoon method), treatment with specific microorganisms, etc. Both methods are mainly used to remove organic matter by utilizing the metabolic reaction of microorganisms. Among them, there is an activated sludge method that is said to have low secondary pollution due to residues after treatment, and is said to have high treatment efficiency. Most popular.

発明が解決しようとする課題Problems to be solved by the invention

これらは以下のような欠点があった。
イ.沈殿槽やばっ気槽等各槽の水質や生物相がしばしば不安定になり、処理性能の維持管理が非常に難しかった。
ロ.処理過程において時折異常発泡を引き起こすので連続運転を妨げられ、場合によっては処理プラントの運転を停止しなければならなかった。
ハ.高濃度の混濁水は予め希釈処理しなければならないので膨大な面積の処理槽が必要で、処理時間も長くかかった。
ニ.汚泥等残渣物発生量も多く、そのあと処理は焼却や海洋投棄等捨てるために莫大な費用がかかり、しかもそれは二次公害を引き起こす場合もあった。
ホ.近年処理水及び汚泥等残渣物の有効利用も研究されてはいるが、処理後も悪臭を放ちそのまま放置すれば短時間のうちに腐敗等変質し、他用途への再利用もできない状態であった。
本発明は、これらの欠点を解決するために発明されたものである。
These have the following drawbacks.
I. The water quality and biota of each tank such as a precipitation tank and an aeration tank often became unstable, and it was very difficult to maintain and manage the treatment performance.
B. Occasional abnormal foaming during the treatment process prevented continuous operation and in some cases had to stop the treatment plant.
C. Since high-concentration turbid water must be diluted in advance, a treatment tank with a huge area is required and the treatment time is long.
D. A large amount of sludge and other residues are generated, and after that, the disposal requires enormous costs for incineration and ocean dumping, which may cause secondary pollution.
E. In recent years, the effective use of treated water and sludge residue has been studied, but if it is left untreated and left as it is, it will deteriorate in a short period of time and cannot be reused for other purposes. It was.
The present invention has been invented to solve these drawbacks.

課題を解決するための手段Means for solving the problem

密封構造の発泡タンク(1)の天井部に液投入口(29)と混合液供給弁(30)を設け、発泡タンク(1)の底部より二方向へ分岐し、一方は処理液取出弁(26)へ、もう一方は泡発生器(13)、泡液混練器(15)、循環ポンプ(16)を直列に接続し天井部液投入口(29)へと連結する。また、発泡タンク(1)の下部にばっ気管(7)とばっ気ブロワ(6)を設置する。  A liquid inlet (29) and a mixed liquid supply valve (30) are provided at the ceiling of the foamed tank (1) with a sealed structure, branching in two directions from the bottom of the foamed tank (1), one of which is a processing liquid take-off valve ( 26), the other is a foam generator (13), a foam liquid kneader (15), and a circulation pump (16) connected in series and connected to the ceiling liquid inlet (29). In addition, an aeration tube (7) and an aeration blower (6) are installed below the foam tank (1).

そして、発泡タンク(1)の上部と密封構造の泡受タンク(10)の上部を泡液分離器(8)で連結し、泡受タンク(10)の底部から泡供給弁(14)を介して泡液混練器(15)に接続する。また、泡受タンク(10)の天井部に排気ファン(19)を連結する。
本発明は以上の構成よりなる、強制発泡型有機物混合液処理装置である。
Then, the upper part of the foam tank (1) and the upper part of the foam receiving tank (10) having a sealed structure are connected by the foam liquid separator (8), and the foam receiving valve (14) is connected from the bottom of the foam receiving tank (10). And connect to the foam liquid kneader (15). Moreover, an exhaust fan (19) is connected to the ceiling part of the foam receiving tank (10).
This invention is a forced foaming type organic substance liquid mixture processing apparatus which consists of the above structure.

以下、本発明の実施の形態を説明する。
(イ)強固で密封構造の発泡タンク(1)の天井部に液投入口(29)を設け、その上位側に混合液供給弁(30)を取り付ける。
(ロ)発泡タンク(1)の底部より水平二方向へ分岐し、一方は処理液取出弁(26)を設け処理液の取り出し口とし、もう一方は泡発生器(13)と液と泡を混練する泡液混練器(15)及び泡液混合液を循環させる循環ポンプ(16)を直列に接続して、発泡タンク(1)の天井部の液投入口(29)と混合液供給弁(30)の間に連結する。
(ハ)発泡タンク(1)の下部にばっ気管(7)を挿入し、ばっ気ブロワは発泡タンク(1)より高位置に設置する。
(ニ)発泡タンク(1)の上部と密封構造の泡受タンク(10)の上部を適当な角度で山型に屈折した泡液分離器(8)で連結する。
(ホ)泡受タンク(10)の底部から泡供給弁(14)を介して泡液混練器(15)へと接続する。
(ヘ)泡受タンク(10)の天井部より排気ファン(19)を連結する。
本発明は以上のような構成よりなっている。
Embodiments of the present invention will be described below.
(A) A liquid inlet (29) is provided in the ceiling of the foam tank (1) having a strong and sealed structure, and a mixed liquid supply valve (30) is attached to the upper side thereof.
(B) Branches in two horizontal directions from the bottom of the foam tank (1), one is provided with a treatment liquid take-off valve (26) as a treatment liquid take-out port, and the other is a bubble generator (13) with liquid and foam. A foam liquid kneader (15) for kneading and a circulation pump (16) for circulating the foam liquid mixture are connected in series, and the liquid inlet (29) at the ceiling of the foam tank (1) and the mixed liquid supply valve ( 30).
(C) The aeration pipe (7) is inserted in the lower part of the foaming tank (1), and the aeration blower is installed at a higher position than the foaming tank (1).
(D) The upper part of the foaming tank (1) and the upper part of the foam receiving tank (10) having a sealed structure are connected by a foam liquid separator (8) refracted into a mountain shape at an appropriate angle.
(E) Connect from the bottom of the foam receiving tank (10) to the foam liquid kneader (15) via the foam supply valve (14).
(F) The exhaust fan (19) is connected from the ceiling of the foam receiving tank (10).
The present invention is configured as described above.

本発明を使用するときは、最初混合液供給弁(30)を全開し発泡タンク(1)にタンク容量に対して70%〜80%程度の混合液(4)を投入し、その後混合液供給弁(30)は全閉とする。(本願実施例では発泡タンク(1)の外形寸法は直径0.6m×高さ1.7mの円筒形のタンクを製作し、内容量約0.15mなので混合液1回の処理量は約0.1mである。)When using the present invention, first, the mixed liquid supply valve (30) is fully opened, and the mixed liquid (4) of about 70% to 80% with respect to the tank capacity is charged into the foaming tank (1). The valve (30) is fully closed. (In the embodiment of the present invention, a cylindrical tank having a diameter of 0.6 m and a height of 1.7 m is manufactured as the outer dimension of the foaming tank (1), and the inner volume is about 0.15 m 3. 0.1 m 3 )

この時処理液取出弁(26)、泡供給弁(14)は全閉位置で、ばっ気ブロワ(6)、排気ファン(19)、循環ポンプ(16)は停止している。その後ばっ気ブロワ(6)と排気ファン(19)が起動するが、発泡タンク(1)及び泡受タンク(10)の内圧が負圧になるようそれぞれの能力(本願実施例ではそれぞれの回転数)を調節する。  At this time, the processing liquid take-out valve (26) and the foam supply valve (14) are in the fully closed position, and the aeration blower (6), the exhaust fan (19), and the circulation pump (16) are stopped. Thereafter, the aeration blower (6) and the exhaust fan (19) are started, but the respective capacities (in the embodiment of the present invention, the respective rotational speeds) so that the internal pressures of the foaming tank (1) and the foam receiving tank (10) become negative. ).

次に循環ポンプ(16)が起動し発泡タンク(1)内の有機物混合液(4)は発泡タンク(1)の底部から泡発生器(13)、泡液混練器(15)を通って循環ポンプ(16)によって液投入口(29)を介し発泡タンク(1)内に戻される。  Next, the circulation pump (16) is started, and the organic liquid mixture (4) in the foaming tank (1) is circulated from the bottom of the foaming tank (1) through the foam generator (13) and the foam liquid kneader (15). It is returned to the foaming tank (1) through the liquid inlet (29) by the pump (16).

ここで気泡発生(有害ガス除去)方法について詳しく説明する。
今、上記のように有機物混合液(4)が流れているとき、図2において泡発生器(13)内のバルブ(32)の開口部断面積が配管(22)の断面積よりも小さくなる方向にθだけ動いたとする。この時S1は流入側配管(22)の断面積、P1は流入側配管(22)内の圧力、V1は流入側配管(22)内の液の流速、S2は泡発生器(13)の開口部断面積、P2は泡発生器(13)内の圧力、V2は泡発生器(13)内の液の流速、S3は流出側配管(23)の断面積、P3は流出側配管(23)内の圧力、V3は流出側配管(23)内の液の流速、ρは液の密度、gは重力加速度、hは高さとすれば流体連続の法則より
ρ・S1・V1=ρ・S2・V2=ρ・S3・V3となりρは一定なのでS1・V1=S2・V2=S3・V3となる。
Here, the bubble generation (toxic gas removal) method will be described in detail.
Now, when the organic mixed liquid (4) is flowing as described above, the sectional area of the opening of the valve (32) in the bubble generator (13) in FIG. 2 is smaller than the sectional area of the pipe (22). Suppose that it moves in the direction by θ. At this time, S1 is the cross-sectional area of the inflow side pipe (22), P1 is the pressure in the inflow side pipe (22), V1 is the flow velocity of the liquid in the inflow side pipe (22), and S2 is the opening of the bubble generator (13). P2 is the pressure in the foam generator (13), V2 is the flow velocity of the liquid in the foam generator (13), S3 is the cross-sectional area of the outflow side pipe (23), and P3 is the outflow side pipe (23). V3 is the flow velocity of the liquid in the outflow side pipe (23), ρ is the density of the liquid, g is the acceleration of gravity, and h is the height, ρ · S1 · V1 = ρ · S2 · Since V2 = ρ · S3 · V3 and ρ is constant, S1 · V1 = S2 · V2 = S3 · V3.

この時S1>S2なのでV1<V2 ・・・・・・・・・式(1)
となりベルヌーイの定理より
P1+1/2・ρ・V1+ρ・g・h=P2+1/2・ρV2+ρ・g・hとなる。高さは水平方向なので同じとしてこの式を整理すれば
P1−P2=1/2・ρ・(V2−V1
式(1)よりV2−V1>0となるのでP1−P2>0でP1>P2となる。
At this time, since S1> S2, V1 <V2 (1)
From Bernoulli's theorem, P1 + 1/2 · ρ · V1 2 + ρ · g · h = P2 + 1/2 · ρV2 2 + ρ · g · h. If this equation is rearranged assuming that the height is the same in the horizontal direction, P1−P2 = ½ · ρ · (V2 2 −V1 2 )
From Formula (1), V2 2 −V1 2 > 0, so P1−P2> 0 and P1> P2.

従って、泡発生器(13)の中の圧力は下がることがわかり、液の流速Vと断面積Sの関係即ち泡発生器(13)内のバルブ(32)の作動量θを適当な位置に調整すれば(本願実施例ではS2=1/2・S1になる位置)、液の中に溶け込んでいる有害ガスを気泡(31)化することができ、それは循環ポンプ(16)によって発泡タンク(1)へ運ばれ、更に泡液分離器(8)を通って泡受タンク(10)に運ばれた後排気ファン(19)によって外部へ排気される。  Accordingly, it can be seen that the pressure in the bubble generator (13) decreases, and the relationship between the liquid flow velocity V and the cross-sectional area S, that is, the operating amount θ of the valve (32) in the bubble generator (13) is set to an appropriate position. If adjusted (position where S2 = 1/2 · S1 in the embodiment of the present application), the harmful gas dissolved in the liquid can be made into bubbles (31), which is generated by the circulation pump (16) by the foam tank ( 1), and further to the foam receiving tank (10) through the foam liquid separator (8) and then exhausted to the outside by the exhaust fan (19).

次に泡液分離について詳しく説明する。
ばっ気ブロワ(6)を起動するとばっ気管(7)から空気の泡(5)が出てばっ気を始める。この時有機物混合液(4)はたんぱく質等有機物を含むコロイド溶液となっており、前記循環ポンプ(16)による液投入口(29)からの混合液のシャワー(2)により叩かれ、ばっ気による空気の泡(5)及び泡発生器(13)による泡はかなり潰されるが、ばっ気により発生した空気の泡は消滅しにくく時間の経過とともに泡は微細化され、更に潰れにくくなり大きな泡と小さな泡が混在した泡(3)になって徐々に発泡タンク(1)の上部に溜まってゆく。
Next, foam liquid separation will be described in detail.
When the aeration blower (6) is activated, air bubbles (5) come out from the aeration tube (7) and aeration starts. At this time, the organic mixed solution (4) is a colloidal solution containing organic substances such as proteins, and is struck by the shower (2) of the mixed solution from the liquid inlet (29) by the circulation pump (16). The bubbles generated by the air bubbles (5) and the bubble generator (13) are considerably crushed. However, the bubbles of air generated by aeration are difficult to disappear, and the bubbles are refined over time. It becomes a bubble (3) in which small bubbles are mixed and gradually accumulates in the upper part of the foaming tank (1).

やがて泡(3)は発泡タンク(1)の上部一杯になり泡液分離器(8)を通って泡受タンク(10)へと押し出される。この時図4のように泡液分離器(8)を適当な角度(本願実施例では90度)で山型に屈折してやることにより泡(3)は泡液分離器(8)上側を押されて移動するが、泡(3)に付着した液(28)は泡液分離器(8)の下側斜面に沿って戻ってくる。これにより泡(11)だけが泡受タンク(10)に、液(28)は発泡タンク(1)に分離される。  Eventually, the foam (3) fills the upper part of the foam tank (1) and is pushed out through the foam liquid separator (8) to the foam receiving tank (10). At this time, as shown in FIG. 4, the foam (3) is refracted into a mountain shape at an appropriate angle (90 degrees in this embodiment), so that the foam (3) is pushed on the upper side of the foam / liquid separator (8). The liquid (28) attached to the foam (3) returns along the lower slope of the foam liquid separator (8). Thereby, only the foam (11) is separated into the foam receiving tank (10), and the liquid (28) is separated into the foaming tank (1).

つづいて泡液混練について詳しく説明する。
S3、P3、V3は前出配管(23)の記号であり、S4は泡液混練器(15)の断面積、P4は泡液混練器(15)内の圧力、V4は泡液混練器(15)内の液の流速、S5は流出側配管(24)の断面積、P5は流出側配管(24)内の圧力、V5は流出側配管(24)内の液の流速とすれば、本願実施例でS3>S4となっているので前記泡発生器(13)の項で説明したのと同様に、流体連続の法則及びベルヌーイの定理によりP3>P4となり、流出側配管(24)内圧力P5は循環ポンプ(16)によって常に吸引されているのでP4≧P5となっている。
Next, the foam liquid kneading will be described in detail.
S3, P3, and V3 are symbols for the preceding pipe (23), S4 is a cross-sectional area of the foam liquid kneader (15), P4 is a pressure in the foam liquid kneader (15), and V4 is a foam liquid kneader ( 15) If the flow rate of the liquid in the outflow side piping (24), S5 is the cross-sectional area of the outflow side piping (24), P5 is the pressure in the outflow side piping (24), and V5 is the flow rate of the liquid in the outflow side piping (24). Since S3> S4 in the embodiment, P3> P4 is established by the fluid continuity law and Bernoulli's theorem as described in the section of the bubble generator (13), and the pressure in the outflow side pipe (24) Since P5 is always sucked by the circulation pump (16), P4 ≧ P5.

今、泡供給弁(14)が開になるとベンチュリー管の原理により、図4のように泡受タンク(10)側の配管(25)内の泡(11)は泡液混練器(15)内を流れる液に吸引され、渦流に練り込まれながら液循環のプロセスへと組み込まれ、大きな泡は潰され微細な泡となって液の中に溶け込んでゆく。この時点での泡は前出ばっ気でできた空気の泡がほとんどなので効率良く溶存酸素量を高められる。  Now, when the foam supply valve (14) is opened, the foam (11) in the pipe (25) on the foam receiving tank (10) side as shown in FIG. It is sucked into the liquid flowing through the vortex and incorporated into the liquid circulation process while being kneaded into the vortex, and the large bubbles are crushed and become fine bubbles that dissolve into the liquid. Since most of the bubbles at this point are air bubbles generated by aeration, the amount of dissolved oxygen can be increased efficiently.

上述これら一連の動作を連続的に繰り返し行うことによって、悪臭成分や微生物代謝物等微生物増殖阻害物質などの混合液の中に溶け込んだ有害ガスが、極めて短時間(本願実施例で4〜5時間)で排気できた。  By continuously repeating the series of operations described above, harmful gases dissolved in a mixed solution of microbial growth-inhibiting substances such as malodorous components and microbial metabolites can be produced in a very short time (4 to 5 hours in the present embodiment). ).

また、泡受タンク(10)に溜まった泡(所謂コロイド溶液のような粘性を持った液体中で発生した泡)には微生物の増殖に必要な有機物養分が付着しており、それを繰り返し循環供給することにより微生物の培地を連続供給して、培地面積の増大化(泡の微細化で表面積の増大化)を行っていることになり、好気性、嫌気性、通性嫌気性等複合微生物の対数増殖を極めて短時間で可能にした。  In addition, the foam accumulated in the foam receiving tank (10) (foam generated in a viscous liquid such as a so-called colloidal solution) is attached with organic nutrients necessary for the growth of microorganisms and is repeatedly circulated. By supplying the microorganism culture medium continuously, the medium area is increased (the surface area is increased by making the bubbles finer), and complex microorganisms such as aerobic, anaerobic, and facultative anaerobic The logarithmic growth of was made possible in a very short time.

(本願実施例では酸化還元電位−400mVが4〜5時間で±0mV、12〜15時間で+50mV、30〜48時間で+100mV程度になった。また、菌密度は培養レベルで最終3×1011になった。)(In the examples of the present application, the oxidation-reduction potential −400 mV was ± 0 mV in 4 to 5 hours, +50 mV in 12 to 15 hours, and +100 mV in 30 to 48 hours. Also, the bacterial density was finally 3 × 10 11 at the culture level. Became.)

発明の効果The invention's effect

本発明を使用することにより強制的な発泡を継続し、積極的に泡を循環することで異常発泡による運転停止等の問題がなく安定した連続運転ができ、混合液中に溶け込んだ有害ガスを極めて短時間で効率良く排気し、極めて短時間で微生物の対数増殖域に移行させることができるので、高濃度の混合液であっても希釈することなく原液のまま処理することができ、長期間腐敗しない安定した処理液を作り出し、処理過程で薬品も使用しないため有機質肥料等としての再利用も可能で、二次公害も防ぐことができるという画期的な効果がもたらされた。なお、本願実施例はあくまでも一実施例であり、本実施例に限定されるものではない。  By using the present invention, forced foaming is continued, and by actively circulating bubbles, stable continuous operation can be performed without problems such as operation stop due to abnormal foaming, and harmful gases dissolved in the liquid mixture can be removed. Efficiently exhausts in a very short time and can be transferred to the logarithmic growth area of microorganisms in a very short time, so even a highly concentrated liquid mixture can be processed as it is without being diluted. A stable treatment solution that does not rot is created, and since no chemicals are used in the treatment process, it can be reused as an organic fertilizer and the like, and a secondary effect can be prevented. The embodiment of the present application is merely an embodiment and is not limited to the present embodiment.

本発明による強制発泡型有機物混合液処理装置の一実施例図である。1 is a diagram illustrating an example of a forced-foaming organic material mixture processing apparatus according to the present invention. 本発明を説明するための泡発生器の断面図である。It is sectional drawing of the foam generator for demonstrating this invention. 本発明を説明するための泡液混練器の断面図である。It is sectional drawing of the foam liquid kneader for demonstrating this invention. 本発明を説明するための泡液分離器の断面図である。It is sectional drawing of the foam-liquid separator for demonstrating this invention.

(1) 発泡タンク
(2) 有機物混合液シャワー
(3) 大小混在泡
(4) 有機物混合液
(5) ばっ気泡
(6) ばっ気ブロワ
(7) ばっ気管
(8) 泡液分離器
(10) 泡受タンク
(11) 分離後泡
(13) 泡発生器
(14) 泡供給弁
(15) 泡液混練器
(16) 循環ポンプ
(19) 排気ファン
(22) 配管
(23) 配管
(24) 配管
(25) 配管
(26) 処理液取出弁
(28) 付着液
(29) 液投入口
(30) 混合液供給弁
(31) 気泡
(32) バルブ
(1) Foaming tank (2) Organic mixed liquid shower (3) Large and small mixed foam (4) Organic mixed liquid (5) Aerated bubble (6) Aerated blower (7) Aerated tube (8) Foam liquid separator (10) Foam receiving tank (11) Foam after separation (13) Foam generator (14) Foam supply valve (15) Foam liquid kneader (16) Circulation pump (19) Exhaust fan (22) Piping (23) Piping (24) Piping (25) Piping (26) Treatment liquid take-off valve (28) Adhesive liquid (29) Liquid inlet (30) Mixed liquid supply valve (31) Air bubble (32) Valve

Claims (2)

密封構造の発泡タンクと密封構造の泡受タンクを泡と液を分離する手段で連結し、該タンク内を排気する手段とばっ気する手段を備え、液に溶解したガスを気泡化する手段と泡と液を混練する手段、及び該混合液を循環する手段並びにそれらを制御する手段を備えたことを特徴とする強制発泡型有機物混合液処理装置。  A means for connecting a foamed tank having a sealed structure and a foam receiving tank having a sealed structure by means for separating the foam and liquid, means for exhausting the inside of the tank and means for aeration, and means for bubbling the gas dissolved in the liquid; A forced-foaming organic mixed liquid processing apparatus comprising means for kneading foam and liquid, means for circulating the liquid mixture, and means for controlling them. 前記循環処理の中に該気泡化処理と該泡液分離処理した該泡を該泡液混練処理することを組み込み、該排気しながら同時に該ばっ気することを組み合わせてなる、特許請求項1に基づく強制発泡型有機物混合液処理装置を用いた有機物混合液の処理方法。  The foaming treatment and the foam liquid separation treatment are incorporated into the circulation treatment, and the foam liquid kneading treatment is combined, and the aeration is simultaneously performed while exhausting. Method of processing organic mixed liquid using forced foaming type organic mixed liquid processing apparatus based on the above.
JP2009113039A 2009-04-13 2009-04-13 Apparatus for treating forced foaming-type organic liquid mixture and treatment method Pending JP2010247132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113039A JP2010247132A (en) 2009-04-13 2009-04-13 Apparatus for treating forced foaming-type organic liquid mixture and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113039A JP2010247132A (en) 2009-04-13 2009-04-13 Apparatus for treating forced foaming-type organic liquid mixture and treatment method

Publications (1)

Publication Number Publication Date
JP2010247132A true JP2010247132A (en) 2010-11-04

Family

ID=43310098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113039A Pending JP2010247132A (en) 2009-04-13 2009-04-13 Apparatus for treating forced foaming-type organic liquid mixture and treatment method

Country Status (1)

Country Link
JP (1) JP2010247132A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140879B1 (en) * 2012-06-22 2013-02-13 強化土株式会社 Ground improvement method
KR101388210B1 (en) 2012-06-28 2014-04-23 현대제철 주식회사 structure for removing bubble in gas of wastewater
JP2016505378A (en) * 2013-01-29 2016-02-25 ランザテク・ニュージーランド・リミテッド System and method for improving gas dissolution
CN106731024A (en) * 2016-12-22 2017-05-31 武汉工程大学 A kind of device of the gas in removal liquid
CN108211969A (en) * 2018-03-07 2018-06-29 深圳市海威达科技有限公司 Foam is automatically mixed than device and car washer
US11898134B2 (en) 2021-11-03 2024-02-13 Lanzatech, Inc. Reactor having dynamic sparger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140879B1 (en) * 2012-06-22 2013-02-13 強化土株式会社 Ground improvement method
KR101388210B1 (en) 2012-06-28 2014-04-23 현대제철 주식회사 structure for removing bubble in gas of wastewater
JP2016505378A (en) * 2013-01-29 2016-02-25 ランザテク・ニュージーランド・リミテッド System and method for improving gas dissolution
CN106731024A (en) * 2016-12-22 2017-05-31 武汉工程大学 A kind of device of the gas in removal liquid
CN106731024B (en) * 2016-12-22 2019-05-28 武汉工程大学 A kind of device of gas in removal liquid
CN108211969A (en) * 2018-03-07 2018-06-29 深圳市海威达科技有限公司 Foam is automatically mixed than device and car washer
US11898134B2 (en) 2021-11-03 2024-02-13 Lanzatech, Inc. Reactor having dynamic sparger

Similar Documents

Publication Publication Date Title
KR101594086B1 (en) Nanosized bubble and hydroxyl radical generator, and system for processing contaminated water without chemicals using the same
KR200418245Y1 (en) Pure Oxygen Aeration Devices for Wastewater Treatment
JP2008055291A (en) Water treating device
CN206901995U (en) Integrated MBR films sewage disposal device
JP2010247132A (en) Apparatus for treating forced foaming-type organic liquid mixture and treatment method
US20090250396A1 (en) Drainage water-treating method and drainage water-treating apparatus
CN207608464U (en) The device of inversion A AO+MBR integrated sewage disposals
JP2007253012A (en) Wastewater treatment method and wastewater treatment equipment
CN104918689A (en) Systems and methods for diffusing gas into a liquid
JP2005152763A (en) Gas-liquid mixed solution containing ultrafine bubble for reactor, production method of the same, chemical reactor apparatus, and bioreactor apparatus
JP2006181393A (en) Non-sludge high-speed wastewater treatment system
JP2006255514A (en) Apparatus and method for treating organic waste water
JP6497871B2 (en) Method and apparatus for treating oil-containing wastewater
JP4515868B2 (en) Water treatment system
JP4949742B2 (en) Waste water treatment method and waste water treatment equipment
CN206457377U (en) A kind of sewage-treatment plant
JP4917562B2 (en) Water treatment equipment
JP2008178792A (en) Biological reaction method and biological reaction apparatus
JP2007083108A (en) Method and apparatus for treating liquid
CN106746357A (en) A kind of sewage-treatment plant
JP2007330894A (en) Activated sludge treatment apparatus
CN207276362U (en) A kind of special water remediation integrated machine equipment of river and lake water harnessing
KR102153994B1 (en) Volume change type water treatment device for circulation type upper focusing aeration
JP2004322084A (en) Biological filtration system
CN201770530U (en) Device for promoting dissolution of gas in liquid and sewage treatment system using the device