JP2009022847A - Aeration mixing and circulation equipment - Google Patents

Aeration mixing and circulation equipment Download PDF

Info

Publication number
JP2009022847A
JP2009022847A JP2007186805A JP2007186805A JP2009022847A JP 2009022847 A JP2009022847 A JP 2009022847A JP 2007186805 A JP2007186805 A JP 2007186805A JP 2007186805 A JP2007186805 A JP 2007186805A JP 2009022847 A JP2009022847 A JP 2009022847A
Authority
JP
Japan
Prior art keywords
water
air
layer
pump
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007186805A
Other languages
Japanese (ja)
Inventor
Shunji Nishi
舜司 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BLUE AQUA INDUSTRY KK
Original Assignee
BLUE AQUA INDUSTRY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BLUE AQUA INDUSTRY KK filed Critical BLUE AQUA INDUSTRY KK
Priority to JP2007186805A priority Critical patent/JP2009022847A/en
Publication of JP2009022847A publication Critical patent/JP2009022847A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide aeration mixing and circulation equipment which purifies a closed water area by a water temperature limitation effect in an active layer of phytoplankton by mixing surface water, an active light limitation effect on phytoplankton by expansion of a mixing and circulation layer, a dilution effect of surface water with high phytoplankton content, and the like. <P>SOLUTION: A suction pipe 4 of which the inflow port sinks under the water surface of a closed water area, such as a dam reservoir, a lake, a closed sea area, or the like, communicates to be connected with the suction side of a pump 3, and a water pipe arranged with a discharge port in an anoxic water mass layer in a dam reservoir, a lake, a closed sea area, or the like and arranged with an aeration means for diffusing air or oxygen immediately near to the pump is arranged on the delivery side of the pump. An aeration means diffusing air, oxygen, or ozone is arranged at a water depth position located inside a tubular body having one end which is a discharge port under the water surface and having the other end which is an inflow port at a position of a thermocline, and ensuring an air lift pumping capacity and additionally saving energy. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ダム貯水池、湖沼、海域等の閉鎖性水域の貧酸素水塊に冨酸素水を供給し、または水温差によって成層化している閉鎖性水域の水温躍層の水を、省エネルギーを達成するに十分な水深位置に散気手段を配設してエアーリフトポンプを構成することにより表層水と混合して植物プランクトンの活動層の水温制限効果、循環混合層の拡大により植物プランクトンの活動光制限効果及び植物プランクトンの高い表層水を希釈効果等で閉鎖性水域を浄化する曝気混合循環施設。   The present invention achieves energy saving by supplying drought oxygen water to anoxic water masses in closed water areas such as dam reservoirs, lakes, marine areas, etc., or water in a closed water area stratified by a difference in water temperature. A diffusing means is installed at a sufficient depth to form an air lift pump, which mixes with surface water to limit the water temperature in the active layer of the phytoplankton, and expands the circulating mixed layer to increase the activity light of the phytoplankton. An aerated mixing and circulation facility that purifies closed waters by diluting surface water with a limiting effect and high phytoplankton.

湖沼水中において、湖沼流入量測定装置及び水質自動測定装置からの情報で上下数段に配置した複数の散気装置からの散気を制御する装置が開示されている(例えば、特許文献1。)。
また、内筒下部に流入孔を有すると共に該流入孔上部位置に散気装置を配設して、エアーリフト上昇流による水流速と気放流速を減速させると共に外筒で流路長を延長して酸素溶解を確保する装置が開示されている(例えば、特許文献2。)。
また、湖沼水中において、散気装置から空気を水中に散気して気泡の上昇流により周囲の水を誘引して上昇水流となりその後水平流を経て下降流となる循環流を生起する深層曝気循環施設とし、また、水質自動測定装置からの情報信号で多段散気口を有する散気装置の各散気口に対応した切替弁を操作している(例えば、特許文献3。)。
そしてまた、エジェクタで水中にオゾンガスを溶解するオゾン水製造装置が開示されている(例えば、特許文献4。)。
In lake water, an apparatus for controlling air diffusion from a plurality of air diffusers arranged in several upper and lower stages using information from a lake inflow measuring device and an automatic water quality measuring device is disclosed (for example, Patent Document 1). .
In addition, an inflow hole is provided in the lower part of the inner cylinder, and an air diffuser is disposed at the upper part of the inflow hole to reduce the water flow rate and the air discharge flow rate due to the air lift upflow and to extend the flow path length with the outer cylinder. An apparatus for ensuring oxygen dissolution is disclosed (for example, Patent Document 2).
In lake water, deep aeration circulation that diffuses air from the air diffuser into the water and induces the surrounding water by the upward flow of bubbles to form a rising water flow and then a horizontal flow to a downward flow. The switching valve corresponding to each air diffuser of the air diffuser having a multistage air diffuser is operated by an information signal from the water quality automatic measuring device (for example, Patent Document 3).
And the ozone water manufacturing apparatus which melt | dissolves ozone gas in water with an ejector is disclosed (for example, patent document 4).

特許2590452号(特開平7−251196)Japanese Patent No. 2590452 (Japanese Patent Laid-Open No. 7-251196) 特開2005−58954JP-A-2005-58954 特許2590425号Japanese Patent No. 2590425 特開2003−144875JP 2003-144875 A

しかしながら、従来の曝気混合循環施設においては、散気手段を深層部に配設していたが、散気手段を浅層部に配設して深層部に配設した場合と同じ程度の酸素溶解度を得る手段が開示されていなかった。   However, in the conventional aeration and circulation facility, the aeration means is disposed in the deep layer portion. However, the oxygen solubility is the same as when the aeration means is disposed in the shallow layer portion and disposed in the deep layer portion. No means for obtaining was disclosed.

また、散気手段を浅層部に配設した場合に比較して、深層部に配設すれば動力費が水深(水圧)のべき乗に比例して増加する問題があった。   Further, as compared with the case where the air diffuser is disposed in the shallow layer portion, the power cost increases in proportion to the power of the water depth (water pressure) when disposed in the deep layer portion.

また、単に散気手段を浅層部に配設しただけでは、水中への酸素溶解度が小さい問題があった。   Moreover, there is a problem that the oxygen solubility in water is small if the aeration means is simply disposed in the shallow layer portion.

また、従来の閉鎖性水域におけるアオコ対策においては、散気手段を深層部に配設していたが、散気手段を浅層部に配設して深層部の水と表層水を直接に混合して循環流を形成する知見が開示されていなかった。   In addition, in the conventional measures against sea otters in closed water areas, the air diffuser is disposed in the deep layer, but the air diffuser is disposed in the shallow layer to directly mix the water in the deep layer with the surface water. Thus, the knowledge of forming a circulating flow has not been disclosed.

そして、散気手段を浅層部に配設して水質自動測定装置と水深センサーからの情報で水温躍層の水を表層に省エネルギーを達成して揚水する吐出口または流入口水深位置とブロワー、ポンプ等の運転操作を制御する水深選択および運転操作手段が開示されていなかった。   Then, the air diffuser is disposed in the shallow layer part, and the discharge depth or the inlet water depth position and the blower for achieving energy saving on the surface of the water temperature climatic layer with the information from the automatic water quality measuring device and the water depth sensor, and the blower, The water depth selection and operation operation means for controlling the operation of the pump and the like have not been disclosed.

また、散気手段を浅層部に配設した場合に比較して、深層部に配設すれば動力費が水深(水圧)のべき乗に比例して増加する問題があった。   Further, as compared with the case where the air diffuser is disposed in the shallow layer portion, the power cost increases in proportion to the power of the water depth (water pressure) when disposed in the deep layer portion.

本発明は、散気手段を浅層部に配設して深層部に配設した場合と同様の酸素溶解度を得ることを第一の課題とする。また、散気手段を浅層部に配設して深層部の水を直接表層水と混合すると共に循環流を生起することを第二の課題とする。また、水質自動測定装置及び放流口または流入口水深センサーからの情報で吐出口または流入口水深位置とブロワー、ポンプ等の運転操作を制御する水深選択および運転操作を制御することを第三の課題とする。     This invention makes it the 1st subject to obtain the oxygen solubility similar to the case where an aeration means is arrange | positioned in a shallow layer part, and it arrange | positions in a deep layer part. Another object of the present invention is to arrange a diffuser in the shallow layer portion to directly mix the water in the deep portion with the surface layer water and to generate a circulating flow. The third problem is to control the water depth selection and operation to control the discharge port or inlet water depth position and the operation operation of the blower, pump, etc. with the information from the water quality automatic measuring device and the outlet or inlet water depth sensor. And

本発明は、上記目的を達成するため、以下に記載されるような技術構成とする。即ち、第一の課題解決手段は水面下に流入口が沈下している吸水管をポンプのサクション側に、ダム貯水池、湖沼、閉鎖性海域等の貧酸素水塊層に吐出口を配設すると共にポンプ直近に空気または酸素を散気する散気手段を内設した送水管をポンプのデリベリ側に配設して構成したものである。 In order to achieve the above object, the present invention has a technical configuration as described below. That is, the first problem-solving means is to arrange a suction pipe with an inlet sinking below the surface of the water on the suction side of the pump, and an outlet in an anoxic water mass layer such as a dam reservoir, a lake, or a closed sea area. In addition, a water supply pipe having a diffuser for diffusing air or oxygen in the immediate vicinity of the pump is arranged on the delivery side of the pump.

また、第二の課題解決手段は閉鎖性水域の水面下に吐出口である一端を有し、任意の水深に流入口である他端を有する管状体の内部であって、エアーリフト揚水能力を確保した上に省エネルギーとなる水深位置に空気、酸素又はオゾンを散気する散気手段を配設して構成したものである。   The second problem-solving means is an inside of a tubular body having one end that is a discharge port under the surface of a closed water area and the other end that is an inflow port at an arbitrary depth, and has an air lift pumping capacity. In addition to ensuring, an aeration means for diffusing air, oxygen or ozone is disposed at a water depth position where energy is saved.

そしてまた、第三の課題解決手段は水質自動測定装置及び水深センサーからの情報信号で吐出口または流入口水深位置とブロワー、ポンプ等の運転操作を制御する水深選択および運転操作手段とする。   The third problem solving means is a water depth selection and operation operation means for controlling the operation position of the outlet or inlet water depth and the blower, pump, etc. by the information signal from the water quality automatic measuring device and the water depth sensor.

上記第一の課題解決手段による作用は次のようである。すなわち、水面下であって浮遊物の無い水域層に流入孔が沈下している吸水管をポンプのサクション側に、ダム貯水池、湖沼、閉鎖性海域等の貧酸素水塊層に吐出口を配設すると共にポンプ直近に空気または酸素を散気する散気手段を内設した送水管をポンプのデリベリ側に配設して構成すると、アオコ等の植物プランクトンを含有した水はポンプで任意水深の貧酸素水塊層へ沈降底泥を巻上げない様に吐出口を水平方向よりも僅かに斜め以上の上方向にして放水していて、上記散気手段で散気すると送水管内の下降流速を散気手段から散気した空気の上昇速度よりも大きくなるようにポンプで送水すると、散気された気泡は浅層から深層へ移動するに従って気泡中酸素ガスの水中への溶解度が増大する。そして、酸素溶解度が増大した冨酸素水を深層の貧酸素水塊へ吐出すると冨酸素水と貧酸素水が混合拡散し、他の一部は周囲の貧酸素水を巻き込んで上昇するに従って、水中に溶解していた空気または微細気泡は徐々に大きな気泡へ成長して、大きな上昇力を生じて周囲の水塊を巻き込んで水面へ上昇する。従って、深層貧酸素水塊は冨酸素化すると共に水温が上昇し、上層の高温水塊と深層低温水塊とが混合すると共に旋回下降水流に伴って上層高温水塊が下降する。すると上層に生息していた植物性プランクトンは低温で光の無い環境に運ばれて死滅する。     The operation of the first problem solving means is as follows. In other words, a suction pipe with an inflow hole settling in an aquifer that is below the surface of the water and has no suspended solids is placed on the suction side of the pump, and an outlet is placed in an anoxic water mass layer such as a dam reservoir, lake, or closed water area. If a water supply pipe with a diffuser means for diffusing air or oxygen in the immediate vicinity of the pump is installed on the delivery side of the pump, water containing phytoplankton such as blue sea urchins is at an arbitrary depth by the pump. In order to prevent sedimentation bottom mud from being rolled up into the anoxic water mass layer, the water is discharged with the discharge port slightly upward and slightly above the horizontal direction. When water is supplied by a pump so as to be higher than the rising speed of air diffused from the gas means, the solubility of the oxygen gas in the bubbles in water increases as the air bubbles diffused move from the shallow layer to the deep layer. Then, when sputum oxygen water with increased oxygen solubility is discharged to the deep layer of oxygen-deficient water, soot-oxygen water and the oxygen-deficient water are mixed and diffused, and the other part of the The air or fine bubbles dissolved in the water gradually grow into large bubbles, generate a large ascending force, entrain the surrounding water mass, and rise to the water surface. Accordingly, the deep anoxic water mass is drought oxygenated and the water temperature rises, the upper high temperature water mass and the deep low temperature water mass are mixed, and the upper high temperature water mass descends with the swirling descending water flow. Then, the phytoplankton that lived in the upper layer will be killed by being transported to a low temperature and lightless environment.

上記第二の課題解決手段による作用は次のようである。すなわち、 閉鎖性水域の水面下に吐出口である一端を有し、水温躍層に流入口である他端を有する管状体の内部であって、エアーリフト揚水能力を確保した上に省エネルギーとなる水深位置に空気、酸素又はオゾンを散気する散気手段を配設することにより、低温である水温躍層の水は途中の中間水温の水と混合することなく上層の高温で植物プランクトンを高濃度に含有する水と直接混合しながら水面層を水平に放射状に流れ、さらに下方への流れとなり、水温躍層と水面層間の循環混合層を形成する。その結果、水表面層の水温が低下することにより、植物プランクトンの活動増殖が制限されると共に、希釈効果により植物プランクトン濃度が低下する。そしてまた、水面層から水温躍層への循環流で運ばれた植物プランクトンは低水温増殖制限効果と光制限増殖抑制効果により減少する。   The operation of the second problem solving means is as follows. That is, inside the tubular body having one end that is a discharge port under the surface of a closed water area and the other end that is an inflow port in the water temperature layer, energy saving is achieved while securing the air lift pumping capacity. By disposing a diffuser that diffuses air, oxygen, or ozone at the depth of the water, the water in the cool water layer, which is cold, raises the phytoplankton at a high temperature in the upper layer without mixing with water at the intermediate water temperature. While directly mixing with the water contained in the concentration, the water surface layer flows radially and further downward, forming a circulating mixed layer between the water temperature layer and the water surface layer. As a result, when the water temperature of the water surface layer is lowered, the active growth of phytoplankton is restricted, and the phytoplankton concentration is lowered due to the dilution effect. Moreover, the phytoplankton carried by the circulating flow from the water surface layer to the water temperature striking layer decreases due to the low water temperature growth limiting effect and the light limited growth suppressing effect.

また、水質自動測定装置及び吐出口または流入口位置水深センサーからの情報信号で吐出口または流入口の水深位置を制御するようにしていて、そして任意の吐出口または流入口水深位置を選択して電動昇降機等で操作する吐出口または流入口水深位置を選択する。また、水深センサーの情報信号でインバータ制御するブロワー及びポンプの吐出量を制御する作用を付加することも出来る。   In addition, the water depth position of the outlet or inlet is controlled by the information signal from the water quality automatic measuring device and the outlet or inlet position depth sensor, and the arbitrary outlet or inlet water depth position is selected. Select the outlet or inflow water depth position to be operated by an electric elevator or the like. Further, it is possible to add an action of controlling the blower and the pump discharge amount that are inverter-controlled by the information signal of the water depth sensor.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。   Since the present invention is configured as described above, the following effects can be obtained.

散気手段を浅層に配設しても、深層に配設した場合と同様程度の酸素溶解度となるので、水質浄化効果がある。   Even if the air diffuser is disposed in the shallow layer, the oxygen solubility is similar to that in the case where it is disposed in the deep layer, so that there is a water purification effect.

散気手段をポンプのサクション側に内設して散気量が多くなる程キャビテーションの危険が大きくなるが、散気手段をポンプのデリベリ側に内設するとキャビテーションの危険性は低下する。   The risk of cavitation increases as the amount of air diffused by installing the air diffuser on the suction side of the pump, but the risk of cavitation decreases if the air diffuser is installed on the delivery side of the pump.

深層の貧酸素水塊に酸素を供給するので、嫌気性菌による難溶性栄養塩の再溶出を抑制する効果がある。   Since oxygen is supplied to the deep anoxic water mass, there is an effect of suppressing re-elution of sparingly soluble nutrients by anaerobic bacteria.

深層で水中に溶解しない空気が水面に向かって上昇すると、表層から深層へ向かう循環混合層を形成し、またエアーリフトポンプ効果で水温躍層の水と空気、酸素、またはオゾン等が水面へ上昇すると循環混合層を形成すると植物プランクトン含有の表層水は深層または水温躍層へ移流混合し、低温の深層水または水温躍層水は表層水層へ移流混合して植物プランクトンが異常増殖し難い、即ち表層水温上昇制限、植物プランクトンへの光制限及び植物プランクトン固体数の高い表層水を希釈する等の環境を創出する効果が有る。   When air that does not dissolve in water in the deep layer rises toward the water surface, a circulating mixed layer from the surface layer to the deep layer is formed, and water and air, oxygen, ozone, etc. in the water temperature rise layer rise to the water surface due to the air lift pump effect Then, when the circulating mixed layer is formed, the surface water containing phytoplankton is advected and mixed to the deep layer or the water-climbing layer, and the low-temperature deep water or water-climbing layer water is advected and mixed to the surface layer and the phytoplankton is unlikely to grow abnormally. That is, it has the effect of creating an environment such as limiting surface temperature rise, limiting light to phytoplankton, and diluting surface water having a high number of phytoplankton solids.

低温である水温躍層の水が途中の中温層の水と混合しないので、高温である水面層の水温を低下させる効果がより大きい。   Since the water in the water temperature striking layer at a low temperature is not mixed with the water in the middle temperature layer, the effect of lowering the water temperature in the water surface layer at a high temperature is greater.

また、散気装置が浅層に配設されるので、深層に配設される場合と同一の空気量を送気しても、水深差に相当する吐出圧を減少出来るので、吐出圧減少に相当する所要電力費削減効果がある。   In addition, since the diffuser is disposed in the shallow layer, even if the same amount of air as that in the deep layer is supplied, the discharge pressure corresponding to the water depth difference can be reduced, thus reducing the discharge pressure. There is a corresponding reduction in required power costs.

また、電力削減に見合う地球温暖化防止効果がある。   In addition, it has the effect of preventing global warming commensurate with power reduction.

また、オゾン含有空気を散気することによりアオコ(植物性プランクトン)を滅菌することが出来る。   In addition, blue-green (phytoplankton) can be sterilized by diffusing ozone-containing air.

そしてまた、水深センサーを配設することにより、吐出口または流入口水深位置を無段階に選択することが出来る効果がある。   Further, by providing the water depth sensor, there is an effect that the discharge port or the inlet water depth position can be selected steplessly.

本発明の実施の形態を図1〜図6を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1に示した第一の発明に係る第一の実施例において、フロート1を装備した浮上槽2に配設したポンプ3のサクション側に吸水管4の一端を連通接続すると共に該吸水管4の他端である吸水口4bを水面下であって浮遊物が無い水層にスクリーン5を通して吸水する吸水口4bを配設し、また前記ポンプ3のデリベリ側にディフューザー6内装の送水管7を連通接続すると共に該送水管7の他端である吐出口7aを深層であって底泥が無い水層に配設し、さらに該吐出口7aからの吐出水を上方向へ吐出している。この吐出水の吐出方向は水平方向よりも僅かに斜め方向以上になるように上向きに吐出することが、底泥を巻上げないために必要である。そして、高濃度空気溶解水は深層の貧酸素水塊と混合し、気泡は周囲の水塊を巻込みながら水面へ向かって上昇すると共に深層へ向かう循環流を形成する。本実施例では図示しない陸上設置のブロワー及び空気供給配管から前記ディフューザー6へ空気を送気して散気しているが、水質に応じて空気の代替として酸素を送気して散気することも出来る。そして又、ウェイト8で風及び波浪に対抗して前記浮上槽2のバランスを取ると共にアンカー9で流出を防止している。   In the first embodiment according to the first invention shown in FIG. 1, one end of a water absorption pipe 4 is connected to the suction side of a pump 3 disposed in a floating tank 2 equipped with a float 1 and the water absorption pipe 4 is connected. A water suction port 4b for absorbing water through the screen 5 is disposed in a water layer below the surface of the water and free of suspended matter, and a water pipe 7 inside the diffuser 6 is provided on the delivery side of the pump 3. The discharge port 7a which is the other end of the water supply pipe 7 is disposed in a deep water layer without bottom mud, and the discharge water from the discharge port 7a is discharged upward. It is necessary to discharge the discharged water upward so that the discharge direction of the discharge water is slightly more than the horizontal direction. Then, the high-concentration air-dissolved water is mixed with the deep anoxic water mass, and the bubbles rise toward the water surface while encircling the surrounding water mass and form a circulating flow toward the deep layer. In this embodiment, air is diffused by supplying air to the diffuser 6 from a blower installed on the ground (not shown) and an air supply pipe. However, oxygen is diffused by supplying oxygen as an alternative to air according to the water quality. You can also. The weight 8 balances the levitation tank 2 against wind and waves, and the anchor 9 prevents outflow.

図2に示した第一の発明に係る第二の実施例においては、上記図1における浮上槽2の代替として地上のポンプ室10にポンプ3を配設していて、該ポンプ3に吸水管4および送水管7を連通接続している。   In the second embodiment according to the first invention shown in FIG. 2, a pump 3 is disposed in the pump chamber 10 on the ground as an alternative to the floating tank 2 in FIG. 4 and the water pipe 7 are connected in communication.

図3に示した第一の発明に係る第三の実施例においては、上記図1における送水管7の他端である吐出口7aにフレキシブルホース11の一端を連通接続すると共に前記フレキシブルホース11の他端である吐出口11aを水深センサー12の図示していない信号情報モニターを目視して電動昇降機13をリモコン操作している。   In the third embodiment according to the first invention shown in FIG. 3, one end of the flexible hose 11 is connected to the discharge port 7a which is the other end of the water pipe 7 in FIG. The electric elevator 13 is remotely controlled by visually observing a signal information monitor (not shown) of the water depth sensor 12 through the discharge port 11a which is the other end.

図4に示した第二の発明に係る第一の実施例において、フロート1を装備した浮上槽2から長さが相違する3本の円筒状のエアーリフト本体14A、14B、14Cを吊下げていて、そして前記3本の円筒状のエアーリフト本体14A、14B、14Cは吐出口14aを水面下に浸漬すると共に吸水口14bを水温躍層に配設している。また、前記3本の円筒状のエアーリフト本体14A、14B、14C内であって水面下の浅層位置にディフューザー6を吊下浸漬すると共に図示しない陸上設置のブロワー及び空気供給配管から前記ディフューザー6へ空気を送気して散気することで水温躍層の水を水面方向へ揚水すると、気液混合水が円錐状のバッフルプレート15に衝突して水流は略水平方向へ流れを変え、最終的に前記吸水口14bへ向かう循環流を形成する。本実施例では空気を送気して散気しているが、水質に応じて空気の代替として酸素又はオゾン含有空気を送気して散気することも出来る。前記ディフューザー6を配設する水深としては、エアーリフト効果による揚程により混合及び循環流を生起すると共に省エネルギーを達成出来ることを判断して選択する。尚、本実施例では三箇所同時に散気しているが、任意に一箇所又は二箇所を選択して散気することも出来る。   In the first embodiment according to the second invention shown in FIG. 4, three cylindrical air lift bodies 14A, 14B, and 14C having different lengths are suspended from the floating tank 2 equipped with the float 1. The three cylindrical air lift bodies 14A, 14B, and 14C have the discharge port 14a immersed under the water surface and the water intake port 14b disposed in the water temperature rising layer. Further, the diffuser 6 is suspended and immersed in the shallow cylindrical position below the water surface in the three cylindrical air lift main bodies 14A, 14B, and 14C, and the diffuser 6 is connected from a blower and an air supply pipe (not shown). When the water in the water warming layer is pumped up in the direction of the surface of the water by blowing air to the air, the gas-liquid mixed water collides with the conical baffle plate 15, and the water flow changes in a substantially horizontal direction. Thus, a circulating flow toward the water inlet 14b is formed. In this embodiment, air is supplied and diffused, but oxygen or ozone-containing air can be supplied and diffused as an alternative to air according to the water quality. The water depth at which the diffuser 6 is disposed is selected based on the determination that the mixing and the circulation flow can be generated by the head by the air lift effect and the energy saving can be achieved. In the present embodiment, the air is diffused at three locations simultaneously, but it is also possible to select one location or two locations to diffuse.

図5に示した第二の発明に係る第二の実施例において、エアーリフト本体14の吐出口14aを水面下に浸漬すると共に前記エアーリフト本体14の吸水口14bを水温躍層に配設している。また、前記吐出口14aから上方向へ吐出した水を水平方向へ方向転換させるための円錐状のバッフルプレート15を配設している。   In the second embodiment according to the second invention shown in FIG. 5, the discharge port 14a of the air lift body 14 is immersed below the water surface, and the water suction port 14b of the air lift body 14 is disposed in the water temperature layer. ing. Further, a conical baffle plate 15 is provided for changing the direction of the water discharged upward from the discharge port 14a in the horizontal direction.

図6に示した第三の発明に係る第一の実施例において、図5の円筒状のエアーリフト本体14の各円筒長手方向に伸縮自在の伸縮自在ホース16を連通接続したものである。そして、前記伸縮自在ホース16の伸縮を電動昇降機13を図示していない水質測定装置及び水深センサー12の情報信号により電動昇降機13を自動昇降操作して水温躍層に吸水口16bの配設水深を変更する。本実施例では図示してない水質測定装置および前記水深センサー12の情報信号により電動昇降機13を自動昇降操作しているが、前記情報信号を目視して前記電動昇降機13を手動昇降操作することも出来る。   In the first embodiment according to the third invention shown in FIG. 6, a telescopic hose 16 that is telescopic in the cylinder longitudinal direction of the cylindrical air lift body 14 of FIG. 5 is connected in communication. The telescopic hose 16 can be expanded and contracted by automatically moving the electric elevator 13 in accordance with an information signal from a water quality measuring device (not shown) and the water depth sensor 12 to adjust the water depth of the water intake 16b. change. In the present embodiment, the electric elevator 13 is automatically lifted and lowered by an information signal from a water quality measuring device and the water depth sensor 12 not shown in the figure, but the electric elevator 13 can be manually lifted and lowered by visually observing the information signal. I can do it.

第一の発明に係わる第一実施例を示す深層曝気循環装置の概略縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic longitudinal cross-sectional view of the deep layer aeration apparatus which shows the 1st Example concerning 1st invention. 第一の発明に係わる第二実施例を示す深層曝気循環装置の概略縦断面図。The schematic longitudinal cross-sectional view of the deep layer aeration apparatus which shows the 2nd Example concerning 1st invention. 第一の発明に係わる第三実施例を示す深層曝気循環装置の概略縦断面図。The schematic longitudinal cross-sectional view of the deep layer aeration apparatus which shows the 3rd Example concerning 1st invention. 第二の発明に係わる第一実施例を示す閉鎖性水域曝気混合循環施設の概略縦断面図。The schematic longitudinal cross-sectional view of the closed water area aeration mixing circulation facility which shows the 1st Example concerning 2nd invention. 第二の発明に係わる第二実施例を示す閉鎖性水域曝気混合循環施設の概略縦断面図。The schematic longitudinal cross-sectional view of the closed water area aeration mixing circulation facility which shows the 2nd Example concerning 2nd invention. 第三の発明に係わる第一実施例を示す概略縦断面図。The schematic longitudinal cross-sectional view which shows the 1st Example concerning 3rd invention.

符号の説明Explanation of symbols

1 フロート
2 浮上槽
3 ポンプ
4 吸水管
4b、14b、16b 吸水口
5 スクリーン
6 ディフューザー
7 送水管
7a、11a、14a 吐出口
8 ウェイト
9 アンカー
10 ポンプ室
11 フレキシブルホース
12 水深センサー
13 電動昇降機
14A、14B、14C、14 エアーリフト本体
15 バッフルプレート
16 伸縮自在ホース






















DESCRIPTION OF SYMBOLS 1 Float 2 Floating tank 3 Pump 4 Water absorption pipe 4b, 14b, 16b Water inlet 5 Screen 6 Diffuser 7 Water supply pipe 7a, 11a, 14a Discharge port 8 Weight 9 Anchor 10 Pump chamber 11 Flexible hose 12 Water depth sensor 13 Electric lift 14A, 14B , 14C, 14 Airlift body 15 Baffle plate 16 Telescopic hose






















Claims (3)

水面下に流入口が沈下している吸水管をポンプのサクション側に連通接続し、貧酸素水塊層に吐出口を配設すると共にポンプ直近に空気または酸素を散気する散気手段を配設した送水管をポンプのデリベリ側に配設して構成したことを特徴とする曝気混合循環施設   A suction pipe with an inlet sinking below the surface of the water is connected to the suction side of the pump, and a discharge port is provided in the oxygen-poor water layer and air diffuser is provided near the pump to diffuse air or oxygen. Aeration and mixing circulation facility characterized in that the installed water pipe is arranged on the delivery side of the pump 水面下に吐出口である一端を有し、水温躍層位置に流入口である他端を有する管状体の内部であって、エアーリフト揚水能力を確保した上に省エネルギーとなる水深位置に空気、酸素又はオゾンを散気する散気手段を配設して構成したことを特徴とする曝気混合循環施設。   One end is a discharge port under the surface of the water, inside the tubular body having the other end that is an inlet at the position of the water temperature layer, air at a water depth position that saves energy while ensuring air lift pumping capacity, An aeration-mixing facility characterized by disposing an aeration means for diffusing oxygen or ozone. 水質自動測定装置と水位自動測定装置及び放流口または流入口位置水深センサーからの情報で吐出口または流入口の水深位置を制御する水深選択操作手段とした請求項1または2記載の曝気混合循環施設。



































The aeration mixing and circulation facility according to claim 1 or 2, wherein the water quality automatic measuring device, the water level automatic measuring device, and the water depth selection operation means for controlling the water depth position of the discharge port or the inlet port based on information from the outlet or inlet position water depth sensor. .



































JP2007186805A 2007-07-18 2007-07-18 Aeration mixing and circulation equipment Withdrawn JP2009022847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007186805A JP2009022847A (en) 2007-07-18 2007-07-18 Aeration mixing and circulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186805A JP2009022847A (en) 2007-07-18 2007-07-18 Aeration mixing and circulation equipment

Publications (1)

Publication Number Publication Date
JP2009022847A true JP2009022847A (en) 2009-02-05

Family

ID=40395187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186805A Withdrawn JP2009022847A (en) 2007-07-18 2007-07-18 Aeration mixing and circulation equipment

Country Status (1)

Country Link
JP (1) JP2009022847A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940072B1 (en) 2009-10-22 2010-02-05 주식회사 케이.씨 리버텍 Aquatics shelter form rainfall first flush and its operating method
CN110498519A (en) * 2019-08-21 2019-11-26 西安建筑科技大学 A kind of stagnant slow flow water bodies gas stripping type deep-well pressurization control algae of shallow-layer and decontamination dyeing equipment
CN111847674A (en) * 2020-07-08 2020-10-30 江苏菲力环保工程有限公司 Efficient bubble-free oxygenation device for inhibiting pollution release of water bottom layer
KR102309330B1 (en) * 2021-03-31 2021-10-07 주식회사 디스텍 METHOD AND SYSTEM FOR PURIFYING WATER BASED ON IoT
CN115108597A (en) * 2022-07-19 2022-09-27 中国长江三峡集团有限公司 Water body longitudinal mixing equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940072B1 (en) 2009-10-22 2010-02-05 주식회사 케이.씨 리버텍 Aquatics shelter form rainfall first flush and its operating method
CN110498519A (en) * 2019-08-21 2019-11-26 西安建筑科技大学 A kind of stagnant slow flow water bodies gas stripping type deep-well pressurization control algae of shallow-layer and decontamination dyeing equipment
CN110498519B (en) * 2019-08-21 2024-02-13 西安建筑科技大学 Shallow stagnant water body air-lift deep well pressurization algae control and pollution removal equipment
CN111847674A (en) * 2020-07-08 2020-10-30 江苏菲力环保工程有限公司 Efficient bubble-free oxygenation device for inhibiting pollution release of water bottom layer
KR102309330B1 (en) * 2021-03-31 2021-10-07 주식회사 디스텍 METHOD AND SYSTEM FOR PURIFYING WATER BASED ON IoT
CN115108597A (en) * 2022-07-19 2022-09-27 中国长江三峡集团有限公司 Water body longitudinal mixing equipment
CN115108597B (en) * 2022-07-19 2023-05-16 中国长江三峡集团有限公司 Water longitudinal blending equipment

Similar Documents

Publication Publication Date Title
US8241497B2 (en) Method for stirring and/or aerating fluids, particularly sewage, particularly using a floodable aerator
US20080159061A1 (en) Mixers and the Submersible Aerators With Using These Mixers
JP2011011098A (en) Water purification apparatus
JP2009022847A (en) Aeration mixing and circulation equipment
JP2012528714A (en) Green algae-preventing water circulation system using sunlight
KR101081520B1 (en) Water circulation system for prevention of hypolimnetic oxygen deficit
US8016273B1 (en) Aerator
JP2010119904A (en) Pneumatic water pump apparatus
KR20090037231A (en) Apparatus for dissolving oxygen
US20110089098A1 (en) Buoyant wastewater aeration apparatus and method
US11702352B2 (en) Method and systems for oxygenation of water bodies
KR101566641B1 (en) Waterfall type aeration stirring device
JP2008264660A (en) Deep aeration circulating facility
JP2014144450A (en) Aerator outfitted with a hydraulic power generator
JP2005193140A (en) Method and apparatus for supplying oxygen into water
KR102013223B1 (en) External jet ejecter
CN105413549B (en) A kind of muddy water pulse mixing arrangement
JP2009028686A (en) Aerator
JP5918544B2 (en) Liquid film type oxygen supply device
JPS6339315B2 (en)
JPH0952098A (en) Purifying apparatus of lakes and marshes
JP4943482B2 (en) Underwater aerator
US20230023548A1 (en) Method and systems for oxygenation of water bodies
JP2000140823A (en) Submerged aeration device
KR200374562Y1 (en) Adjustable-Height Air Lifter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005