JP2011011098A - Water purification apparatus - Google Patents

Water purification apparatus Download PDF

Info

Publication number
JP2011011098A
JP2011011098A JP2009154551A JP2009154551A JP2011011098A JP 2011011098 A JP2011011098 A JP 2011011098A JP 2009154551 A JP2009154551 A JP 2009154551A JP 2009154551 A JP2009154551 A JP 2009154551A JP 2011011098 A JP2011011098 A JP 2011011098A
Authority
JP
Japan
Prior art keywords
water
pipe
circulation pump
air
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009154551A
Other languages
Japanese (ja)
Inventor
Shunji Nishi
舜司 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blue Aqua Ind Kk
BLUE AQUA INDUSTRY KK
Original Assignee
Blue Aqua Ind Kk
BLUE AQUA INDUSTRY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Aqua Ind Kk, BLUE AQUA INDUSTRY KK filed Critical Blue Aqua Ind Kk
Priority to JP2009154551A priority Critical patent/JP2011011098A/en
Publication of JP2011011098A publication Critical patent/JP2011011098A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: an aeration means is disposed in a deep layer for the conventional water bloom countermeasures in a closed water area, and in wastewater treatment and the like where an aerobic biological treatment reaction tank of organic wastewater is disposed at a high depth, but knowledge that a circulating flow capable of achieving energy saving is formed by arranging the aeration means in a shallow layer and directly mixing water in a deep layer with surface water has not been disclosed.SOLUTION: Suction pipe whose inflow port sinks under the surface of a closed water area, such as a dam reservoir, a lake, and a sea area, communicates and is connected with the suction port of a circulating pump, and air lift effects by a microbubble generator and a draft tube installed in an aeration device are used together as the water bloom countermeasures and anoxic water mass countermeasures in a dam reservoir, a lake, a sea area, and the like. The same means can be applied to aeration treatment, solid-liquid membrane separation treatment, and ozonolysis treatment of refractory wastewater in biological treatment of the organic wastewater in the treatment tank disposed at high depth.

Description

本発明は、ダム貯水池、湖沼、海域等の閉鎖性水域の貧酸素水塊に冨酸素水を供給し、または水温差によって成層化している閉鎖性水域の水温躍層の水を、表層水と混合して植物プランクトンの活動層の水温制限効果、循環混合層の拡大により植物プランクトンの活動光制限効果及び植物プランクトンの高い表層水を希釈効果等で閉鎖性水域を浄化する。又、オゾン接触反応槽、好気性廃水処理曝気槽及び膜分離槽の散気混合水質浄化装置に関するものである。
好気性廃水処理曝気槽及び膜分離槽、オゾン接触反応槽の省エネルギーを達成するに十分な水深位置に散気手段を配設してエアーリフト効果を構成することにより又、好気性廃水処理曝気槽、膜分離槽及びオゾン接触反応槽の循環ポンプの送水管に気体吸引手段を配設して、好気性廃水処理曝気槽の循環流と曝気の生成手段とする。
The present invention supplies drought oxygen water to anoxic water masses in closed water areas such as dam reservoirs, lakes, marine areas, etc., or water in a closed water area stratified by a water temperature difference as surface water. By mixing, the water temperature limiting effect of the active layer of the phytoplankton, and by expanding the circulating mixed layer, the activity light limiting effect of the phytoplankton and the surface water with high phytoplankton are diluted to purify the closed water area. The present invention also relates to a diffused water purification device for an ozone contact reaction tank, an aerobic wastewater treatment aeration tank, and a membrane separation tank.
Aerobic wastewater treatment aeration tank, membrane separation tank, and ozone contact reaction tank, aerobic wastewater treatment aeration tank is also provided with air lift effect by arranging aeration means at sufficient water depth to achieve energy saving In addition, gas suction means is disposed in the water supply pipes of the circulation pumps of the membrane separation tank and the ozone contact reaction tank to provide a circulation flow and aeration generation means in the aerobic wastewater treatment aeration tank.

ダム貯水池、湖沼、海域等の閉鎖性水域の貧酸素水塊への酸素供給手段又は表層水と水温躍層水との循環混合手段としては、所要動力の大きなコンプレッサー又はブロワーが使用されていた。   A compressor or blower having a large required power has been used as a means for supplying oxygen to anoxic water blocks in closed water areas such as dam reservoirs, lakes and marshes, or for circulating and mixing surface water and hot water.

又、下降管部と上昇管部を並列に有する縦長の深い曝気槽の中に固定化微生物を投入して、汚水を循環流動して曝気処理している。   In addition, the immobilized microorganisms are put into a vertically long deep aeration tank having a descending pipe part and an ascending pipe part in parallel, and aeration treatment is performed by circulating and flowing sewage.

又、加圧液体導入孔と、気体導入孔を形成した導入部と円筒状の気泡発生空間を有し、導入部内に、気泡発生空間に開口する加圧液体導入孔と気体導入孔を形成し、加圧液体導入孔を導入の端面に開口し、気体導入孔を導入部の側面に開口し、気体導入孔と連通する気体導入管に気体導入量を調整する調整弁を設けたマイクロバブル吐出ノズルとしている。又、ポンプで加圧した水を供給し、自吸空気と共に排出させるためのパイプと、パイプの中間部に位置し、パイプの中に挿入された球状体と、球状体の挿入中心から下流にパイプの周上に穿設された小孔と、小孔の外側に設けられた大気と連通している空気室とからなるマイクロバブル製造装置としている。 Also, it has a pressurized liquid introduction hole, an introduction part in which a gas introduction hole is formed, and a cylindrical bubble generation space, and a pressurized liquid introduction hole and a gas introduction hole that open to the bubble generation space are formed in the introduction part. Microbubble discharge with a pressurized liquid introduction hole opened on the introduction end face, a gas introduction hole opened on the side surface of the introduction part, and a gas introduction pipe communicating with the gas introduction hole provided with an adjustment valve for adjusting the gas introduction amount It is a nozzle. Also, a pipe for supplying water pressurized by a pump and discharging it together with self-priming air, a spherical body located in the middle of the pipe, and a downstream of the spherical body insertion center The microbubble manufacturing apparatus includes a small hole formed on the circumference of the pipe and an air chamber communicating with the atmosphere provided outside the small hole.

又、処理槽の被処理水中に垂直平膜モジュールの下方に、上向き噴気孔を有する散気管と、空気吸込管を備えかつ被処理水を差動水とするエジェクターの上向き吐出口を有するディフューザとを前者を上に、後者を下にして配置している。 Further, a diffuser having an upward blow hole below the vertical flat membrane module in the treated water of the treatment tank, and an ejector having an air suction pipe and an upward discharge port of the ejector having the treated water as differential water Are placed with the former on top and the latter on the bottom.

そして又、オゾンによる難分解性廃水の酸化浄化及び有機性廃水の好気性生物処理においては、散気水深増加と共にブロワー等の所要動力がべき乗に比例して増加する等の欠点のため、オゾン及び酸素の溶解効率と利用効率が大きな高水深化が実現しなかった。尚、エジェクターで水中にオゾンを溶解するオゾン水製造装置が開示されている。   Further, in the oxidation purification of persistent degradable wastewater by ozone and the aerobic biological treatment of organic wastewater, the required power of the blower and the like increases in proportion to the power as the diffused water depth increases. High water depth with high oxygen dissolution efficiency and utilization efficiency was not realized. In addition, the ozone water manufacturing apparatus which melt | dissolves ozone in water with an ejector is disclosed.

特開平7-251196JP 7-251196 A 特開平10-314786JP 10-314786 特開2003-305494JP2003-305494 特開平10-85565JP 10-85565 特開2003-144875JP2003-144875

しかしながら、従来の閉鎖性水域におけるアオコ赤潮対策曝気混合循環施設においては、散気手段を深層部に配設していたので、ブロワー又はコンプレッサー駆動動力費が水深(水圧)のべき乗に比例して増加する問題があった。 However, in the conventional aqua red tide countermeasure aeration and circulation facility in the closed water area, the aeration means is arranged in the deep layer, so the blower or compressor drive power cost increases in proportion to the power of the water depth (water pressure) There was a problem to do.

又、ブロワー又はコンプレッサーを配設することなく大気を循環ポンプの送水管内に吸引して、貧酸素水塊に酸素を供給する知見と、必要最低限度の吐出能力を有するブロワー又は水中ミキサー等を併用した循環手段で循環流を形成する知見が開示されていなかった。 In addition, the knowledge of supplying the oxygen to the oxygen-poor water mass by sucking the atmosphere into the water supply pipe of the circulation pump without installing a blower or compressor and the blower or submersible mixer with the minimum discharge capacity are used in combination. The knowledge of forming a circulating flow with the circulating means has not been disclosed.

又、水面下の浅い水層に流入口を浸漬していると共に吸水管を循環ポンプの吸込み側に連通接続し、前記流入口を配設した同一水域内であって、深い水深位置に、前記循環ポンプの吐出口に連通接続した送水管の吐出口を配設すると共に、前記循環ポンプの送水管の途中に、大気自吸導入管を装備しているマイクロバブル発生装置を配設したマイクロバブル溶解送水手段又はナノバブル発生装置を配設したナノバブル溶解送水手段と、必要最低限度の吐出能力を有するブロワーで送気する散気装置を配設するか、水中ミキサーを配設するか又はポンプを配設する等により循環流を形成する知見は開示されていなかった。 In addition, the inlet is immersed in a shallow water layer below the surface of the water, and a water suction pipe is connected to the suction side of the circulation pump. A microbubble in which a discharge port of a water pipe connected in communication with a discharge port of a circulation pump is arranged, and a microbubble generator equipped with an air self-priming introduction pipe is arranged in the middle of the water supply pipe of the circulation pump Dissolve water supply means or nanobubble dissolution water supply means provided with a nanobubble generator and an air diffuser for supplying air with a blower having the minimum required discharge capacity, an underwater mixer, or a pump. The knowledge of forming a circulating flow by installing it has not been disclosed.

又、 槽底部と水面部を開口した仕切板を配設して上昇流部と下降流部を有する曝気槽において、前記下降流部に循環ポンプの送水管の途中又は先端にマイクロバブル発生装置又はナノバブル発生装置を配設して、下方に噴出すると共に、前記上昇流部の比較的に浅い水深位置に、ブロワーで送気する散気装置を配設するか、水中ミキサーを配設するか又はポンプを配設する等により循環流を形成する知見は開示されていなかった。 Also, in the aeration tank having the upflow part and the downflow part by arranging a partition plate having an opening at the bottom of the tank and the water surface part, the microbubble generator or A nanobubble generator is disposed and ejected downward, and a diffuser for supplying air with a blower, a submerged mixer or the like is disposed at a relatively shallow water depth position of the upward flow portion, or The knowledge of forming a circulating flow by arranging a pump or the like has not been disclosed.

又、懸濁物や汚泥等の固形物を含む液体の固液膜分離処理において、長期的に安定した濾過操作を可能とするために、膜面に比較的に大きな気泡とマイクロバブル又はナノバブルを、垂直膜面に沿って、乱流状に上昇するようにした知見は開示されていなかった。 In addition, in solid-liquid membrane separation processing of liquids containing solids such as suspensions and sludges, in order to enable a long-term stable filtration operation, relatively large bubbles and microbubbles or nanobubbles are formed on the membrane surface. However, there has been no disclosure of the knowledge that the turbulent flow rises along the vertical film surface.

又、染色液、塗装廃水その他の脱色、ポリマー含有液、洗浄液等の難分解性廃水の分解処理、有機性廃水の高度処理等における接触反応槽へオゾンを散気する散気装置の設置位置としては、従来においては接触反応槽の槽底付近としていて、ブロワーの動力が大きい割には、オゾン溶解効率及びオゾン利用率は小さく、接触反応槽の水深を大きくして、循環ポンプの送水管の途中又は先端にオゾンを自吸するマイクロバブル発生装置又はナノバブル発生装置を配設して、接触反応槽の水面近くの浅層で下方方向へ噴出する知見は開示されていなかった。 In addition, as an installation position of the diffuser that diffuses ozone to the contact reaction tank in the discoloration of dyeing liquid, paint wastewater and other decoloring, polymer-containing liquid, cleaning liquid and other difficult-to-decompose wastewater, and advanced treatment of organic wastewater In the prior art, it is located near the bottom of the contact reaction tank, and the ozone dissolution efficiency and ozone utilization rate are small for the larger blower power, the water depth of the contact reaction tank is increased, and the water supply pipe of the circulation pump is increased. There has been no disclosure of knowledge that a microbubble generator or nanobubble generator that self-sucks ozone in the middle or at the tip and jets downward in a shallow layer near the water surface of the contact reaction tank.

そして又、循環流の流線収束手段で循環流エネルギーを収束する速度エネルギー増大手段と前記速度エネルギーを圧力エネルギーに変換する圧力エネルギー増大手段は開示されていなかった。 Further, neither speed energy increasing means for converging the circulating flow energy by the streamline converging means for circulating flow nor pressure energy increasing means for converting the speed energy into pressure energy has been disclosed.

そこで本発明は、循環ポンプの送水管の途中又は先端に、大気を自吸するマイクロバブル発生装置又はナノバブル発生装置を配設すると共に、ブロワー送気の散気装置をドラフトチューブ内の比較的に浅い水深位置に配設して循環流を生成する循環流生成手段,又は、水中ミキサー又はポンプ等で循環流を生成する循環流生成手段を併用して、深層部の水を直接表層水と混合すると共に循環流を生起することを第一の課題とする。又、大気を循環ポンプの送水管内に吸引する散気手段で、深層部に散気装置を配設した場合と同等以上の酸素溶解度又はオゾン溶解度を得ることを第二の課題とする。又、大気を循環ポンプの送水管内に吸引する散気手段で、深層部に散気装置を配設してブロワー又はコンプレッサー等で空気、酸素又はオゾン等を供給する場合に比較して省エネルギーとすることを第三の課題とする。又、高浄化効率とすることを第四の課題とする。     Accordingly, the present invention provides a microbubble generator or nanobubble generator that self-sucks the atmosphere in the middle or the tip of the water supply pipe of the circulation pump, and the blower air diffuser is relatively disposed in the draft tube. Mixing the water in the deep layer directly with the surface water by using a circulating flow generating means that generates a circulating flow at a shallow water depth position or a circulating flow generating means that generates a circulating flow with an underwater mixer or pump, etc. The first task is to create a circulating flow. Another object of the present invention is to obtain an oxygen solubility or ozone solubility equal to or higher than that in the case where an air diffuser is provided in the deep layer portion with an air diffuser that sucks the atmosphere into the water supply pipe of the circulation pump. In addition, it is an air diffuser that sucks air into the water supply pipe of the circulation pump. It saves energy compared to the case where an air diffuser is installed in the deep layer and air, oxygen, ozone, etc. is supplied by a blower or compressor. This is the third issue. A fourth problem is to achieve high purification efficiency.

本発明は、上記目的を達成するため、以下に記載されるような技術構成とする。即ち、閉鎖性のダム貯水池、湖沼、海域等の水面下の浅い水層に流入口を浸漬していると共に吸水管を循環ポンプの吸込み側に連通接続し、前記流入口を配設した同一水域内であって、深い水深位置に、前記循環ポンプの吐出側に連通接続した送水管の途中又は先端に大気自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を配設したマイクロバブル溶解送水手段又はナノバブル溶解送水手段と、水温躍層水に吸水口を選択的に配設可能とする伸縮自在手段を有するドラフトチューブ内の比較的に浅い水深位置にブロワーで送気する散気装置を配設して循環流を形成する循環流生成手段で構成する水質浄化装置とする。 In order to achieve the above object, the present invention has a technical configuration as described below. That is, the same water area where the inflow port is immersed in a shallow water layer below the surface of a closed dam reservoir, lake, marine area, etc., and the suction pipe is connected to the suction side of the circulation pump, and the inflow port is disposed. A microbubble generator or a nanobubble generator equipped with an air self-priming means in the middle or at the tip of a water pipe connected in communication with the discharge side of the circulation pump at a deep water depth position A diffuser for supplying air with a blower to a relatively shallow water depth position in a draft tube having dissolution water supply means or nanobubble dissolution water supply means, and a stretchable means capable of selectively disposing a water suction port in the water temperature layer water Is a water purification device comprising circulating flow generating means for forming a circulating flow.

又、循環流生成手段としては、水面方向の循環流を形成する水中ミキサーを配設することも出来る。 Further, as the circulating flow generating means, an underwater mixer that forms a circulating flow in the water surface direction can be provided.

又、槽底部と水面部を開口した仕切板を配設して上昇流部と下降流部を有する曝気槽において、前記上昇流部の水面下の浅い水深位置に流入口を浸漬していると共に吸水管を循環ポンプの吸込み側に連通接続し、前記下降流部水面下の浅い水深位置に、前記循環ポンプの吐出口に連通接続した送水管の途中又は先端に、大気自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置の吐出口を下向きに配設したマイクロバブル溶解送水手段又はナノバブル溶解送水手段と、前記上昇流部の比較的に浅い水深位置に、ブロワーで送気する散気装置を配設して、エアーリフト効果により上昇流を形成する循環流生成手段か、水面方向の上昇流を形成する水中ミキサーを循環流生成手段とするか、又は上昇流部に吸水口を配設し下降流部に吐出口を配設したポンプで循環流生成手段としたものを併用して構成する。 Further, in the aeration tank having the upflow part and the downflow part by arranging a partition plate having an opening in the tank bottom and the water surface part, the inlet is immersed in a shallow water depth position below the water surface of the upflow part. A water suction pipe is connected to the suction side of the circulation pump, and an air self-priming means is provided in the middle of the water supply pipe connected to the discharge port of the circulation pump at the shallow water depth position below the water surface of the downflow part. Microbubble dissolving water supply means or nanobubble dissolving water supply means in which the discharge port of the microbubble generator or nanobubble generator is arranged downward, and the air blown by a blower to a relatively shallow water depth position of the upward flow portion. A circulating flow generating means that forms an upward flow by an air lift effect, or an underwater mixer that forms an upward flow in the water surface direction is used as the circulating flow generating means, or a water inlet is provided in the upward flow portion. Arranged and lowered A pump which is disposed a discharge port configured by a combination of those and the circulation flow generating means parts.

又、好気性反応槽内の処理水中に、固液分離膜を内装した下部開口部及び上部開口部を有するドラフトチューブを一台又は任意の複数台を配設し、前記ドラフトチューブ内であって、前記固液分離膜の下方に、ブロワー等から送気された空気又は酸素を水面方向に噴気する散気装置を上段に、前記好気性反応槽底付近の水位に吸水口を有し、送水管の途中又は先端に、大気自吸手段を装備しているマイクロバブル発生装置を配設した循環ポンプの吐出口を水面方向へ向けて配設すると共に、前記散気装置からの比較的に大きな気泡と前記マイクロバブル発生装置又はナノバブル発生装置からのマイクロバブル又はナノバブルとを、前記固液分離膜面に沿って上昇するように構成する。 Further, in the treated water in the aerobic reaction tank, a single or any plurality of draft tubes having a lower opening and an upper opening with a solid-liquid separation membrane installed therein are disposed, and the inside of the draft tube An air diffuser that blows air or oxygen sent from a blower or the like in the direction of the water surface below the solid-liquid separation membrane has a water inlet at the water level near the bottom of the aerobic reaction tank. In the middle or tip of the water pipe, the discharge port of the circulation pump provided with the microbubble generator equipped with the atmospheric self-priming means is arranged in the direction of the water surface and is relatively large from the air diffuser. Air bubbles and microbubbles or nanobubbles from the microbubble generator or nanobubble generator are configured to rise along the surface of the solid-liquid separation membrane.

又、紫外線ランプを配設した、横断面に垂直下方向流速が略等速分布となるように、横断面積を極力小さくした細長い形状をした反応槽の槽底の水中に流入口を配設すると共に吸水管を循環ポンプの吸込み側に連通接続し、前記循環ポンプの吐出口に連通接続した送水管の途中又は先端に、オゾン自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を配設して、該マイクロバブル発生装置又はナノバブル発生装置の吐出口を前記反応槽の水面下であって浅い水深位置に下方に向けて配設することにより循環流を形成して水質浄化手段とする。 In addition, an inflow port is provided in the bottom water of the reaction tank having a long and narrow cross-sectional area so that the vertical downward flow velocity in the transverse section has a substantially uniform distribution with an ultraviolet lamp. In addition, a microbubble generator or a nanobubble generator equipped with ozone self-priming means is provided in the middle or at the tip of the water supply pipe connected to the suction side of the circulation pump in communication with the water suction pipe and connected to the discharge port of the circulation pump. And disposing the discharge port of the microbubble generating device or nanobubble generating device below the water surface of the reaction tank and downwardly at a shallow water depth position to form a circulating flow and water quality purification means To do.

又、循環流の流線収束手段で循環流エネルギーを収束する速度エネルギー増大手段と、前記速度エネルギーを圧力エネルギーに変換する圧力エネルギー増大手段を循環ポンプの吸水口に連通接続する。 Further, a speed energy increasing means for converging the circulating flow energy with a streamline converging means for the circulating flow and a pressure energy increasing means for converting the speed energy into pressure energy are connected in communication with the water inlet of the circulation pump.

そして又、大気又はオゾン自吸手段を装備したマイクロバブル発生装置又はナノバブル発生装置の前記大気又はオゾン自吸手段にブロワーを連通接続する。 In addition, a blower is connected to the atmosphere or ozone self-priming means of the microbubble generating device or nanobubble generating device equipped with the air or ozone self-priming means.

水面下に流入口を浸漬すると共に吸水管を循環ポンプの吸込み側に連通接続し、前記流入口を配設した同一水域又は同一水槽内に配設すると共に、前記循環ポンプの送水管の途中又は先端に大気自吸手段によりマイクロバブル発生装置又はナノバブル発生装置に大気を吸引し、マイクロバブル又はナノバブルを含有する気液二相流を生成して溶存酸素供給手段とし、ブロワーで送気する散気装置を配設して、エアーリフト効果により上昇流を形成する循環流生成手段又は水面方向の上昇流を形成する水中ミキサーを循環流生成手段として併用することにより、効率よく及び省エネルギー効果の高い溶存酸素供給手段と循環流生成手段とすることを見出した。   Immerse the inlet under the surface of the water and connect the water suction pipe to the suction side of the circulation pump, and place it in the same water area or the same water tank where the inlet is located, and in the middle of the water supply pipe of the circulation pump or Air diffused by air blown by a blower that draws air into the microbubble generator or nanobubble generator at the tip, generates a gas-liquid two-phase flow containing microbubbles or nanobubbles, and forms dissolved gas supply means Dissolving efficiently and highly energy-saving by using a circulating flow generating means that forms an upward flow by the air lift effect or an underwater mixer that forms an upward flow in the water surface direction as a circulating flow generating means. It has been found that oxygen supply means and circulating flow generation means are provided.

ブロワーで送気する散気装置をドラフトチューブ内の浅い水深位置に配設して、エアーリフト効果により循環流を形成する循環流生成手段とする。散気装置を配設する水深位置を浅い水深位置に配設しても、深い槽底の混合水を水面方向へ効率よく循環することを見出した。   An air diffuser for supplying air by a blower is disposed at a shallow water depth in the draft tube to provide a circulating flow generating means for forming a circulating flow by an air lift effect. It has been found that even if the water depth position where the air diffuser is disposed is disposed at a shallow water depth position, the mixed water at the deep bottom of the tank is efficiently circulated in the water surface direction.

そして又、有機性廃水好気性反応槽の水を循環している循環ポンプの吸込み側に吸水口を連通接続し、前記循環ポンプの吐出側に連通接続した送水管の途中又は先端に、大気自吸手段を装備しているミリバブル発生装置又はセンチバブル発生装置を連通接続して構成した気液二相流送出手段の吐出口を接触材又は固液分離膜の下方水深位置に配設して、接触材又は固液分離膜のバブリング洗浄手段とする。   In addition, a water inlet is connected to the suction side of the circulation pump that circulates the water in the organic wastewater aerobic reaction tank, and the air itself is connected to the middle or tip of the water pipe connected to the discharge side of the circulation pump. Disposing the discharge port of the gas-liquid two-phase flow sending means constituted by connecting the millimeter bubble generating device or the centimeter bubble generating device equipped with the suction means at the lower water depth position of the contact material or the solid-liquid separation membrane, Bubbling cleaning means for contact material or solid-liquid separation membrane.

上記手段による作用は次のようである。すなわち、閉鎖性のダム貯水池、湖沼、海域等の水面下に流入口を浸漬していると共に流体摩擦損出減少手段を有する吸水管を循環ポンプの吸込み側に接続し、前記ダム貯水池、湖沼、海域等の貧酸素水塊層に吐出口を配設すると共に循環ポンプの送水管の途中又は先端に大気自吸手段を装備したマイクロバブル発生装置又はナノバブル発生装置を配設して気液二相流を噴出するように構成すると、アオコ等の植物プランクトンを含有した水はポンプで任意水深の貧酸素水塊層へ移流して、前期植物プランクトンは低温で光の無い環境に運ばれて生育を阻害されるか又は死滅する。そして、マイクロバブル発生装置では、10~数十ミクロンの微細気泡が、又ナノバブル発生装置では気泡径数百ナノメートル以下のナノバブルが生成する。前記マイクロバブル又はナノバブルは貧酸素水塊層を浮遊して、速やかに溶存酸素として貧酸素水に溶解して溶存酸素濃度が高まる長所として作用するが、循環流を形成する作用はほとんどない。一方、高水深位置に吸水口を選択的に配設可能とする伸縮自在手段を有するドラフトチューブ内の比較的に浅い水深位置に、ブロワー等で送気した空気を散気手段で散気すると、水面方向へ上昇するに従い次第に大きな気泡に成長して、周囲の水塊を巻き込んで水面へ上昇し循環流を形成する。そして、ブロワーの所要動力は、前記散気装置を浸漬する水深位置が浅いほど、水深のべき乗に比例して小さくなる。尚、前記ドラフトチューブ内の散気装置では、循環流を生成する作用は大きいが、空気中の酸素を水中へ溶解する作用は比較的に小さい。又、深層貧酸素水塊は冨酸素化すると共に水温が上昇し、上層の高温水塊と深層低温水塊とが混合すると共に旋回下降水流に伴って上層高温水塊が下降する。すると上層に生息していた植物性プランクトンは低温で光の無い環境に運ばれて生育を阻害されるか又は死滅する。   The operation of the above means is as follows. That is, the inlet of the closed dam reservoir, lake, marine area, etc. is immersed in the inlet and a suction pipe having fluid friction loss reduction means is connected to the suction side of the circulation pump, the dam reservoir, lake, Gas-liquid two-phase by disposing a discharge port in a poor-oxygen water mass layer in the sea area and the like, and arranging a microbubble generator or nanobubble generator equipped with air self-priming means in the middle or at the tip of the water pipe of the circulation pump When configured to erupt, the water containing phytoplankton such as sea lions is pumped to an anoxic water mass layer at an arbitrary depth, and the phytoplankton is transported to a low temperature and light-free environment to grow. Inhibited or killed. The microbubble generator generates fine bubbles of 10 to several tens of microns, and the nanobubble generator generates nanobubbles having a bubble diameter of several hundred nanometers or less. The microbubbles or nanobubbles act as an advantage of floating the anoxic water mass layer and quickly dissolving as dissolved oxygen in the anoxic water to increase the dissolved oxygen concentration, but have little effect of forming a circulating flow. On the other hand, when air blown by a blower or the like is diffused by a diffuser to a relatively shallow water depth position in a draft tube having a retractable means capable of selectively disposing a water inlet at a high water depth, As it rises in the water surface direction, it gradually grows into large bubbles, entrains surrounding water masses and rises to the water surface to form a circulating flow. The required power of the blower decreases in proportion to the power of the water depth as the water depth position where the diffuser is immersed is shallower. The air diffuser in the draft tube has a large effect of generating a circulating flow, but has a relatively small effect of dissolving oxygen in the air into water. In addition, the deep anoxic water mass is drought oxygenated and the water temperature rises, the upper high temperature water mass and the deep low temperature water mass are mixed, and the upper high temperature water mass descends with the swirling descending water flow. Then, the phytoplankton that inhabited the upper layer is transported to a low temperature and light-free environment, and its growth is inhibited or died.

又、前記ブロワー等で送気した空気を散気手段の代替として、水中ミキサーを配設して、水面方向への循環流を形成することによっても、上層の高温水塊と深層低温水塊とが混合すると共に旋回下降水流に伴って上層高温水塊が下降する。すると上層に生息していた植物性プランクトンは低温で光の無い環境に運ばれて生育を阻害されるか又は死滅する。 In addition, as an alternative to the air diffuser, the air sent by the blower or the like is provided with an underwater mixer to form a circulating flow in the direction of the water surface. And the upper high-temperature water mass descends with the swirling descending water flow. Then, the phytoplankton that lived in the upper layer is transported to a low temperature and light-free environment, and its growth is inhibited or killed.

又、槽底部と水面部を開口した仕切板を配設して上昇流部と下降流部を有する好気性反応槽において、前記上昇流部の水面下の浅い水層に流入口を浸漬していると共に吸水管を循環ポンプの吸込み側に連通接続し、前記下降流部水面下の浅い水深位置に、前記循環ポンプの吐出側に連通接続した送水管の途中又は先端に、大気自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置の吐出口を下向きに配設して、マイクロバブル又はナノバブルを含有する気液二相流を噴出すると、前記マイクロバブル又はナノバブルは単体気泡の表面積が大きいと共に水中での上昇力が極めて小さいので短時間で水に溶解すると共に噴流に伴って、周囲の水を巻込みながら、低速で槽底方向へゆっくりと下降しながら水に溶解し、好気性微生物が溶存酸素を消費して水を浄化する。又、前記好気性反応槽を高水深化することにより、酸素溶解度が高まる。そして、前記マイクロバブル発生装置では気泡径10~数十ミクロンのマイクロバブルが、又ナノバブル発生装置では気泡径数百ナノメートル以下のナノバブルが生成し、前記マイクロバブル又はナノバブルは貧酸素水塊層を浮遊して、速やかに溶存酸素として貧酸素水に溶解して溶存酸素濃度が高まる長所として作用するが、循環流を形成する作用はほとんど作用しない。一方、前記上昇流部の比較的に浅い水深位置に、ブロワーで送気する散気装置を配設して散気すると、気泡径1ミリ以上のミリバブル以上の気泡が生成すると、該ミリバブル以上の気泡は水への溶解速度も遅いと共に水中での上昇速度も大きいので、前記仕切板と槽壁とはドラフトチューブとして働き、エアーリフト効果により、水面方向への上昇流となり、周囲の水を巻込みながら循環流を形成するが、下降流部で大方消費された酸素以外の窒素ガス等のマイクロバブル以下の微細気泡は前記ミリバブル以上の大きな気泡に取り込まれて一体化して上昇する。尚、前記散気装置を比較的に浅い水深位置に配設しても、前記エアーリフト効果によって、槽底の活性汚泥混合水等を水面方向へ送水するので、前記槽底に固形物が滞留することなく、前記好気性反応槽の全体に循環流を形成する長所として作用する。尚、前記ブロワー等で送気した空気を散気手段の代替として、水中ミキサーを配設するか又はポンプを配設して、水面方向への循環流を形成することで、槽底の活性汚泥混合水等を水面方向へ送水するので、前記槽底に固形物が滞留することなく、前記好気性反応槽の全体に循環流を形成する作用を奏する。 Further, in an aerobic reaction tank having a partition plate having an opening at the bottom of the tank and a water surface part and having an upward flow part and a downward flow part, the inlet is immersed in a shallow water layer below the surface of the upward flow part. At the same time, a water suction pipe is connected to the suction side of the circulation pump, and an air self-priming means is provided in the middle or at the tip of the water supply pipe connected to the discharge side of the circulation pump at a shallow water depth position below the water surface of the downward flow section. When the discharge port of the equipped microbubble generator or nanobubble generator is disposed downward and a gas-liquid two-phase flow containing microbubbles or nanobubbles is ejected, the microbubbles or nanobubbles have a surface area of a single bubble. It is large and its ascending force in water is extremely small, so it dissolves in water in a short time and dissolves in water while slowly descending toward the bottom of the tank at low speed while entraining surrounding water with the jet. Fine Things consumes dissolved oxygen to purify water. Further, by increasing the depth of the aerobic reaction tank, the oxygen solubility is increased. The microbubble generator generates microbubbles with a bubble diameter of 10 to several tens of microns, and the nanobubble generator generates nanobubbles with a bubble diameter of several hundred nanometers or less, and the microbubbles or nanobubbles form an anoxic water mass layer. It acts as an advantage of floating and quickly dissolving as dissolved oxygen in poor oxygen water to increase the concentration of dissolved oxygen, but has little effect on forming a circulating flow. On the other hand, when an air diffuser that supplies air with a blower is disposed at a relatively shallow water depth position of the upward flow portion, when air bubbles are generated with a bubble diameter of 1 mm or larger, Since bubbles dissolve slowly in water and rise in water, the partition plate and tank wall act as a draft tube, and the air lift effect creates an upward flow in the direction of the water surface. A micro-bubble below microbubbles such as nitrogen gas other than oxygen consumed mostly in the descending flow part is taken up into a large bubble above the millibubble and integrated and rises. Even if the air diffuser is disposed at a relatively shallow depth, the activated sludge mixed water at the bottom of the tank is fed in the direction of the water surface due to the air lift effect, so that solid matter remains at the bottom of the tank. Without acting, it acts as an advantage of forming a circulating flow in the entire aerobic reaction tank. In addition, as an alternative to the air diffuser, the air sent by the blower or the like is provided with an underwater mixer or a pump to form a circulating flow in the water surface direction, so that activated sludge at the bottom of the tank is formed. Since mixed water or the like is fed in the direction of the water surface, there is an effect of forming a circulating flow in the entire aerobic reaction tank without solid matter remaining at the bottom of the tank.

特に、上昇流部に前記水中ミキサーを配設する場合は、前記上昇流部にあって、前記水中ミキサー部における水中ミキサーによる排出流速が前記水中ミキサー部以外の前記上昇流流速よりも大きいために、減圧流域を形成して、キャビテーション状態となり、下降流部で大方消費された酸素以外の窒素ガス等の微細気泡が大きな気泡に急速に成長するので、脱気が進むと共に循環流のエネルギー源となる。 In particular, when the submerged mixer is disposed in the upflow portion, the discharge flow rate by the submersible mixer in the submerged mixer portion is higher than the upflow velocity other than the submersible mixer portion in the upflow portion. , Forming a decompression basin, becoming a cavitation state, and fine bubbles such as nitrogen gas other than oxygen consumed mostly in the downward flow portion grow rapidly into large bubbles, so that degassing progresses and the energy source of the circulating flow Become.

又、好気性反応槽内の処理水中に、固液分離膜を内装した下部開口部及び上部開口部を有するドラフトチューブを一台又は任意の複数台を配設し、前記ドラフトチューブ内であって、前記固液分離膜の下方に、ブロワー等から送気された空気又は酸素を水面方向に噴気する散気装置を上段に、前記好気性反応槽底付近の水位に吸水口を有し、送水管の途中又は先端に、大気自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を配設して、吐出口を水面方向へ向けて配設すると共に、前記散気装置からミリバブル以上の気泡と前記マイクロバブル発生装置からのマイクロバブル又はナノバブル発生装置からのナノバブルとを、前記固液分離膜面に沿って上昇するように構成すると、前記散気装置によっては、強い上昇流を生起し、前記マイクロバブル発生装置又はナノバブル発生装置によっては、表面に高いマイナス荷電量を帯びた無数の独立したマイクロバブル又はナノバブルを含有する気泡水が生成するので、前記固液分離膜の表面に蓄積した固形物のプラス荷電を中和するように作用する。又、前記散気装置のミリバブル以上の比較的に大きな気泡と、前記微細気泡とで、前記固液分離膜付近の処理水に強い乱流が生起する。 Further, in the treated water in the aerobic reaction tank, a single or any plurality of draft tubes having a lower opening and an upper opening with a solid-liquid separation membrane installed therein are disposed, and the inside of the draft tube An air diffuser that blows air or oxygen sent from a blower or the like in the direction of the water surface below the solid-liquid separation membrane has a water inlet at the water level near the bottom of the aerobic reaction tank. A microbubble generator or nanobubble generator equipped with atmospheric self-priming means is arranged in the middle or tip of the water pipe, and the discharge port is arranged in the direction of the water surface. If the bubble and the microbubble from the microbubble generator or the nanobubble from the nanobubble generator are configured to rise along the surface of the solid-liquid separation membrane, a strong upward flow may be generated depending on the air diffuser. Occasionally, depending on the microbubble generator or nanobubble generator, innumerable independent microbubbles or nanobubbles containing high negative charge amount are generated on the surface, so that water bubbles are generated on the surface of the solid-liquid separation membrane. It acts to neutralize the positive charge of the accumulated solids. In addition, a strong turbulent flow is generated in the treated water near the solid-liquid separation membrane due to the relatively large bubbles larger than the millibubble of the diffuser and the fine bubbles.

又、紫外線ランプを配設した反応槽の横断面に垂直下方向流速が略等速分布となるように、横断面積を極力小さくすると共に細長い形状をした槽底の水中に流入口を配設すると共に吸水管を循環ポンプの吸込み側に連通接続し、前記循環ポンプの吐出口に連通接続した送水管の途中又は先端に、オゾン自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を配設して、該マイクロバブル発生装置又はナノバブル発生装置の吐出口を前記反応槽の水面下であって浅い水深位置に下方に向けて配設すると、マイクロバブル又はナノバブルは単体気泡の表面積が大きいと共に水中での上昇力が極めて小さいので短時間で水に溶解すると、水の透視度が大きくなり、紫外線が透過しやすくなると共に、前記反応槽の横断面積を極力小さくした細長い形状をしたことにより、前記紫外線ランプの配設位置近傍を通過するオゾンを溶解した被処理水に前記紫外線が効果的に投射されて、過酸化水素を経てOHラジカルが効果的に生成される。又、紫外線ランプの紫外線強度は距離減衰をするので、前記紫外線ランプ近傍でのみOHラジカル濃度が高くなるので、該紫外線ランプから遠距離の領域は無駄なスペースであり、前記反応槽の横断面積を小さく、即ち、細長い反応槽で十分となる。   In addition, the cross-sectional area is made as small as possible and an inflow port is provided in the elongated tank bottom so that the vertical downward flow velocity has a substantially uniform distribution in the cross section of the reaction tank provided with the ultraviolet lamp. In addition, a microbubble generator or a nanobubble generator equipped with ozone self-priming means is provided in the middle or at the tip of the water supply pipe connected to the suction side of the circulation pump in communication with the water suction pipe and connected to the discharge port of the circulation pump. When the microbubble generating device or the nanobubble generating device is disposed so that the discharge port of the microbubble generating device or nanobubble generating device is below the water surface of the reaction tank and is directed downward at a shallow water depth, the surface area of the single bubble is large. At the same time, since the ascending force in water is extremely small, when dissolved in water in a short time, the transparency of the water increases, it becomes easy to transmit ultraviolet rays, and the cross-sectional area of the reaction vessel is minimized. Due to the long and narrow shape, the ultraviolet rays are effectively projected onto the water to be treated in which ozone passing through the vicinity of the location of the ultraviolet lamp is dissolved, and OH radicals are effectively generated via hydrogen peroxide. Is done. In addition, since the ultraviolet intensity of the ultraviolet lamp attenuates the distance, the OH radical concentration becomes high only in the vicinity of the ultraviolet lamp. Therefore, the area far from the ultraviolet lamp is a useless space, and the cross-sectional area of the reaction tank is reduced. A small, i.e. elongated, reaction vessel is sufficient.

又、循環ポンプの吸水管口径よりも広い範囲の循環流線を流線収束手段で集束すると速度エネルギー増大するが、この増大した前記速度エネルギーをさらに圧力エネルギーに変換すると圧力エネルギーが増大するので、流線収束手段と圧力エネルギー増大手段を前記循環ポンプの吸水口に連通接続すると、押し込み水圧が高まり、前記循環ポンプの所要動力が減少する作用を奏する。 Further, when the circulation stream line in a range wider than the suction pipe diameter of the circulation pump is converged by the stream line converging means, the velocity energy increases, but if the increased velocity energy is further converted into pressure energy, the pressure energy increases. When the streamline converging means and the pressure energy increasing means are connected to the water suction port of the circulation pump, the pushing water pressure increases and the required power of the circulation pump is reduced.

又、大気又はオゾン自吸手段を装備したマイクロバブル発生装置又はナノバブル発生装置において、前記大気又はオゾン自吸手段にブロワー又はコンプレッサー等の送気手段を連通接続すると、前記大気又はオゾン自吸手段の自吸力はブロワー又はコンプレッサー等の所要動力を低減するように作用する。 Further, in the micro bubble generating device or the nano bubble generating device equipped with the atmospheric or ozone self-priming means, when the air or ozone self-priming means is connected to the air feeding means such as a blower or a compressor, the air or ozone self-priming means The self-suction force acts to reduce the required power of the blower or compressor.

そして又、有機性廃水好気性反応槽の水を循環している循環ポンプの吸込み側に吸水口を連通接続し、前記循環ポンプの吐出側に連通接続した送水管の途中又は先端に、大気自吸手段を装備しているミリバブル発生装置又はセンチバブル発生装置を連通接続して構成した気液二相流送出手段の吐出口を接触材又は固液分離膜の下方水深位置に配設して、接触材又は固液分離膜のバブリング洗浄手段とする。接触曝気槽においては、前記接触材に担持した生物膜が次第に肥厚して、過剰な汚泥が蓄積して、目詰まりや閉塞を起こし易くなるので、比較的に大きな気泡を散気するバブリング洗浄手段でバブリングを定期的に行うと、肥厚汚泥が剥離するので、剥離汚泥は嫌気濾床槽等へ返送する。又、固液分離膜槽においては、バブリング洗浄手段で比較的に大きな気泡を散気して固液分離膜面に沿って上昇するように構成すると、固形物が膜面に蓄積しないように作用する。 In addition, a water inlet is connected to the suction side of the circulation pump that circulates the water in the organic wastewater aerobic reaction tank, and the air itself is connected to the middle or tip of the water pipe connected to the discharge side of the circulation pump. Disposing the discharge port of the gas-liquid two-phase flow sending means constituted by connecting the millimeter bubble generating device or the centimeter bubble generating device equipped with the suction means at the lower water depth position of the contact material or the solid-liquid separation membrane, Bubbling cleaning means for contact material or solid-liquid separation membrane. In the contact aeration tank, the biofilm carried on the contact material gradually thickens, and excessive sludge accumulates, which easily causes clogging and clogging. When bubbling is performed regularly, the thickened sludge is peeled off, so the peeled sludge is returned to an anaerobic filter bed tank or the like. Also, in the solid-liquid separation membrane tank, if a relatively large bubble is diffused by the bubbling cleaning means and rises along the solid-liquid separation membrane surface, the solid-liquid separation membrane tank acts so as not to accumulate solid matter on the membrane surface. To do.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。   Since the present invention is configured as described above, the following effects can be obtained.

ダム貯水池、湖沼、海域等の閉鎖性水域の水を循環ポンプで同一水域の水中へ直接循環して移流すると、水を高所へ揚水する必要がないために省エネルギーとなる。そして、前記循環ポンプの送水管の途中又は先端に大気自吸手段を装備したマイクロバブル発生装置又はナノバブル発生装置を配設することで、散気用のブロワー又はコンプレッサーを配設する必要がないか又は有っても低圧のブロワーで足りることと、水深が大きい水域及び水槽に適用することにより酸素又はオゾン等の気体の飽和濃度及び総括気体移動係数が大きくなり極めて省エネルギーとなる。又、高水深位置に吸水口を選択的に配設可能とする伸縮自在手段を有するドラフトチューブ内の比較的に浅い水深位置に、ブロワー等で送気した空気を散気する散気手段を配設して、表層水と水温躍層水とを循環混合する循環流生成手段することで、従来の所要動力の大きなコンプレッサー又はブロワーを使用する必要がなくなるために、極めて省エネルギーとなる効果がある。即ち、前記マイクロバブル発生装置又はナノバブル発生装置とドラフトチューブ内散気装置を併設すると、それぞれの長所を生かすと共にそれぞれの欠点を補う効果がある。尚、循環流生成手段としては、水面方向の循環流を形成する水中ミキサーを配設することによっても、上記循環流生成手段と同様の効果を奏する。 When water from closed water areas such as dam reservoirs, lakes, and seas is directly circulated into the water of the same water area using a circulation pump, it is not necessary to pump the water to a high place, thus saving energy. And is it necessary to dispose a blower or a compressor for air diffusion by disposing a microbubble generator or nanobubble generator equipped with atmospheric self-priming means in the middle or at the tip of the water supply pipe of the circulation pump? Alternatively, even if a low-pressure blower is sufficient, and it is applied to a water area and a water tank having a large water depth, the saturated concentration of gas such as oxygen or ozone and the overall gas transfer coefficient are increased, which greatly saves energy. In addition, a diffuser for diffusing the air supplied by a blower or the like is disposed at a relatively shallow depth in the draft tube having a retractable means that can selectively dispose the water inlet at a high water depth. By providing a circulating flow generating means that circulates and mixes the surface layer water and the water temperature stratified water, it becomes unnecessary to use a conventional compressor or blower having a large required power. That is, when the microbubble generating device or nanobubble generating device and the aeration device in the draft tube are provided side by side, there is an effect of taking advantage of each advantage and compensating each drawback. In addition, as a circulating flow production | generation means, there exists an effect similar to the said circulation flow production | generation means also by arrange | positioning the underwater mixer which forms the circulation flow of a water surface direction.

又、流体摩擦損出減少手段を有する大気自吸手段、吸水管又は送水管とすることにより、流体摩擦損出が小さくなり、所要動力を低減する効果を生ずる。 Moreover, by using the atmospheric self-priming means, the water absorption pipe or the water supply pipe having the fluid friction loss reduction means, the fluid friction loss is reduced, and the required power is reduced.

又、微細気泡の大きさを調整弁だけで簡単に選択出来るので、微細気泡だけか、比較的に大きな気泡が混じったものとすることが出来るので、貧酸素水塊への溶存酸素補給機能と表層水域と水温躍層間の旋廻流形成機能が同一の装置で、必要に応じて選択出来る。 In addition, since the size of the fine bubbles can be easily selected only with the adjustment valve, it can be made of only fine bubbles or a mixture of relatively large bubbles. A device with the same swirl flow forming function between the surface water area and the water temperature jump layer can be selected as necessary.

又、気泡径が小さい程、気泡が水面から離脱するまでの接触時間が長くなること及び比表面積が大きいことにより酸素ガス及びオゾンの溶解性及び反応性が高まる。 Further, the smaller the bubble diameter, the longer the contact time until the bubbles are detached from the water surface and the larger the specific surface area, thereby increasing the solubility and reactivity of oxygen gas and ozone.

又、深層の貧酸素水塊に酸素を供給するので、嫌気性菌による難溶性栄養塩の再溶出を抑制する効果がある。   In addition, since oxygen is supplied to the deep anoxic water mass, there is an effect of suppressing re-elution of sparingly soluble nutrients by anaerobic bacteria.

又、深層で水中に溶解しない空気が水面に向かって上昇すると、表層から深層へ向かう循環混合層を形成し、またエアーリフト効果で水温躍層の水と空気が水面へ上昇すると循環混合層を形成すると植物プランクトン含有の表層水は深層又は水温躍層へ移流混合し、低温の深層水又は水温躍層水は表層水層へ移流混合して植物プランクトンが異常増殖し難い、即ち表層水温上昇制限、植物プランクトンへの光制限及び植物プランクトン固体数の高い表層水を希釈する等の環境を創出する効果が有る。 In addition, when air that does not dissolve in water in the deep layer rises toward the water surface, a circulating mixed layer is formed from the surface layer to the deep layer, and when the water and air in the water warming layer rise to the water surface due to the air lift effect, the circulating mixed layer is formed. When formed, surface water containing phytoplankton advects and mixes to the deep layer or water-climbing layer, and low-temperature deep water or water-climbing layer water advects and mixes to the surface layer to prevent phytoplankton from growing abnormally. It has the effect of creating an environment such as limiting light to phytoplankton and diluting surface water having a high phytoplankton solid number.

又、槽底部と水面部を開口した仕切板を配設して上昇流部と下降流部を有する曝気槽において、前記上昇流部の水面下の浅い水層に流入口を浸漬していると共に吸水管を循環ポンプの吸込み側に連通接続し、前記下降流部水面下の浅い水深位置に、前記循環ポンプの吐出口に連通接続した送水管の途中又は先端に、大気自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置の吐出口を下向きに配設したマイクロバブル溶解送水手段又はナノバブル溶解送水手段を配設すると、マイクロバブル又ナノバブルは単体気泡の表面積が大きいと共に水中での上昇力が極めて小さいので短時間で水に溶解し、又、下降流とした前記好気性反応槽では、マイクロバブル又ナノバブルが下降して水深位置が大きくなる程酸素溶解度が高まると共に酸素利用効率が大きくなる効果と共に省エネルギー効果を奏する。又、前記上昇流部の比較的に浅い水深位置に、ブロワーで送気する散気装置を配設して、ミリバブル以上の大きな気泡を散気して、エアーリフト効果により循環流を形成する循環流生成手段を併用して構成すると、槽底の活性汚泥混合水等を水面方向へ送水するので、前記槽底に固形物が滞留することなく、前記好気性反応槽の全体に循環流を形成するので、ブロワーの所要動力が小さくても効果的な循環流を形成して、良好な固液接触が出来るので、良好な浄水効果を奏する。又、下降流部で大方消費された酸素以外の窒素ガス等のマイクロバブル以下の微細気泡は前記ミリバブル以上の大きな気泡に取り込まれて一体化して上昇するので、微細気泡と微細固形物との付着を抑制すると共に上昇流を増大するように働き、循環流形成に大きく寄与して省エネルギー効果を奏する。尚、循環流生成手段としては、水面方向の循環流を形成する水中ミキサー又はポンプを配設することによっても、上記循環流生成手段と同様の効果を奏する。 Further, in the aeration tank having the upflow part and the downflow part by arranging a partition plate having an opening in the tank bottom and the water surface part, the inlet is immersed in a shallow water layer below the water surface of the upflow part. A water suction pipe is connected to the suction side of the circulation pump, and an air self-priming means is provided in the middle of the water supply pipe connected to the discharge port of the circulation pump at the shallow water depth position below the water surface of the downflow part. When the microbubble dissolution water supply means or nanobubble dissolution water supply means with the discharge port of the microbubble generation apparatus or nanobubble generation apparatus arranged downward is arranged, the microbubble or nanobubble has a large surface area of single bubbles and rises in water In the aerobic reactor, which has a very small force and dissolves in water in a short time, and descends, the oxygen solubility increases as the microbubbles or nanobubbles descend and the water depth increases. It achieves the energy saving effect with the oxygen utilization efficiency increases with effect. In addition, an air diffuser that blows air with a blower is disposed at a relatively shallow water depth position of the upflow portion, and a large bubble larger than a millibubble is diffused to form a circulation flow by an air lift effect. When combined with the flow generation means, the activated sludge mixed water at the bottom of the tank is fed in the direction of the water surface, so that solids do not stay on the bottom of the tank, and a circulating flow is formed throughout the aerobic reaction tank. Therefore, even if the required power of the blower is small, an effective circulating flow can be formed and good solid-liquid contact can be achieved, so that a good water purification effect is achieved. In addition, the fine bubbles below the microbubbles such as nitrogen gas other than oxygen consumed mostly in the downflow part are taken in the large bubbles above the millibubbles and rise integrally, so that the fine bubbles adhere to the fine solids. In addition, it works to increase the upward flow and contributes greatly to the formation of a circulating flow, and has an energy saving effect. In addition, as a circulating flow production | generation means, there exists an effect similar to the said circulation flow production | generation means also by arrange | positioning the underwater mixer or pump which forms the circulation flow of a water surface direction.

特に、上昇流部に前記水中ミキサーを配設する場合は、前記上昇流部にあって、前記水中ミキサー部における水中ミキサーによる排出流速が前記水中ミキサー部以外の前記上昇流流速よりも大きいために、減圧流域を形成して、キャビテーション状態となり、大方消費された酸素以外の窒素ガス等が気泡化して、脱気されると共に上昇流のエネルギー源となるので、微細気泡が大きな気泡に急速に成長するので、脱気が進むと共に循環流のエネルギー源となり、省エネルギー効果を奏する。 In particular, when the submerged mixer is disposed in the upflow portion, the discharge flow rate by the submersible mixer in the submerged mixer portion is higher than the upflow velocity other than the submersible mixer portion in the upflow portion. , Forming a decompression basin, becoming a cavitation state, nitrogen gas other than most consumed oxygen is bubbled and degassed and becomes an energy source of upward flow, so that fine bubbles rapidly grow into large bubbles Therefore, as deaeration progresses, it becomes an energy source of the circulating flow, and has an energy saving effect.

又、酸素ガスの反応性が高まることにより、高濃度廃水である前記好気性反応槽の設備容量を低減出来るので、処理施設建設費を低減出来る。 Moreover, since the equipment capacity of the aerobic reaction tank, which is highly concentrated wastewater, can be reduced by increasing the reactivity of oxygen gas, the construction cost of the treatment facility can be reduced.

又、好気性反応槽内の処理水中に、固液分離膜を内装した下部開口部及び上部開口部を有するドラフトチューブを一台又は任意の複数台を配設し、前記ドラフトチューブ内であって、前記固液分離膜の下方に、ブロワー等から送気された空気又は酸素を水面方向に噴気する散気装置を上段に、前記好気性反応槽底付近の水位に吸水口を有し、送水管の途中又は先端に、大気自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を配設して吐出口を水面方向へ向けて噴出する共に、前記散気装置からの比較的に大きな気泡と前記マイクロバブル発生装置からのマイクロバブル又はナノバブル発生装置からのナノバブルとを、前記固液分離膜面に沿って上昇するように構成すると、前記散気装置によっては、強い上昇流を生起し、前記マイクロバブル発生装置又はナノバブル発生装置によっては、表面に高いマイナス荷電量を帯びた無数の独立したマイクロバブル又はナノバブルを含有する気泡水が生成するので、前記固液分離膜の表面に蓄積した障害固形物のプラス荷電を中和して、該障害固形物が前記固液分離膜面から剥離除去し易くなる。そこで、前記散気装置のミリバブル以上の気泡と、前記マイクロバブル発生装置のマイクロバブル又はナノバブル発生装置のナノバブルとで、前記固液分離膜付近の処理水に強い乱流が生起して、前記障害固形物が容易に剥離除去される効果を奏する。さらに、前記高水深化した好気性反応槽の微生物が必要とする酸素を酸素利用率の大きいマイクロバブル又はナノバブルを発生する前記マイクロバブル発生装置又はナノバブル発生装置で供給するので、小さな所要動力で酸素利用効率を高くする効果がある。又、処理水中の固形物は、前記ドラフトチューブ内の比較的に浅い水深位置に配設した前記散気装置によって、固形物の停滞沈積を生じない効果的な循環流を形成するので、所要動力が小さな、省エネルギー的循環流動力源となる効果を奏する。尚、循環流生成手段としては、水中ミキサー又は循環ポンプによっても同様の効果を奏する。 Further, in the treated water in the aerobic reaction tank, a single or any plurality of draft tubes having a lower opening and an upper opening with a solid-liquid separation membrane installed therein are disposed, and the inside of the draft tube An air diffuser that blows air or oxygen sent from a blower or the like in the direction of the water surface below the solid-liquid separation membrane has a water inlet at the water level near the bottom of the aerobic reaction tank. A microbubble generator or nanobubble generator equipped with atmospheric self-priming means is arranged in the middle or at the tip of the water pipe to eject the discharge port toward the water surface, and relatively from the air diffuser. If large bubbles and microbubbles from the microbubble generator or nanobubbles from the nanobubble generator are configured to rise along the surface of the solid-liquid separation membrane, a strong upward flow may occur depending on the air diffuser. Depending on the microbubble generator or nanobubble generator, a large number of independent microbubbles or nanobubbles with a high negative charge amount are generated on the surface, so that water bubbles are accumulated on the surface of the solid-liquid separation membrane. By neutralizing the positive charge of the obstacle solids, the obstacle solids are easily peeled off from the surface of the solid-liquid separation membrane. Therefore, a strong turbulent flow occurs in the treated water near the solid-liquid separation membrane between the bubbles above the millibubbles of the air diffuser and the microbubbles of the microbubble generator or the nanobubbles of the nanobubble generator, and the obstacle The solid material is easily peeled and removed. Furthermore, since the oxygen required by the microorganisms in the deepened aerobic reaction tank is supplied by the microbubble generator or nanobubble generator that generates microbubbles or nanobubbles having a high oxygen utilization rate, oxygen with a small required power is required. There is an effect of increasing the use efficiency. In addition, the solid matter in the treated water forms an effective circulation flow that does not cause stagnant sedimentation of the solid matter by the air diffuser disposed at a relatively shallow depth in the draft tube. However, it has the effect of becoming a small, energy-saving circulating fluid power source. In addition, as a circulating flow production | generation means, there exists the same effect also with an underwater mixer or a circulation pump.

又、紫外線ランプを配設した、横断面に垂直下方向流速が略等速分布となるように、横断面積を極力小さくした細長い形状をした反応槽の槽底の水中に流入口を配設すると共に吸水管を循環ポンプの吸込み側に連通接続し、前記循環ポンプの吐出側に連通接続した送水管の先端に、オゾン自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を配設して、該マイクロバブル発生装置又はナノバブル発生装置の吐出口を前記反応槽の水面下であって浅い水深位置に下方に向けて配設することにより循環流を形成して水質浄化手段とすると、前記マイクロバブル発生装置によるマイクロバブル又はナノバブル発生装置によるナノバブルは単体気泡の表面積が大きいと共に水中での上昇力が極めて小さいので短時間で水に溶解し、又、高水深化した前記反応槽では、酸素溶解度が高まると共に酸素利用効率が大きくなる効果と共に省エネルギー効果を奏する。 In addition, an inflow port is provided in the bottom water of the reaction tank having a long and narrow cross-sectional area so that the vertical downward flow velocity in the transverse section has a substantially uniform distribution with an ultraviolet lamp. At the same time, a water absorption pipe is connected to the suction side of the circulation pump, and a microbubble generator or nanobubble generator equipped with ozone self-priming means is disposed at the tip of the water supply pipe connected to the discharge side of the circulation pump. Then, by disposing the discharge port of the microbubble generator or nanobubble generator below the water surface of the reaction tank and in a shallow water depth position downward to form a circulating flow and to serve as a water quality purification means, The microbubbles generated by the microbubble generator or the nanobubbles generated by the nanobubble generator have a large surface area of single bubbles and an extremely low ascending force in water, so they dissolve in water in a short time. Further, in the reaction vessel was high depth of achieves the energy saving effect with the oxygen utilization efficiency increases with the oxygen solubility is enhanced effect.

又、前記マイクロバブル発生装置のマイクロバブル又はナノバブル発生装置のナノバブルは、極めて小さいので短時間で水に溶解すると、水の透視度が大きくなり、紫外線が透過しやすくなると共に、前記反応槽の横断面積を極力小さくした細長い形状をしたことにより、前記紫外線ランプの配設位置近傍を通過するオゾンを溶解した被処理水に前記紫外線が効果的に投射されて、過酸化水素を経てOHラジカルが効果的に生成されるので、前記被処理水中の活性汚泥等の有機固形物、難分解性有害化学物質の分解・除去が効果的に出来る。 Also, since the microbubbles of the microbubble generator or the nanobubbles of the nanobubble generator are extremely small, when dissolved in water in a short time, the water has a high degree of transparency and easily transmits ultraviolet rays, and crosses the reaction vessel. Due to the elongated shape with the smallest possible area, the ultraviolet rays are effectively projected onto the water to be treated that dissolves ozone that passes near the location of the ultraviolet lamp, and the OH radicals are effective through hydrogen peroxide. Therefore, it is possible to effectively decompose and remove organic solids such as activated sludge and hardly decomposable harmful chemical substances in the water to be treated.

又、前記反応槽の横断面積を極力小さくした細長い形状としたことにより、反応槽内で停滞水域を生ずることなく良好な循環流を生成すると共に設置スペースを小さくすることが出来る。 Further, by adopting an elongated shape in which the cross-sectional area of the reaction tank is made as small as possible, it is possible to generate a good circulation flow without generating a stagnant water area in the reaction tank and to reduce the installation space.

又、循環ポンプの給水側と吐出側に吸水管と送水管を連通接続し、深い水深位置に配設している前記吸水管の吸水口と、送水管の先端に連通接続した流速増大手段の吐出口と同程度の高さ位置に前記循環ポンプを配設することにより、前記循環ポンプ吸込み側と吐出側に作用する水圧が互いに打ち消しあうので、ポンプ所要動力の算定において、圧力水頭と位置水頭は算入する必要はなく、算入される水頭は摩擦損出水頭と速度水頭だけとなるので、極めて大きな省エネルギー効果を奏する。 Further, a water suction pipe and a water supply pipe are connected to the water supply side and the discharge side of the circulation pump, and a water flow increasing means connected to the water inlet of the water suction pipe disposed at a deep water depth position and the tip of the water supply pipe is connected. By disposing the circulation pump at the same height as the discharge port, the water pressure acting on the suction side and the discharge side of the circulation pump cancel each other out. It is not necessary to include the head, and only the friction head and the speed head are included in the head, so that an extremely large energy saving effect is achieved.

又、大気自吸手段の大気取入口をブロワーの吐出口又はオゾン発生機の吐出口に接続して、大気自吸手段の大気取入口を大気に開放した場合に比較して、多量の空気又はオゾンを吸引すると、大量の空気又はオゾンを吸入して散気する必要がある場合には、大気自吸手段の大気取入口を大気に開放する場合に比較して、僅かに動力を増加させるだけで、必要な空気量を確保出来る。 Compared to the case where the air intake of the air self-priming means is connected to the outlet of the blower or the outlet of the ozone generator, and the air intake of the air self-priming means is opened to the atmosphere, a large amount of air or When ozone is sucked in, if a large amount of air or ozone needs to be diffused, the power is slightly increased compared to when the air intake of the air self-priming means is opened to the atmosphere. Therefore, the necessary air volume can be secured.

そして又、有機性廃水好気性反応槽の水を循環している循環ポンプの吸込み側に吸水口を連通接続し、前記循環ポンプの吐出側に連通接続した送水管の途中又は先端に、大気自吸手段を装備しているミリバブル以上の気泡を発生するバブル発生装置を連通接続して構成した気液二相流送出手段の吐出口を接触材又は固液分離膜の下方水深位置に配設して、接触材又は固液分離膜のバブリング洗浄手段とすると、接触曝気槽においても、又固液分離膜槽においても、ブロワー等の送風装置を配設する必要がなくなり、同一の循環ポンプ配管系統にマイクロバブル発生装置とミリバブル以上の気泡を発生するバブル発生装置を配設出来るので、設備費が小さいと共に省エネルギーとなる。 In addition, a water inlet is connected to the suction side of the circulation pump that circulates the water in the organic wastewater aerobic reaction tank, and the air itself is connected to the middle or tip of the water pipe connected to the discharge side of the circulation pump. Dispose the discharge port of the gas-liquid two-phase flow sending means constructed by communicating with the bubble generating device that generates bubbles larger than millibubble equipped with suction means at the lower water depth position of the contact material or solid-liquid separation membrane. When the bubbling cleaning means for the contact material or the solid-liquid separation membrane is used, it is not necessary to provide a blower or the like in the contact aeration tank or the solid-liquid separation membrane tank. In addition, since a microbubble generator and a bubble generator that generates bubbles larger than a millibubble can be provided, the equipment cost is small and energy is saved.

第一発明の第一実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows the 1st Example of 1st invention. 図1記載の気泡生成装置10の概略説明図である。It is a schematic explanatory drawing of the bubble production | generation apparatus 10 of FIG. 第二発明の第一実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows the 1st Example of 2nd invention. 図3に示すA−A視の概略説明平面図である。It is a schematic explanatory plan view of AA view shown in FIG. 第二発明の第二実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows the 2nd Example of 2nd invention. 図5に示すB−B視の概略説明平面図である。FIG. 6 is a schematic explanatory plan view taken along the line B-B shown in FIG. 5. 第二発明の第三実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows the 3rd Example of 2nd invention. 第三発明の第一実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows the 1st Example of 3rd invention. 図8に示すC−C視の概略説明平面図である。It is a schematic explanatory plan view of CC view shown in FIG. 第四発明の第一実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows 1st Example of 4th invention. 第五発明の第一実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows 1st Example of 5th invention. 第六発明の第一実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows 1st Example of 6th invention. 第七発明の第一実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows 1st Example of 7th invention. 第七発明の第二実施例を示す水質浄化装置の概略説明図である。It is a schematic explanatory drawing of the water purification apparatus which shows the 2nd Example of 7th invention.

本発明の実施の形態を図1〜図14を参照して説明する。   Embodiments of the present invention will be described with reference to FIGS.

図1及び図2に示した第一発明の第一実施例において、フロート1を装備した浮上槽2に配設した循環ポンプ3の吸水側に該循環ポンプ3の口径よりも大きな管径(以降の実施例でも同様)とした吸水管4の一端を連通接続すると共に該吸水管4の他端である吸水口4bをアオコが増殖した水面下であって浮遊物が無い水層にスクリーン5を通して吸水する前記吸水口4bを配設し、又、前記循環ポンプ3の吐水側に該循環ポンプ3の口径よりも大きな管径(以降の実施例でも同様)とした送水管6を連通接続すると共に該送水管6の途中に、流速増大手段の球状物体7を配設して静圧減少流域8を生成するマイクロバブル発生装置9を配設していて、自吸空気流に対して流速を小さくするために大きい管径と摩擦係数の小さな滑らかな管壁のプラスチック製の大気自吸管10(以降同様)により空気室11を経由して前記静圧減少流域8に大気を吸引し、該静圧減少流域8にマイクロバブルとして分散混合した気液二相流を送水すると、該気液二相流が下降するにしたがって、前記マイクロバブルの気泡径は小さくなって短時間に水に溶解し、溶存酸素含有の水を前記送水管6の吐出口6aから貧酸素水層に噴出している。前記大気自吸管10の材質としは、滑らかな管壁のものであれば、ステンレス管、プラスチックホース等の他の材質のものでもよい(以降の実施例でも同様)。そして、前記大気自吸管10には、流量調整弁12を連通接続している。尚、前記空気室11から前記静圧減少流域へ自吸空気を導入する図示していない多数の小孔の総面積は所要の自吸空気量とするに十分なものとしている(以降の実施例でも同様)。そして、前記吸水管4、送水管6等で循環管13を構成している。一方、水温躍層水に吸水口を選択的に配設可能とする伸縮自在にしたスライド式の内筒管14aと外筒管14bで構成するドラフトチューブ14内の比較的に浅い水深位置に、ブロワー15で送気した空気を散気する散気装置16を配設して循環流を生成するように構成して、水質浄化装置17としている。尚、前記ドラフトチューブ14の伸縮操作は、昇降装置18によって操作している。そして、前記ドラフトチューブ14内外の密度差水頭エネルギーによって汲み上げられた水は、前記散気装置16から散気された気泡と共に気液二相流を形成して噴出され、気泡径はさらに大きくなり、周囲の水を巻込みながら上昇し、循環流を形成する。又、ウェイト19で風及び波浪に対抗して前記浮上槽2のバランスを取ると共にアンカー20で流出を防止している。尚、本実施例では、流速増大手段として前記球状物体7を前記静圧減少流域8に配設しているが、流速増大手段としては、他にも、オリフィス、ベンチュリー管、アスピレータ等の気液二相流体混合・せん断方式、高速旋廻方式等の気体自吸手段を装備したものであれば適用出来る。(以降の実施例でも同様)。   In the first embodiment of the first invention shown in FIGS. 1 and 2, the pipe diameter (hereinafter referred to as the diameter of the circulation pump 3) on the water absorption side of the circulation pump 3 disposed in the floating tank 2 equipped with the float 1. The same applies to the first embodiment), and one end of the water absorption pipe 4 is connected in communication, and the water absorption opening 4b, which is the other end of the water absorption pipe 4, is passed through the screen 5 to the water layer under the water surface where the sea bream has grown and free from suspended matter. The water suction port 4b for absorbing water is disposed, and a water supply pipe 6 having a pipe diameter larger than the diameter of the circulation pump 3 (same in the following embodiments) is connected to the water discharge side of the circulation pump 3 and connected. In the middle of the water supply pipe 6, a spherical body 7 as a flow velocity increasing means is disposed to provide a microbubble generator 9 for generating a static pressure decreasing flow area 8, and the flow velocity is reduced with respect to the self-priming air flow. Smooth tube wall with large pipe diameter and small friction coefficient A gas-liquid two-phase flow in which air is sucked into the static pressure-reducing flow region 8 via the air chamber 11 by a plastic air self-priming tube 10 (hereinafter the same) and dispersed and mixed as microbubbles in the static pressure-reducing flow region 8 When water is supplied, as the gas-liquid two-phase flow descends, the bubble size of the microbubbles decreases and dissolves in water in a short time, and dissolved oxygen-containing water is discharged from the discharge port 6a of the water supply pipe 6 to the oxygen-poor state. It erupts into the water layer. The material of the air self-priming tube 10 may be made of other materials such as a stainless steel tube and a plastic hose as long as it has a smooth tube wall (the same applies to the following embodiments). A flow rate adjustment valve 12 is connected to the atmospheric self-priming pipe 10. Note that the total area of many small holes (not shown) for introducing the self-adsorbed air from the air chamber 11 to the static pressure reducing flow area is sufficient to obtain a required amount of self-adsorbed air (the following examples) But the same). And the circulation pipe 13 is comprised by the said water absorption pipe 4, the water supply pipe 6, etc. FIG. On the other hand, at a relatively shallow water depth position in the draft tube 14 composed of the slide-type inner tube 14a and the outer tube 14b that can be expanded and contracted so that the water inlet can be selectively disposed in the water temperature layer. A water quality purification device 17 is configured by arranging a diffuser 16 for diffusing the air supplied by the blower 15 to generate a circulating flow. In addition, the expansion / contraction operation of the draft tube 14 is operated by the lifting device 18. Then, the water pumped up by the density difference head energy inside and outside the draft tube 14 is ejected in a gas-liquid two-phase flow together with the bubbles diffused from the diffuser 16, and the bubble diameter is further increased. Ascending surrounding water, it rises and forms a circulating flow. The weight 19 balances the levitation tank 2 against wind and waves, and the anchor 20 prevents the outflow. In the present embodiment, the spherical body 7 is disposed in the static pressure decreasing flow area 8 as a flow velocity increasing means. However, as the flow velocity increasing means, other gas-liquid such as an orifice, a venturi tube, an aspirator, etc. Any device equipped with gas self-priming means such as a two-phase fluid mixing / shearing method or a high-speed rotating method can be used. (The same applies to the following examples).

図3及び図4に示した第二発明の第一の実施例においては、活性汚泥法の曝気槽21を、水面近傍と槽底近傍に流通開口22a、22bを有する隔壁22で仕切って、下降流部21aと上昇流部21bを形成していて、循環ポンプ3の吸水側に前記循環ポンプ3の口径よりも大きな管径とした吸水管4の一端を連通接続すると共に前記吸水管4の他端である吸水口4bを前記上昇流部21bの水面下に配設し、前記循環ポンプ3の吐水側に該循環ポンプ3の口径よりも大きな管径とした送水管6を連通接続すると共に該送水管6の先端に、流量調整弁12を配設した大気自吸管10を連通接続したマイクロバブル発生装置9を配設している。尚、前記大気自吸管10は、自吸空気流に対して流速を小さくするために大きい管径と摩擦係数の小さな滑らかな管壁のプラスチック製としているが、滑らかな管壁の素材であれば、プラスチック製に限らず、ステンレス製等としても良い。そして、前記大気自吸管10により空気室11を経由して前記静圧減少流域8に大気を吸引し、該静圧減少流域8に気泡として分散混合した気液二相流は前記送水管6を経由して、前記吸水管4の吸水口4bからの吸水と相俟って、槽内に循環流を形成している。一方、前記隔壁22と曝気槽21で構成するドラフトチューブ14内の比較的に浅い水深位置に、ブロワー15で送気した空気を散気する散気装置16を配設して循環流を生成するように構成して、水質浄化装置17としている。尚、前記下降流部21aと上昇流部21bに配設した前記マイクロバブル発生装置9と散気装置16の配設列数は、二列で図示しているが、列数は必要に応じて選択される。又、前記下降流部21aと上昇流部21bの配設方法としては、本実施例では、それぞれ一箇所づつ配設しているが、前記上昇流部21bを中央に配設して、両側又は四面に前記下降流部21aを配設することも出来る。 In the first embodiment of the second invention shown in FIGS. 3 and 4, the aeration tank 21 of the activated sludge method is partitioned by a partition wall 22 having flow openings 22a and 22b in the vicinity of the water surface and in the vicinity of the tank bottom. One end of a water absorption pipe 4 having a diameter larger than the diameter of the circulation pump 3 is connected to the water absorption side of the circulation pump 3 and communicates with the other side of the water absorption pipe 4. A water suction port 4b as an end is disposed below the water surface of the upward flow portion 21b, and a water supply pipe 6 having a diameter larger than the diameter of the circulation pump 3 is connected to the water discharge side of the circulation pump 3 and is connected to the water discharge pipe 6b. At the tip of the water supply pipe 6, a microbubble generator 9 in which an atmospheric self-priming pipe 10 provided with a flow rate adjusting valve 12 is connected in communication is provided. The air self-priming pipe 10 is made of a plastic with a smooth pipe wall having a large pipe diameter and a small friction coefficient in order to reduce the flow velocity with respect to the self-priming air flow. The material is not limited to plastic, and may be made of stainless steel. Then, the atmospheric self-priming pipe 10 sucks the atmosphere into the static pressure reducing flow area 8 via the air chamber 11, and the gas-liquid two-phase flow dispersed and mixed as bubbles in the static pressure reducing flow area 8 passes through the water supply pipe 6. By way of this, in combination with water absorption from the water inlet 4b of the water absorption pipe 4, a circulation flow is formed in the tank. On the other hand, an air diffuser 16 for diffusing the air supplied by the blower 15 is disposed at a relatively shallow depth in the draft tube 14 constituted by the partition wall 22 and the aeration tank 21 to generate a circulating flow. The water purification apparatus 17 is configured as described above. The number of rows of the microbubble generator 9 and the air diffuser 16 arranged in the downflow portion 21a and the upflow portion 21b is shown in two rows, but the number of rows is as required. Selected. In the present embodiment, the descending flow portion 21a and the ascending flow portion 21b are arranged one by one. However, the ascending flow portion 21b is arranged at the center, and both sides or The downflow part 21a can also be disposed on four sides.

図5及び図6に示した第二発明の第二の実施例においては、図3及び図4に示したブロワー15で送気した空気を散気する散気装置16の代替として、水面方向への上昇流を生成する水中ミキサー23を配設している。 In the second embodiment of the second invention shown in FIGS. 5 and 6, in the direction of the water surface, instead of the air diffuser 16 that diffuses the air sent by the blower 15 shown in FIGS. 3 and 4. An underwater mixer 23 for generating an upward flow of is provided.

図7に示した第二発明の第三の実施例においては、夾雑物除去槽24、嫌気濾床槽25に後置して配設した好気性接触曝気槽26において、循環ポンプ3の吸水側に該循環ポンプ3の口径よりも大きな管径とした吸水管4の一端を連通接続すると共に該吸水管4の他端である吸水口4bを前記好気性接触曝気槽26の槽底近傍に配設し、前記循環ポンプ3の吐水側に該循環ポンプ3の口径よりも大きな管径とした送水管6を連通接続すると共に該送水管6の先端に、流量調整弁12を配設した大気自吸管10を連通接続したマイクロバブル発生装置9を配設して、自吸空気流に対して流速を小さくするために大きい管径と摩擦係数の小さな滑らかな管壁のプラスチック製の前記大気自吸管10により大気を前記マイクロバブル発生装置9に吸引して生成した気液二相流を該マイクロバブル発生装置9から噴出している。一方、前記隔壁22と接触材支持壁27で構成するドラフトチューブ14内の比較的に浅い水深位置に、ブロワー15で送気した空気を散気する散気装置16を配設して循環流を生成するように構成して、水質浄化装置17としている。 In the third embodiment of the second invention shown in FIG. 7, in the aerobic contact aeration tank 26 disposed after the contaminant removal tank 24 and the anaerobic filter bed tank 25, the water absorption side of the circulation pump 3 Further, one end of a water suction pipe 4 having a diameter larger than the diameter of the circulation pump 3 is connected in communication, and a water suction port 4b which is the other end of the water suction pipe 4 is arranged near the bottom of the aerobic contact aeration tank 26. A water supply pipe 6 having a diameter larger than the diameter of the circulation pump 3 is connected to the water discharge side of the circulation pump 3 and a flow rate adjusting valve 12 is provided at the tip of the water supply pipe 6. The above-mentioned air self-priming pipe made of plastic with a smooth pipe wall having a small pipe diameter and a small friction coefficient in order to reduce the flow velocity with respect to the self-priming air flow by disposing the microbubble generator 9 connected to the suction pipe 10 10 sucks the atmosphere into the microbubble generator 9 The gas-liquid two-phase flow generated in this manner is ejected from the microbubble generator 9. On the other hand, an air diffuser 16 for diffusing the air sent by the blower 15 is arranged at a relatively shallow water depth position in the draft tube 14 constituted by the partition wall 22 and the contact material support wall 27 to thereby circulate the circulation flow. The water purification device 17 is configured so as to be generated.

図8及び図9に示した第三発明の第一の実施例においては、高水深化した活性汚泥法の曝気槽21に後置して、固液膜分離槽28を配設していて、前記活性汚泥法の曝気槽21において、水面近傍と槽底近傍に流通開口22a、22bを有する二枚の隔壁22A、22Bで仕切って、中央部に上昇流部21bを、該上昇流部21bの両側に下降流部21aを形成していて、循環ポンプ3、吸水管4、送水管6及びマイクロバブル発生装置9等で構成した溶存酸素供給手段と、二枚の前記隔壁22A、22Bで構成するドラフトチューブ14内の比較的に浅い水深位置に、ブロワー15で送気した空気を散気する散気装置16を配設して循環流生成手段として、図3及び図4に示したものと同様の構成としている。そして、前記活性汚泥法の曝気槽21に後置した前記固液膜分離槽28には、上部開口29aと下部開口部29bを有する中央部にドラフトチューブ29を配設していて、該ドラフトチューブ29は、該ドラフトチューブ29の外部から内部へ活性汚泥浮遊混合水を流通可能としている。そして、前記ドラフトチューブ29の上部に配設した固液分離膜モジュール30の直下の下段に、循環ポンプ3に循環管13を構成する吸水管4を連通接続して吸水口4bを前記固液膜分離槽28の槽底近傍に配設すると共に前記循環管13を構成する送水管6の先端に前記マイクロバブル発生装置9の吐出口9aを上向きに配設し、前記固液分離膜モジュール2の直下の上段に、ブロワー15で送気した空気を散気する散気装置16を配設して前記固液分離膜モジュール30をスクラビングすると共に前記固液膜分離槽28に循環流を形成している。尚、処理液により膜面逆洗、次亜塩素酸ナトリウム水溶液等による薬液洗浄等の装置、及び前記固液膜分離槽28の濃厚な活性汚泥混合水を侠雑物除去槽と活性汚泥法の曝気槽21に返送する装置、膜濾過処理水配管系統等が配設されるが、図示していない。 In the first embodiment of the third invention shown in FIG. 8 and FIG. 9, a solid-liquid membrane separation tank 28 is disposed after the aeration tank 21 of the activated sludge method with increased water depth, In the aeration tank 21 of the activated sludge method, the upflow part 21b is partitioned at the center by dividing it by two partition walls 22A and 22B having flow openings 22a and 22b in the vicinity of the water surface and the vicinity of the tank bottom. Downflow portions 21a are formed on both sides, and are composed of a dissolved oxygen supply means composed of a circulation pump 3, a water absorption pipe 4, a water supply pipe 6, a microbubble generator 9 and the like, and the two partition walls 22A and 22B. The air diffuser 16 for diffusing the air sent by the blower 15 is disposed at a relatively shallow depth in the draft tube 14, and the circulation flow generating means is the same as that shown in FIGS. The configuration is as follows. The solid-liquid membrane separation tank 28 placed behind the activated sludge aeration tank 21 is provided with a draft tube 29 in the center having an upper opening 29a and a lower opening 29b, and the draft tube 29 allows the activated sludge floating mixed water to flow from the outside to the inside of the draft tube 29. Then, the water absorption pipe 4 constituting the circulation pipe 13 is connected to the circulation pump 3 at the lower stage immediately below the solid-liquid separation membrane module 30 disposed at the upper part of the draft tube 29, and the water suction port 4b is connected to the solid-liquid membrane. Disposed near the bottom of the separation tank 28 and at the tip of the water supply pipe 6 constituting the circulation pipe 13, the discharge port 9 a of the microbubble generator 9 is disposed upward, and the solid-liquid separation membrane module 2 An air diffuser 16 for diffusing the air sent by the blower 15 is disposed immediately above the upper stage to scrub the solid-liquid separation membrane module 30 and to form a circulation flow in the solid-liquid membrane separation tank 28. Yes. It should be noted that the membrane surface backwashing with the treatment liquid, the chemical liquid washing with sodium hypochlorite aqueous solution and the like, and the concentrated activated sludge mixed water of the solid-liquid membrane separation tank 28 are mixed with the contaminant removal tank and the activated sludge process. An apparatus for returning to the aeration tank 21, a membrane filtration treated water piping system, and the like are provided, but are not shown.

図10に示した第四発明の第一の実施例においては、染色廃水等の難分解性有機物を分解処理する反応槽31に吸水管4と送水管6等で構成する循環管13、循環ポンプ3、送水ポンプ32及び紫外線ランプ33を配設していて、前記吸水管4の吸水口4aを槽底31aに連通接続し、前記循環ポンプ3及び送水ポンプ32の下流側であって、前記循環ポンプ3及び送水ポンプ31からの吐出水が合流した前記送水管6の先端を、槽天板30bを貫通して連通接続すると共に前記送水管6の先端にマイクロバブル発生装置9を下向きに配設している。そして、前記マイクロバブル発生装置9には、オゾン発生装置34のオゾンを自吸している。尚、前記反応槽31、循環管13、循環ポンプ3、送水ポンプ32及び紫外線ランプ33等で反応処理装置35を構成しているが、該反応処理装置35の設置組数は被処理水の水質と処理水の必要排出水質により決定される。 In the first embodiment of the fourth invention shown in FIG. 10, in the reaction tank 31 for decomposing the hardly decomposable organic matter such as dyeing waste water, the circulation pipe 13 constituted by the water absorption pipe 4 and the water supply pipe 6, etc., the circulation pump 3. A water feed pump 32 and an ultraviolet lamp 33 are provided, and the water suction port 4a of the water suction pipe 4 is connected to the tank bottom 31a so as to be downstream of the circulation pump 3 and the water feed pump 32, and the circulation The tip of the water supply pipe 6 where the water discharged from the pump 3 and the water supply pump 31 merges is connected through the tank top plate 30b and the microbubble generator 9 is disposed downward at the tip of the water supply pipe 6. is doing. The microbubble generator 9 self-sucks ozone from the ozone generator 34. The reaction tank 31, the circulation pipe 13, the circulation pump 3, the water pump 32, the ultraviolet lamp 33, and the like constitute a reaction treatment device 35, and the number of installed sets of the reaction treatment devices 35 is the quality of the water to be treated. And the required wastewater quality of the treated water.

図11に示した第五発明の第一実施例においては、循環ポンプ3の吸水側に連通接続する吸水管4の先端に、循環流の上流側に向け前記循環ポンプ3の吸水側口径よりも大きく拡大開口した拡大開口部36とし、次に流路断面積拡大部37を経て吸水管4に連通接続して循環流エネルギー回収装置38としている。即ち、循環流の流線エネルギーを収束して速度エネルギーを増大し、そして増大した前記速度エネルギーを圧力エネルギーに変換する。循環ポンプの吸水口に連通接続する。尚、循環流の下流側に流入口を上流側へ向けて開口浸漬した前記拡大開口部35の断面積は下流側の前記循環管13の断面積よりも大きくなっているので、前記循環ポンプ方向への自吸力として働く。 In the first embodiment of the fifth invention shown in FIG. 11, at the tip of the water suction pipe 4 that is connected to the water suction side of the circulation pump 3, the diameter of the water suction side of the circulation pump 3 toward the upstream side of the circulation flow. An enlarged opening 36 having a greatly enlarged opening is formed, and then a circulating flow energy recovery device 38 is connected to the water absorption pipe 4 through a flow passage cross-sectional area enlarged portion 37. That is, the streamline energy of the circulating flow is converged to increase the velocity energy, and the increased velocity energy is converted into pressure energy. Connect to the water inlet of the circulation pump. In addition, since the cross-sectional area of the enlarged opening portion 35 in which the inlet is opened and immersed in the downstream side of the circulation flow toward the upstream side is larger than the cross-sectional area of the circulation pipe 13 on the downstream side, the circulation pump direction Work as a self-priming force.

図12に示した第六発明の第一実施例においては、大気自吸管10の大気自吸側にブロワー15を連通接続している。 In the first embodiment of the sixth invention shown in FIG. 12, a blower 15 is connected to the atmospheric self-priming side of the atmospheric self-priming tube 10.

図13に示した第七発明の第一実施例においては、図7に示した散気装置16の代替として、循環ポンプの吐出側に接続した送水管6の下流側先端に連通接続したミリバブル発生装置39としていると共に、逆洗装置の代替として、循環ポンプの吐出側に接続した送水管6の下流側先端に連通接続したミリバブル発生装置39を配設している。そして、電磁弁40の開閉作動は、ドラフトチューブ内に配設した前記ミリバブル発生装置39及び好気性曝気槽26内に配設したマイクロバブル発生装置9が作動する時には、逆洗用の前記ミリバブル発生装置39を作動停止とするように図示してないタイマーで制御する。又、逆洗用の前記ミリバブル発生装置39を作動するときには、前記ドラフトチューブ内に配設した前記ミリバブル発生装置39及び好気性曝気槽26内に配設したマイクロバブル発生装置9を作動停止とするように図示してないタイマーで制御する。 In the first embodiment of the seventh invention shown in FIG. 13, as an alternative to the air diffuser 16 shown in FIG. 7, the generation of millibubbles connected to the downstream end of the water supply pipe 6 connected to the discharge side of the circulation pump. In addition to the device 39, as an alternative to the backwashing device, a millibubble generator 39 connected to the downstream end of the water supply pipe 6 connected to the discharge side of the circulation pump is provided. The opening / closing operation of the electromagnetic valve 40 is performed when the millibubble generator 39 disposed in the draft tube and the microbubble generator 9 disposed in the aerobic aeration tank 26 are operated. The device 39 is controlled by a timer (not shown) so as to stop the operation. When the millibubble generator 39 for backwashing is operated, the millibubble generator 39 provided in the draft tube and the microbubble generator 9 provided in the aerobic aeration tank 26 are deactivated. In this way, control is performed by a timer not shown.

図14に示した第七発明の第二実施例においては、図8に散気装置16の代替として、循環ポンプの吐出側に接続した送水管6の下流側先端に連通接続したミリバブル発生装置39としていると共に、固液分離膜モジュールの下方水位位置に配設した散気装置の代替として、循環ポンプの吐出側に接続した送水管6の下流側先端に連通接続したミリバブル発生装置39を配設している。 In the second embodiment of the seventh invention shown in FIG. 14, as an alternative to the air diffuser 16 in FIG. 8, the millibubble generator 39 connected in communication with the downstream end of the water supply pipe 6 connected to the discharge side of the circulation pump. In addition, as an alternative to the diffuser disposed at the lower water level position of the solid-liquid separation membrane module, a millibubble generator 39 connected in communication with the downstream end of the water supply pipe 6 connected to the discharge side of the circulation pump is disposed. is doing.

閉鎖性のダム貯水池、湖沼、海域等の水面下に流入口を浸漬している吸水管を循環ポンプのサクション側に接続し、前記ダム貯水池、湖沼、海域等の貧酸素水塊層に吐出口を配設すると共に循環ポンプの送水管の途中又は先端に大気自吸管装備のマイクロバブル発生装置又はナノバブル発生装置を連通接続して大気を自吸して底水層の貧酸素水塊に噴出すると、発生したアオコの増殖を抑制し、底水層の貧酸素水塊に溶存酸素を供給出来る。又、水道及び食品の殺菌、着色廃水の脱色、活性汚泥等の余剰汚泥を液化して活性汚泥法等の好気性生物処理を容易にし、フロン、PCB等の難分解性有機物の分解除去等に利用出来る。又、高濃度廃水の高負荷好気性生物処理が出来る。さらに又、膜分離面を長期に亘って安定した濾過機能を維持するためにマイクロバブル又はナノバブルとミリバブル以上の比較的に大きな気泡を含有する気液二相流で形成する乱流で分離膜面を洗浄する。   A suction pipe with an inlet immersed under the surface of a closed dam reservoir, lake, marine, etc. is connected to the suction side of the circulation pump, and the discharge port is connected to the ox reservoir, lake, marine area, etc. And a microbubble generator or nanobubble generator equipped with an atmospheric self-priming pipe is connected to the middle or tip of the water pipe of the circulation pump to self-suck the atmosphere and jet into the anoxic water mass of the bottom water layer It is possible to suppress the growth of the generated sea cucumber and supply dissolved oxygen to the anoxic water mass in the bottom water layer. Also, sterilization of water and food, decolorization of colored wastewater, liquefaction of excess sludge such as activated sludge to facilitate aerobic biological treatment such as activated sludge method, and decomposition and removal of refractory organic substances such as chlorofluorocarbon and PCB Available. In addition, high-load aerobic biological treatment of high-concentration wastewater can be performed. Furthermore, in order to maintain a stable filtration function over a long period of time, the separation membrane surface is a turbulent flow formed by a gas-liquid two-phase flow containing microbubbles or nanobubbles and a relatively large bubble larger than a millibubble. Wash.

1 フロート
2 浮上槽
3 循環ポンプ
4 吸水管
4b 吸水口
5 スクリーン
6 送水管
7 球状物体
8 静圧減少流域
9 マイクロバブル発生装置
10 大気自吸管
11 空気室
12 流量調整弁
13 循環管
14 ドラフトチューブ
15 ブロワー
16 散気装置
17 水質浄化装置
18 昇降装置
19 ウェイト
20 アンカー
21 曝気槽
22a、22b 流通開口
22、22A、22B 隔壁
21a 下降流部
21b 上昇流部
23 水中ミキサー
24 夾雑物除去槽
25 嫌気濾床槽
26 好気性接触曝気槽
27 接触材支持壁
28 固液膜分離槽
29a、上部開口
29b 下部開口
29 ドラフトチューブ
30 固液分離膜モジュール
31 反応槽
32 送水ポンプ
33 紫外線ランプ
31a 槽底
31b 槽天板
34 オゾン発生装置
35 反応処理装置
36 拡大開口部
37 流路断面積拡大部
38 循環流エネルギー回収装置
39 ミリバブル発生装置
40 電磁弁
DESCRIPTION OF SYMBOLS 1 Float 2 Floating tank 3 Circulation pump 4 Water absorption pipe 4b Water absorption port 5 Screen 6 Water supply pipe 7 Spherical object 8 Static pressure reduction flow area 9 Microbubble generator 10 Atmospheric self-priming pipe 11 Air chamber 12 Flow control valve 13 Circulation pipe 14 Draft tube 15 Blower 16 Aeration device 17 Water purification device 18 Lifting device 19 Weight 20 Anchor 21 Aeration tank 22a, 22b Flow opening 22, 22A, 22B Partition wall 21a Downflow part 21b Upflow part 23 Underwater mixer 24 Contaminant removal tank 25 Anaerobic filter bed Tank 26 Aerobic contact aeration tank 27 Contact material support wall 28 Solid-liquid membrane separation tank 29a, Upper opening 29b Lower opening 29 Draft tube 30 Solid-liquid separation membrane module 31 Reaction tank 32 Water supply pump 33 Ultraviolet lamp 31a Tank bottom 31b Tank top plate 34 Ozone generator 35 Reaction processor 36 Expanded opening Section 37 Channel cross-sectional area expansion section 38 Circulating flow energy recovery device 39 Millibubble generator 40 Solenoid valve

Claims (7)

吸水管と送水管を循環ポンプに連通接続して、同一水域内の水を循環していて、前記吸水管の給水口を水面下の浅い水層に浸漬し、前記送水管の途中又は先端に、大気自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を連通接続すると共に、高水深層水と表層水との循環流を生成する循環流生成手段を配設することを特徴とする水質浄化装置。 A water absorption pipe and a water supply pipe are connected to a circulation pump to circulate water in the same water area, and a water supply port of the water absorption pipe is immersed in a shallow water layer below the surface of the water. The microbubble generator or nanobubble generator equipped with the atmospheric self-priming means is connected in communication, and the circulating flow generating means for generating the circulating flow of the high-water deep water and the surface water is disposed. Water purification equipment. 槽底部と水面部を開口した仕切板を配設して上昇流部と下降流部を有する曝気槽において、前記上昇流部の水面下の浅い水層位置に流入口を浸漬していると共に吸水管を循環ポンプの吸込み側に連通接続し、前記循環ポンプの吐出側に連通接続した送水管の途中又は先端に、大気自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を連通接続して構成した吐出口を前記下降流部の水面下の浅い水層位置に下向きに配設して構成したマイクロバブル溶解送水手段又はナノバブル溶解送水手段と、前記上昇流部に配設して、該上昇流部と前記下降流部の循環流を生成する循環流生成手段を配設することを特徴とする請求項1記載の水質浄化装置。   In an aeration tank provided with a partition plate having an opening at the bottom of the tank and a water surface part and having an upflow part and a downflow part, the inlet is immersed in a shallow water layer position below the water surface of the upflow part and absorbs water. Connect the pipe to the suction side of the circulation pump and connect the microbubble generator or nanobubble generator equipped with atmospheric self-priming means to the middle or tip of the water supply pipe connected to the discharge side of the circulation pump. Disposed at the shallow water layer position below the water surface of the downward flow portion is a downwardly configured discharge port configured to be microbubble dissolution water supply means or nanobubble dissolution water supply means, and disposed in the upflow portion, 2. The water purification apparatus according to claim 1, further comprising a circulating flow generating means for generating a circulating flow of the upflow portion and the downflow portion. 好気性反応槽内の処理水中に、固液分離膜を内装した下部開口部及び上部開口部を有するドラフトチューブを一台又は任意の複数台を配設し、前記ドラフトチューブ内であって、前記固液分離膜の下方に、ブロワー等から送気された空気を水面方向に噴気する散気装置を上段に配設し、下段には、循環ポンプに吸水管と送水管を配設した循環配管手段の前記送水管の途中又は先端に大気自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を配設して、前記散気装置からの比較的に大きな気泡と前記マイクロバブル発生装置又はナノバブル発生装置からのマイクロバブル又はナノバブルとを、前記固液分離膜面に沿って上昇すると共に循環流を形成する循環流生成手段を配設したことを特徴とする請求項2記載の水質浄化装置。 In the treated water in the aerobic reaction tank, one or any plurality of draft tubes having a lower opening and an upper opening with a solid-liquid separation membrane installed therein are disposed, and the inside of the draft tube, Below the solid-liquid separation membrane, an air diffuser that blows air sent from a blower or the like in the direction of the water surface is arranged in the upper stage, and in the lower stage is a circulation pipe in which a water absorption pipe and a water supply pipe are arranged in a circulation pump A relatively large bubble from the air diffuser and the microbubble generator by disposing a microbubble generator or nanobubble generator equipped with atmospheric self-priming means in the middle or at the tip of the water pipe of the means 3. The water purification method according to claim 2, further comprising circulating flow generation means for raising microbubbles or nanobubbles from the nanobubble generating device along the surface of the solid-liquid separation membrane and forming a circulating flow. Location. 紫外線ランプを配設した、横断面に垂直下方向流速が略等速分布となるように、横断面積を極力小さくした細長い形状をした反応槽の槽底の水中に流入口を配設すると共に吸水管を循環ポンプの吸込み側に連通接続し、前記循環ポンプの吐出側に連通接続した送水管の途中又は先端にオゾン自吸手段を装備しているマイクロバブル発生装置又はナノバブル発生装置を連通接続して構成したマイクロバブル溶解送水手段又はナノバブル溶解送水手段の吐出口を前記反応槽の水面下であって浅い水深位置に下方に向けて配設して循環流を形成することを特徴とする請求項2記載の水質浄化装置。   An ultraviolet ray lamp is provided, and an inlet is provided in the bottom water of the reaction tank having a long and narrow cross-sectional area so that the vertical downward flow velocity in the cross section has a substantially uniform distribution, and water absorption Connect the pipe to the suction side of the circulation pump, and connect the microbubble generator or nanobubble generator equipped with ozone self-priming means in the middle or at the tip of the water pipe connected to the discharge side of the circulation pump. The discharge port of the microbubble dissolution water supply means or nanobubble dissolution water supply means configured as described above is disposed below the water surface of the reaction tank and directed downward at a shallow water depth to form a circulating flow. 2. The water purification apparatus according to 2. 循環流の流線収束手段で循環流エネルギーを収束する速度エネルギー増大手段と前記速度エネルギーを圧力エネルギーに変換する圧力エネルギー増大手段を循環ポンプの吸水口に連通接続することを特徴とする請求項1,2、3又は4記載の水質浄化装置。 The speed energy increasing means for converging the circulating flow energy by the streamline converging means of the circulating flow and the pressure energy increasing means for converting the speed energy into pressure energy are connected in communication with the water inlet of the circulation pump. , 2, 3 or 4. Water purification device. 大気又はオゾン自吸手段を装備したマイクロバブル発生装置又はナノバブル発生装置において、前記大気又はオゾン自吸手段にブロワー又はコンプレッサー等の送気手段を連通接続したことを特徴とする前記請求項1,2、3、4又は5記載の水質浄化装置。 The microbubble generator or nanobubble generator equipped with air or ozone self-priming means, wherein the air or ozone self-priming means is connected to air supply means such as a blower or a compressor. The water purification apparatus according to 3, 4, or 5. 有機性廃水好気性反応槽の水を循環している循環ポンプの吸込み側に吸水口を連通接続し、前記循環ポンプの吐出側に連通接続した送水管の途中又は先端に、大気自吸手段を装備しているミリバブル発生装置又はセンチバブル発生装置を連通接続して構成した気液二相流送出手段の吐出口を接触材又は固液分離膜の下方水深位置に配設して、接触材又は固液分離膜を洗浄することを特徴とする水質浄化装置。 A water inlet is connected to the suction side of the circulation pump that circulates water in the organic wastewater aerobic reaction tank, and an air self-priming means is provided in the middle or at the tip of the water pipe connected to the discharge side of the circulation pump. Dispose the discharge port of the gas-liquid two-phase flow delivery means constructed by communicating and connecting the equipped millibubble generator or centimeter bubble generator at the lower water depth position of the contact material or solid-liquid separation membrane, A water purification apparatus for cleaning a solid-liquid separation membrane.
JP2009154551A 2009-03-04 2009-06-30 Water purification apparatus Withdrawn JP2011011098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154551A JP2011011098A (en) 2009-03-04 2009-06-30 Water purification apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009050528 2009-03-04
JP2009099756 2009-04-16
JP2009107653 2009-04-27
JP2009134844 2009-06-04
JP2009154551A JP2011011098A (en) 2009-03-04 2009-06-30 Water purification apparatus

Publications (1)

Publication Number Publication Date
JP2011011098A true JP2011011098A (en) 2011-01-20

Family

ID=43590491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154551A Withdrawn JP2011011098A (en) 2009-03-04 2009-06-30 Water purification apparatus

Country Status (1)

Country Link
JP (1) JP2011011098A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128133B1 (en) * 2011-10-31 2012-03-22 김종원 System for water purification and anti-green algae using underground water
KR101262650B1 (en) 2011-07-01 2013-05-15 (주)한라산업개발 Wastewater treatment system with diffuser and scoria filter overflower
JP2013158758A (en) * 2012-02-08 2013-08-19 Panasonic Corp Gas dissolution device
CN104496046A (en) * 2014-12-18 2015-04-08 扬州大学 Submersed dry-chamber solar micro-nano bubble aeration machine
JP2015139432A (en) * 2014-01-30 2015-08-03 国立大学法人山形大学 Polychlorobiphenyl decomposing composition and its use for rendering polychlorobiphenyl harmless
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
JP2016158616A (en) * 2015-03-02 2016-09-05 昇 田中 Red tide countermeasure device
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
WO2017150721A1 (en) * 2016-03-04 2017-09-08 旭化成株式会社 Module for gas separation, and gas separation method
JP6280273B1 (en) * 2017-07-14 2018-02-14 シンユー技研株式会社 Sewage purification equipment
KR101929755B1 (en) * 2017-04-28 2018-12-17 안양대학교 산학협력단 water-bloom removal system
JP2019018194A (en) * 2017-12-01 2019-02-07 シンユー技研株式会社 Sewage cleaning device
WO2021014630A1 (en) * 2019-07-25 2021-01-28 エンバイロ・ビジョン株式会社 Waste water treatment device and waste water treatment method
CN112794468A (en) * 2021-04-12 2021-05-14 亿昇(天津)科技有限公司 Aeration system and aeration method
CN113735276A (en) * 2020-05-27 2021-12-03 株式会社洁世生物 Method for purifying water quality of lake and marsh by using nano and micro bubbles
CN115477380A (en) * 2022-11-15 2022-12-16 山东信科环化有限责任公司 Sulfur-containing sewage purification treatment device and treatment method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262650B1 (en) 2011-07-01 2013-05-15 (주)한라산업개발 Wastewater treatment system with diffuser and scoria filter overflower
KR101128133B1 (en) * 2011-10-31 2012-03-22 김종원 System for water purification and anti-green algae using underground water
JP2013158758A (en) * 2012-02-08 2013-08-19 Panasonic Corp Gas dissolution device
JP2015139432A (en) * 2014-01-30 2015-08-03 国立大学法人山形大学 Polychlorobiphenyl decomposing composition and its use for rendering polychlorobiphenyl harmless
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
CN104496046A (en) * 2014-12-18 2015-04-08 扬州大学 Submersed dry-chamber solar micro-nano bubble aeration machine
JP2016158616A (en) * 2015-03-02 2016-09-05 昇 田中 Red tide countermeasure device
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
JPWO2017150721A1 (en) * 2016-03-04 2018-10-11 旭化成株式会社 Gas separation module and gas separation method
WO2017150721A1 (en) * 2016-03-04 2017-09-08 旭化成株式会社 Module for gas separation, and gas separation method
US11077405B2 (en) 2016-03-04 2021-08-03 Asahi Kasei Kabushiki Kaisha Module for gas separation, and gas separation method
KR101929755B1 (en) * 2017-04-28 2018-12-17 안양대학교 산학협력단 water-bloom removal system
JP6280273B1 (en) * 2017-07-14 2018-02-14 シンユー技研株式会社 Sewage purification equipment
JP2019018136A (en) * 2017-07-14 2019-02-07 シンユー技研株式会社 Sewage cleaning device
JP2019018194A (en) * 2017-12-01 2019-02-07 シンユー技研株式会社 Sewage cleaning device
JPWO2021014630A1 (en) * 2019-07-25 2021-01-28
WO2021014630A1 (en) * 2019-07-25 2021-01-28 エンバイロ・ビジョン株式会社 Waste water treatment device and waste water treatment method
JP7406265B2 (en) 2019-07-25 2023-12-27 エンバイロ・ビジョン株式会社 wastewater treatment equipment
CN113735276A (en) * 2020-05-27 2021-12-03 株式会社洁世生物 Method for purifying water quality of lake and marsh by using nano and micro bubbles
JP2021186797A (en) * 2020-05-27 2021-12-13 ジーエスエル バイオ カンパニー リミテッドGSL BIO Co., Ltd. Water purification method for lakes and marshes using nano and micro bubbles
JP7079300B2 (en) 2020-05-27 2022-06-01 ジーエスエル バイオ カンパニー リミテッド Water quality purification method for lakes and marshes using nano and micro bubbles
CN112794468A (en) * 2021-04-12 2021-05-14 亿昇(天津)科技有限公司 Aeration system and aeration method
CN115477380A (en) * 2022-11-15 2022-12-16 山东信科环化有限责任公司 Sulfur-containing sewage purification treatment device and treatment method
CN115477380B (en) * 2022-11-15 2023-01-24 山东信科环化有限责任公司 Sulfur-containing sewage purification treatment device and treatment method

Similar Documents

Publication Publication Date Title
JP2011011098A (en) Water purification apparatus
JP2009202038A (en) Floating body type water purifier by water circulation, filtration, and aeration using photovoltaic power generation
KR100512089B1 (en) High speed and high efficiency aerator
WO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilizing system
CN103043798B (en) Floating island system for remediation of eutrophic polluted water and water remediation method
WO2005121031A1 (en) Aeration method, aeration apparatus and aeration system
CN104876375A (en) Deep oxidization water treatment method and deep oxidization water treatment device
JP5193855B2 (en) Water quality improvement device and water quality improvement device
KR102038132B1 (en) Aerator using eddy flow
KR102063317B1 (en) Air dispersion apparatus using water jet
WO2015008346A1 (en) Water treatment device
JP4949873B2 (en) Biological reaction method and biological reaction apparatus
KR100762885B1 (en) High speed aerator of slim type having multiple mixing stages
JP2002059186A (en) Water-jet type fine bubble generator
JP2007222810A (en) Waste gas and wastewater treatment method and apparatus
KR20110058989A (en) Hybrid aerator system
KR100882818B1 (en) An aeration apparatus
CN207227211U (en) A kind of micro-nano bubble processing unit of the chlorine dioxide of dyeing waste water
KR101980335B1 (en) Total layer circulation injection system for water purifying
JP2008093607A (en) Organic waste water treatment device and organic waste water treatment method
JP2008200604A (en) Bubble treatment device and water treatment apparatus
WO2016035079A1 (en) Airlift oxygenating system
JPH07108295A (en) Pressurized aeration treatment device for waste water
US10683221B2 (en) Gas injection and recycling apparatus and methods
PT103366A (en) JET CIRCUIT EFFLUENT TREATMENT SYSTEM

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904