JP6143607B2 - フレーム同期検出装置及び受信装置 - Google Patents

フレーム同期検出装置及び受信装置 Download PDF

Info

Publication number
JP6143607B2
JP6143607B2 JP2013170866A JP2013170866A JP6143607B2 JP 6143607 B2 JP6143607 B2 JP 6143607B2 JP 2013170866 A JP2013170866 A JP 2013170866A JP 2013170866 A JP2013170866 A JP 2013170866A JP 6143607 B2 JP6143607 B2 JP 6143607B2
Authority
JP
Japan
Prior art keywords
frame
signal
autocorrelation
delay
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013170866A
Other languages
English (en)
Other versions
JP2014090404A (ja
Inventor
行広 門田
行広 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013170866A priority Critical patent/JP6143607B2/ja
Priority to CN201310454736.1A priority patent/CN103716874B/zh
Publication of JP2014090404A publication Critical patent/JP2014090404A/ja
Application granted granted Critical
Publication of JP6143607B2 publication Critical patent/JP6143607B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、時間的に連続する複数のフレームで構成される受信信号における各フレームを検出するフレーム同期技術に関する。
近年、デジタル信号を伝送するための変調方式として、周波数の異なる複数の副搬送波(以下、サブキャリアとも呼ぶ。)を用いて情報を伝送するマルチキャリア方式、及び、単一の搬送波のみを用いて情報を伝送するシングルキャリア方式が採用されている。
マルチキャリア方式の例としては、伝送帯域において互いに直交関係にある複数のサブキャリアを利用する直交周波数分割多重化(OFDM:Orthogonal Frequency Division Multiplexing)方式が挙げられる。OFDM方式は、各サブキャリアにデータシンボルを割り当て、当該データシンボルでサブキャリアの振幅及び位相の一方または双方をデジタル変調し、デジタル変調後の複数のサブキャリアを多重化する方式である。デジタル変調方式としては、たとえば、PSK(Phase Shift Keying)もしくはQAM(Quadrature Amplitude Modulation)が使用されている。OFDM方式で生成されるマルチキャリア信号は、OFDMシンボルと呼ばれる単位で伝送される。たとえば、日本及び欧州のデジタル放送規格では、各OFDMシンボルは、ガードインターバル部と有効シンボルとで構成されており、ガードインターバル部は、有効シンボルの末尾部分の信号と同一の冗長信号(cyclic prefix)からなる。
放送及び通信の各分野では、上記したマルチキャリア方式及びシングルキャリア方式の一方または双方を用いて生成された信号群をフレーム単位で伝送することが行われている。また、時間的に連続する複数のフレームを包含するさらに大きなフレーム(以下、スーパーフレームと呼ぶ。)を用いて情報を伝送することも行われている。各フレームには、疑似ランダムノイズ系列(PN系列:Pseudo−random Noise sequence)などの既知信号が挿入されており、受信機は、受信された既知信号を識別することで、フレームのタイミング同期の確立と伝送路推定を実行することが可能である。
中国(中華人民共和国)で採用されている地上デジタル放送規格であるDTMB(Digital Terrestrial Multimedia Broadcasting)規格では、前述のスーパーフレームが採用されている。各スーパーフレームは、時間的に連続する複数の信号フレームからなる。各信号フレームは、既知パターンのPN系列を含むヘッダ部と、伝送すべきデータ及びシステム情報を含むボディ部とで構成される。PN系列は、所定の生成多項式に従って動作する線形フィードバックレジスタを用いて生成することができる。
また、DTMB規格では、シングルキャリア方式とマルチキャリア方式の双方がサポートされており、マルチキャリア方式で情報が伝送される場合、ボディ部は、複数のサブキャリアからなるOFDMシンボルを有し、シングルキャリア方式で情報が伝送される場合には、ボディ部は、一連のシンボル信号を有する。
また、DTMB規格は、ヘッダモード1,ヘッダモード2及びヘッダモード3という3種類の伝送モードを規定する。ヘッダ部の長さは伝送モード毎に異なり、PN系列の生成に使用される生成多項式も伝送モード毎に異なる。ヘッダモード1及びヘッダモード3では、PN系列を生成する線形フィードバックシフトレジスタに与えるべき初期値が信号フレーム単位で切り替えられるため、PN系列のパターンは、信号フレーム単位で変化する。ヘッダモード2に関しては、線形フィードバックシフトレジスタに与えるべき初期値は固定値であるため、PN系列のパターンは変化しない。
さらに、DTMB規格では、伝送モードに応じた所定個数の信号フレームで各スーパーフレームが構成される。1つのスーパーフレームの時間長は、伝送モードに依らず、125ms(ミリ秒)に固定されており、ヘッダ部におけるPN系列のパターンは、スーパーフレーム単位で周期的に繰り返される。
受信機は、信号フレームを通じて伝送された変調信号を誤り無く復調するために、スーパーフレームとの同期を確立してスーパーフレーム内の信号フレームを正確に識別する必要がある。特開2010−206511号公報(特許文献1)には、DTMB放送信号を受信し、その受信信号に基づいてフレーム番号(信号フレームの番号)を検出するフレーム番号検出装置が開示されている。このフレーム番号検出装置は、フレームヘッダ(ヘッダ部)内のPN系列の一部または全部と一致する同期系列が予め記憶されている系列記憶部と、受信信号と前記同期系列とのパターンマッチングを実行して相互相関結果を得るパターンマッチング部と、相互相関結果に基づいてシンボル番号を検出するタイミング検出部と、当該検出されたシンボル番号を用いてフレーム番号を検出するフレーム番号取得部とを備えるものである。
特開2010−206511号公報(段落0014〜0015、図1)
上記の通り、特許文献1に開示されているフレーム番号検出装置は、受信信号中のPN系列と同期系列との相互相関を演算し、この演算結果を利用してフレーム番号を検出している。しかしながら、たとえば、受信信号を中間周波数帯域の信号に変換する際に、その変換誤差によりキャリア周波数オフセットが発生し得る。この場合にキャリア周波数オフセットの影響を受けて受信信号中のPN系列が大きく歪むと、特許文献1に開示されているフレーム番号検出装置は、相互相関結果を正確に算出することができず、フレーム番号の検出に失敗する。
また、受信機で使用される局部発振周波数の誤差もしくはドップラー効果に起因してキャリア周波数オフセットが発生する場合がある。この場合に受信信号中のPN系列が大きく歪むと、フレーム番号を正確に検出することができない。
上記に鑑みて本発明の目的は、受信信号がキャリア周波数オフセットの影響を受けて歪む場合でも信号フレームを正確に検出し得るフレーム同期検出装置及び受信装置を提供することである。
本発明の一態様によるフレーム同期検出装置は、時間的に連続する複数のフレームを包含する一連のスーパーフレームで構成される受信信号を入力とし、前記複数のフレームの各々に含まれる既知信号系列に基づいて前記複数のフレーム各々を検出するフレーム同期検出装置であって、前記受信信号を1フレーム長を超える第1の遅延量だけ遅延させて第1の遅延信号を出力する第1の遅延部と、前記受信信号に含まれる既知信号系列と前記第1の遅延信号に含まれる遅延既知信号系列との間の自己相関を演算して前記複数のフレームにそれぞれ対応する複数の自己相関値を生成する自己相関演算部と、前記複数の自己相関値の中から前記スーパーフレームの時間長におけるピーク値を検出し、前記ピーク値に対応する当該フレームのフレーム番号を特定するフレーム番号検出部と、前記受信信号を前記第1の遅延量とは異なり1フレーム長を超える遅延量だけ遅延させて副遅延信号を出力する副遅延部と、前記受信信号に含まれる既知信号系列と前記副遅延信号に含まれる遅延既知信号系列との間の自己相関を演算して前記複数のフレームにそれぞれ対応する複数の副自己相関値を生成する副自己相関演算部と、を備え、前記フレーム番号検出部は、前記複数の自己相関値及び前記複数の副自己相関値の中から前記スーパーフレームの時間長におけるピーク値を検出し、前記ピーク値に対応する当該フレームのフレーム番号を特定することを特徴とする。
本発明の他の一態様による受信装置は、時間的に連続する複数のフレームを包含する一連のスーパーフレームで構成される信号を受信する受信装置であって、前記複数のフレームの各々に含まれる既知信号系列に基づいて前記複数のフレーム各々を検出するフレーム同期検出部と、前記フレーム同期検出部による識別結果に基づいて伝送路応答を推定する伝送路応答推定部と、当該推定された伝送路応答を用いて前記受信信号の歪みを補正する等化処理部とを備え、前記フレーム同期検出部は、前記受信信号を1フレーム長を超える第1の遅延量だけ遅延させて第1の遅延信号を出力する第1の遅延部と、前記受信信号に含まれる既知信号系列と前記第1の遅延信号に含まれる遅延既知信号系列との間の自己相関を演算して前記複数のフレームにそれぞれ対応する複数の自己相関値を生成する自己相関演算部と、前記複数の自己相関値の中から前記スーパーフレームの時間長におけるピーク値を検出し、前記ピーク値に対応する当該フレームのフレーム番号を特定するフレーム番号検出部と、前記受信信号を前記第1の遅延量とは異なり1フレーム長を超える遅延量だけ遅延させて副遅延信号を出力する副遅延部と、前記受信信号に含まれる既知信号系列と前記副遅延信号に含まれる遅延既知信号系列との間の自己相関を演算して前記複数のフレームにそれぞれ対応する複数の副自己相関値を生成する副自己相関演算部とを有し、前記フレーム番号検出部は、前記複数の自己相関値及び前記複数の副自己相関値の中から前記スーパーフレームの時間長におけるピーク値を検出し、前記ピーク値に対応する当該フレームのフレーム番号を特定することを特徴とする。
本発明によれば、フレーム同期検出装置及びフレーム同期検出部は、受信信号と遅延信号との自己相関結果を用いてフレーム番号を特定しているので、たとえキャリア周波数オフセットに起因する位相回転量が受信信号に付加されても、その位相回転量をキャンセルすることができる。したがって、正確なフレーム番号情報を生成し、フレーム同期を確立することができる。また、特許文献1に開示されているような相互相関を実行する場合と比べると、自己相関の演算量は少ないという利点がある。
本発明に係る実施の形態1の受信装置の構成例を概略的に示す図である。 (A)〜(C)は、実施の形態1に係るベースバンド受信信号の伝送フォーマットを概略的に示す図である。 (A),(B)は、DTMB規格のヘッダモード1及びヘッダモード3に対応する信号フレームの構成を概略的に示す図である。 ヘッダモード1でPN系列を生成する線形フィードバックレジスタの概略構成を示す図である。 ヘッダモード3でPN系列を生成する線形フィードバックレジスタの概略構成を示す図である。 図4に示したヘッダモード1用の線形フィードバックレジスタに与えられるべき初期値とフレーム番号との対応関係を示すテーブルの図である。 図5に示したヘッダモード3用の線形フィードバックレジスタに与えられるべき初期値とフレーム番号との対応関係を示すテーブルの図である。 実施の形態1に係るフレーム同期検出部の概略構成を示す機能ブロック図である。 実施の形態1の自己相関演算部の概略構成を示す機能ブロック図である。 (A),(B)は、ヘッダモード1の場合のベースバンド受信信号r(t)と遅延信号r(t−T2)との間の位置関係を概略的に示す図であり、(C)は、ヘッダモード1の場合の自己相関特性の一例を概略的に示すグラフである。 実施の形態1のフレームタイミング検出部の概略構成を示す機能ブロック図である。 本発明に係る実施の形態2のフレーム同期検出部の構成を概略的に示す機能ブロック図である。 (A)〜(G)は、非遅延信号r(t)と遅延信号r(t−T3),r(t−T4),r(t−T5)と自己相関特性とを概略的に示す図である。 本発明に係る実施の形態3のフレーム同期検出部の構成を概略的に示す機能ブロック図である。 本発明に係る実施の形態4のフレーム同期検出部を構成を概略的に示す機能ブロック図である。
以下、本発明に係る種々の実施の形態について図面を参照しつつ説明する。なお、すべての図面において、同様な構成要素には同一符号が付され、その詳細な説明は重複しないように適宜省略される。
実施の形態1.
図1は、本発明に係る実施の形態1の受信装置1の構成例を概略的に示す図である。図1に示されるように、この受信装置1は、受信アンテナ素子Rx、アナログ信号処理部11、A/D変換器(ADC)12、直交復調部13、局部発振器14、SRRC(Squared−Root Raised Cosine)フィルタ15、PN除去部16、等化処理部17、フレームボディ処理部21、伝送路応答推定部22、局部PN系列生成部24、乗算器25及びフレーム同期検出装置として機能するフレーム同期検出部26を備えている。
アナログ信号処理部11は、受信アンテナ素子Rxを介して無線信号を受信する。アナログ信号処理部11は、その無線信号に対して信号の振幅レベルの調整と周波数変換と帯域制限とを施して、その結果得られた中間周波数帯域のアナログ受信信号をADC12へ供給する。ここで、信号の振幅レベルは、増幅器を用いて、設定された振幅レベルとなるように調整される。また、周波数変換では、ミキサーを用いて無線信号が所定の中間周波数帯域の信号に変換される。帯域制限は、バンドパスフィルタを用いて所望の帯域の信号以外の周波数成分を抑圧するものである。アナログ信号処理部11による周波数変換の際に変換誤差が生じると、キャリア周波数オフセットが発生し得る。キャリア周波数オフセットが発生すると、本来存在しない位相回転成分がアナログ受信信号に付加されて当該アナログ受信信号の波形が歪むこととなる。
ADC12は、アナログ受信信号を所定のサンプリング周波数でサンプリングすることで当該アナログ受信信号をデジタル受信信号に変換する。直交復調部13は、局部発振器14から供給された発振信号を用いて搬送波帯域のデジタル受信信号を直交復調して基底帯域のベースバンド受信信号を生成する。ここで、ベースバンド受信信号は、同相成分(In−phase component)と直交成分(Quadrature component)とからなる複素信号である。なお、当該複素信号で表される複素数をI+jQ(jは、虚数単位)と表すとき、同相成分は、当該複素数の実部Iを表す信号であり、直交成分は、当該複素数の虚部Qを表す信号である。
局部発振器14は、局部発振周波数fを有する発振信号を直交復調部13に供給する。たとえば、数値制御発振器(NCO:Numerically Controlled Oscillator)を用いて局部発振器14を構成することができる。ここで、局部発振周波数fに誤差が存在すると、キャリア周波数オフセットが発生し得る。このキャリア周波数オフセットが発生すると、本来存在しない位相回転成分がベースバンド受信信号に付加されて当該ベースバンド受信信号の波形が歪むこととなる。
そして、SRRCフィルタ15は、直交復調部13の出力をフィルタリングしてベースバンド受信信号r(t)(tは時間)を出力する。SRRCフィルタ15は、主としてシングルキャリア信号のシンボル間干渉を防ぐために設けられたルートコサインロールオフフィルタである。
図2(A)〜(C)は、本実施の形態に係るベースバンド受信信号r(t)の伝送フォーマットを概略的に示す図である。図2(A)に示されるように、伝送信号は、伝送モードに応じたN個(Nは正整数)の信号フレーム51を包含するスーパーフレーム50の形式で伝送される。各信号フレーム51は、図2(B)に示されるようにヘッダ部(フレームヘッダ)とこれに後続するボディ部(フレームボディ)とで構成されている。ヘッダ部は、シングルキャリア方式で伝送される既知信号系列からなり、ボディ部は、シングルキャリア方式及びマルチキャリア方式のうちのいずれか一方の方式で伝送される信号系列からなる。本実施の形態に係るボディ部は、マルチキャリア方式の一種であるOFDM方式で伝送される信号系列からなるため、本実施の形態の受信装置1は、OFDM方式に対応した構成を有している。
図2(B)に示されるように、ヘッダ部は、先頭部分にプレアンブル51aを含み、後端部分にポストアンブル51bを含む。図2(B)の矢印で示されるように、プレアンブル51aは、ヘッダ部の後方部分のコピーからなる冗長信号系列であり、ポストアンブル51bは、ヘッダ部の前方部分のコピーからなる冗長信号系列である。よって、これらプレアンブル51a及びポストアンブル51bの各々は、当該ヘッダ部の一部と同じ冗長信号系列をサイクリックプレフィクス(cyclic prefix)として含む。後述するようにこれらプレアンブル51a及びポストアンブル51bは、フレーム同期処理に使用される。
さらに、図2(C)に示されるように、スーパーフレーム50に含まれるN個の信号フレーム51にはそれぞれ「0」から始まるフレーム番号が割り当てられている。これらフレーム番号は、後述する伝送路応答の推定と局部PN系列の供給の際に使用される。
図2(A)〜(C)に示した伝送フォーマットは、中華人民共和国で採用されているDTMB(Digital Terrestrial Multimedia Broadcasting)規格に準拠したものである。DTMB規格では、ヘッダモード1,ヘッダモード2及びヘッダモード3という3種類の伝送モードが規定されている。ヘッダモード1,ヘッダモード2及びヘッダモード3の全てにおいて、ボディ部の長さは、約500μ秒である。一方、ヘッダ部の長さは、ヘッダモード1で約55.56μ秒であり、ヘッダモード2で約78.70μ秒であり、ヘッダモード3では約125.00μ秒である。
図3(A),(B)は、ヘッダモード1及びヘッダモード3に対応する信号フレーム51の構成を概略的に示す図である。ヘッダモード1では、図3(A)に示されるようにヘッダ部は、420シンボルのPN系列を格納し、当該ヘッダ部の後端部分(165シンボル)と前端部分(165シンボル)とは同じ信号系列からなる。一方、ヘッダモード3では、図3(B)に示されるようにヘッダ部は、945シンボルのPN系列を格納し、当該ヘッダ部の後端部分(434シンボル)と前端部分(434シンボル)とは同じ信号系列からなる。
図4は、ヘッダモード1でPN系列を生成するフィードバックシフトレジスタとして機能する線形フィードバックレジスタの概略構成を示す図であり、図5は、ヘッダモード3でPN系列を生成するフィードバックシフトレジスタとして機能する線形フィードバックレジスタの概略構成を示す図である。ヘッダモード1用の線形フィードバックレジスタは、図4に示されるように、直列接続された8個の遅延素子D1〜D8からなるシフトレジスタと、排他的論理和演算子71,72,73とからなる。d1〜d8は、遅延素子D1〜D8にそれぞれ与えられるべき8ビットの初期値である。この線形フィードバックレジスタは、次の生成多項式G(x)に従って動作する。
(x)=1+x+x+x+x
一方、ヘッダモード3用の線形フィードバックレジスタは、図5に示されるように、直列接続された9個の遅延素子D1〜D9からなるシフトレジスタと、排他的論理和演算子74,75,76とからなる。d1〜d9は、遅延素子D1〜D9にそれぞれ与えられる9ビットの初期値である。この線形フィードバックレジスタは、次の生成多項式G(x)に従って動作する。
(x)=x+x+x+x
図6は、図4に示したヘッダモード1用の線形フィードバックレジスタに与えられるべき初期値とフレーム番号との対応関係を示すテーブルであり、図7は、図5に示したヘッダモード3用の線形フィードバックレジスタに与えられるべき初期値とフレーム番号との対応関係を示すテーブルである。送信機は、図6及び図7に示したテーブルに従ってPN系列を生成する。
図1を参照すると、PN除去部16は、乗算器25で生成されたPN系列のレプリカ信号(伝送路で歪みを受けたPN系列の推定値)を用いて、ベースバンド受信信号r(t)からヘッダ部のPN系列を除去する。等化処理部17は、伝送路応答推定部22で推定された時間領域の伝送路応答(チャネルインパルス応答)heを用いて、PN除去部16の出力の歪み(位相回転量や振幅変化)を適正に補正する機能を有している。
伝送路応答推定部22は、ベースバンド受信信号r(t)に基づき、フレーム同期検出部26から供給されたフレーム番号情報Fnとフレームタイミング信号Ftと用いて伝送路応答を推定する。フレームタイミング信号Ftは、一連の信号フレーム51との同期タイミングの検出結果を表す信号である。図6及び図7に示されるように、信号フレーム単位でPN系列の初期値が変化し、これにより信号フレーム単位でヘッダ部のPN系列も変化する。このため、伝送路応答の推定精度の向上のためには、正確なフレーム番号と精度の高いフレームタイミング信号Ftとが必要となる。
局部PN系列生成部24は、ベースバンド受信信号r(t)の信号フレームと同期して動作し、フレーム番号情報Fnに従って当該信号フレーム内のPN系列に対応する局部PN系列を乗算器25に供給する。乗算器25は、局部PN系列に伝送路応答の推定値heを乗算することでPN系列のレプリカ信号を生成し、PN除去部16に供給することができる。
図1に示されるように、等化処理部17は、FFT18,19及び等化部20を有する。FFT18は、PN除去部16の出力に高速フーリエ変換を施して周波数領域信号を生成し、等化部20に供給する。一方、FFT19は、伝送路応答の推定値heの系列に高速フーリエ変換を施して周波数領域の伝送路応答の推定値Heを生成し、等化部20に供給する。等化部20は、伝送路応答の推定値Heを用いてFFT18の出力を周波数領域で等化する。
フレームボディ処理部21は、等化処理部17の出力にシンボル復調、デインターリービング及び誤り訂正などを施してデータ信号系列を出力する。
なお、本実施の形態に係るボディ部は、OFDM方式で伝送されたOFDM信号系列で構成されるため、本実施の形態の等化処理部17は周波数軸等化を実行しているが、これに限定されるものではない。ボディ部がシングルキャリア方式で伝送された信号系列で構成される場合には、等化処理部17の構成をシングルキャリア方式に対応する構成(時間軸等化などを実行する構成)に変更すればよい。
次に、本実施の形態のフレーム同期検出部26の構成について説明する。
図8は、実施の形態1に係るフレーム同期検出部26の概略構成を示す機能ブロック図である。図8に示されるように、フレーム同期検出部26は、遅延部31,32、自己相関演算部33、フレームタイミング検出部34及びフレーム番号検出部35を有する。
図8に示される第1の遅延部31は、ベースバンド受信信号r(t)を1フレーム長(信号フレームの長さ)を超える遅延量T1だけ遅延させて遅延信号r(t−T1)を出力する。ここで、遅延量T1は、第1の遅延量ともいい、遅延信号r(t−T1)は、第1の遅延信号ともいう。遅延量T1は、ヘッダモード1の場合、4201シンボル分の時間長に設定され、ヘッダモード3の場合には、4726シンボル分の時間長に設定される。ヘッダモード1の場合、4201シンボルは、1つの信号フレーム51の総シンボル(=4200シンボル)にシンボルを1つ加えたものと等しい。また、ヘッダモード3の場合にも、4726シンボルは、1つの信号フレーム51の総シンボルにシンボルを1つ加えたものに等しい。
自己相関演算部33は、受信信号に含まれる既知信号系列と第1の遅延信号に含まれる遅延既知信号系列との間の自己相関を演算して、複数のフレームにそれぞれ対応する複数の自己相関値を生成する。
図9は、実施の形態1の自己相関演算部33の概略構成を示す機能ブロック図である。自己相関演算部33は、図9に示されるように、ベースバンド受信信号r(t)の複素共役r(t)を生成する複素共役部61と、複素乗算部62と、積分演算部63とを有する。
複素乗算部62は、受信信号に含まれる既知信号系列と副遅延信号に含まれる遅延既知信号系列の複素共役とを乗算して副乗算信号の系列を生成する。具体的には、複素乗算部62は、複素共役信号r(t)と遅延信号r(t−T1)とを乗算して乗算信号r(t)×r(t−T1)の系列を生成する。積分演算部63は、フレームタイミング信号Ftと同期して動作し、各信号フレームのヘッダ部の区間に亘って乗算信号r(t)×r(t−T1)の系列を積分して各信号フレームに対応する自己相関値AC1(k)(kは、フレーム番号)を算出することができる。
上記の通り、遅延量T1に相当する4201シンボルは、1つの信号フレーム51の総シンボル(=4200シンボル)に1つのシンボルを加えたものである。このとき、各スーパーフレーム50に対する自己相関値AC1(0)〜AC1(N−1)の中でピーク値は一度だけ発生する。ここで、ピーク値とは、自己相関値がある予め定められた値以上となるものである。具体的には、ヘッダモード1の場合、図6のテーブルによれば、フレーム番号224の初期値から生成されるPN系列と、フレーム番号223の初期値から生成されるPN系列とは、互いに同じビットパターン(=01100001・・・)のシンボル系列を含む。このため、自己相関演算部33は、フレーム番号223の信号フレームの遅延信号r(t−T1)と、フレーム番号224の信号フレームのベースバンド受信信号r(t)との自己相関を演算することで自己相関値AC1(224)をピーク値として出力することができる。このように、互いに隣接するフレーム番号223とフレーム番号224との初期値の組み合わせがピーク値AC1(224)を生成させる。図6のテーブルによれば、互いに隣接するフレーム番号の初期値の組み合わせのうちフレーム番号223とフレーム番号224との初期値の組み合わせ以外では、自己相関演算部33はピーク値を出力しない。したがって、自己相関演算部33は、各スーパーフレーム50に対してピーク値AC1(224)を一度だけ出力することができる。
一方、ヘッダモード3の場合、図7のテーブルによれば、フレーム番号0の初期値から生成されるPN系列と、フレーム番号199の初期値から生成されるPN系列とは、互いに同じビットパターン(=111101110・・・)のシンボル系列(ビット列)を含む。このため、自己相関演算部33は、フレーム番号199の信号フレームの遅延信号r(t−T1)と、フレーム番号0の信号フレームのベースバンド受信信号r(t)との自己相関を演算することで自己相関値AC(0)をピーク値として出力することができる。このように、互いに隣接するフレーム番号0とフレーム番号199との初期値の組み合わせがピーク値AC(0)を生成させる。図7のテーブルによれば、互いに隣接するフレーム番号の初期値の組み合わせのうちフレーム番号0とフレーム番号199との初期値の組み合わせ以外では、自己相関演算部33は、ピーク値を出力しない。したがって、ヘッダモード3の場合も、自己相関演算部33は、各スーパーフレーム50に対してピーク値AC(0)を一度だけ出力することができる。
図8を参照すると、フレーム番号検出部35は、フレームタイミング信号Ftと同期して動作し、ピーク値AC1(k)に対応するフレーム番号kを開始値として信号フレーム51のフレーム番号を生成することができる。具体的には、フレーム番号検出部35はカウンタを有し、フレームタイミング信号Ftが入力される度に、カウンタの計数値Nkをインクリメント(増加)させることでこの計数値Nkをフレーム番号として出力することができる。ここで、フレーム番号検出部35は、計数値Nkがスーパフレーム内の最終フレームのフレーム番号(ヘッダモード1の場合は、224)に達している場合には、フレームタイミング信号Ftの入力に応じて計数値Nkをインクリメントせずに、初期値(=0)にリセットする。なお、カウンタの計数値Nkをデクリメント(減少)させ、この計数値Nkを用いた所定の計算式によりフレーム番号を生成することもできる。このように、ピーク値判定ができた時点でフレーム番号を特定し、同期を確立できるため、画像や音声の再生をすばやく行うことができる。
一方、第2の遅延部32は、ベースバンド受信信号r(t)を1フレーム長未満の遅延量T2だけ遅延させて遅延信号r(t−T2)を出力する。ここで、遅延量T2は、第2の遅延量ともいい、遅延信号r(t−T2)は、第2の遅延信号ともいう。具体的には、遅延量T2は、ヘッダモード1の場合、255シンボル分の時間長に設定され、ヘッダモード3の場合には、511シンボル分の時間長に設定される。図10(A),(B)は、ヘッダモード1の場合のベースバンド受信信号r(t)と遅延信号r(t−T2)との間の位置関係を概略的に示す図である。
フレームタイミング検出部34は、受信信号に含まれる既知信号と第3乃至第5の遅延信号に含まれる遅延既知信号との間の自己相関を演算し、その自己相関の演算結果に基づいて複数のフレーム各々との同期タイミングを検出する。
図11は、本実施の形態のフレームタイミング検出部34の概略構成を示す機能ブロック図である。図10に示されるように、フレームタイミング検出部34は、複素共役部41、複素乗算部42、平均化部43及び同期タイミング判定部(ピーク位置検出部)44を有する。複素共役部41は、ベースバンド受信信号r(t)の複素共役r(t)を生成する。複素乗算部42は、複素共役信号r(t)と遅延信号r(t−T2)とを乗算して乗算信号r(t)×r(t−T2)の系列を生成する。平均化部43は、乗算信号r(t)×r(t−T2)の系列の移動平均を算出し、その結果得られた平均化信号を自己相関特性AC2(t)として出力する。図10(C)は、ヘッダモード1の場合の自己相関特性AC2(t)の一例を概略的に示すグラフである。図3(A)に示したように、ヘッダ部の前端部をなす165シンボルは、同じヘッダ部の後端部をなす165シンボルと同じビットパターンを有する。よって、図10(C)に示されるように、自己相関特性AC2(t)は、各信号フレーム毎にピークを形成することができる。
同期タイミング判定部44は、自己相関特性AC2(t)に現れるピークを検出し、この検出結果に応じて信号フレームとの同期タイミングを表すフレームタイミング信号Ftを生成し出力する。これにより、フレーム番号検出部35は、フレームタイミング信号Ftと同期して正確にフレーム番号を生成することができる。
以上に説明したように実施の形態1のフレーム同期検出部26は、ベースバンド受信信号r(t)と遅延信号r(t−T1),r(t−T2)との自己相関結果を用いてフレーム番号情報Fnとフレームタイミング信号Ftとを生成している。フレーム同期検出部26は、特許文献1に開示されるような相互相関を演算しないので、キャリア周波数オフセットに起因する位相回転量がベースバンド受信信号r(t)に付加されても、その位相回転量をキャンセルすることができる。したがって、正確なフレーム番号情報Fnを生成し、フレーム同期を確立することができる。
また、特許文献1に開示されているような相互相関を実行する場合と比べると、自己相関の演算量は比較的少ないという利点がある。よって、フレーム同期検出部26をハードウェアで構成する場合にその回路規模を小さくすることができる。
実施の形態2.
次に、本発明に係る実施の形態2について説明する。図12は、実施の形態2のフレーム同期検出部26Bの構成を概略的に示す機能ブロック図である。本実施の形態の受信装置の構成は、図1に示したフレーム同期検出部26に代えて図12のフレーム同期検出部26Bを有する点を除いて、図1に示した受信装置1の構成と同じである。
図12に示されるように、フレーム同期検出部26Bは、上記実施の形態1のフレーム同期検出部26と同様に第1の遅延部31、自己相関演算部33及びフレーム番号検出部35を有する。本実施の形態のフレーム同期検出部26Bは、さらに、信号遅延部36、信号合成部30及びフレームタイミング検出部34とを有している。
信号遅延部36は、ベースバンド受信信号r(t)を互いに異なる遅延量T3,T4,T5だけ遅延させて遅延信号r(t−T3),r(t−T4),r(t−T5)をそれぞれ出力する機能を有する。ここで、ヘッダモード1及びヘッダモード3の場合に、遅延量T4は、1フレーム長の2倍に設定され、遅延量T3は、1フレーム長の2倍よりも1シンボルだけ短い値に設定され、遅延量T5は、1フレーム長の2倍よりも1シンボルだけ長い値に設定される。なお、遅延量T3は、第3の遅延量ともいい、遅延量T4は、第4の遅延量ともいい、遅延量T5は、第5の遅延量ともいう。さらに、遅延信号r(t−T3)は、第3の遅延信号ともいい、遅延信号r(t−T4)は、第4の遅延信号ともいい、遅延信号r(t−T5)は、第5の遅延信号ともいう。
信号合成部30は、遅延信号r(t−T3),r(t−T4),r(t−T5)を合成して合成遅延信号Rd(t)を生成し、フレームタイミング検出部34に供給する。
そして、フレームタイミング検出部34は、上記実施の形態1のフレームタイミング検出部34(図11)と同様に、当該合成遅延信号Rd(t)とベースバンド受信信号r(t)との自己相関を演算し、その演算結果に基づいてフレームタイミング信号Ftを生成し出力する。これにより、フレーム番号検出部35は、フレームタイミング信号Ftと同期して正確にフレーム番号を生成することができる。
図13(A)〜(G)は、非遅延信号であるベースバンド受信信号r(t)と、遅延信号r(t−T3),r(t−T4),r(t−T5)と、自己相関特性との例を概略的に示す図である。図13(C)は、非遅延信号r(t)と遅延信号r(t−T3)との間の自己相関特性AC3(t)を示し、図13(E)は、非遅延信号r(t)と遅延信号r(t−T4)との間の自己相関特性AC4(t)を示し、図13(G)は、非遅延信号r(t)と遅延信号r(t−T5)との間の自己相関特性AC5(t)を示している。
ヘッダモード1及びヘッダモード3のいずれの場合でも、図6及び図7のテーブルによれば、0〜N−1の範囲内の任意整数のフレーム番号kに対して、当該フレーム番号kの初期値から生成されるPN系列(以下、フレーム番号kのPN系列と呼ぶ。)と、2フレーム長だけ遅延する遅延信号フレームのフレーム番号mod(N+k−2,N)のPN系列とは、長い区間に亘って互いに同じビットパターンのシンボル系列を含む。ここで、Nは、各スーパーフレームに含まれる信号フレームの総数であり、mod(x,N)は、零以上の整数xをNで除算したときに得られる剰余値である。たとえば、k=1に対してはmod(N+k−2,N)=mod(N−1,N)=N−1、k=2に対してはmod(N+k−2,N)=mod(N,N)=0、となる。
図6及び図7のテーブルによれば、フレーム番号kのPN系列中のビットパターンは、下記の(A1)〜(A3)のいずれか1つのビットパターンと時間軸上の長い区間に亘って一致するので、自己相関特性AC3(t),AC4(t),AC5(t)のいずれかが各信号フレーム毎に必ず1つのピークを形成する。
(A1)フレーム番号mod(N+k−2,N)のPN系列を−1シンボルだけ時間軸上でシフトさせて得られるビットパターン、
(A2)フレーム番号mod(N+k−2,N)のPN系列のビットパターン、
(A3)フレーム番号mod(N+k−2,N)のPN系列を+1シンボルだけ時間軸上でシフトさせて得られるビットパターン。
たとえば、図6によれば、フレーム番号0のPN系列(=101100001・・・・)は、フレーム番号223(=mod(225−2,225))のPN系列(=01100001・・・)を+1シンボルだけシフトさせて得られるビットパターンと長い区間に亘って一致する。また、フレーム番号1のPN系列(=01100001・・・)は、フレーム番号224(=mod(225+1−2,225))のPN系列(=10110000・・・)を−1シンボルだけシフトさせて得られるビットパターンと長い区間に亘って一致する。さらに、フレーム番号113のPN系列(=10011010・・・・)は、フレーム番号111(=mod(225+113−2,225))のPN系列(=10011010・・・)と完全に一致する。
よって、ヘッダモード1及びヘッダモード3のいずれの場合でも、フレーム番号kの信号フレームのヘッダ部と、下記(B1)〜(B3)の信号フレームのヘッダ部との自己相関特性AC3(t),AC4(t),AC5(t)のいずれかが、各信号フレーム毎に必ず1つのピークを形成することとなる。
(B1)フレーム番号kの信号フレームを、2フレーム長よりも1シンボル長だけ短い遅延量T3で遅延して得られる遅延信号フレーム、
(B2)フレーム番号kの信号フレームを、2フレーム長の遅延量T4で遅延して得られる遅延信号フレーム、
(B3)フレーム番号kの信号フレームを、2フレーム長よりも1シンボル長だけ長い遅延量T5で遅延して得られる遅延信号フレーム。
以上より、各信号フレーム毎に、合成遅延信号Rd(t)とヘッダ部のPN系列との大部分のビットパターンが一致するタイミングが生じる。したがって、フレームタイミング検出部34は、合成遅延信号Rd(t)とベースバンド受信信号r(t)との自己相関特性を演算し、その演算結果に基づいて各信号フレーム毎にフレームタイミング信号Ftを出力することができる。
以上に説明したように実施の形態2のフレーム同期検出部26Bは、ベースバンド受信信号r(t)と合成遅延信号Rd(t)との自己相関結果を用いてフレーム番号情報Fnとフレームタイミング信号Ftとを生成する。フレーム同期検出部26Bは、特許文献1に開示されるような相互相関を演算しないので、キャリア周波数オフセットに起因する位相回転量がベースバンド受信信号r(t)に付加されても、その位相回転量をキャンセルすることができる。したがって、正確なフレーム番号情報Fnを生成し、フレーム同期を確立することができる。
特に、本実施の形態は、上記実施の形態1と比べて、ベースバンド受信信号r(t)と合成遅延信号Rd(t)との間でPN系列が一致する区間は、長くなる。そのため、ノイズの多い伝送路やマルチパスの影響を受けた伝送路に対しても、より正確にフレーム番号情報Fnを生成し、フレームタイミング信号Ftを出力することができる。
また、特許文献1に開示されているような相互相関を実行する場合と比べると、自己相関の演算量は比較的少ないという利点がある。よって、フレーム同期検出部26をハードウェアで構成する場合にその回路規模を小さくすることができる。
実施の形態3.
次に、本発明に係る実施の形態3について説明する。図14は、実施の形態3のフレーム同期検出部26Cの構成を概略的に示す機能ブロック図である。本実施の形態の受信装置の構成は、図1に示したフレーム同期検出部26に代えて図14のフレーム同期検出部26Cを有する点を除いて、図1に示した受信装置1の構成と同じである。
図14に示されるように、フレーム同期検出部26Cは、上記実施の形態1のフレーム同期検出部26と同様に、第1の遅延部31、自己相関演算部33、第2の遅延部32及びフレームタイミング検出部34を有する。本実施の形態のフレーム同期検出部26Cは、さらに、副遅延部38、副自己相関演算部39及びフレームタイミング検出部34Cとを有している。
副遅延部38は、上記遅延量T1とは異なる遅延量T6だけ遅延させて副遅延信号r(r−T6)を出力する。ヘッダモード1の場合、遅延量T6は、4312(=3780+420+112)シンボル分の時間長に設定され、ヘッダモード3の場合は、遅延量T6は、4825(=3780+945+100)シンボル分の時間長に設定される。
副自己相関演算部39は、上記実施の形態1の自己相関演算部33(図9)と同様の構成を有し、ベースバンド受信信号r(t)と遅延信号r(t−T6)との間の自己相関を演算し、その演算結果である自己相関値をフレーム番号検出部35Cに供給することができる。フレーム番号検出部35Cは、自己相関演算部33による検出結果と副自己相関演算部39による検出結果とに基づいてフレーム番号を特定することができる。
図6のテーブルによれば、ヘッダモード1の場合、自己相関演算部33において自己相関値のピークが検出されるのは、フレーム番号224の信号フレームを受信したタイミングであり、副自己相関演算部39において自己相関値のピークが検出されるのは、フレーム番号112の信号フレームを受信したタイミングである。また、図7のテーブルによれば、ヘッダモード3の場合、自己相関演算部33において自己相関値のピークが検出されるのは、フレーム番号0の信号フレームを受信したタイミングであり、副自己相関演算部39において自己相関値のピークが検出されるのは、フレーム番号100の信号フレームを受信したタイミングである。
ヘッダモード1のとき、フレーム番号検出部35Cは、自己相関演算部33が副自己相関演算部39よりもピーク値を先に検出した場合は、フレーム番号224を開始値として出力し、副自己相関演算部39が自己相関演算部33よりもピーク値を先に検出した場合は、フレーム番号112を開始値として出力することができる。一方、ヘッダモード3のとき、フレーム番号検出部35Cは、自己相関演算部33が副自己相関演算部39よりもピーク値を先に検出した場合は、フレーム番号0を開始値として出力し、副自己相関演算部39が自己相関演算部33よりもピーク値を先に検出した場合は、フレーム番号100を開始値として出力することができる。
以上に説明したように実施の形態3では、複数の異なる自己相関結果を利用してフレーム番号情報Fnとフレームタイミング信号Ftとを生成するので、フレーム同期の確立に要する時間を短縮することができる。
なお、本実施の形態のフレーム同期検出部26Cは、遅延部31及び自己相関演算部33の組と、副遅延部38及び副自己相関演算部39の組との2組でそれぞれ得られる2系統の自己相関結果を利用してフレーム番号情報Fnとフレームタイミング信号Ftとを生成するものであるが、これに限定されるものではない。遅延部31及び自己相関演算部33の組に加えて、副遅延部及び副自己相関演算部の組を2組以上有するようにフレーム同期検出部26Cの構成を変更して3系統以上の自己相関結果を利用できるようにすることも可能である。
実施の形態4.
次に、本発明に係る実施の形態4について説明する。図15は、実施の形態4のフレーム同期検出部26Dを構成を概略的に示す機能ブロック図である。本実施の形態の受信装置の構成は、図1に示したフレーム同期検出部26に代えて図15のフレーム同期検出部26Dを有する点を除いて、図1に示した受信装置1の構成と同じである。
本実施の形態のフレーム同期検出部26Dは、上記実施の形態1〜3における遅延部31、自己相関演算部33、フレーム番号検出部35、副自己相関演算部39、信号遅延部36、フレームタイミング検出部34及びフレーム番号検出部35Cを有している。
このような構成とした場合、上記実施の形態2と同様に、ベースバンド受信信号r(t)と合成遅延信号との間でPN系列が一致する区間は、長くなる。そのため、ノイズの多い伝送路やマルチパスの影響を受けた伝送路に対しても、より正確にフレーム番号情報Fnを生成し、フレームタイミング信号Ftを出力することができる。さらに、上記実施の形態3と同様に、複数の異なる自己相関結果を利用してフレーム番号情報Fnとフレームタイミング信号Ftとが生成されるので、フレーム同期の確立に要する時間を短縮することができる。
以上、図面を参照して本発明に係る種々の実施の形態について述べたが、これらは本発明の例示であり、上記以外の様々な形態を採用することもできる。
上記実施の形態1乃至4の受信装置の機能の一部は、ハードウェア構成で実現されてもよいし、あるいは、CPUを含むマイクロプロセッサにより実行されるコンピュータプログラムで実現されてもよい。当該機能の一部がコンピュータプログラムで実現される場合には、マイクロプロセッサは、コンピュータ読み取り可能な記録媒体から当該コンピュータプログラムをロードし実行することによって当該機能の一部を実現することができる。
また、上記実施の形態1乃至4の受信装置の構成の全部または一部は、LSI(Large Scale Integrated circuit)で実現することもできる。また、FPGA(Field−Programmable Gate Array)あるいはASIC(Application Specific Integrated Circuit)により実施の形態1乃至4の受信装置の構成の全部または一部を実現することも可能である。
上記実施の形態1乃至4の受信装置は、デジタル放送受信装置(テレビジョン放送受信機及び音声放送受信機を含む。)、無線LAN機器、あるいは、移動体通信システムの受信端末といった通信装置として構成され得る。
1 受信装置、 11 アナログ信号処理部、 12 A/D変換器(ADC)、 13 直交復調部、 14 局部発振器、 15 SRRC(Squared−Root Raised Cosine)フィルタ、 16 PN除去部、 17 等化処理部、 18,19 高速フーリエ変換部(FFT)、 20 等化部、 21 フレームボディ処理部、 22 伝送路応答推定部、 24 局部PN系列生成部、 25 乗算器、 26,26B,26C,26D フレーム同期検出部、 31,32 遅延部、 33 自己相関演算部、 34 フレームタイミング検出部、 35,35C フレーム番号検出部、 36 信号遅延部、 38 副遅延部、 39 副自己相関演算部、 42 複素乗算部、 43 平均化部、 44 同期タイミング判定部、 50 スーパーフレーム、 51 信号フレーム、 62 複素乗算部、 63 積分演算部。

Claims (13)

  1. 時間的に連続する複数のフレームを包含する一連のスーパーフレームで構成される受信信号を入力とし、前記複数のフレームの各々に含まれる既知信号系列に基づいて前記複数のフレーム各々を検出するフレーム同期検出装置であって、
    前記受信信号を1フレーム長を超える第1の遅延量だけ遅延させて第1の遅延信号を出力する第1の遅延部と、
    前記受信信号に含まれる既知信号系列と前記第1の遅延信号に含まれる遅延既知信号系列との間の自己相関を演算して前記複数のフレームにそれぞれ対応する複数の自己相関値を生成する自己相関演算部と、
    前記複数の自己相関値の中から前記スーパーフレームの時間長におけるピーク値を検出し、前記ピーク値に対応する当該フレームのフレーム番号を特定するフレーム番号検出部と
    前記受信信号を前記第1の遅延量とは異なり1フレーム長を超える遅延量だけ遅延させて副遅延信号を出力する副遅延部と、
    前記受信信号に含まれる既知信号系列と前記副遅延信号に含まれる遅延既知信号系列との間の自己相関を演算して前記複数のフレームにそれぞれ対応する複数の副自己相関値を生成する副自己相関演算部と、を備え、
    前記フレーム番号検出部は、前記複数の自己相関値及び前記複数の副自己相関値の中から前記スーパーフレームの時間長におけるピーク値を検出し、前記ピーク値に対応する当該フレームのフレーム番号を特定する
    ことを特徴とするフレーム同期検出装置。
  2. 請求項1に記載のフレーム同期検出装置であって、
    前記受信信号を1フレーム長未満の第2の遅延量だけ遅延させて第2の遅延信号を出力する第2の遅延部と、
    前記受信信号に含まれる既知信号と前記第2の遅延信号に含まれる遅延既知信号との間の自己相関を演算し、前記自己相関の演算結果に基づいて前記複数のフレーム各々との同期タイミングを検出するフレームタイミング検出部と
    をさらに備え、
    前記フレーム番号検出部は、当該特定されたフレーム番号を開始値とし、前記フレームタイミング検出部で検出された同期タイミングに応じて前記複数のフレーム各々のフレーム番号を生成する
    ことを特徴とするフレーム同期検出装置。
  3. 請求項2に記載のフレーム同期検出装置であって、
    前記複数のフレーム各々は、前記既知信号系列からなるヘッダ部を有し、
    前記ヘッダ部は、当該ヘッダ部の一部と同じ冗長信号系列をサイクリックプレフィクスとして含む
    ことを特徴とするフレーム同期検出装置。
  4. 請求項1に記載のフレーム同期検出装置であって、
    前記受信信号を互いに異なる第3乃至第5の遅延量だけ遅延させて第3乃至第5の遅延信号をそれぞれ出力する信号遅延部と、
    前記受信信号に含まれる既知信号と前記第3乃至第5の遅延信号に含まれる遅延既知信号との間の自己相関を演算し、前記自己相関の演算結果に基づいて前記複数のフレーム各々との同期タイミングを検出するフレームタイミング検出部と
    をさらに備え、
    前記フレーム番号検出部は、当該特定されたフレーム番号を開始値とし、前記フレームタイミング検出部で検出された同期タイミングに応じて前記複数のフレーム各々のフレーム番号を検出する
    ことを特徴とするフレーム同期検出装置。
  5. 請求項4に記載のフレーム同期検出装置であって、前記第3乃至第5の遅延量は、1フレーム長の2倍と、該1フレーム長の2倍よりも短い遅延量と、該1フレーム長の2倍よりも長い遅延量とからなることを特徴とするフレーム同期検出装置。
  6. 請求項2から5のうちのいずれか1項に記載のフレーム同期検出装置であって、前記フレーム番号検出部は、前記同期タイミングが検出される度に計数値を増加または減少させ、該計数値に基づいて前記フレーム番号を生成することを特徴とするフレーム同期検出装置。
  7. 請求項1から6のうちのいずれか1項に記載のフレーム同期検出装置であって、
    前記自己相関演算部は、
    前記受信信号に含まれる既知信号系列と前記第1の遅延信号に含まれる遅延既知信号系列の複素共役とを乗算して乗算信号の系列を生成する複素乗算部と、
    前記複数のフレームの各々に対して前記乗算信号の系列を積分して前記自己相関値を算出する積分演算部と
    を含むことを特徴とするフレーム同期検出装置。
  8. 請求項1に記載のフレーム同期検出装置であって、前記既知信号系列のパターンは、前記スーパーフレームの単位で繰り返し変化することを特徴とするフレーム同期検出装置。
  9. 請求項1から8のうちのいずれか1項に記載のフレーム同期検出装置であって、
    前記副自己相関演算部は、
    前記受信信号に含まれる既知信号系列と前記副遅延信号に含まれる遅延既知信号系列の複素共役とを乗算して副乗算信号の系列を生成する複素乗算部と、
    前記複数のフレームの各々に対して前記副乗算信号の系列を積分して前記副自己相関値を算出する積分演算部と
    を含むことを特徴とするフレーム同期検出装置。
  10. 請求項1からのうちのいずれか1項に記載のフレーム同期検出装置であって、
    前記既知信号系列は、フィードバックシフトレジスタを用いて生成された疑似ランダムノイズ系列であり、
    前記フィードバックシフトレジスタは、前記複数のフレーム各々に対して指定された値を初期値として前記疑似ランダムノイズ系列を生成する
    ことを特徴とするフレーム同期検出装置。
  11. 時間的に連続する複数のフレームを包含する一連のスーパーフレームで構成される信号を受信する受信装置であって、
    前記複数のフレームの各々に含まれる既知信号系列に基づいて前記複数のフレーム各々を検出するフレーム同期検出部と、
    前記フレーム同期検出部による識別結果に基づいて伝送路応答を推定する伝送路応答推定部と、
    当該推定された伝送路応答を用いて前記受信信号の歪みを補正する等化処理部と
    を備え、
    前記フレーム同期検出部は、
    前記受信信号を1フレーム長を超える第1の遅延量だけ遅延させて第1の遅延信号を出力する第1の遅延部と、
    前記受信信号に含まれる既知信号系列と前記第1の遅延信号に含まれる遅延既知信号系列との間の自己相関を演算して前記複数のフレームにそれぞれ対応する複数の自己相関値を生成する自己相関演算部と、
    前記複数の自己相関値の中から前記スーパーフレームの時間長におけるピーク値を検出し、前記ピーク値に対応する当該フレームのフレーム番号を特定するフレーム番号検出部と
    前記受信信号を前記第1の遅延量とは異なり1フレーム長を超える遅延量だけ遅延させて副遅延信号を出力する副遅延部と、
    前記受信信号に含まれる既知信号系列と前記副遅延信号に含まれる遅延既知信号系列との間の自己相関を演算して前記複数のフレームにそれぞれ対応する複数の副自己相関値を生成する副自己相関演算部とを有し、
    前記フレーム番号検出部は、前記複数の自己相関値及び前記複数の副自己相関値の中から前記スーパーフレームの時間長におけるピーク値を検出し、前記ピーク値に対応する当該フレームのフレーム番号を特定する
    ことを特徴とする受信装置。
  12. 請求項11に記載の受信装置であって、
    前記フレーム同期検出部は、
    前記受信信号を1フレーム長未満の第2の遅延量だけ遅延させて第2の遅延信号を出力する第2の遅延部と、
    前記受信信号に含まれる既知信号と前記第2の遅延信号に含まれる遅延既知信号との間の自己相関を演算し、前記自己相関の演算結果に基づいて前記複数のフレーム各々との同期タイミングを検出するフレームタイミング検出部と
    をさらに有し、
    前記フレーム番号検出部は、当該特定されたフレーム番号を開始値とし、前記フレームタイミング検出部で検出された同期タイミングに応じて前記複数のフレーム各々のフレーム番号を検出する
    ことを特徴とする受信装置。
  13. 請求項11に記載の受信装置であって、
    前記フレーム同期検出部は、
    前記受信信号を互いに異なる第3乃至第5の遅延量だけ遅延させて第3乃至第5の遅延信号をそれぞれ出力する信号遅延部と、
    前記受信信号に含まれる既知信号と前記第3乃至第5の遅延信号に含まれる遅延既知信号との間の自己相関を演算し、前記自己相関の演算結果に基づいて前記複数のフレーム各々との同期タイミングを検出するフレームタイミング検出部と
    をさらに有し、
    前記フレーム番号検出部は、当該特定されたフレーム番号を開始値とし、前記フレームタイミング検出部で検出された同期タイミングに応じて前記複数のフレーム各々のフレーム番号を検出する
    ことを特徴とする受信装置。
JP2013170866A 2012-10-03 2013-08-21 フレーム同期検出装置及び受信装置 Active JP6143607B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013170866A JP6143607B2 (ja) 2012-10-03 2013-08-21 フレーム同期検出装置及び受信装置
CN201310454736.1A CN103716874B (zh) 2012-10-03 2013-09-29 帧同步检测装置以及接收装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012221119 2012-10-03
JP2012221119 2012-10-03
JP2013170866A JP6143607B2 (ja) 2012-10-03 2013-08-21 フレーム同期検出装置及び受信装置

Publications (2)

Publication Number Publication Date
JP2014090404A JP2014090404A (ja) 2014-05-15
JP6143607B2 true JP6143607B2 (ja) 2017-06-07

Family

ID=50791963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013170866A Active JP6143607B2 (ja) 2012-10-03 2013-08-21 フレーム同期検出装置及び受信装置

Country Status (1)

Country Link
JP (1) JP6143607B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101621787B1 (ko) 2015-01-02 2016-05-17 국방과학연구소 동기 패턴 검출기 및 동기 패턴 검출방법
CN105471788B (zh) * 2015-12-30 2018-05-08 中国电子科技集团公司第五十四研究所 一种对dvbs2信号的低时延解译方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311163B2 (en) * 2007-09-28 2012-11-13 Thomson Licensing Time-frequency synchronization and frame number detection for DMB-T systems
CN101453554A (zh) * 2007-11-30 2009-06-10 Nxp股份有限公司 Dmb-t系统中的pn相位恢复
CN102595021B (zh) * 2011-01-13 2015-04-08 南开大学 一种中国数字电视地面广播中帧头序号的检测方法

Also Published As

Publication number Publication date
JP2014090404A (ja) 2014-05-15

Similar Documents

Publication Publication Date Title
US10277369B2 (en) Receiver and method of receiving
US9967125B2 (en) Receiver and method of receiving
JP5546358B2 (ja) データ処理装置及びデータ処理方法
US20040005018A1 (en) Receiver and method for WLAN burst type signals
US20040005022A1 (en) Receiver and method for WLAN burst type signals
US6993083B1 (en) Apparatus and method of OFDM demodulation
US20040004934A1 (en) Receiver and method for WLAN burst type signals
US20060239179A1 (en) Initial parameter estimation in OFDM systems
US9847900B2 (en) Receiver and method of receiving
US9942076B2 (en) Device and method for detecting and recovering payload data from a signal
JP2008532379A (ja) 無線受信機を同期させる方法及び装置
JP2005204301A (ja) Ofdmシステムでの初期周波数の同期方法及び装置
EP1875697A2 (en) Initial parameter estimation in ofdm systems
US20040004933A1 (en) Receiver and method for WLAN burst type signals
JP5182757B2 (ja) フレーム同期捕捉回路
US7792202B2 (en) Apparatus and method for estimating timing offset of OFDM symbol, and method of recovering symbol timing of OFDM symbol
US20040004935A1 (en) Receiver and method for WLAN burst type signals
JP6143607B2 (ja) フレーム同期検出装置及び受信装置
US10476725B2 (en) Receiver and method of receiving
JP3558879B2 (ja) ディジタル通信装置
JP2004214960A (ja) Ofdm復調装置
JP2004007439A (ja) 無線伝送装置
WO2007052993A1 (en) Apparatus for receiving an orthgonal frequency division multiplexing signal
CN103716874B (zh) 帧同步检测装置以及接收装置
KR101450393B1 (ko) Ofdm 타이밍 오프셋 추정방법 및 추정시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170509

R150 Certificate of patent or registration of utility model

Ref document number: 6143607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250