JP6142989B2 - 量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法 - Google Patents

量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法 Download PDF

Info

Publication number
JP6142989B2
JP6142989B2 JP2013071580A JP2013071580A JP6142989B2 JP 6142989 B2 JP6142989 B2 JP 6142989B2 JP 2013071580 A JP2013071580 A JP 2013071580A JP 2013071580 A JP2013071580 A JP 2013071580A JP 6142989 B2 JP6142989 B2 JP 6142989B2
Authority
JP
Japan
Prior art keywords
magnetic field
light
cell
frequency
quantum interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013071580A
Other languages
English (en)
Other versions
JP2014197734A (ja
Inventor
聡 久保
聡 久保
啓之 ▲吉▼田
啓之 ▲吉▼田
暢仁 林
暢仁 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013071580A priority Critical patent/JP6142989B2/ja
Publication of JP2014197734A publication Critical patent/JP2014197734A/ja
Application granted granted Critical
Publication of JP6142989B2 publication Critical patent/JP6142989B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

本発明は、量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法に関する。
アルカリ金属原子の一種であるセシウム原子は、図15に示すように、6S1/2の基底準位と、6P1/2、6P3/2の2つの励起準位とを有することが知られている。さらに、6S1/2、6P1/2、6P3/2の各準位は、複数のエネルギー準位に分裂した超微細構造を有している。具体的には、6S1/2はF=3,4の2つの基底準位を持ち、6P1/2はF’=3,4の2つの励起準位を持ち、6P3/2はF’=2,3,4,5の4つの励起準位を持っている。
例えば、6S1/2のF=3の基底準位にあるセシウム原子は、D2線を吸収することで、6P3/2のF’=2,3,4のいずれかの励起準位に遷移することができるが、F’=5の励起準位に遷移することはできない。6S1/2のF=4の基底準位にあるセシウム原子は、D2線を吸収することで、6P3/2のF’=3,4,5のいずれかの励起準位に遷移することができるが、F’=2の励起準位に遷移することはできない。これらは、電気双極子遷移を仮定した場合の遷移選択則による。逆に、6P3/2のF’=3,4のいずれかの励起準位にあるセシウム原子は、D2線を放出して6S1/2のF=3又はF=4の基底準位(元の基底準位又は他方の基底準位のいずれか)に遷移することができる。ここで、6S1/2のF=3,4の2つの基底準位と6P3/2のF’=3,4のいずれかの励起準位からなる3準位(2つの基底準位と1つの励起準位からなる)は、D2線の吸収・発光によるΛ型の遷移が可能であることからΛ型3準位と呼ばれる。同様に、6S1/2のF=3,4の2つの基底準位と6P1/2のF’=3,4のいずれかの励起準位からなる3準位は、D1線の吸収・発光によるΛ型の遷移が可能であるからΛ型3準位を形成する。
これに対して、6P3/2のF’=2の励起準位にあるセシウム原子は、D2線を放出して必ず6S1/2のF=3の基底準位(元の基底準位)に遷移し、同様に、6P3/2のF’=5の励起準位にあるセシウム原子は、D2線を放出して必ず6S1/2のF=4の基底準位(元の基底準位)に遷移する。すなわち、6S1/2のF=3,4の2つの基底準位と6P3/2のF’=2又はF’=5の励起準位からなる3準位は、D2線の吸収・放出によるΛ型の遷移が不可能であることからΛ型3準位を形成しない。なお、セシウム原子以外のアルカリ金属原子も、同様に、Λ型3準位を形成する2つの基底準位と励起準位を有することが知られている。
ところで、気体状のアルカリ金属原子に、Λ型3準位を形成する第1の基底準位(セシウム原子の場合、6S1/2のF=3の基底準位)と励起準位(セシウム原子の場合、例えば6P3/2のF’=4の励起準位)とのエネルギー差に相当する周波数(振動数)を有する共鳴光(共鳴光1とする)と、第2の基底準位(セシウム原子の場合、6S1/2のF=4の基底準位)と励起準位とのエネルギー差に相当する周波数(振動数)を有する共鳴光(共鳴光2とする)とを同時に照射すると、2つの基底準位の重ね合わせ状態、即ち量子コヒーレンス状態(暗状態)になり、励起準位への励起が停止する電磁誘起透過(EIT:Electromagnetically Induced Transparency)現象(CPT(Coherent Population Trapping)と呼ばれることもある)が起こることが知られている。このEIT現象を起こす共鳴光対(共鳴光1と共鳴光2)の周波数差はアルカリ金属原子の2つの基底準位のエネルギー差ΔE12に相当する周波数と正確に一致する。例えば、セシウム原子は、2つの基底準位のエネルギー差に相当する周波数は9.192631770GHzであるので、セ
シウム原子に、周波数差が9.192631770GHzの2種類のD1線又はD2線のレーザー光を同時に照射すると、EIT現象が起こる。
従って、図16に示すように、周波数がω1の光と周波数がω2の光を気体状のアルカリ金属原子に同時に照射したとき、この2光波が共鳴光対となってアルカリ金属原子がEIT現象を起こすか否かでアルカリ金属原子を透過する光の強度が急峻に変化する。この急峻に変化する透過光の強度を示す信号はEIT信号(共鳴信号)と呼ばれ、共鳴光対の周波数差ω1−ω2がΔE12に相当する周波数ω12と正確に一致するときにEIT信号のレベルがピーク値を示す。そこで、気体状のアルカリ金属原子を封入した原子セル(ガスセル)に2光波を照射し、光検出器によりEIT信号のピークトップを検出するように、すなわち、2光波の周波数差ω1−ω2がΔE12に相当する周波数ω12と正確に一致するように制御することで、高精度な発振器を実現することができる。このような原子発振器に関する技術は、例えば、特許文献1に開示されている。
米国特許第6320472号明細書
ところで、光源やガスセルの経年劣化などでアルカリ金属原子に照射される光の強度が低下すると、シュタルクシフトにより原子発振器の周波数がf1→f2→f3のように低い方向にシフトしてしまう(図17)。シュタルクシフトは原子と光が相互作用をしていれば必ず起こる。しかしながら、従来の原子発振器では、シュタルクシフトによる周波数変動のキャンセルが行われていない、もしくは十分でないため、高い長期安定度を実現することが難しいという問題があった。
本発明は、以上のような問題点に鑑みてなされたものであり、本発明のいくつかの態様によれば、従来よりも長期安定度を向上させることが可能な量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法を提供することができる。
本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することが可能である。
[適用例1]
本適用例に係る量子干渉装置は、金属原子と、前記金属原子を封入しているセルと、前記金属原子に電磁誘起透過現象を発生させる共鳴光対を前記セルに照射する光源と、前記セルを透過した光を検出する光検出部と、前記セル内部に磁場を発生させる磁場発生部と、を有し、前記光源が照射する共鳴光対の強度が変化した時、前記光検出部の出力信号が極大値となる時の前記共鳴光対の周波数差が、シュタルクシフトを打ち消す方向にシフトするように、前記セル内部の磁場が設定されている。
本適用例に係る量子干渉装置によれば、時間の経過とともに共鳴光対の強度が低下するとEIT信号のピーク位置が変動し、原子発振器の周波数がシフトするが、このシフトの方向がシュタルクシフトを打ち消す方向になるようにセル内部の磁場が設定されているので、結果的に、周波数シフトを小さくすることができる。従って、原子発振器の長期安定度を向上させることができる。
[適用例2]
上記適用例に係る量子干渉装置において、前記セル内部の磁場は、前記光源が発生させる共鳴光対の前記セルへの照射方向に偏差を有していてもよい。
[適用例3]
上記適用例に係る量子干渉装置において、前記セル内部の磁場が最も強い位置と前記セルの中心とが異なっていてもよい。
[適用例4]
上記適用例に係る量子干渉装置において、前記セル内部の磁場は、前記光源が発生させる光が前記セルに入射する位置と前記セルから出射する位置とで強度が異なっていてもよい。
[適用例5]
上記適用例に係る量子干渉装置において、前記磁場発生部は、前記金属原子のエネルギー準位をゼーマン分裂させるための手段が兼用されていてもよい。
例えば、金属原子のエネルギー準位をゼーマン分裂させるための手段は、c-fieldコイルであってもよい。
本適用例に係る量子干渉装置によれば、シュタルクシフトを低減させるための磁場を発生させる専用の手段を設ける必要がないので原子発振の小型化に有利である。
[適用例6]
上記適用例に係る量子干渉装置において、前記磁場偏差発生部は、前記金属原子のエネルギー準位をゼーマン分裂させるための手段とは別に設けられていてもよい。
本適用例に係る量子干渉装置によれば、シュタルクシフトを低減させるための磁場を発生させる手段と金属原子のエネルギー準位をゼーマン分裂させるための磁場を発生させる手段とを別個に設けることで、それぞれの磁場の調整自由度が高いため、シュタルクシフトを精度よくキャンセルすることが可能となる。
[適用例7]
本適用例に係る原子発振器は、上記のいずれかの量子干渉装置を含む。
[適用例8]
本適用例に係る磁気センサーは、上記のいずれかの量子干渉装置を含む。
[適用例9]
本適用例に係る量子干渉装置の製造方法は、金属原子と、前記金属原子を封入しているセルと、2光波を含む光を発生させて前記セルに照射する光源と、前記セルを透過した光を検出する光検出部と、前記セル内部に磁場を発生させる磁場発生部と、を含む物理パッケージを準備する物理パッケージ準備工程と、前記2光波の強度が変化した時、前記光検出部の出力信号が極大値となる時の前記2光波の周波数差が、シュタルクシフトを打ち消す方向にシフトするように、前記磁場発生部が発生させる磁場を設定する磁場設定工程と、を含む。
第1実施形態の原子発振器の具体的な構成例を示す図。 図2(A)はゼーマン分裂したエネルギー準位を示す図であり、図2(B)は分裂したEIT信号の一例を示す図。 半導体レーザーの出射光の周波数スペクトラムの一例を示す概略図。 検波回路による検波原理の説明図。 検波回路による検波原理の説明図。 光の透過率(EIT信号強度)とロック周波数との関係についての説明図。 光の透過率(EIT信号強度)とロック周波数との関係についての説明図。 EIT信号を左右非対称にする方法の一例を示す図。 図9(A)は偏差を有する磁場の強度と周波数感度との関係についての実験結果の図であり、図9(B)は一様な磁場の強度と周波数感度との関係についての実験結果の図。 本実施形態の原子発振器の製造方法の一例を示すフローチャート図。 第2実施形態の原子発振器の具体的な構成例を示す図。 EIT信号を左右非対称にする方法の一例を示す図。 本実施形態の磁気センサーの構成例を示す図。 変形例における半導体レーザーの出射光の周波数スペクトルを示す概略図。 セシウム原子のエネルギー準位を模式的に示す図。 EIT信号の一例を示す概略図。 シュタルクシフトの説明図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1.原子発振器
1−1.第1実施形態
[原子発振器の構成]
図1は、第1実施形態の原子発振器の構成例を示す図である。図1に示すように、第1実施形態の原子発振器1は、半導体レーザー10、減光フィルター(NDフィルター)11、1/4波長板12、ガスセル13、光検出器14、磁場発生部15、検波回路16、電圧制御水晶発振器(VCXO)17、変調回路18、低周波発振器19、周波数変換回路20、検波回路21、変調回路22、低周波発振器23、駆動回路24、磁場設定回路25、バイアス設定回路26、メモリー27及び周波数変換回路28を含んで構成されている。なお、本実施形態の原子発振器1は、適宜、図1の構成要素(各部)の一部を省略又は変更し、あるいは、他の構成要素を付加した構成としてもよい。
半導体レーザー10(光源の一例)は、例えば、垂直共振器面発光レーザー(VCSEL:Vertical Cavity Surface Emitting Laser)等の面発光レーザーや端面発光レーザー(Edge Emitting Laser)などであり、半導体レーザー10が発生させた光は、減光フィルター11に入射する。
減光フィルター11は、半導体レーザー10の出射光の一部のみを透過させ、減光フィルター11を透過した光は1/4波長板12に入射する。
1/4波長板12は、入射した光をσ+円偏光にして透過させ、1/4波長板12を透過した光はガスセル13に入射する。
ガスセル13(セルの一例)は、ガラス等の透明部材でできた容器中に気体状のアルカリ金属原子(ナトリウム(Na)原子、ルビジウム(Rb)原子、セシウム(Cs)原子等)とともにネオン(Ne)やアルゴン(Ar)等のバッファーガスが封入されたもので
ある。ガスセル13に入射した光の一部はガスセル13を透過し、光検出器14に入射する。
光検出器14(光検出部の一例)は、ガスセル13を透過した光を検出し、検出した光の強度に応じた検出信号を出力する。光検出部14は、例えば、受光した光の強度に応じた検出信号を出力するフォトダイオード(PD:Photo Diode)を用いて実現することができる。光検出器14の出力信号は検波回路16と検波回路21に入力される。
磁場発生部15は、ガスセル13の内部の少なくとも一部に磁場を発生させるものである。磁場発生部15は、例えば、コイルで実現することができ、コイルの位置、形状(例えば、コイルを巻く方向、巻き数、直径等)、電流の大きさや向き等を調整することで所望の磁場を発生させることができる。
磁場がかかると、アルカリ金属原子の各エネルギー準位が2F+1個に分裂(ゼーマン分裂)する。例えば、セシウム原子の場合、図2(A)に示すように、6S1/2,F=3の基底準位や6P3/2,F’=3の励起準位は、磁気量子数mF=0,±1,±2,±3に対応する7つの準位に分裂し、6S1/2,F’=4の基底準位や6P3/2,F=4の励起準位は、磁気量子数mF=0,±1,±2,±3,±4に対応する9つの準位に分裂する。セシウム原子にσ+円偏光が入射すると、ΔmF=+1の選択則に従って励起するため、例えば、6S1/2,F=3,4の基底準位と6P3/2,F’=4の励起準位の間で、7つのΛ型3準位が形成される。従って、この状態では、2光波の周波数差をスイープすると、図4(B)に示すように7つのEIT信号が観測される。特に、6S1/2,F=3,4のmF=0の基底準位と6P3/2,F’=4のmF=+1の励起準位の間で形成されるΛ型3準位に対応するEIT信号の強度が最も高いので、このEIT信号を発生させるように、共鳴光対の周波数差を制御するのが有効である。
半導体レーザー10、減光フィルター11、1/4波長板12、ガスセル13、光検出器14及び磁場発生部15は、1つの筐体に収容されており、物理パッケージ100を構成している。
検波回路16は、数Hz〜数百Hz程度の低い周波数で発振する低周波発振器19の発振信号を用いて光検出器14の出力信号を検波する。そして、検波回路16の出力信号の大きさに応じて、電圧制御水晶発振器(VCXO)17の発振周波数が微調整される。電圧制御水晶発振器(VCXO)17は、例えば、数MHz〜数10MHz程度で発振する。
変調回路18は、検波回路16による検波を可能とするために、低周波発振器19の発振信号(検波回路16に供給される発振信号と同じ信号)を変調信号として電圧制御水晶発振器(VCXO)17の出力信号を変調する。変調回路18は、周波数混合器(ミキサー)、周波数変調(FM:Frequency Modulation)回路、振幅変調(AM:Amplitude Modulation)回路等により実現することができる。
周波数変換回路20は、一定の周波数変換率で変調回路18の出力信号を周波数変換して駆動回路24に出力する。周波数変換回路20は、例えば、PLL(Phase Locked Loop)回路により実現することができる。
検波回路21は、数Hz〜数百Hz程度の低い周波数で発振する低周波発振器23の発振信号を用いて光検出器14の出力信号を検波する。
変調回路22は、検波回路21による検波を可能とするために、低周波発振器23の発
振信号(検波回路21に供給される発振信号と同じ信号)を変調信号として検波回路21の出力信号を変調して駆動回路24に出力する。変調回路22は、周波数混合器(ミキサー)、周波数変調(FM)回路、振幅変調(AM)回路等により実現することができる。
磁場設定回路25は、メモリー27に記憶されている設定情報に応じて磁場発生部15が発生させる磁場の強度を設定する処理を行う。例えば、磁場発生部15をコイルで実現し、磁場設定回路25は、メモリー27に記憶されている設定情報に応じて当該コイルに流す電流量を設定するようにしてもよい。
バイアス設定回路26は、駆動回路24を介して、メモリー27に記憶されている設定情報に応じて半導体レーザー10にバイアス電流を設定する処理(半導体レーザー10が発生させる光の中心波長を設定する処理)を行う。
メモリー27は、不揮発性のメモリーであり、磁場発生部15が発生させる磁場の強度の設定情報や半導体レーザー10のバイアス電流の設定情報が記憶されている。メモリー27は、例えば、MONOS(Metal-Oxide-Nitride-Oxide-Silicon)メモリー等のフラッシュメモリーやEEPROM(Electrically Erasable Programmable Read-Only Memory)等で実現することができる。
駆動回路24は、半導体レーザー10のバイアス電流を設定するとともに、変調回路22の出力信号に応じて当該バイアス電流を微調整して半導体レーザー10に供給する。すなわち、半導体レーザー10、減光フィルター11、1/4波長板12、ガスセル13、光検出器14、検波回路21、変調回路22、駆動回路24を通るフィードバックループ(第1のフィードバックループ)により、半導体レーザー10が発生させる光の中心波長λ0(中心周波数f0)が微調整される。
駆動回路24は、さらに、バイアス電流に、周波数変換回路20の出力周波数成分(変調周波数fm)の電流(変調電流)を重畳して半導体レーザー10に供給する。この変調電流により、半導体レーザー10に周波数変調がかかり、中心周波数f0(中心波長λ0)の光とともに、その両側にそれぞれ周波数がfmだけずれた周波数f0±fm、f0±2fm、・・・の光を発生させる。そして、半導体レーザー10、減光フィルター11、1/4波長板12、ガスセル13、光検出器14、検波回路16、電圧制御水晶発振器(VCXO)17、変調回路18、周波数変換回路20、駆動回路24を通るフィードバックループ(第2のフィードバックループ)により、周波数f0+fmの光と周波数f0−fmの光がガスセル13に封入されているアルカリ金属原子にEIT現象を発生させる共鳴光対となるように微調整される。
例えば、第2のフィードバックループにより、磁気量子数mF=0の基底準位を有するアルカリ金属原子がEIT現象を起こすように、変調周波数fmがフィードバック制御される。具体的には、第2のフィードバックループにより、1次のサイドバンドである周波数f0+fmの光と周波数f0−fmの光の周波数差(=2fm)が、アルカリ金属原子の磁気量子数mf=0の2つの基底準位間のエネルギー差ΔE12に相当する周波数ω12と正確に一致するようにフィードバック制御がかかる。例えば、アルカリ金属原子がセシウム原子であれば、ω12が9.192631770GHz+ΔHz(Δは磁界強度の2次関数で表される周波数)なので、変調周波数fmは4.596315885GHz+Δ/2Hzと正確に一致する。図3に、半導体レーザー10の出射光の周波数スペクトラムの一例を示す。図3において、横軸は光の周波数であり、縦軸は光の強度である。
このように、アルカリ金属原子のEIT現象を利用することで、第2のフィードバックループに含まれる、周波数変換回路20の出力信号や電圧制御水晶発振器(VCXO)1
7の出力信号は、それぞれ所定の周波数で安定する。
周波数変換回路28は、一定の周波数変換率で電圧制御水晶発振器(VCXO)17の出力信号を周波数変換し、所望の周波数(例えば、10.00・・・MHz)のクロック信号を生成する。このクロック信号が外部出力される。周波数変換回路20は、例えば、DDS(Direct Digital Synthesizer)により実現することができる。
図1において、物理パッケージ100を除く構成要素(回路)は、例えば、1チップの集積回路(IC)で実現することができる。
なお、図1では、半導体レーザー10、減光フィルター(NDフィルター)11、1/4波長板12、ガスセル13、光検出器14、磁場発生部15、検波回路16、電圧制御水晶発振器(VCXO)17、変調回路18、低周波発振器19、周波数変換回路20、検波回路21、変調回路22、低周波発振器23、駆動回路24、磁場設定回路25、バイアス設定回路26及びメモリー27により、量子干渉装置200が構成されている。ただし、本実施形態の量子干渉装置200は、適宜、図1の構成要素(各部)の一部を省略又は変更し、あるいは、他の構成要素を付加した構成としてもよい。
[検波原理]
次に、検波回路16による検波原理について説明する。前述のように、本実施形態では、変調回路18が、低周波発振器19が発生させる数十Hz〜数百Hz程度の正弦波を変調信号として電圧制御水晶発振器(VCXO)17の発振信号を周波数変調し、周波数変換回路20に入力している。これにより、半導体レーザー10が発生させる2光波の周波数差を正弦波の振幅によって決まる数百Hz〜数kHz程度の範囲で掃引し、検波回路16により光検出器14の出力信号をこの正弦波で同期検波することで、光検出器14の出力に現れるEIT信号の左右の面積が等しいところをピークとみなして検出している。EIT信号が左右対称の場合、図4(A)に示すように、周波数がfs(周期が1/fs)の正弦波(掃引信号)のゼロクロス点a,c,eがEIT信号のピークトップと一致している状態では、光検出器14の出力信号には、直流成分と周波数が2fs(周期が1/2fs)の一定振幅の低周波数成分が含まれるが、周波数がfs(周期が1/fs)の低周波数成分は極めて小さい。従って、検波回路16によってfsの周波数成分はほとんど検波されない。一方、図4(B)に示すように、周波数がfs(周期が1/fs)の正弦波のゼロクロス点a,c,eがEIT信号のピークトップよりも低い方向にずれた状態では、光検出器14の出力信号は、周波数が2fs(周期が1/2fs)で1/fs周期毎に振幅が変化する。つまり、光検出器14の出力信号には、直流成分と2fsの周波数成分以外に、fsの周波数成分も含まれる。そのため、検波回路16によってfsの周波数成分が検波され、検波回路16の出力信号の電圧値は、図4(A)の場合の電圧値(基準電圧値)よりも高い電圧値となる。この検波回路16の出力信号が電圧制御水晶発振器(VCXO)17に入力されるので、電圧制御水晶発振器(VCXO)17の発振周波数は高い方向(2光波の周波数差がω12に近づく方向)に変化する。一方、図示を省略するが、周波数がfs(周期が1/fs)の正弦波のゼロクロス点a,c,eがEIT信号のピークトップよりも高い方向にずれた状態では、光検出器14の出力信号は、図4(B)の信号に対して位相が180度異なる信号となる。従って、検波回路16の出力信号の電圧値は負(基準電圧値よりも低い電圧値)となり、電圧制御水晶発振器(VCXO)17の発振周波数は低い方向(2光波の周波数差がω12に近づく方向)に変化する。
このような検波原理により、EIT信号が左右対称の場合には、EIT信号のピークトップにロックがかかる。一方、EIT信号が左右非対称の場合は、図5(A)に示すように、周波数がfs(周期が1/fs)の正弦波(掃引信号)のゼロクロス点a,c,eがEIT信号のピークトップと一致している状態では、光検出器14の出力信号には、直流成
分と2fsの周波数成分以外に、fsの周波数成分も含まれる。そのため、検波回路16によってfsの周波数成分が検波され、検波回路16の出力信号の電圧値は、図5(B)の場合の電圧値(基準電圧値)よりも低い電圧値となる。また、図5(B)に示すように、周波数がfs(周期が1/fs)の正弦波のゼロクロス点a,c,eがEIT信号のピークトップよりも低い方向に所定量だけずれた状態では、光検出器14の出力信号には、直流成分と周波数が2fs(周期が1/2fs)の一定振幅の低周波数成分が含まれるが、周波数がfs(周期が1/fs)の低周波数成分は極めて小さい。従って、検波回路16によってfsの周波数成分はほとんど検波されず、この状態で安定する。すなわち、EIT信号が左右非対称の場合には、EIT信号のピークトップからずれた位置にロックがかかる。
[周波数の長期安定度の向上]
検波回路16がEIT信号の左右の面積が等しいところをピークとみなして周波数をロックする性質を持つため、EIT信号が左右対称であれば、EIT信号の強度が下がってもロックする周波数はずれないはずである。しかしながら、ガスセル13に照射される光の強度が低下すると、シュタルクシフトにより実際にはロックする周波数が低くなる方向に変動することになる。従って、EIT信号が左右対称であれば、高い長期安定度を実現することが難しい。
これに対して、EIT信号が非対称にゆがんでいた場合、EIT信号の強度が下がったときにロックする周波数もずれる。図6(A)及び図6(B)は、EIT信号(光検出器14の出力信号))とロック周波数(共鳴光対の周波数差)とをプロットしたグラフの一例である。図6(A)及び図6(B)において、縦軸はガスセル13を透過する光の透過率(検出器14の出力信号強度)であり、横軸は周波数(共鳴光対の周波数差)である。例えば、図6(A)に示すように、EIT信号が左側(低周波側)に傾いていた場合、EIT信号の強度が下がるにつれて、ロック周波数がf1→f2→f3のように下がっていく。逆に、図6(B)に示すように、EIT信号が右側(高周波側)に傾いていた場合、EIT信号の強度が下がるにつれて、ロック周波数がf1→f2→f3のように上がっていく。
しかしながら、ガスセル13に照射される光の強度が低下するとシュタルクシフトによる周波数の低下も生じるため、図6(A)に示したように、EIT信号が左側(低周波側)に傾いて非対称であれば、周波数のずれがシュタルクシフト分だけさらに大きくなるが、図6(B)に示したように、EIT信号が右側(高周波側)に傾いて非対称であれば、周波数のずれがシュタルクシフト分だけ小さくなる。逆に言えば、EIT信号を右側(高周波側)に傾いて非対称にすることで、シュタルクシフトをキャンセルすることが可能である。結果的に、図7に示すように、光源13の出射光の強度の低下によりEIT信号が低下しても、ロック周波数を初期の周波数f1のまま変動しないようにすることができる。これにより、高い長期安定度を実現することが可能となる。
そこで、本実施形態では、EIT信号を左右非対称にするために、磁場発生部15は、ガスセル13の内部に偏差を有する磁場を発生させる。すなわち、本実施形態では、磁界発生部15は、ガスセル13に収容されているアルカリ金属原子のエネルギー準位をゼーマン分裂させるための手段(例えばc-fieldコイル)を、ガスセル13の内部の磁場に偏差を持たせる用途にも兼用される。磁場に偏差を持たせることで、ガスセル13の内部には磁場が大きいところと小さいところができる。磁場がかかるとアルカリ金属原子のエネルギー準位はゼーマン分裂を起こすが、分裂幅は磁場の大きさに依存するため、磁場が偏差を持っていれば、それぞれの原子がEIT現象を起こす共鳴光対の周波数差が磁場の強度に応じて異なる(磁場強度の2乗に比例する)。EIT信号は、各原子のEIT現象による信号の重ね合わせとなるので、結果的に左右非対称となる。特に、相対的に強い磁場を受ける原子が相対的に弱い磁場を受ける原子よりも多くなるように磁場の分布を設定す
れば、EIT信号が右側(高周波側)に傾いて非対称になるので、シュタルクシフトをキャンセルすることが可能になる。
EIT信号を左右非対称にする方法としては、例えば、図8(A)〜図8(E)に示す方法が考えられる。図8(A)〜図8(E)は、ガスセル13を光の進行方向(光軸方向)と垂直な方向から視た図である。
例えば、図8(A)に示すように、ガスセル13の一部のみをコイル30で覆い、コイル30に所定の電流を流せば、ガスセル13の内部では、コイル30で覆われた空間は相対的に磁場強度が大きく、コイル30で覆われていない空間はコイル30から離れるほど磁場強度が小さくなる。これにより、ガスセル13の内部の磁場に偏差を持たせることができ、コイル30に流す電流の大きさ、コイル30の巻き数や直径、コイル30の光軸方向の長さや位置を調整することで、シュタルクシフトをキャンセルするような磁場の分布にすることも可能である。なお、図8(A)において、コイル30が図1の磁場発生部15に対応する。
また、例えば、図8(B)に示すように、ガスセル13を巻き数が部分毎に異なる1つのコイル30で覆い、コイル30に所定の電流を流せば、ガスセル13の内部では、コイル30の巻き数が多い空間ほど相対的に磁場強度が大きくなり、コイル30の巻き数が少ない空間ほど相対的に磁場強度が小さくなる。これにより、ガスセル13の内部の磁場に偏差を持たせることができ、コイル30に流す電流の大きさ、コイル30の巻き数や直径等を調整することで、シュタルクシフトをキャンセルするような磁場の分布にすることも可能である。なお、図8(B)において、コイル30が図1の磁場発生部15に対応する。
また、例えば、図8(C)に示すように、ガスセル13を2つのコイル30,31(3つ以上のコイルでもよい)で覆い、例えば、コイル30に流す所定の電流をコイル31に流す所定の電流よりも大きくすれば、ガスセル13の内部では、コイル30で覆われた空間は相対的に磁場強度が大きく、コイル31で覆われた空間は相対的に磁場強度が小さくなる。これにより、ガスセル13の内部の磁場に偏差を持たせることができ、コイル30,31に流す電流の大きさや向き、コイル30,31の巻き数や直径、コイル30,31の光軸方向の長さや位置等を調整することで、シュタルクシフトをキャンセルするような磁場の分布にすることも可能である。なお、図8(C)において、コイル30及びコイル31が図1の磁場発生部15に対応する。
また、例えば、図8(D)に示すように、ガスセル13を直径が部分毎に異なる1つのコイル30で覆い、コイル30に所定の電流を流せば、ガスセル13の内部では、コイル30の直径が短い空間ほど相対的に磁場強度が大きくなり、コイル30の直径が長い空間ほど相対的に磁場強度が小さくなる。これにより、ガスセル13の内部の磁場に偏差を持たせることができ、コイル30に流す電流の大きさ、コイル30の巻き数や直径等を調整することで、シュタルクシフトをキャンセルするような磁場の分布にすることも可能である。なお、図8(D)において、コイル30が図1の磁場発生部15に対応する。
また、例えば、図8(E)に示すように、ガスセル13の光の入射側と出射側に2つのコイル30,31を対向させたヘルムホルツコイルを配置し、コイル30とコイル31とで、電流の大きさ、電流の向き、巻き数、直径、光軸方向の長さ、位置等のパラメーターの一部又は全部を異ならせることにより、ガスセル13の内部の磁場に偏差を持たせることができる。これらのパラメーターを調整することで、シュタルクシフトをキャンセルするような磁場の分布にすることも可能である。なお、図8(E)において、コイル30及びコイル31が図1の磁場発生部15に対応する。
図8(A)〜図8(E)に示したいずれの方法でも、磁場発生部15が発生させる磁場は、半導体レーザー10が発生させる光のガスセル13(アルカリ金属原子)への照射方向に偏差を有しており、ガスセル13に光が入射する位置とガスセル13から光が出射する位置とで磁場の強度が異なっている。また、磁場発生部15が発生させる磁場が最も強い位置とガスセル13の中心(アルカリ金属原子を収容する容器の中心)とが異なっている。このように、本実施形態では、半導体レーザー10の出射光の強度が変化した時、アルカリ金属原子にEIT現象を起こさせる共鳴光対の周波数差が、シュタルクシフトと逆方向にシフトするように、ガスセル13の内部の磁場(磁場の偏差)が設定されている。
図9(A)は、図8(A)に示したように、ガスセルの一部のみをコイルで覆い、コイルに流す電流の大きさを5通りに設定して半導体レーザーの出射光(ガスセルの入射光)の強度と原子発振器の周波数偏差との関係を取得した実験結果のグラフである。図9(B)は、比較のため、ガスセルの全部をコイルで覆い、コイルに流す電流の大きさを5通りに設定して半導体レーザーの出射光(ガスセルの入射光)の強度と原子発振器の周波数偏差との関係を取得した実験結果のグラフである。
図9(B)のグラフは、ガスセル内部の磁場が一様の場合、コイルに流す電流(すなわち、ガスセル内部の磁場の強度)を変えても、光強度が変化するとシュタルクシフトにより周波数が変化してしまうことを示している。一方、図9(A)のグラフは、ガスセル内部の磁場に偏差を持たせてその強度を変えれば、光強度の変化に対する周波数の変化量(周波数感度)を小さくすることができることを示している。従って、磁場の偏差と強度を調整すれば、シュタルクシフトをほとんどキャンセルすることも可能であり、原子発振器の長期安定度を従来よりも向上させることができる。
[原子発振器の製造方法]
図10は、本実施形態の原子発振器1の製造方法の一例を示すフローチャート図である。
まず、図1に示した物理パッケージ100を準備する(S10)。例えば、既存の物理パッケージ100を用意してもよいし、半導体レーザー10、減光フィルター11、1/4波長板12、ガスセル13、光検出器14及び磁場発生部15を用意して物理パッケージ100を組み立ててもよい。
次に、磁場発生部15(コイル等)の位置や形状等、ガスセル10の内部の磁場の分布を決定するパラメーターを初期設定する(S20)。
次に、半導体レーザー10の変調周波数fmをω12/2を中心として低周波数で掃引し、半導体レーザー10のバイアス電流を所定範囲で変更してロックする周波数をそれぞれ測定する(S30)。変調周波数fmを掃引する低周波数は、図1の低周波発振器19の周波数と一致させればよい。変調周波数fmをω12/2を中心として低周波数で掃引させる信号は、例えば、シグナルジェネレーターで発生させることができる。
次に、ステップS30における各バイアス電流値での周波数の測定結果から、光強度に対する周波数感度を計算する(S40)。
周波数感度が閾値よりも大きい場合は(S50のN)、周波数感度が閾値以下となるまで、ガスセル10内部の磁場の分布を決定するパラメーターの設定を変更しながら(S60)、ステップS30以降の処理を繰り返し行う。
そして、周波数感度が閾値以下になれば(S50のY)、最後に、物理パッケージ100と回路(IC)を接続し、原子発振器1を組み立てる(S50)。
以上に説明したように、第1実施形態の原子発振器によれば、EIT信号が非対称となることで、半導体レーザー100の出射光の強度が低下した時にシュタルクシフトによる周波数の変動をある程度キャンセルすることができるので、長期安定度を向上させることができる。
1−2.第2実施形態
第1実施形態では、磁場発生部15は、ガスセル13に収容されているアルカリ金属原子のエネルギー準位をゼーマン分裂させるための手段(例えばc-fieldコイル)を、ガスセル13の内部の磁場に偏差を持たせる用途にも兼用されているが、第2実施形態の原子発振器では、アルカリ金属原子のエネルギー準位をゼーマン分裂させるために一様な磁場を発生させる手段(例えばc-fieldコイル)と、ガスセル13の内部の磁場に偏差を持たせる手段が別個に設けられる。
図11は、第2実施形態の原子発振器の構成例を示す図である。図11において、第1実施形態(図1)と同様の構成には同じ符号を付している。図11に示すように、第2実施形態の原子発振器1は、第1実施形態の原子発振器に対して、磁場発生部15が定常磁場発生部40及び磁場偏差発生部41に置き換えられており、その他の構成は同様である。
定常磁場発生部40は、ガスセル13の内部に定常磁場(一様な磁場)を発生させるものである。磁場発生部15は、例えば、コイルで実現することができ、コイルの位置、形状(例えば、コイルを巻く方向、巻き数、直径等)、電流の大きさや向き等を調整することで所望の磁場を発生させることができる。
磁場偏差発生部41(磁場発生部の一例)は、ガスセル13の内部の磁場に偏差を持たせるためのものである。磁場偏差発生部41は、例えば、磁石やコイルで実現することができ、磁石の位置、形状、強度等、あるいは、コイルの位置、形状(例えば、コイルを巻く方向、巻き数、直径等)、電流の大きさや向き等を調整することで所望の磁場を発生させることができる。
磁場設定回路25は、メモリー27に記憶されている設定情報に応じて定常磁場発生部40及び磁場偏差発生部41がそれぞれ発生させる磁場の強度を設定する処理を行う。例えば、定常磁場発生部40及び磁場偏差発生部41を別個のコイルで実現し、磁場設定回路25は、メモリー27に記憶されている設定情報に応じて各コイルに流す電流量を設定するようにしてもよい。
図11におけるその他の構成は、第1実施形態(図1)と同様であるため、その説明を省略する。
本実施形態においてEIT信号を左右非対称にする方法としては、例えば、図12(A)〜図12(C)に示す方法が考えられる。図12(A)〜図12(C)は、ガスセル13を光の進行方向(光軸方向)と垂直な方向から視た図である。
例えば、図12(A)に示すように、ガスセル13をコイル50で覆い、コイル50に所定の電流を流して、ガスセル13の内部に一様な磁場を発生させる。さらに、ガスセル13の近くに磁石60を配置することで、ガスセル13の内部では、磁石60に近い空間ほど相対的に磁場強度が大きくなり、磁石60から遠い空間ほど相対的に磁場強度が小さ
くなる。これにより、ガスセル13の内部の磁場に偏差を持たせることができ、磁石60の位置、形状、強度、コイル50に流す電流の大きさ、コイル50の巻き数や直径等を調整することで、シュタルクシフトをキャンセルするような磁場の分布にすることも可能である。なお、図12(A)において、コイル50が図11の定常磁場発生部40に対応し、磁石60が図11の磁場偏差発生部41に対応する。
また、例えば、図12(B)に示すように、ガスセル13をコイル50で覆い、コイル50に所定の電流を流して、ガスセル13の内部に一様な磁場を発生させる。さらに、ガスセル13の光の入射側又は出射側(あるいは両方)にコイル52を配置して所定の電流を流すことで、ガスセル13の内部では、コイル52に近い空間ほど相対的に磁場強度が大きくなり、コイル52から遠い空間ほど相対的に磁場強度が小さくなる。これにより、ガスセル13の内部の磁場に偏差を持たせることができ、コイル50及びコイル52に流す電流の大きさ、コイル30の巻き数や直径等を調整することで、シュタルクシフトをキャンセルするような磁場の分布にすることも可能である。なお、図12(B)において、コイル50が図11の定常磁場発生部40に対応し、コイル52が図11の磁場偏差発生部41に対応する。
また、例えば、図12(C)に示すように、ガスセル13の光の入射側と出射側に2つのコイル50,51を対向させたヘルムホルツコイルを配置し、コイル50とコイル51に所定の電流を流して、ガスセル13の内部に一様な磁場を発生させる。さらに、ガスセル13の一部のみをコイル52で覆い、コイル50に所定の電流を流すことで、ガスセル13の内部では、コイル52で覆われた空間は相対的に磁場強度が大きく、コイル52で覆われていない空間は相対的に磁場強度が小さくなる。これにより、ガスセル13の内部の磁場に偏差を持たせることができ、コイル50、コイル51及びコイル52に流す電流の大きさ、コイル50、コイル51及びコイル52の巻き数や直径等を調整することで、シュタルクシフトをキャンセルするような磁場の分布にすることも可能である。なお、図12(C)において、コイル50及びコイル51が図11の定常磁場発生部40に対応し、コイル52が図11の磁場偏差発生部41に対応する。
図12(A)〜図12(C)に示したいずれの方法でも、磁場偏差発生部41が発生させる磁場は、半導体レーザー10が発生させる光のガスセル13(アルカリ金属原子)への照射方向に偏差を有しており、ガスセル13に光が入射する位置とガスセル13から光が出射する位置とで磁場の強度が異なっている。また、磁場偏差発生部41が発生させる磁場が最も強い位置とガスセル13の中心(アルカリ金属原子を収容する容器の中心)とが異なっている。このように、本実施形態では、半導体レーザー10の出射光の強度が変化した時、アルカリ金属原子にEIT現象を起こさせる共鳴光対の周波数差が、シュタルクシフトと逆方向にシフトするように、ガスセル13の内部の磁場(磁場の偏差)が設定されている。
その他、例えば、図12(C)のコイル50を、図8(B)〜図8(D)と同様に、巻き数や直径が位置によって異なるコイルや電流量の異なる複数のコイルに置き換えてもよい。
なお、第2実施形態の原子発振器の製造方法のフローチャートは、図10のフローチャートと同様であるので、その図示及び説明を省略する。
以上に説明したように、第2実施形態の原子発振器によれば、ガスセル13の内部の磁場に偏差を生じさせることでEIT信号が非対称となり、半導体レーザー100の出射光の強度が低下した時にシュタルクシフトによる周波数の変動をある程度キャンセルすることができるので、長期安定度を向上させることができる。
さらに、第2実施形態の原子発振器によれば、ガスセル13の内部に定常磁場を発生させる手段と磁場の偏差を生じさせる手段を別個に設けているので、調整の自由度が向上し、シュタルクシフトによる周波数の変動を精度良よくキャンセルすることが可能である。
2.磁気センサー
図1に示したガスセル13の周辺の磁場の強度が変化すると、ガスセル13に収容されているアルカリ金属原子の基底準位と励起準位におけるゼーマン分裂準位が変化する。このゼーマン分裂準位の変化に応じて、アルカリ金属原子にEIT現象を発生させる共鳴光対の周波数差ω12も変化する。そして、このω12は、磁場の強度Bの2乗に比例することが知られている。電圧制御水晶発振器(VCXO)17の周波数はω12に比例するので、電圧制御水晶発振器(VCXO)17の周波数から磁場強度を算出することができる。従って、ガスセル13の近傍に磁気測定対象物を配置することで磁気センサーを実現することができる。
図13は、本実施形態の磁気センサーの構成例を示す図である。図11において、図1と同じ構成要素には同じ符号を付している。図11に示すように、本実施形態の磁気センサー2は、図1に示した原子発振器1の周波数変換回路28が磁場強度情報生成回路29に置き換わっており、その他の構成は図1に示した原子発振器1と同様である。
磁場強度情報生成回路29は、電圧制御水晶発振器(VCXO)17の発振周波数を測定し、測定結果に基づいて外部磁場の強度を示す磁場強度情報を生成する。ガスセル13には磁場発生部15により磁場がかけられているので、例えば、外部磁場が0(定常磁場のみ)の時の電圧制御水晶発振器(VCXO)17の発振周波数の情報をメモリー27にあらかじめ記憶させておき、磁場強度情報生成回路29は、測定した周波数をメモリー27に記憶されている発振周波数と比較して外部磁場の強度を算出するようにしてもよい。あるいは、電圧制御水晶発振器(VCXO)17の発振周波数と外部磁場の強度との対応テーブルをメモリー27に記憶させておき、磁場強度情報生成回路29は、この対応テーブルを参照し、測定した周波数に対応する外部磁場の強度を、補完計算等により求めてもよい。
図13に示す磁気センサー2のその他の構成は、図1に示した原子発振器1と同様であるので、その説明を省略する。
なお、図11に示した原子発振器1に対して、周波数変換回路28を磁場強度情報生成回路29に置き換えることで、磁気センサーを実現することもできる。
3.変形例
本発明は本実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
[変形例1]
本実施形態の原子発振器や磁気センサーでは、第1のフィードバックループにより、半導体レーザー10の出射光に含まれる2つの1次サイドバンドの光(周波数f0+fmの光と周波数f0−fmの光)がアルカリ金属原子にEIT現象を発生させる共鳴光対となるように、すなわち変調周波数fmがω12/2に一致するように制御がかかるが、これに限られない。例えば、図14(A)及び図14(B)に示すように、一方の1次サイドバンドの光(周波数f0+fmの光又は周波数f0−fmの光)と中心波長λ0(周波数f0)の光が共鳴光対となるように、すなわち、変調周波数fmがω12に一致するように制御してもよい。
[変形例2]
本実施形態の原子発振器や磁気センサーを、電気光学変調器(EOM:Electro-Optic Modulator)を用いた構成に変形してもよい。すなわち、半導体レーザー10は、周波数変換回路20の出力信号(変調信号)による変調がかけられず、設定されたバイアス電流に応じた単一波長λ0(周波数f0)の光を発生させる。この波長λ0の光は、電気光学変調器(EOM)に入射し、周波数変換回路20の出力信号(変調信号)によって変調がかけられる。その結果、図3と同様の周波数スペクトルを有する光を発生させることができる。そして、この電気光学変調器(EOM)が発生させる光がガスセル13に照射される。この原子発振器や磁気センサーでは、半導体レーザー10と電気光学変調器(EOM)により光源が構成される。なお、電気光学変調器(EOM)の代わりに、音響光学変調器(AOM:Acousto-Optic Modulator)を用いてもよい。
[変形例3]
本実施形態の原子発振器や磁気センサーでは、1つの半導体レーザー10の出射光に含まれる2つの1次サイドバンドの光を共鳴光対として使用しているが、2つの半導体レーザーに、それぞれ単一波長の光を発生させ、これらを共鳴光対として使用してもよい。この場合も、共鳴光対の中間の波長がλaとλbの間の波長になるように2つの半導体レーザーのバイアス電流をそれぞれ設定すればよい。
なお、本実施形態の量子干渉装置は、原子発振器や磁気センサー以外にも応用することができる。例えば、本実施形態の量子干渉装置の構成により、極めて安定したアルカリ金属原子の量子干渉状態(量子コヒーレンス状態)を作り出すことができるので、ガスセル13に入射する共鳴光対を取り出すことで、量子コンピュータ、量子メモリー、量子暗号システム等の量子情報機器に用いる光源を実現することもできる。
上述した実施形態および変形例は一例であって、これらに限定されるわけではない。例えば、各実施形態および各変形例を適宜組み合わせることも可能である。
本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
1 原子発振器、2 磁気センサー、10 半導体レーザー、11 減光フィルター、12 1/4波長板、13 ガスセル、14 光検出器、15 磁場発生部、16 検波回路、17 電圧制御水晶発振器(VCXO)、18 変調回路、19 低周波発振器、20 周波数変換回路、21 検波回路、22 変調回路、23 低周波発振器、24 駆動回路、25 磁場設定回路、26 バイアス設定回路、27 メモリー、28 周波数変換回路、29 磁場強度情報生成回路、30 コイル、31 コイル、40 定常磁場発生部、41 磁場偏差発生部、50 コイル、51 コイル、52 コイル、60 磁石、100 物理パッケージ、200 量子干渉装置

Claims (9)

  1. 金属原子と、
    前記金属原子を封入しているセルと、
    前記金属原子に電磁誘起透過現象を発生させる共鳴光対を前記セルに照射する光源と、
    前記セルを透過した光を検出する光検出部と、
    前記セル内部に磁場を発生させる磁場発生部と、を有し、
    前記光源が照射する共鳴光対の強度が変化した時、前記光検出部の出力信号が極大値となる時の前記共鳴光対の周波数差が、シュタルクシフトを打ち消す方向にシフトするように、相対的に強い磁場を受ける前記金属原子が相対的に弱い磁場を受ける前記金属原子よりも多くなるように前記セル内部の磁場が設定されている、量子干渉装置。
  2. 前記セル内部の磁場は、前記光源が発生させる共鳴光対の前記セルへの照射方向に偏差を有する、請求項1に記載の量子干渉装置。
  3. 前記セル内部の磁場が最も強い位置と前記セルの中心とが異なっている、請求項1又は2に記載の量子干渉装置。
  4. 前記セル内部の磁場は、前記光源が発生させる光が前記セルに入射する位置と前記セルから出射する位置とで強度が異なっている、請求項1乃至3のいずれか一項に記載の量子干渉装置。
  5. 前記磁場発生部は、
    前記金属原子のエネルギー準位をゼーマン分裂させるための手段が兼用されている、請求項1乃至4のいずれか一項に記載の量子干渉装置。
  6. 前記磁場発生部は、
    前記金属原子のエネルギー準位をゼーマン分裂させるための手段とは別に設けられている、請求項1乃至5のいずれか一項に記載の量子干渉装置。
  7. 請求項1乃至6のいずれか一項に記載の量子干渉装置を含む原子発振器。
  8. 請求項1乃至6のいずれか一項に記載の量子干渉装置を含む磁気センサー。
  9. 金属原子と、前記金属原子を封入しているセルと、2光波を含む光を発生させて前記セルに照射する光源と、前記セルを透過した光を検出する光検出部と、前記セル内部に磁場を発生させる磁場発生部と、を含む物理パッケージを準備する物理パッケージ準備工程と、
    前記2光波の強度が変化した時、前記光検出部の出力信号が極大値となる時の前記2光波の周波数差が、シュタルクシフトを打ち消す方向にシフトするように、相対的に強い磁場を受ける前記金属原子が相対的に弱い磁場を受ける前記金属原子よりも多くなるように前記磁場発生部が発生させる磁場を設定する磁場設定工程と、を含む、量子干渉装置の製造方法。
JP2013071580A 2013-03-29 2013-03-29 量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法 Expired - Fee Related JP6142989B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071580A JP6142989B2 (ja) 2013-03-29 2013-03-29 量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071580A JP6142989B2 (ja) 2013-03-29 2013-03-29 量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法

Publications (2)

Publication Number Publication Date
JP2014197734A JP2014197734A (ja) 2014-10-16
JP6142989B2 true JP6142989B2 (ja) 2017-06-07

Family

ID=52358273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071580A Expired - Fee Related JP6142989B2 (ja) 2013-03-29 2013-03-29 量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法

Country Status (1)

Country Link
JP (1) JP6142989B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6880834B2 (ja) * 2017-03-02 2021-06-02 株式会社リコー 磁気センサ、生体磁気測定装置
CN111766429B (zh) * 2020-05-27 2023-02-07 国网浙江省电力有限公司丽水供电公司 一种基于量子电磁效应的电流高精度测量装置与方法
EP4184184B8 (en) * 2021-11-19 2023-11-15 Rohde & Schwarz GmbH & Co. KG Measurement system and method for analyzing rf signals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145823U (ja) * 1989-05-15 1990-12-11
JP5381400B2 (ja) * 2009-02-06 2014-01-08 セイコーエプソン株式会社 量子干渉装置、原子発振器、および磁気センサー
JP5407570B2 (ja) * 2009-06-09 2014-02-05 セイコーエプソン株式会社 原子発振器
JP5679099B2 (ja) * 2010-03-02 2015-03-04 セイコーエプソン株式会社 原子発振器

Also Published As

Publication number Publication date
JP2014197734A (ja) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5589166B2 (ja) 原子発振器
JP5818000B2 (ja) 原子発振器、原子発振器の制御方法及び量子干渉装置
JP5720740B2 (ja) 量子干渉装置、原子発振器、および磁気センサー
CN102013891B (zh) 量子干涉装置、原子振荡器以及磁传感器
US11271575B2 (en) Resonance generation method and atomic oscillator
JP6210192B2 (ja) 原子発振器、原子発振器の製造方法
JP6142989B2 (ja) 量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法
EP2869412A2 (en) Optical module and atomic oscillator
CN105991133A (zh) 同步相干光场激励的相干布居数拍频原子钟及其实现方法
US7098744B2 (en) Method and apparatus for generating two frequencies having a frequency separation equal to the atomic frequency of an atomic species
JP6094750B2 (ja) 量子干渉装置、原子発振器、磁気センサー及び量子干渉装置の製造方法
JP6136110B2 (ja) 量子干渉装置、原子発振器及び電子機器
JP2019007763A (ja) 原子時計およびそれを用いた磁界強度計
JP2015057841A (ja) 量子干渉装置
JP6069886B2 (ja) 量子干渉装置、原子発振器、電子機器及び量子干渉方法
JP2012049230A (ja) 量子干渉装置及び量子干渉方法
JP5880807B2 (ja) コヒーレント光源
JP5950097B2 (ja) 量子干渉装置、原子発振器、電子機器及び量子干渉方法
EP2240833B1 (en) Frequency standard based on coherent population trapping (cpt)
JP2016072371A (ja) 原子発振器

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160304

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170425

R150 Certificate of patent or registration of utility model

Ref document number: 6142989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees