JP6142537B2 - インクジェット記録装置、測色装置および測色方法 - Google Patents

インクジェット記録装置、測色装置および測色方法 Download PDF

Info

Publication number
JP6142537B2
JP6142537B2 JP2013004044A JP2013004044A JP6142537B2 JP 6142537 B2 JP6142537 B2 JP 6142537B2 JP 2013004044 A JP2013004044 A JP 2013004044A JP 2013004044 A JP2013004044 A JP 2013004044A JP 6142537 B2 JP6142537 B2 JP 6142537B2
Authority
JP
Japan
Prior art keywords
patch
error
recording medium
colorimetric
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013004044A
Other languages
English (en)
Other versions
JP2014133396A (ja
Inventor
神沢 朋和
朋和 神沢
佐藤 信行
信行 佐藤
裕一 桜田
裕一 桜田
平田 聡
聡 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013004044A priority Critical patent/JP6142537B2/ja
Publication of JP2014133396A publication Critical patent/JP2014133396A/ja
Application granted granted Critical
Publication of JP6142537B2 publication Critical patent/JP6142537B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、インクジェット記録装置、測色装置および測色方法に関する。
プリンタなどの画像形成装置では、機器固有の特性による出力のばらつきを抑制して入力に対する出力の再現性を高めるために、カラーマネジメントと呼ばれる処理が行われる。カラーマネジメントは、機器固有の特性を記述したデバイスプロファイル(ICCプロファイル)に基づいて標準色空間と機器依存色との間の色変換を行うことで、出力画像の再現性を高める。デバイスプロファイルを生成、あるいは修正する際には、実際に画像形成装置により、記録媒体に多数の基準色の色票(パッチ)を並べたテストパターンを形成し、このテストパターンに含まれる各パッチに対する測色を行う。
パッチの測色を行っている間に何らかのエラーが発生した場合、一般的には、記録媒体に対して再度パッチを形成して、パッチの測色を最初からやり直す。このため、記録材の無駄な消費や処理時間の長時間化を招く虞がある。そこで、例えば2枚の記録媒体に分散して形成したパッチの測色を行う際に、1枚目の処理が終了して2枚目の処理を行っている間にエラーが発生すると、エラー解除後に、2枚目の記録媒体のパッチのみを改めて形成して処理を再開させる方法が提案されている(特許文献1参照)。
しかし、特許文献1に記載の技術は、複数の記録媒体にパッチを分散して形成することを前提として、記録媒体ごとに処理を再開させるものであるため、すべてのパッチが1枚の記録媒体に形成されている場合は適用できない。
本発明は、上記に鑑みてなされたものであって、記録材の無駄な消費や処理時間の長時間化を有効に抑制し、画像形成装置が記録媒体に形成したパッチの測色を効率よく行うことができるインクジェット記録装置、測色装置および測色方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係るインクジェット記録装置は、記録媒体に複数のパッチを形成する形成手段と、前記記録媒体に形成された複数の前記パッチの各々と対向する位置に順次移動して前記パッチの色データを取得する取得手段と、エラーが検知された場合に、前記色データの取得を中断させる中断制御手段と、検知されたエラーが、前記記録媒体に対してダメージを与えるエラーとして予め定められた所定エラーであるか否かを判定する第1判定手段と、検知されたエラーが前記所定エラーでないと判定された場合に、前記形成手段による前記パッチの再形成を行わずに、検知されたエラーが解除された後に、前記色データが取得されていない前記パッチから前記色データの取得を再開させる再開制御手段と、を備えることを特徴とする。
また、本発明に係る測色装置、記録媒体に形成された複数のパッチの各々と対向する位置に順次移動して前記パッチの色データを取得する取得手段と、エラーが検知された場合に、前記色データの取得を中断させる中断制御手段と、検知されたエラーが、前記記録媒体に対してダメージを与えるエラーとして予め定められた所定エラーであるか否かを判定する第1判定手段と、検知されたエラーが前記所定エラーでないと判定された場合に、前記取得手段が正常に移動できるか否かを判定する第2判定手段と、検知されたエラーが前記所定エラーでないと判定され、かつ、前記取得手段が正常に移動できると判定された場合に、検知されたエラーが解除された後に、前記色データが取得されていない前記パッチから前記色データの取得を再開させる再開制御手段と、を備えることを特徴とする。
また、本発明に係る測色方法は、記録媒体に複数のパッチを形成するステップと、前記記録媒体に形成された複数の前記パッチの各々と対向する位置に取得手段を順次移動させて前記パッチの色データを取得するステップと、エラーが検知された場合に、前記色データの取得を中断させるステップと、検知されたエラーが、前記記録媒体に対してダメージを与えるエラーとして予め定められた所定エラーであるか否かを判定するステップと、検知されたエラーが前記所定エラーでないと判定された場合に、前記パッチの再形成を行わずに、検知されたエラーが解除された後に、前記色データが取得されていない前記パッチから前記色データの取得を再開させるステップと、を含むことを特徴とする。
本発明によれば、記録材の無駄な消費や処理時間の長時間化を有効に抑制し、画像形成装置が記録媒体に形成したパッチの測色を効率よく行うことができるという効果を奏する。
図1は、画像形成装置の内部を透視して示す斜視図である。 図2は、画像形成装置の内部の機械的構成を示す上面図である。 図3は、キャリッジに搭載される記録ヘッドの配置例を説明する図である。 図4−1は、測色カメラの縦断面図(図4−2中のX1−X1線断面図)である。 図4−2は、測色カメラの内部を透視して示す上面図である。 図4−3は、筐体の底面部を図4−1中のX2方向から見た平面図である。 図5は、基準チャート部の具体例を示す図である。 図6は、画像形成装置の制御機構の概略構成を示すブロック図である。 図7は、測色カメラの制御機構の一構成例を示すブロック図である。 図8は、記録媒体に形成されたテストパターンの一例を示す図である。 図9は、エラー処理部の機能的な構成例を示すブロック図である。 図10は、エラー処理の手順を示すフローチャートである。 図11は、異物検知処理の手順の一例を示すフローチャートである。 図12は、異物検知処理の手順の他の例を示すフローチャートである。 図13は、基準測色値および基準RGB値を取得する処理と基準値線形変換マトリックスを生成する処理を説明する図である。 図14は、初期基準RGB値の一例を示す図である。 図15は、測色処理の概要を説明する図である。 図16は、基準RGB間線形変換マトリックスを生成する処理を説明する図である。 図17は、初期基準RGB値と測色時基準RGB値との関係を示す図である。 図18は、基本測色処理を説明する図である。 図19は、基本測色処理を説明する図である。 図20は、第1変形例の測色カメラの縦断面図である。 図21は、第2変形例の測色カメラの縦断面図である。 図22は、第3変形例の測色カメラの縦断面図である。 図23−1は、第4変形例の測色カメラの縦断面図である。 図23−2は、第4変形例の測色カメラにおける筐体の底面部を図23−1中のX3方向から見た平面図である。 図24は、第5変形例の測色カメラの縦断面図である。 図25は、第6変形例の測色カメラの縦断面図である。 図26は、測色対象のパッチと基準チャート部とを同時に撮像することで得られる画像データの一例を示す図である。 図27は、パッチの測色方法の変形例を説明する図である。 図28は、Lab値とXYZ値との変換を行う変換式を示す図である。 図29は、パッチの測色の手順を示すフローチャートである。 図30は、パッチの測色の手順の他の例を示すフローチャートである。 図31は、標準の各パッチのLab値に対応するRGB値を特定する方法を説明する図である。 図32は、測色システムの概略構成を示す図である。
以下に添付図面を参照して、この発明に係る測色装置、画像形成装置および測色方法の最良な実施の形態を詳細に説明する。なお、以下で説明する実施形態では、本発明を適用した画像形成装置の一例としてインクジェットプリンタを例示するが、本発明は、記録媒体に画像を形成する様々なタイプの画像形成装置に対して広く適用可能である。
<画像形成装置の機械的構成>
まず、図1乃至図3を参照しながら、本実施形態に係る画像形成装置100の機械的構成について説明する。図1は、本実施形態に係る画像形成装置100の内部を透視して示す斜視図、図2は、本実施形態に係る画像形成装置100の内部の機械的構成を示す上面図、図3は、キャリッジ5に搭載される記録ヘッド6の配置例を説明する図である。
図1に示すように、本実施形態に係る画像形成装置100は、主走査方向(図中矢印A方向)に往復移動して、副走査方向(図中矢印B方向)に間欠的に搬送される記録媒体16に対して画像を形成するキャリッジ5を備える。キャリッジ5は、主走査方向に沿って延設された主ガイドロッド3により支持されている。また、キャリッジ5には連結片5aが設けられている。連結片5aは、主ガイドロッド3と平行に設けられた副ガイド部材4に係合し、キャリッジ5の姿勢を安定化させる。
キャリッジ5には、図2に示すように、イエロー(Y)インクを吐出する記録ヘッド6y、マゼンタ(M)インクを吐出する記録ヘッド6m、シアン(C)インクを吐出する記録ヘッド6c、およびブラック(Bk)インクを吐出する複数の記録ヘッド6k(以下、記録ヘッド6y,6m,6c,6kを総称する場合は、記録ヘッド6という。)が搭載されている。記録ヘッド6は、その吐出面(ノズル面)が下方(記録媒体16側)に向くように、キャリッジ5に搭載されている。
記録ヘッド6にインクを供給するためのインク供給体であるカートリッジ7は、キャリッジ5には搭載されず、画像形成装置100内の所定の位置に配置されている。カートリッジ7と記録ヘッド6とは図示しないパイプで連結されており、このパイプを介して、カートリッジ7から記録ヘッド6に対してインクが供給される。
キャリッジ5は、駆動プーリ9と従動プーリ10との間に張架されたタイミングベルト11に連結されている。駆動プーリ9は、主走査モータ8の駆動により回転する。従動プーリ10は、駆動プーリ9との間の距離を調整する機構を有し、タイミングベルト11に対して所定のテンションを与える役割を持つ。キャリッジ5は、主走査モータ8の駆動によりタイミングベルト11が送り動作されることにより、主走査方向に往復移動する。キャリッジ5の主走査方向の移動は、例えば図2に示すように、キャリッジ5に設けられたエンコーダセンサ41がエンコーダシート40のマークを検知して得られるエンコーダ値に基づいて制御される。
また、本実施形態に係る画像形成装置100は、記録ヘッド6の信頼性を維持するための維持機構21を備える。維持機構21は、記録ヘッド6の吐出面の清掃やキャッピング、記録ヘッド6からの不要なインクの排出などを行う。
記録ヘッド6の吐出面と対向する位置には、図2に示すように、プラテン22が設けられている。プラテン22は、記録ヘッド6から記録媒体16上にインクを吐出する際に、記録媒体16を支持するためのものである。本実施形態に係る画像形成装置100は、キャリッジ5の主走査方向の移動距離が長い広幅機である。このため、プラテン22は、複数の板状部材を主走査方向(キャリッジ5の移動方向)に繋いで構成している。記録媒体16は、図示しない副走査モータによって駆動される搬送ローラにより挟持され、プラテン22上を、副走査方向に間欠的に搬送される。
記録ヘッド6は、複数のノズル列を備えており、プラテン22上を搬送される記録媒体16上にノズル列からインクを吐出することで、記録媒体16に画像を形成する。本実施形態では、キャリッジ5の1回の走査で記録媒体16に形成できる画像の幅を多く確保するため、図3に示すように、キャリッジ5に、上流側の記録ヘッド6と下流側の記録ヘッド6とを搭載している。また、ブラックのインクを吐出する記録ヘッド6kは、カラーのインクを吐出する記録ヘッド6y,6m,6cの2倍の数だけキャリッジ5に搭載している。また、記録ヘッド6y,6mは左右に分離して配置されている。これは、キャリッジ5の往復動作で色の重ね順を合わせ、往路と復路とで色が変わらないようにするためである。なお、図3に示す記録ヘッド6の配列は一例であり、図3に示す配列に限定されるものではない。
本実施形態に係る画像形成装置100を構成する上記の各構成要素は、外装体1の内部に配置されている。外装体1にはカバー部材2が開閉可能に設けられている。画像形成装置100のメンテナンス時やジャム発生時には、カバー部材2を開けることにより、外装体1の内部に設けられた各構成要素に対して作業を行うことができる。
本実施形態に係る画像形成装置100は、記録媒体16を副走査方向に間欠的に搬送し、記録媒体16の副走査方向の搬送が停止している間に、キャリッジ5を主走査方向に移動させながら、キャリッジ5に搭載された記録ヘッド6のノズル列からプラテン22上の記録媒体16上にインクを吐出して、記録媒体16に画像を形成する。
特に、画像形成装置100の色調整を行う調整時などにおいては、キャリッジ5に搭載された記録ヘッド6のノズル列から実際にプラテン22上の記録媒体16上にインクを吐出して、多数のパッチ200が並ぶテストパターンを形成する。そして、このテストパターンに含まれる各パッチ200に対する測色を行う。テストパターンに含まれる各パッチ200は、基準色のパッチを画像形成装置100が出力することで得られる画像であり、画像形成装置100に固有の特性を反映している。したがって、これらのパッチ200の測色値を用いて、画像形成装置100に固有の特性を記述したデバイスプロファイルを生成、あるいは修正することができる。そして、このデバイスプロファイルに基づいて標準色空間と機器依存色との間の色変換を行うことで、画像形成装置100は再現性の高い画像を出力することができる。
本実施形態に係る画像形成装置100は、記録媒体16に形成したテストパターンに含まれる各パッチ200に対する測色を行うための測色カメラ(測色装置)42を備える。測色カメラ42は、画像形成装置100により記録媒体16に形成されたパッチ200を被写体とし、このパッチ200と後述する基準チャート部400とを同時に撮像(色データを取得)する。そして、測色カメラ42は、撮像によって得られるパッチ200および基準チャート部400の画像データに基づいて、パッチ200の測色値を算出する。
測色カメラ42は、図2に示すように、キャリッジ5に対して固定されて設けられ、キャリッジ5と一体となって主走査方向に往復移動する。そして、測色カメラ42は、プラテン22上の記録媒体16に形成されたテストパターンに含まれる各パッチ200と対向する位置に移動したときに、各パッチ200を基準チャート部400と同時に撮像する。なお、ここでの同時に撮像とは、パッチ200と基準チャート部400とを含む1フレームの画像データを取得することを意味する。つまり、画素ごとのデータ取得に時間差があっても、1フレーム内にパッチ200と基準チャート部400とを含む画像データを取得すれば、パッチ200と基準チャート部400とを同時に撮像したことになる。
<測色カメラの機械的構成の具体例>
図4−1乃至図4−3は、測色カメラ42の機械的構成の一例を示す図であり、図4−1は、測色カメラ42の縦断面図(図4−2中のX1−X1線断面図)、図4−2は、測色カメラ42の内部を透視して示す上面図、図4−3は、筐体の底面部を図4−1中のX2方向から見た平面図である。
測色カメラ42は、枠体422と基板423とを組み合わせて構成された筐体421を備える。枠体422は、筐体421の上面となる一端側が開放された有底筒状に形成されている。基板423は、枠体422の開放端を閉塞して筐体421の上面を構成するように、締結部材424によって枠体422に締結され、枠体422と一体化されている。
筐体421は、その底面部421aが所定の間隙dを介してプラテン22上の記録媒体16と対向するように、キャリッジ5に固定される。記録媒体16と対向する筐体421の底面部421aには、記録媒体16に形成されたパッチ200を筐体421の内部から撮影可能にするための開口部425が設けられている。
筐体421の内部には、画像を撮像するセンサ部430が設けられている。センサ部430は、CCDセンサまたはCMOSセンサなどの2次元イメージセンサ431と、センサ部430の撮像範囲の光学像を2次元イメージセンサ431のセンサ面に結像する結像レンズ432とを備える。2次元イメージセンサ431は、センサ面が筐体421の底面部421a側に向くように、例えば、基板423の内面(部品実装面)に実装されている。結像レンズ432は、その光学特性に応じて定められる位置関係を保つように2次元イメージセンサ431に対して位置決めされた状態で固定されている。
筐体421の底面部421aのセンサ部430と対向する内面側には、底面部421aに設けられた開口部425と隣り合うようにして、基準チャート部400が形成されたチャート板410が配置されている。チャート板410は、例えば、基準チャート部400が形成された面とは逆側の面を接着面として、筐体421の底面部421aの内面側に接着材などにより接着され、筐体421に対して固定された状態で保持されている。なお、基準チャート部400は、チャート板410上ではなく、筐体421の底面部421aの内面側に直接形成されていてもよい。この場合はチャート板410は不要である。基準チャート部400は、例えば、測色対象のパッチ200の比較対象として、センサ部430によりパッチ200とともに撮像されるものである。つまり、センサ部430は、筐体421の底面421aに設けられた開口部425を介して筐体421の外部のパッチ200を撮像すると同時に、筐体421の底面421aの内面側に配置されたチャート板410上の基準チャート部400を撮像する。なお、基準チャート部400の詳細については後述する。
また、筐体421の内部には、センサ部430がパッチ200と基準チャート部400とを同時に撮像する際に、これらパッチ200および基準チャート部400を照明する照明光源426が設けられている。照明光源426としては、例えばLED(Light Emitting Diode)が用いられる。本実施形態においては、照明光源426として2つのLEDを用いる。照明光源426として用いるこれら2つのLEDは、例えば、センサ部430の2次元イメージセンサ431とともに、基板423の内面に実装される。ただし、照明光源426は、パッチ200と基準チャート部400とを照明できる位置に配置されていればよく、必ずしも基板423に直接実装されていなくてもよい。また、本実施形態では、照明光源426としてLEDを用いているが、光源の種類はLEDに限定されるものではない。例えば、有機ELなどを照明光源426として用いるようにしてもよい。有機ELを照明光源426として用いた場合は、太陽光の分光分布に近い照明光が得られるため、測色精度の向上が期待できる。
また、本実施形態では、図4−2に示すように、照明光源426として用いる2つのLEDを基板423側から筐体421の底面部421a側に垂直に見下ろしたときの底面部421a上の投影位置が、開口部425と基準チャート部400との間の領域内となり、且つ、センサ部430を中心として対称となる位置となるように、これら2つのLEDが配置されている。換言すると、照明光源426として用いる2つのLEDを結ぶ線がセンサ部430の結像レンズ432の中心を通り、且つ、この2つのLEDを結ぶ線に対して線対称となる位置に、筐体421の底面部421aに設けられた開口部425と基準チャート部400とが配置される。照明光源426として用いる2つのLEDをこのように配置することにより、パッチ200と基準チャート部400とを、概ね同一の条件にて照明することができる。
ところで、筐体421の内部に配置された基準チャート部400と同一の照明条件により筐体421の外部のパッチ200を照明するには、撮像時に外光がパッチ200に当たらないようにして、照明光源426からの照明光のみでパッチ200を照明する必要がある。パッチ200に外光が当たらないようにするには、筐体421の底面部421aと記録媒体16との間の間隙dを小さくし、パッチ200に向かう外光が筐体421によって遮られるようにすることが有効である。ただし、筐体421の底面部421aと記録媒体16との間の間隙dを小さくしすぎると、記録媒体16が筐体421の底面部421aに接触してしまい、画像の撮像を適切に行えなくなる虞がある。そこで、筐体421の底面部421aと記録媒体16との間の間隙dは、記録媒体16の平面性を考慮して、記録媒体16が筐体421の底面部421aに接触しない範囲で小さな値に設定することが望ましい。例えば、筐体421の底面部421aと記録媒体16との間の間隙dを1mm〜2mm程度に設定すれば、記録媒体16が筐体421の底面部421aに接触することなく、記録媒体16に形成されたパッチ200に外光が当たることを有効に防止できる。
なお、照明光源426からの照明光をパッチ200に適切に照射するには、筐体421の底面部421aに設けた開口部425の大きさをパッチ200よりも大きくし、開口部425の端縁で照明光が遮られることで生じる影がパッチ200に映り込まないようにすることが望ましい。
また、筐体421の底面部421aと記録媒体16との間の間隙dを小さくすれば、センサ部430からパッチ200までの光路長と、センサ部430から基準チャート部400までの光路長との差を、センサ部430の被写界深度の範囲内とすることもできる。本実施形態の測色カメラ42は、筐体421の外部のパッチ200と筐体421の内部に設けられた基準チャート部400とをセンサ部430により同時に撮像する構成である。したがって、センサ部430からパッチ200までの光路長とセンサ部430から基準チャート部400までの光路長との差がセンサ部430の被写界深度の範囲を超えていると、パッチ200と基準チャート部400との双方に焦点の合った画像を撮像することができない。
センサ部430からパッチ200までの光路長とセンサ部430から基準チャート部400までの光路長との差は、概ね、筐体421の底面部421aの厚みに間隙dを加えた値となる。したがって、間隙dを十分に小さな値とすれば、センサ部430からパッチ200までの光路長とセンサ部430から基準チャート部400までの光路長との差を、センサ部430の被写界深度の範囲内として、パッチ200と基準チャート部400との双方に焦点の合った画像を撮像することができる。例えば、間隙dを1mm〜2mm程度に設定すれば、センサ部430からパッチ200までの光路長とセンサ部430から基準チャート部400までの光路長との差を、センサ部430の被写界深度の範囲内とすることができる。
なお、センサ部430の被写界深度は、センサ部430の絞り値や結像レンズ432の焦点距離、センサ部430と被写体との間の距離などに応じて定まる、センサ部430に固有の特性である。本実施形態の測色カメラ42においては、筐体421の底面部421aと記録媒体16との間の間隙dを例えば1mm〜2mm程度の十分に小さな値としたときに、センサ部430からパッチ200までの光路長と、センサ部430から基準チャート部400までの光路長との差が被写界深度の範囲内となるように、センサ部430が設計されている。
<基準チャート部の具体例>
次に、図5を参照しながら、測色カメラ42の筐体421の内部に配置されるチャート板410上の基準チャート部400について詳細に説明する。図5は、基準チャート部400の具体例を示す図である。
図5に示す基準チャート部400は、測色用のパッチを配列した複数の基準パッチ列401〜404、ドット径計測用パターン列406、距離計測用ライン405およびチャート位置特定用マーカ407を有する。
基準パッチ列401〜404は、YMCKの1次色のパッチを階調順に配列した基準パッチ列401と、RGBの2次色のパッチを階調順に配列した基準パッチ列402と、グレースケールのパッチを階調順に配列した基準パッチ列(無彩色の階調パターン)403と、3次色のパッチを配列した基準パッチ列404と、を含む。ドット径計測用パターン列406は、大きさが異なる円形パターンが大きさ順に配列された幾何学形状測定用のパターン列であり、記録媒体16に記録された画像のドット径の計測に用いることができる。
距離計測用ライン405は、複数の基準パッチ列401〜404やドット径計測用パターン列406を囲む矩形の枠として形成されている。チャート位置特定用マーカ407は、距離計測用ライン405の四隅の位置に設けられていて、各パッチ位置を特定するためのマーカとして機能する。測色カメラ42の撮像により得られる基準チャート部400の画像データから、距離計測用ライン405とその四隅のチャート位置特定用マーカ407を特定することで、基準チャート部400の位置及び各パターンの位置を特定することができる。
測色用の基準パッチ列401〜404を構成する各パッチは、測色カメラ42が撮像を行う際の撮像条件を反映した色味の基準として用いられる。なお、基準チャート部400に配置されている測色用の基準パッチ列401〜404の構成は、図5に示す例に限定されるものではなく、任意のパッチ列を適用することが可能である。例えば、可能な限り色範囲が広く特定できるパッチを用いてもよいし、また、YMCKの1次色の基準パッチ列401や、グレースケールの基準パッチ列403は、画像形成装置100に使用されるインクの測色値のパッチで構成されていてもよい。また、RGBの2次色の基準パッチ列402は、画像形成装置100で使用されるインクで発色可能な測色値のパッチで構成されていてもよく、さらに、Japan Color等の測色値が定められた基準色票を用いてもよい。
なお、本実施形態では、一般的なパッチ(色票)の形状の基準パッチ列401〜404を有する基準チャート部400を用いているが、基準チャート部400は、必ずしもこのような基準パッチ列401〜404を有する形態でなくてもよい。基準チャート部400は、測色に利用可能な複数の色が、それぞれの位置を特定できるように配置された構成であればよい。
基準チャート部400は、測色カメラ42の筐体421の底面部421aに、開口部425と隣り合うように配置されているため、センサ部430によってパッチ200と同時に撮像することができる。
<画像形成装置の制御機構の概略構成>
次に、図6を参照しながら、本実施形態に係る画像形成装置100の制御機構の概略構成について説明する。図6は、画像形成装置100の制御機構の概略構成を示すブロック図である。
本実施形態に係る画像形成装置100は、図6に示すように、CPU101、ROM102、RAM103、記録ヘッドドライバ104、主走査ドライバ105、副走査ドライバ106、制御用FPGA(Field-Programmable Gate Array)110、記録ヘッド6、測色カメラ42、エンコーダセンサ41、主走査モータ8、および副走査モータ12を備える。CPU101、ROM102、RAM103、記録ヘッドドライバ104、主走査ドライバ105、副走査ドライバ106、および制御用FPGA110は、メイン制御基板120に搭載されている。記録ヘッド6、エンコーダセンサ41、および測色カメラ42は、上述したようにキャリッジ5に搭載されている。
CPU101は、画像形成装置100の全体の制御を司る。例えば、CPU101は、RAM103を作業領域として利用して、ROM102に格納された各種の制御プログラムを実行し、画像形成装置100における各種動作を制御するための制御指令を出力する。
記録ヘッドドライバ104、主走査ドライバ105、副走査ドライバ106は、それぞれ、記録ヘッド6、主走査モータ8、副走査モータ12を駆動するためのドライバである。
制御用FPGA110は、CPU101と連携して画像形成装置100における各種動作を制御する。制御用FPGA110は、機能的な構成要素として、例えば、CPU制御部111、メモリ制御部112、インク吐出制御部113、センサ制御部114、モータ制御部115、およびエラー処理部30を備える。
CPU制御部111は、CPU101と通信を行って、制御用FPGA110が取得した各種情報をCPU101に伝えるとともに、CPU101から出力された制御指令を入力する。
メモリ制御部112は、CPU101がROM102やRAM103にアクセスするためのメモリ制御を行う。
インク吐出制御部113は、CPU101からの制御指令に応じて記録ヘッドドライバ104の動作を制御することにより、記録ヘッドドライバ104により駆動される記録ヘッド6からのインクの吐出タイミングを制御する。
センサ制御部114は、エンコーダセンサ41から出力されるエンコーダ値などのセンサ信号に対する処理を行う。
モータ制御部115は、CPU101からの制御指令に応じて主走査ドライバ105の動作を制御することにより、主走査ドライバ105により駆動される主走査モータ8を制御して、キャリッジ5の主走査方向への移動を制御する。また、モータ制御部115は、CPU101からの制御指令に応じて副走査ドライバ106の動作を制御することにより、副走査ドライバ106により駆動される副走査モータ12を制御して、プラテン22上の記録媒体16の副走査方向への移動を制御する。
エラー処理部30は、測色カメラ42が記録媒体16に形成されたテストパターンに含まれる各パッチ200の測色を行っている際に何らかのエラーが発生した場合に、エラー処理を実施する。なお、エラー処理の詳細は後述する。
なお、以上の各部は、制御用FPGA110により実現する制御機能の一例であり、これら以外にも様々な制御機能を制御用FPGA110により実現する構成としてもよい。また、上記の制御機能の全部または一部を、CPU101または他の汎用のCPUにより実行されるプログラムにより実現する構成であってもよい。また、上記の制御機能の一部を、制御用FPGA110とは異なる他のFPGAやASIC(Application Specific Integrated Circuit)などの専用のハードウェアにより実現する構成であってもよい。
記録ヘッド6は、CPU101および制御用FPGA110により動作制御される記録ヘッドドライバ104により駆動され、プラテン22上の記録媒体16にインクを吐出し、画像の形成を行う。
測色カメラ42は、上述したように、記録媒体16に形成されたテストパターンに含まれる各パッチ200の測色を行う際に、パッチ200と筐体421の内部に配置されたチャート板410上の基準チャート部400とをセンサ部430で同時に撮像し、パッチ200および基準チャート部400を含む画像データに基づいて、パッチ200の測色値(標準色空間における表色値であり、例えばL色空間におけるL値(以下、LをLabと表記する。))を算出する。測色カメラ42が算出したパッチ200の測色値は、制御用FPGA110を介してCPU101に送られる。
エンコーダセンサ41は、エンコーダシート40のマークを検知して得られるエンコーダ値を制御用FPGA110に出力する。このエンコーダ値は制御用FPGA110からCPU101へと送られて、例えば、キャリッジ5の位置や速度を計算するために用いられる。CPU101は、このエンコーダ値から計算したキャリッジ5の位置や速度に基づき、主走査モータ8を制御するための制御指令を生成して出力する。
<測色カメラの制御機構の構成>
次に、図7を参照しながら、測色カメラ42の制御機構について具体的に説明する。図7は、測色カメラ42の制御機構の一構成例を示すブロック図である。
測色カメラ42は、図7に示すように、2次元イメージセンサ431、インターフェース部46、フレームメモリ51、測色値演算部52、不揮発性メモリ53、タイミング信号発生部54、光源駆動制御部55、および照明光源426を備える。これらの各部は、例えば、測色カメラ42の筐体421の上面部を構成する基板423に実装されている。
2次元イメージセンサ431は、結像レンズ432を介して入射した撮像範囲からの光を電気信号に変換し、撮像範囲の画像データ(色データ)を出力する。また、この2次元イメージセンサ431は、画像データに対して各種の画像処理を行う機能を持ち、AD変換部451、シェーディング補正部452、ホワイトバランス補正部453、γ補正部454、および画像フォーマット変換部455を備える。なお、画像データに対する各種の画像処理は、2次元イメージセンサ431の外部で行うようにしてもよい。
AD変換部451は、被写体の光学像を光電変換することで得られたアナログ信号をAD変換する。
シェーディング補正部452は、センサ部430の撮像範囲に対する照明光源426からの照明の照度ムラに起因する画像データの誤差を補正する。
ホワイトバランス補正部453は、画像データのホワイトバランスを補正する。
γ補正部454は、2次元イメージセンサ431の感度のリニアリティを補償するように画像データを補正する。
画像フォーマット変換部455は、画像データを任意のフォーマットに変換する。
インターフェース部46は、2次元イメージセンサ431から画像データを出力し、また、CPU101から制御用FPGA110を介して送られた各種設定信号やタイミング信号発生部54が生成したタイミング信号を2次元イメージセンサ431に入力するためのインターフェースである。各種設定信号は、2次元イメージセンサ431の動作モードを設定する信号や、シャッタスピード、AGCのゲインなどの撮像条件を設定する信号を含む。
フレームメモリ51は、2次元イメージセンサ431から出力された画像データを一時的に記憶するメモリである。
測色値演算部52は、測色カメラ42が測色対象のパッチ200と基準チャート部400とを同時に撮像したときに、この撮像によって得られるパッチ200および基準チャート部400の画像データに基づいて、パッチ200の測色値を算出する。測色値演算部52が算出したパッチ200の測色値は、制御用FPGA110を介してCPU101へと送られる。なお、測色値演算部52による処理の具体例については、詳細を後述する。
不揮発性メモリ53は、測色値演算部52がパッチ200の測色値を算出するために必要な各種データを格納する。
タイミング信号発生部54は、測色カメラ42による撮像のタイミングを制御するタイミング信号を生成し、インターフェース部46を介して2次元イメージセンサ431に入力する。
光源駆動制御部55は、照明光源426を駆動するための光源駆動信号を生成して、照明光源426に供給する。
<測色時の動作の概要>
次に、以上のように構成される画像形成装置100によりパッチ200の測色を行う際の動作の概要を説明する。
まず、画像形成装置100は、測色対象のパッチ200を並べたテストパターンの形成を行う。すなわち、画像形成装置100は、CPU101および制御用FPGA110による制御のもとで、主走査モータ8、副走査モータ12、および記録ヘッド6を駆動して、プラテン22上にセットされた記録媒体16に、多数のパッチ200が並んだテストパターンを形成する。
図8は、記録媒体16に形成されたテストパターンの一例を示す図である。図8では、測色対象のパッチ200を主走査方向に8個並べ、8個のパッチ200からなるパッチ列を、副走査方向に複数列並べた構成のテストパターンの一部を示しており、副走査方向に4列のパッチ列(合計32個のパッチ201〜232)のみを図示している。
図8に示すようなテストパターンが形成された記録媒体16がプラテン22上にセットされると、画像形成装置100は、テストパターンに含まれる各パッチ200(201〜232)に対する測色を行う。すなわち、画像形成装置100は、CPU101および制御用FPGA110による制御のもとで、主走査モータ8および副走査モータ12を駆動するとともに測色カメラ42を制御して、キャリッジ5に搭載された測色カメラ42を各パッチ200と対向する位置に順次移動させて、測色カメラ42による各パッチ200の撮像を行う。測色カメラ42は、パッチ200と対向する位置に移動したタイミングで、パッチ200と筐体421に設けられた基準チャート部400とを同時に撮像する。そして、測色カメラ42は、パッチ200と基準チャート部400とを含む画像データに基づいて、パッチ200の測色値を算出する。
具体的には、測色カメラ42は、キャリッジ5の主走査方向の移動と記録媒体16の副走査方向への移動とにより、図8中の(1)〜(4)の矢印で示す順番で各パッチ200と対向する位置に順次移動し、各パッチ200の画像を撮像することにより、各パッチ200の測色値を算出する。なお、図8では、合計32個の測色対象のパッチ200のそれぞれに、測色カメラ42により撮像される順番が早い順に201〜232の符号を付している。
<エラー処理>
本実施形態に係る画像形成装置100は、上記のようなテストパターンに含まれる各パッチ200の測色を行っている間に何らかのエラーが検知されると、エラー処理を行う機能を持つ。以下、本実施形態に係る画像形成装置100により実施されるエラー処理の詳細について説明する。なお、エラーの検知は、例えば、画像形成装置100に備えられた各種センサの検知信号に基づいてCPU101が実施する。エラーの検知自体は、一般的に知られている技術を用いればよいため、ここでは詳細な説明を省略する。
エラー処理は、制御用FPGA110のエラー処理部30により実現される機能である。図9は、エラー処理部30の機能的な構成例を示すブロック図である。エラー処理部30は、図9に示すように、中断制御部31、第1判定部32、第2判定部33、第3判定部34、補正部35、指示部36、および再開制御部37を備える。
中断制御部31は、各パッチ200の測色(測色カメラ42によるパッチ200の撮像および測色値の算出)を行っている間に何らかのエラーが検知された場合に、測色カメラ42によるパッチ200の撮像および測色値の算出を中断させる。
第1判定部32は、検知されたエラーが、記録媒体16に対してダメージを与えるエラーとして予め定められた所定エラーであるか否かを判定する。本実施形態では、一例として、主走査ジャムが所定エラーとして定められているものとする。主走査ジャムは、測色カメラ42が取り付けられたキャリッジ5が主走査方向に移動する際に、キャリッジ5が記録媒体16に干渉することによって生じるジャムであり、記録媒体16にダメージを与えるエラーである。主走査ジャムは、例えば、CPU101がエンコーダセンサ41からのエンコーダ値に基づいて主走査モータ8をフィードバック制御する中で、キャリッジ5が主走査方向に正しく移動できないと判定した場合に検知される。なお、ここでは主走査ジャムのみを所定エラーとして定めているが、記録媒体16にダメージを与える可能性がある他のエラーも含めて、複数のエラーを所定エラーとして予め定めておくようにしてもよい。
従来技術では、パッチ200の測色を行っている間に何らかのエラーが発生した場合、記録媒体16に改めてパッチ200を形成し直して、パッチ200の測色を最初からやり直すため、記録材の無駄な消費や処理時間の長時間化を招く虞があった。これに対して、本実施形態に係る画像形成装置100は、検知されたエラーが記録媒体16に対してダメージを与える所定エラーではない場合は、エラー解除後に、測色カメラ42による撮像を行っていないパッチ200から測色を再開できるようにしている。これにより、記録材の無駄な消費や処理時間の長時間化を有効に抑制し、記録媒体16に形成したパッチ200の測色を効率よく行うことができる。
第2判定部33は、検知されたエラーが所定エラーでないと判定された場合に、測色カメラ42が取り付けられたキャリッジ5が主走査方向に正常に移動できるか否かを判定する。具体的には、第2判定部33は、例えば、詳細を後述する異物検知処理を行って、キャリッジ5が主走査方向に正常に移動できるか否かを判定する。
例えば、パッチ200の測色を行っている間にオペレータがカバー部材2を開けると、カバー部材2の開閉を検知するセンサの検知信号に基づいて、CPU101がカバーオープンのエラーを検知する。この場合、測色カメラ42によるパッチ200の撮像および測色値の算出は中断制御部31により中断されるが、カバーオープン自体は記録媒体16にダメージを与えるエラーではない。しかし、カバー部材2を開けた状態でオペレータが何らかの作業を行うと、外装体1の内部に異物が混入して記録媒体16に付着したり、オペレータが記録媒体16を触ることにより記録媒体16にダメージが生じたりすることで、キャリッジ5が主走査方向に正常に移動できなくなることがある。そこで、検知されたエラーが所定エラーでないと第1判定部32により判定された場合に、第2判定部33が、異物検知処理を行って、キャリッジ5が主走査方向に正常に移動できるか否かを判定する。
第3判定部34は、検知されたエラーが所定エラーでないと判定された場合に、記録媒体16に位置ずれが生じているか否かを判定する。具体的には、第3判定部34は、例えば、エラーが検知される前に最後に測色カメラ42が撮像を行ったパッチ200と対向する位置に測色カメラ42を移動させて、測色カメラ42により当該パッチ200を正しく撮像できるか否かにより、記録媒体16に位置ずれが生じているか否かを判定する。
上述したように、カバーオープンのエラーが検知された場合、カバーオープン自体は記録媒体16にダメージを与えるエラーではないが、オペレータが記録媒体16を触ることにより記録媒体16に位置ずれが生じる場合がある。そこで、検知されたエラーが所定エラーでないと第1判定部32により判定された場合に、第3判定部34が、記録媒体16に位置ずれが生じているか否かを判定する。
補正部35は、第3判定部34により記録媒体16に位置ずれが生じていると判定された場合に、記録媒体16の位置ずれを補正する。具体的には、補正部35は、例えば、測色カメラ42が備えるセンサ部430の撮像範囲内のずれであれば、測色カメラ42により撮像される画像から位置ずれ量を算出し、算出した位置ずれ量分だけ記録媒体16を搬送させることにより、位置ずれを補正することができる。また、補正部35は、記録媒体16の先端が検知されるまで記録媒体16を一旦搬送させ、記録媒体16の先端を基準として目標位置まで記録媒体16を搬送させることにより、位置ずれを補正するようにしてもよい。
指示部36は、検知されたエラーが所定エラーであると判定された場合、つまり記録媒体16にダメージを与えるエラーが発生していると判定された場合に、複数のパッチ200を含むテストパターンを記録媒体16に再形成させることを指示する。具体的には、指示部36は、検知されたエラーが所定エラーであると第1判定部32により判定されると、図示しないオペレーションパネルなどに、エラー解除のための作業をオペレータに促す案内を表示させ、エラー解除が検知されると、CPU101に対して、テストパターンを記録媒体16に再形成させる指示を伝達する。CPU101は、指示部36からの指示に応じて主走査モータ8、副走査モータ12、および記録ヘッド6の動作を制御することで、オペレータによってプラテン22上にリセットされた記録媒体16にテストパターンを再形成させる。記録媒体16にテストパターンが再形成された場合、画像形成装置100は、この再形成されたテストパターンに含まれる各パッチ200に対して、同様の手順で測色を行う。
この際、エラー検知前にすでに測色カメラ42により撮像が行われたパッチ200と同じものを再形成して測色値を算出しても、得られる測色値に変化がないことが多い。このため、指示部36は、テストパターンの再形成を指示する場合には、測色カメラ42による撮像が行われていないパッチ200のみを含むテストパターンを記録媒体16に再形成させることを指示するようにしてもよい。これにより、記録媒体16にダメージを与える所定エラーが生じた場合でも、同じパッチ200に対する測色を繰り返し行うことによる無駄を排除して、パッチ200の測色を効率よく行うことができる。また、記録媒体16にダメージを与える所定エラーが生じたときに、測色カメラ42による撮像が行われていないパッチ200が僅かであり、測色カメラ42による撮像が行われていないパッチ200の測色値を、すでに撮像が行われた他のパッチ200の測色値から補完できる場合は、テストパターンの再形成および測色を省略してもよい。
再開制御部37は、検知されたエラーが所定エラーでないと判定された場合に、オペレータによってエラーを解除する操作が行われた後に、測色カメラ42による撮像を行っていないパッチ200から測色を再開させる。本実施形態では、再開制御部37は、以下の条件に従ってパッチ200の測色を再開させる。すなわち、再開制御部37は、検知されたエラーが所定エラーでないと第1判定部32により判定され、かつ、測色カメラ42が取り付けられたキャリッジ5が主走査方向に正常に移動できると第2判定部33により判定され、かつ、記録媒体16に位置ずれが生じていないと第3判定部34により判定された場合に、測色カメラ42による撮像を行っていないパッチ200から測色を再開させる。また、再開制御部37は、検知されたエラーが所定エラーでないと第1判定部32により判定され、かつ、測色カメラ42が取り付けられたキャリッジ5が主走査方向に正常に移動できると第2判定部33により判定され、かつ、記録媒体16の位置ずれが補正部35により補正された場合に、測色カメラ42による撮像を行っていないパッチ200から測色を再開させる。
なお、再開制御部37がパッチ200の測色を再開させる条件は、上記の例に限られるものではない。再開制御部37は、少なくとも、検知されたエラーが所定エラーでないと判定された場合に、エラーが解除された後に、測色カメラ42による撮像を行っていないパッチ200から測色を再開させる構成であればよく、第2判定部33や第3判定部34による条件を用いないように構成してもよいし、他の条件を付加してもよい。
次に、本実施形態に係る画像形成装置100が実施するエラー処理の具体的な処理手順について、図10を参照して説明する。図10は、エラー処理の手順を示すフローチャートである。この図10に示す一連の処理は、記録媒体16に形成したテストパターンに含まれる各パッチ200に対して測色カメラ42を用いて測色を行っている間に、CPU101が何らかのエラーを検知した場合に、エラー処理部30により実行される。なお、ここでは、上述した主走査ジャムが、記録媒体16にダメージを与える所定エラーとして予め定められているものとする。
まず、何らかのエラーが検知されて図10のフローチャートで示すエラー処理が開始されると、中断制御部31が、測色カメラ42によるパッチ200の撮像および測色値の算出を中断させる(ステップS101)。
次に、第1判定部32が、検知されたエラーが主走査ジャムであるか否かを判定する(ステップS102)。そして、検知されたエラーが主走査ジャムではないと判定された場合は(ステップS102:No)、エラーが解除された後に、第2判定部33が異物検知処理を行う(ステップS103)。ここで、主走査ジャム以外のエラーとしては、例えば、パッチ200に対する測色を行っている間にオペレータがカバー部材2を開けてしまうカバーオープンのエラーが考えられる。この場合、例えば、オペレーションパネルなどにカバー部材2を閉じることを促す案内が表示され、カバー部材2の開閉を検知するセンサによりカバー部材2が閉じられたことが検知されるとエラー解除となる。また、主走査ジャム以外のエラーとしては、オペレーションパネルなどに設けられるストップボタンをオペレータが操作して意図的に測色を中断させることによるエラーが考えられる。この場合、例えば、オペレーションパネルなどに設けられるスタートボタンをオペレータが操作するとエラー解除となる。
異物検知処理は、キャリッジ5が主走査方向に正常に移動できるか否かを判定するための処理である。異物検知処理の具体例については、詳細を後述する。
次に、第2判定部33が、ステップS103の異物検知処理の結果から、キャリッジ5が主走査方向に正常に移動できるか否かを判定する(ステップS104)。そして、キャリッジ5が主走査方向に正常に移動できると判定された場合は(ステップS104:Yes)、第3判定部34が、記録媒体16に位置ずれが生じているか否かを判定する(ステップS105)。そして、記録媒体16に位置ずれが生じていると判定された場合は(ステップS105:Yes)、補正部35が、記録媒体16の位置ずれを補正する(ステップS106)。
記録媒体16に位置ずれが生じているか否かは、例えば、エラーが検知される前(ステップS101の中断前)に最後に測色カメラ42が撮像を行ったパッチ200と対向する位置に測色カメラ42を移動させ、測色カメラ42により当該パッチ200を正しく撮像できるか否かにより判定することができる。また、エラーが検知される前に最後に測色カメラ42が撮像を行ったパッチ200を正しく撮像できることを確認した後、さらにその1つ前に撮像を行ったパッチ200と対向する位置に測色カメラ42を移動させ、1つ前のパッチ200を正しく撮像できるか否かを判定し、1つ前のパッチ200も正しく撮像できることが確認された場合に、記録媒体16に位置ずれが生じていないと判定するようにしてもよい。このように、最後に撮像を行ったパッチ200とその1つ前のパッチ200との双方が正しく撮像できた場合に記録媒体16に位置ずれが生じていないと判定することにより、記録媒体16にスキューが生じている場合も、その位置ずれを正しく判定することができる。
また、第3判定部34による記録媒体16の位置ずれの判定は、数ミリ程度の微小な位置ずれは許容する(位置ずれがないと判定する)ようにしてもよい。また、許容する位置ずれ量をオペレータの操作などに応じて調整できるようにしてもよい。
また、補正部35が記録媒体16の位置ずれを補正した後に、さらに第3判定部34による位置ずれの判定を行って、記録媒体16の位置ずれが正しく補正できたか否かを確認するようにしてもよい。そして、位置ずれが正しく補正できていない場合は補正部35による位置ずれの補正を再度行い、正しく補正できたか否かの確認を繰り返すようにしてもよい。また、補正部35による位置ずれの補正の回数に上限を設定しておき、設定された回数だけ位置ずれの補正を繰り返しても正しく補正できない場合は、後述のステップS108に進むように構成してもよい。
ステップS105で記録媒体16に位置ずれが生じていないと判定された場合(ステップS105:No)、あるいは、ステップS106で記録媒体16の位置ずれが補正された場合は、次に、再開制御部37が、測色カメラ42による撮像を行っていないパッチ200から測色を再開させる(ステップS107)。すなわち、再開制御部37は、キャリッジ5の主走査方向への往復移動と、記録媒体16の副走査方向への間欠的な移動とを再開させるとともに、キャリッジ5に搭載された測色カメラ42によるパッチ200の撮像および測色値の算出を再開させる。
一方、ステップS102で検知されたエラーが主走査ジャムであると判定された場合(ステップS102:Yes)、あるいは、ステップS104でキャリッジ5が主走査方向に正常に移動できないと判定された場合(ステップS104:No)、指示部36が、カバー部材2を開けて記録媒体16を取り除き、プラテン22上に記録媒体16をリセットして、カバー部材2を閉じるといった一連のエラー解除のための作業をオペレータに促す案内を、オペレーションパネルなどに表示させる(ステップS108)。そして、例えばカバー部材2が閉じられることでエラー解除が検知されると、指示部36は、テストパターンを再形成させる指示をCPU101に伝達し、オペレータによりプラテン22上にリセットされた記録媒体16にテストパターンを再形成させる(ステップS109)。この際、エラー検知前に測色カメラ42による撮像が行われていないパッチ200のみを含むテストパターンを記録媒体16に再形成させるようにしてもよい。その後、再形成されたテストパターンに含まれる各パッチ200の測色が行われる(ステップS110)。
なお、本実施形態では、主走査ジャム以外のエラーの1つとして、オペレータが意図的に測色を中断させる操作を行うことによるエラーを想定している。この場合、オペレーションパネルなどに設けられるスタートボタンの操作などによりエラーが解除されるが、このようなエラー解除の操作がなされない場合は、それまでに得られた測色値のみをデバイスプロファイルに反映させる、あるいはそれまでに得られた測色値から他の測色値を補完するなどして、その後の測色を省略してもよい。
次に、第2判定部33が実施する異物検知処理(図10のステップS103)の具体例について説明する。図11は、異物検知処理の手順の一例を示すフローチャートである。
図11に示す異物検知処理が開始されると、まず、主走査モータ8の正転方向への駆動が開始される(ステップS201)。そして、エンコーダセンサ41からエンコーダ値が読み込まれ(ステップS202)、このエンコーダ値に基づき、キャリッジ5の位置が変化しているか否かが判定される(ステップS203)。ここで、キャリッジ5の位置が変化していないと判定された場合は(ステップS203:No)、記録媒体16に異物が付着している、あるいは記録媒体16にダメージがあってキャリッジ5が移動できない状態であると推定されるため、主走査モータ8の駆動が停止され(ステップS204)、異物検知フラグがオンとなって(ステップS205)、異物検知処理が終了する。この場合、第2判定部33は、図10のステップS104において、異物検知フラグがオンされていることを確認して、キャリッジ5が主走査方向に正常に移動できないと判定する。
一方、キャリッジ5の位置が変化していると判定された場合は(ステップS203:Yes)、次に、キャリッジ5が往路の終点に到達したか否かが判定される(ステップS206)。ここで、キャリッジ5が主走査方向の往路の終点に到達していないと判定された場合は(ステップS206:No)、ステップS202に戻って以降の処理が繰り返される。一方、キャリッジ5が主走査方向の往路の終点に到達したと判定されると(ステップS206:Yes)、主走査モータ8の正転方向への駆動が停止される(ステップS207)。
次に、主走査モータ8の反転方向への駆動が開始される(ステップS208)。そして、エンコーダセンサ41からエンコーダ値が読み込まれ(ステップS209)、このエンコーダ値に基づき、キャリッジ5の位置が変化しているか否かが判定される(ステップS210)。ここで、キャリッジ5の位置が変化していないと判定された場合は(ステップS210:No)、ステップS204に進んで主走査モータ8の駆動が停止され、ステップS205で異物検知フラグがオンとなって、異物検知処理が終了する。この場合、第2判定部33は、図10のステップS104において、異物検知フラグがオンされていることを確認して、キャリッジ5が主走査方向に正常に移動できないと判定する。
一方、キャリッジ5の位置が変化していると判定された場合は(ステップS210:Yes)、次に、キャリッジ5が復路の終点であるホームポジションに到達したか否かが判定される(ステップS211)。ここで、キャリッジ5がホームポジションに到達していないと判定された場合は(ステップS211:No)、ステップS209に戻って以降の処理が繰り返される。一方、キャリッジ5がホームポジションに到達したと判定されると(ステップS211:Yes)、主走査モータ8の反転方向への駆動が停止され(ステップS212)、ホームポジションにて上述した維持機構21による清掃やキャッピングなどが行われて、異物検知処理が終了する。この場合、第2判定部33は、図10のステップS104において、異物検知フラグがオンされていないことを確認して、キャリッジ5が主走査方向に正常に移動できると判定する。
次に、異物検知処理の他の例について説明する。図12は、異物検知処理の手順の他の例を示すフローチャートである。この図12に示す異物検知処理は、主走査モータ8がPWM制御されるDCモータである場合に適用される例である。なお、以下の説明では、主走査モータ8は、PWM出力のデューティ比が50%のときに駆動停止状態となるように制御されるものとする。
図12に示す異物検知処理が開始されると、まず、主走査モータ8の正転方向への駆動を開始するために、PWM出力のデューティ比が50%を超える値に変更される(ステップS301)。そして、エンコーダセンサ41からエンコーダ値が読み込まれ(ステップS302)、このエンコーダ値に基づき、キャリッジ5の位置および移動速度が計算される(ステップS303)。
次に、キャリッジ5の移動速度が目標速度となるように主走査モータ8の出力を調整するために、PWM出力のデューティ比が変更される(ステップS304)。そして、変更後のPWM出力のデューティ比が所定の上限閾値を超えたか否かが判定される(ステップS305)。ここで、PWM出力のデューティ比が所定の上限閾値を超えたと判定された場合は(ステップS305:Yes)、記録媒体16に異物が付着している、あるいは記録媒体16にダメージがあってキャリッジ5が目標速度で移動できない状態であると推定されるため、PWM出力のデューティ比が50%に戻されて主走査モータ8の駆動が停止され(ステップS306)、異物検知フラグがオンとなって(ステップS307)、異物検知処理が終了する。この場合、第2判定部33は、図10のステップS104において、異物検知フラグがオンされていることを確認して、キャリッジ5が主走査方向に正常に移動できないと判定する。
一方、PWM出力のデューティ比が上限閾値を超えていないと判定された場合は(ステップS305:No)、次に、キャリッジ5が往路の終点に到達したか否かが判定される(ステップS308)。ここで、キャリッジ5が主走査方向の往路の終点に到達していないと判定された場合は(ステップS308:No)、ステップS302に戻って以降の処理が繰り返される。一方、キャリッジ5が主走査方向の往路の終点に到達したと判定されると(ステップS308:Yes)、PWM出力のデューティ比が50%に戻されて主走査モータ8の正転方向への駆動が停止される(ステップS309)。
次に、主走査モータ8の反転方向への駆動を開始するために、PWM出力のデューティ比が50%未満の値に変更される(ステップS310)。そして、エンコーダセンサ41からエンコーダ値が読み込まれ(ステップS311)、このエンコーダ値に基づき、キャリッジ5の位置および移動速度が計算される(ステップS312)。
次に、キャリッジ5の移動速度が目標速度となるように主走査モータ8の出力を調整するために、PWM出力のデューティ比が変更される(ステップS313)。そして、変更後のPWM出力のデューティ比が所定の下限閾値未満となったか否かが判定される(ステップS314)。ここで、PWM出力のデューティ比が所定の下限閾値未満となったと判定された場合は(ステップS314:Yes)、ステップS306に進んで主走査モータ8の駆動が停止され、ステップS307で異物検知フラグがオンとなって、異物検知処理が終了する。この場合、第2判定部33は、図10のステップS104において、異物検知フラグがオンされていることを確認して、キャリッジ5が主走査方向に正常に移動できないと判定する。
一方、PWM出力のデューティ比が下限閾値未満になっていないと判定された場合は(ステップS314:No)、次に、キャリッジ5が復路の終点であるホームポジションに到達したか否かが判定される(ステップS315)。ここで、キャリッジ5がホームポジションに到達していないと判定された場合は(ステップS315:No)、ステップS311に戻って以降の処理が繰り返される。一方、キャリッジ5がホームポジションに到達したと判定されると(ステップS315:Yes)、PWM出力のデューティ比が50%に戻されて主走査モータ8の反転方向への駆動が停止され(ステップS316)、ホームポジションにて上述した維持機構21による清掃やキャッピングなどが行われて、異物検知処理が終了する。この場合、第2判定部33は、図10のステップS104において、異物検知フラグがオンされていないことを確認して、キャリッジ5が主走査方向に正常に移動できると判定する。
以上説明したように、本実施形態に係る画像形成装置100は、記録媒体16に形成したテストパターンのパッチ200に対する測色を行っている間に何らかのエラーが検知された場合に、検知されたエラーが記録媒体16に対してダメージを与える所定エラーではない場合は、エラー解除後に、測色カメラ42による撮像を行っていないパッチ200から測色を再開できるようにしている。したがって、本実施形態に係る画像形成装置100は、記録材の無駄な消費や処理時間の長時間化を有効に抑制し、記録媒体16に形成したパッチ200の測色を効率よく行うことができる。
<パッチの測色方法>
次に、図13乃至図19を参照しながら、本実施形態に係る画像形成装置100によるパッチ200の測色方法の具体例について詳細に説明する。以下で説明する測色方法は、画像形成装置100が初期状態のとき(製造やオーバーフォールなどによって初期状態となっているとき)に実施される前処理と、画像形成装置100の色調整を行う調整時に実施される測色処理とを含む。
図13は、基準測色値および基準RGB値を取得する処理と基準値線形変換マトリックスを生成する処理を説明する図である。図13に示すこれらの処理は、前処理として実施される。前処理では、複数の基準パッチKPが配列形成された基準シートKSが用いられる。基準シートKSの基準パッチKPは、測色カメラ42が備える基準チャート部400のパッチと同等のものである。
まず、基準シートKSの複数の基準パッチKPの測色値であるLab値とXYZ値のうち、少なくともいずれか(図13の例では、Lab値とXYZ値の双方)が、それぞれのパッチ番号に対応させて、例えば測色カメラ42の基板423に実装された不揮発性メモリ53などに設けられるメモリテーブルTb1に格納される。基準パッチKPの測色値は、分光器BSなどを用いた測色により事前に得られる値である。基準パッチKPの測色値が既知であれば、その値を用いればよい。以下、メモリテーブルTb1に格納された基準パッチKPの測色値を「基準測色値」という。
次に、基準シートKSがプラテン22上にセットされ、キャリッジ5の移動を制御することで、基準シートKSの複数の基準パッチKPを被写体として、測色カメラ42による撮像が行われる。そして、測色カメラ42の撮像により得られた基準パッチKPのRGB値が、不揮発性メモリ53のメモリテーブルTb1に、パッチ番号に対応して格納される。つまり、メモリテーブルTb1には、基準シートKSに配列形成された複数の基準パッチKPそれぞれの測色値とRGB値が、各基準パッチKPのパッチ番号に対応して格納される。以下、メモリテーブルTb1に格納された基準パッチKPのRGB値を「基準RGB値」という。基準RGB値は、測色カメラ42の特性を反映した値である。
画像形成装置100のCPU101は、基準パッチKPの基準測色値および基準RGB値が不揮発性メモリ53のメモリテーブルTb1に格納されると、同じパッチ番号の基準測色値であるXYZ値と基準RGB値との対に対して、これらを相互に変換する基準値線形変換マトリックスを生成し、不揮発性メモリ53に格納する。メモリテーブルTb1に基準測色値としてLab値のみが格納されている場合は、Lab値をXYZ値に変換する既知の変換式を用いてLab値をXYZ値に変換した後に、基準値線形変換マトリックスを生成すればよい。
また、測色カメラ42が基準シートKSの複数の基準パッチKPを撮像する際には、測色カメラ42に設けられた基準チャート部400も同時に撮像される。この撮像により得られた基準チャート部400の各パッチのRGB値も、パッチ番号に対応させて、不揮発性メモリ53のメモリテーブルTb1に格納される。この前処理によりメモリテーブルTb1に格納された基準チャート部400のパッチのRGB値を「初期基準RGB値」という。図14は、初期基準RGB値の一例を示す図である。図14(a)は初期基準RGB値(RdGdBd)をメモリテーブルTb1に格納した様子を示し、初期基準RGB値と(RdGdBd)ともに、初期基準RGB値(RdGdBd)をLab値に変換した初期基準Lab値(Ldadbd)やXYZ値に変換した初期基準XYZ値(XdYdZd)も対応付けて格納されることを示している。また、図14(b)は基準チャート部400の各パッチの初期基準RGB値をプロットした散布図である。
以上の前処理が終了した後、画像形成装置100は、外部から入力される画像データや印刷設定等に基づいて、CPU101による制御のもとで、主走査モータ8や副走査モータ12、記録ヘッド6を駆動して、記録媒体16を副走査方向に間欠的に搬送させつつ、キャリッジ5を主走査方向に移動させながら、記録ヘッド6からインクを吐出させて、記録媒体16に画像を形成する。このとき、記録ヘッド6からのインクの吐出量が、機器固有の特性や経時変化などによって変化することがあり、このインクの吐出量が変化すると、ユーザが意図する画像の色とは異なった色で画像形成されることとなって、色再現性が劣化する。そこで、画像形成装置100は、色調整を行う所定のタイミングで、記録媒体16に形成されたパッチ200の測色値を求める測色処理を実施する。そして、測色処理により得られたパッチ200の測色値に基づいてデバイスプロファイルの生成あるいは修正を行って、このデバイスプロファイルに基づいて色調整を行うことにより、出力画像の色再現性を高める。
図15は、測色処理の概要を説明する図である。画像形成装置100は、色調整を行う調整時に、まず、プラテン22上にセットされた記録媒体16上に記録ヘッド6からインクを吐出して、測色対象のパッチ200を形成する。以下、パッチ200が形成された記録媒体16を「調整シートCS」という。この調整シートCSには、画像形成装置100の調整時における出力特性、特に、記録ヘッド6の出力特性を反映したパッチ200が形成されている。なお、測色対象のパッチ200を形成するための画像データは、不揮発性メモリ53などに予め格納されている。
次に、画像形成装置100は、図15に示すように、この調整シートCSがプラテン22上にセットされるか、調整シートCSを作成した段階で排紙することなくプラテン22上に保持された状態において、キャリッジ5の移動を制御して、このプラテン22上の調整シートCSに形成されたパッチ200と対向する位置に測色カメラ42を移動させる。そして、測色カメラ42により、パッチ200と測色カメラ42に設けられた基準チャート部400とを同時に撮像する。測色カメラ42により同時に撮像されたパッチ200および基準チャート部400の画像データは、2次元イメージセンサ431の内部で必要な画像処理が行われた後、フレームメモリ51に一時保管される。以下、測色カメラ42により撮像されてフレームメモリ51に一時保管された画像データのうち、パッチ200の画像データ(RGB値)を「測色対象RGB値」、基準チャート部400のパッチの画像データ(RGB値)を「測色時基準RGB値(RdsGdsBds)」という。「測色時基準RGB値(RdsGdsBds)」は、不揮発性メモリ53などに格納される。
測色カメラ42の測色値演算部52は、後述する基準RGB間線形変換マトリックスを用いて、フレームメモリ51に一時保管された測色対象RGB値を、初期化測色対象RGB値(RsGsBs)に変換する処理を行う(ステップS10)。初期化測色対象RGB値(RsGsBs)は、測色対象RGB値から、前処理を行った初期状態のときから測色処理を行う調整時に至るまでの間に生じる測色カメラ42の撮像条件の経時変化、例えば、照明光源426の経時変化や2次元イメージセンサ431の経時変化の影響を排除したものである。
その後、測色値演算部52は、測色対象RGB値から変換された初期化測色対象RGB値(RsGsBs)を対象として、後述する基本測色処理を実行することにより(ステップS20)、測色対象のパッチ200の測色値であるLab値を取得する。
図16は、基準RGB間線形変換マトリックスを生成する処理を説明する図であり、図17は、初期基準RGB値と測色時基準RGB値との関係を示す図である。測色値演算部52は、測色対象RGB値を初期化測色対象RGB値(RsGsBs)に変換する処理(ステップS10)を行う前に、この変換に用いる基準RGB間線形変換マトリックスを生成する。すなわち、測色値演算部52は、図16に示すように、画像形成装置100が初期状態のときに前処理として得られた初期基準RGB値(RdGdBd)と、調整時において得られる測色時基準RGB値(RdsGdsBds)とを不揮発性メモリ53から読み出し、測色時基準RGB値RdsGdsBdsを初期基準RGB値RdGdBdに変換する基準RGB間線形変換マトリックスを生成する。そして、測色値演算部52は、生成した基準RGB間線形変換マトリックスを不揮発性メモリ53に格納する。
図17において、図17(a)で薄く描かれている点が初期基準RGB値RdGdBdをrgb空間でプロットした点であり、塗りつぶし点が、測色時基準RGB値RdsGdsBdsをrgb空間でプロットした点である。図17(a)から分かるように、測色時基準RGB値RdsGdsBdsの値が初期基準RGB値RdGdBdの値から変動しており、これらのrgb空間上での変動方向は、図17(b)に示すように概ね同じであるが、色相によってずれの方向が異なる。このように、同じ基準チャート部400のパッチを撮像してもRGB値が変動する要因としては、照明光源426の経時変化、2次元イメージセンサ431の経時変化などがある。
このように、測色カメラ42による撮像によって得られるRGB値が変動している状態で、パッチ200を撮像することで得られる測色対象RGB値を用いて測色値を求めると、変動分だけ測色値に誤差が発生する虞がある。そこで、初期基準RGB値RdGdBdと測色時基準RGB値RdsGdsBdsとの間で、最小2乗法などの推定法を用いて、測色時基準RGB値RdsGdsBdsを初期基準RGB値RdGdBdに変換する基準RGB間線形変換マトリックスを求め、この基準RGB間線形変換マトリックスを用いて、測色カメラ42でパッチ200を撮像することにより得られる測色対象RGB値を、初期化測色対象RGB値RsGsBsに変換し、変換した初期化測色対象RGB値RsGsBsを対象として、後述する基本測色処理を実行することで、測色対象のパッチ200の測色値を精度よく取得できるようにしている。
この基準RGB間線形変換マトリックスは、1次だけでなく、さらに高次の非線形マトリックスであってもよく、rgb空間とXYZ空間間で非線形性が高い場合には、高次のマトリックスとすることで、変換精度を向上させることができる。
測色値演算部52は、上述したように、パッチ200の撮像により得られる測色対象RGB値を、基準RGB間線形変換マトリックスを用いて初期化測色対象RGB値(RsGsBs)に変換した後(ステップS10)、この初期化測色対象RGB値(RsGsBs)を対象として、ステップS20の基本測色処理を行う。
図18および図19は、基本測色処理を説明する図である。測色値演算部52は、まず、前処理において生成して不揮発性メモリ53に格納した基準値線形変換マトリックスを読み出し、基準値線形変換マトリックスを用いて初期化測色対象RGB値(RsGsBs)を第1XYZ値に変換し、不揮発性メモリ53に格納する(ステップS21)。図18では、初期化測色対象RGB値(3、200、5)が基準値線形変換マトリックスにより第1XYZ値(20、80、10)に変換された例を示している。
次に、測色値演算部52は、ステップS21で初期化測色対象RGB値(RsGsBs)から変換された第1XYZ値を、既知の変換式を用いて第1Lab値に変換し、不揮発性メモリ53に格納する(ステップS22)。図18では、第1XYZ値(20、80、10)が既知の変換式により第1Lab値(75、−60、8)に変換された例を示している。
次に、測色値演算部52は、前処理において不揮発性メモリ53のメモリテーブルTb1に格納された複数の基準測色値(Lab値)を検索し、該基準測色値(Lab値)のうち、Lab空間上において第1Lab値に対して距離の近い基準測色値(Lab値)を持つ複数のパッチ(近傍色パッチ)の組を選択する(ステップS23)。距離の近いパッチを選択する方法としては、例えば、メモリテーブルTb1に格納されたすべての基準測色値(Lab値)に対して、第1Lab値との距離を算出し、第1Lab値に対して距離の近いLab値(図18では、ハッチングの施されているLab値)を持つ複数のパッチを選択するといった方法を用いることができる。
次に、測色値演算部52は、図19に示すように、メモリテーブルTb1を参照して、ステップS23で選択した近傍色パッチのそれぞれについて、Lab値と対になっているRGB値(基準RGB値)とXYZ値を取り出して、これら複数のRGB値とXYZ値のなかから、RGB値とXYZ値との組み合わせを選択する(ステップS24)。そして、測色値演算部52は、選択した組み合わせ(選択組)のRGB値をXYZ値に変換するための選択RGB値線形変換マトリックスを、最小二乗法などを用いて求め、求めた選択RGB値線形変換マトリックスを不揮発性メモリ53に格納する(ステップS25)。
次に、測色値演算部52は、ステップS25で生成した選択RGB値線形変換マトリックスを用いて、初期化測色対象RGB値(RsGsBs)を第2XYZ値に変換する(ステップS26)。さらに、測色値演算部52は、ステップS26で求めた第2XYZ値を、既知の変換式を用いて第2Lab値に変換し(ステップS27)、得られた第2Lab値を、測色対象のパッチ200の最終的な測色値とする。画像形成装置100は、以上の測色処理により得られた測色値に基づいてデバイスプロファイルを生成あるいは修正し、このデバイスプロファイルに基づいて色調整を行うことにより、出力画像の色再現性を高めることができる。
なお、上述した測色カメラ42は、筐体421に基準チャート部400を設けて、センサ部430によって測色対象のパッチ200と基準チャート部400とを同時に撮像する構成となっている。しかし、上述したように、基準チャート部400を撮像することで得られる初期基準RGB値や測色時基準RGB値は、測色対象のパッチ200を撮像することで得られる測色対象RGB値に対して、測色カメラ42の撮像条件の経時変化、例えば、照明光源426の経時変化や2次元イメージセンサ431の経時変化の影響を排除するために用いられる。つまり、基準チャート部400の撮像により得られる初期基準RGB値や測色時基準RGB値は、上述した基準RGB間線形変換マトリックスを算出し、この基準RGB間線形変換マトリックスを用いて、測色対象RGB値を初期化測色対象RGB値(RsGsBs)に変換するために用いられる。
したがって、要求される測色の精度に対して測色カメラ42の撮像条件の経時変化が無視できるレベルであれば、基準チャート部400が省略された構成の測色カメラ42を用いてパッチ200の測色値を算出するようにしてもよい。また、測色カメラ42の代わりに、光源と色別の感度を持った複数の受光素子とを備える単純な構成の反射型測色センサを用いて、パッチ200の測色値を算出することもできる。これらの場合、測色対象RGB値を初期化測色対象RGB値に変換する処理(図15のステップS10)が省略され、測色対象RGB値を対象として、基本測色処理(図15のステップS20、図18および図19)が行われる。
<測色カメラの変形例>
次に、測色カメラ42の変形例について説明する。以下では、第1変形例の測色カメラ42を測色カメラ42Aと表記し、第2変形例の測色カメラ42を測色カメラ42Bと表記し、第3変形例の測色カメラ42を測色カメラ42Cと表記し、第4変形例の測色カメラ42を測色カメラ42Dと表記し、第5変形例の測色カメラ42を測色カメラ42Eと表記し、第6変形例の測色カメラ42を測色カメラ42Fと表記する。なお、各変形例において、上述した測色カメラ42と共通の構成要素には同一の符号を付し、重複した説明を省略する。
<第1変形例>
図20は、第1変形例の測色カメラ42Aの縦断面図であり、図4−1に示した測色カメラ42の縦断面図と同じ位置の断面図である。
第1変形例の測色カメラ42Aでは、筐体421の底面部421aに、測色対象のパッチ200を撮像するための開口部425とは別の開口部427が設けられている。そして、この開口部427を筐体421の外側から閉塞するように、チャート板410が配置されている。つまり、上述した測色カメラ42では、チャート板410が筐体421の底面部421aのセンサ部430と対向する内面側に配置されていたのに対して、第1変形例の測色カメラ42Aでは、チャート板410が筐体421の底面部421aの記録媒体16と対向する外面側に配置されている。
具体的には、例えば、筐体421の底面部421aの外面側に、チャート板410の厚みに相当する深さの凹部が、開口部427と連通するように形成されている。そして、この凹部内に、チャート板410が、基準チャート部400が形成された面をセンサ部430側に向けて配置されている。チャート板410は、例えば、その端部が開口部427の端縁近傍にて接着剤などにより筐体421の底面部421aに接合され、筐体421と一体化されている。
以上のように構成される第1変形例の測色カメラ42Aでは、基準チャート部400が形成されたチャート板410を筐体421の底面部421aの外面側に配置することにより、上述した測色カメラ42に比べて、センサ部430からパッチ200までの光路長とセンサ部430から基準チャート部400までの光路長との差が小さくなる。したがって、センサ部430の被写界深度が比較的浅い場合でも、パッチ200と基準チャート部400との双方に焦点の合った画像を撮像することができる。
<第2変形例>
図21は、第2変形例の測色カメラ42Bの縦断面図であり、図4−1に示した測色カメラ42の縦断面図と同じ位置の断面図である。
第2変形例の測色カメラ42Bでは、第1変形例の測色カメラ42Aと同様に、筐体421の底面部421aの外面側にチャート板410が配置されている。ただし、第1変形例の測色カメラ42Aでは、チャート板410が接着剤などによって筐体421の底面部421aに接合され、筐体421と一体化されていたのに対して、第2変形例の測色カメラ42Bでは、チャート板410が筐体421に対して着脱可能に保持されている。
具体的には、例えば、第1変形例の測色カメラ42Aと同様に、筐体421の底面部421aの外面側に開口部427と連通する凹部が形成され、この凹部内にチャート板410が配置されている。また、第2変形例の測色カメラ42Bは、凹部内に配置されたチャート板410を筐体421の底面部421aの外面側から押さえ込んで保持する保持部材428を備える。保持部材428は、筐体421の底面部421aに対して取り外し可能に装着されている。したがって、第2変形例の測色カメラ42Bでは、保持部材428を筐体421の底面部421aから取り外すことにより、チャート板410を取り出すことができる。
以上のように、第2変形例の測色カメラ42Bでは、チャート板410が筐体421に対して着脱可能に保持され、チャート板410を取り出すことができるので、基準チャート部400の汚れなどによりチャート板410が劣化した場合に、チャート板410を交換する作業を簡単に行うことができる。また、上述したシェーディング補正部452が照明光源426による照度ムラを補正するためのシェーディングデータを得る際に、チャート板410を取り出して代わりに白基準板を配置し、この白基準板をセンサ部430で撮像すれば、シェーディングデータの取得を簡便に行うことができる。
<第3変形例>
図22は、第3変形例の測色カメラ42Cの縦断面図であり、図4−1に示した測色カメラ42の縦断面図と同じ位置の断面図である。
第3変形例の測色カメラ42Cでは、筐体421に、底面部421aから側壁に亘って大きく開口する開口部425Cが設けられており、この開口部425Cを介してパッチ200の撮像を行う。すなわち、上述した測色カメラ42では、測色対象のパッチ200に向かう外光を筐体421により遮断して、パッチ200が照明光源426からの照明光のみによって照明されるようにするために、パッチ200を撮像するための開口部425を、筐体421の底面部421aのみで開口するように設けていた。これに対して、第3変形例の測色カメラ42Cは、外光の入り込まない環境に配置されることを前提として、筐体421の底面部421aから側壁に亘って大きく開口する開口部425Cが設けられている。
例えば、図1に示したように、カバー部材2を閉じた状態の外装体1は、その内部を外光の入り込まない環境とすることができる。測色カメラ42Cは、外装体1の内部に配置されたキャリッジ5に搭載されるので、外光の入り込まない環境に配置することができる。したがって、筐体421の底面部421aから側壁に亘って大きく開口する開口部425Cを設けた構成であっても、照明光源426からの照明光のみによってパッチ200を照明することができる。
以上のように、第3変形例の測色カメラ42Cは、底面部421aから側壁に亘って大きく開口する開口部425Cが設けられているので、筐体421を軽量化することができ、消費電力の削減を図ることができる。
<第4変形例>
図23−1は、第4変形例の測色カメラ42Dの縦断面図であり、図4−1に示した測色カメラ42の縦断面図と同じ位置の断面図である。また、図23−2は、筐体421の底面部421aを図23−1中のX3方向から見た平面図である。なお、図23−2では、筐体421の底面部421aにおける照明光源426の垂直投影位置(底面部421aに対して垂直に見下ろしたときに投影される位置)を破線で示している。
第4変形例の測色カメラ42Dでは、筐体421の底面部421aにおいて、センサ部430から該底面部421aに対して垂直に下ろした垂線上(つまり、センサ部430の光軸中心)に位置して開口部425Dが設けられ、この開口部425Dを介して測色対象のパッチ200の撮像を行う。すなわち、第4変形例の測色カメラ42Dでは、筐体421の外部のパッチ200を撮像するための開口部425Dが、センサ部430の撮像範囲において略中心に位置するように設けられている。
また、第4変形例の測色カメラ42Dでは、基準チャート部400が形成されたチャート板410Dが、開口部425Dの周囲を取り囲むように、筐体421の底面部421aに配置されている。例えば、チャート板410Dは、開口部425Dを中心とする円環状に形成され、基準チャート部400が形成された面とは逆側の面を接着面として、筐体421の底面部421aの内面側に接着材などにより接着され、筐体421に対して固定された状態で保持されている。
また、第4変形例の測色カメラ42Dでは、照明光源426として、筐体421の側壁を構成する枠体422の内周側の4隅に配置された4つのLEDを用いる。照明光源426として用いるこれら4つのLEDは、例えば、センサ部430の2次元イメージセンサ431とともに、基板423の内面に実装されている。照明光源426として用いる4つのLEDをこのように配置することにより、測色対象のパッチ200と基準チャート部400とを、概ね同一の条件にて照明することができる。
以上のように構成される第4変形例の測色カメラ42Dでは、筐体421の外部の被写体(パッチ200)を撮像するための開口部425Dを、筐体421の底面部421aにおけるセンサ部430からの垂線上に設け、さらにその開口部425Dの周囲を取り囲むように、基準チャート部400が形成されたチャート板410Dを配置しているので、測色対象のパッチ200および基準チャート部400の撮像を適切に行うことができる。
<第5変形例>
図24は、第5変形例の測色カメラ42Eの縦断面図であり、図4−1に示した測色カメラ42の縦断面図と同じ位置の断面図である。
第5変形例の測色カメラ42Eでは、第4変形例の測色カメラ42Dと同様に、照明光源426として、枠体422の内周側の4隅に配置された4つのLEDを用いる。ただし、第5変形例の測色カメラ42Eでは、測色対象のパッチ200や基準チャート部400で正反射される正反射光がセンサ部430の2次元イメージセンサ431に入射しないように、照明光源426として用いるこれら4つのLEDを、第4変形例の測色カメラ42Dと比べて、より筐体421の底面部421aに近い位置に配置している。
センサ部430の2次元イメージセンサ431のセンサ面において、照明光源426の正反射光が入射する位置は、画素値が飽和するために正確な情報が得られない場合がある。このため、測色対象のパッチ200や基準チャート部400で正反射される正反射光がセンサ部430の2次元イメージセンサ431に入射する位置に照明光源426が配置されていると、パッチ200の測色に必要な情報が得られなくなることが懸念される。そこで、第5変形例の測色カメラ42Eでは、図24に示すように、照明光源426として用いるこれら4つのLEDを筐体421の底面部421aに近い位置に配置することで、測色対象のパッチ200や基準チャート部400で正反射される正反射光がセンサ部430の2次元イメージセンサ431に入射しないようにしている。なお、図24中の一点鎖線の矢印は、正反射光の光路をイメージしたものである。
以上のように、第5変形例の測色カメラ42Eでは、測色対象のパッチ200や基準チャート部400で正反射される正反射光がセンサ部430の2次元イメージセンサ431に入射しない位置に照明光源426を配置しているので、2次元イメージセンサ431のセンサ面においてパッチ200や基準チャート部400の光学像が結像する位置の画素値が飽和することを有効に抑制し、パッチ200および基準チャート部400の撮像を適切に行うことができる。
なお、第5変形例の測色カメラ42Eでは、第4変形例の測色カメラ42Dと同様の開口部425Dやチャート板410Dを有する構成において、測色対象のパッチ200や基準チャート部400で正反射される正反射光がセンサ部430の2次元イメージセンサ431に入射しない位置に照明光源426を配置する例を説明した。ただし、上述した測色カメラ42、第1変形例の測色カメラ42A、第2変形例の測色カメラ42B、第3変形例の測色カメラ42Cの構成において、測色対象のパッチ200や基準チャート部400で正反射される正反射光がセンサ部430の2次元イメージセンサ431に入射しない位置に照明光源426を配置するようにしてもよい。この場合も、第5変形例の測色カメラ42Eと同様の効果を得ることができる。
<第6変形例>
図25は、第6変形例の測色カメラ42Fの縦断面図であり、図4−1に示した測色カメラ42の縦断面図と同じ位置の断面図である。
第6変形例の測色カメラ42Fでは、筐体421の内部に、光路長変更部材440が配置されている。光路長変更部材440は、光を透過する屈折率n(nは任意の数)の光学素子である。光路長変更部材440は、筐体421の外部の被写体(測色対象のパッチ200)とセンサ部430との間の光路中に配置され、パッチ200の光学像の結像面を基準チャート部400の光学像の結像面に近づける機能を持つ。つまり、第6変形例の測色カメラ42Fでは、測色対象のパッチ200とセンサ部430との間の光路中に光路長変更部材440を配置することによって、筐体421の外部のパッチ200の光学像の結像面と、筐体421の内部の基準チャート部400の結像面とを、ともにセンサ部430の2次元イメージセンサ431のセンサ面に合わせるようにしている。なお、図25では、光路長変更部材440を筐体421の底面部421a上に載置した例を図示しているが、光路長変更部材440は必ずしも底面部421a上に載置する必要はなく、筐体421の外部のパッチ200とセンサ部430との間の光路中に配置されていればよい。
光路長変更部材440を光が通過すると、光路長変更部材440の屈折率nに応じて光路長が延び、画像が浮き上がって見える。画像の浮上がり量Cは、光路長変更部材440の光軸方向の長さをLpとすると、以下の式で求めることができる。
C=Lp(1−1/n)
また、センサ部430の結像レンズ432の主点と基準チャート部400との間の距離をLcとすると、結像レンズ432の主点と光路長変更部材440を透過する光学像の前側焦点面(撮像面)との間の距離Lは、以下の式で求めることができる。
L=Lc+Lp(1−1/n)
ここで、光路長変更部材440の屈折率nを1.5とした場合、L=Lc+Lp(1/3)となり、光路長変更部材440を透過する光学像の光路長を光路長変更部材440の光軸方向の長さLpの約1/3だけ長くすることができる。この場合、例えばLp=9[mm]とすれば、L=Lc+3[mm]となるので、センサ部430から基準チャート部400までの距離とパッチ200までの距離との差が3mmとなる状態で撮像すれば、基準チャート部400の光学像の後側焦点面(結像面)と、パッチ200の光学像の後側焦点面(結像面)とを、ともにセンサ部430の2次元イメージセンサ431のセンサ面に合わせることができる。
以上のように構成される第6変形例の測色カメラ42Fでは、測色対象のパッチ200とセンサ部430との間の光路中に光路長変更部材440を配置することで、パッチ200の光学像の結像面を基準チャート部400の光学像の結像面に近づけるようにしているので、パッチ200と基準チャート部400の双方に焦点の合った適切な画像を撮像することができる。
<パッチの測色方法の変形例>
次に、図26乃至図31を参照しながら、パッチ200の測色方法の変形例について説明する。図26は、測色対象のパッチ200と基準チャート部400とを同時に撮像することで得られる画像データの一例を示す図である。図27は、パッチ200の測色方法の変形例を説明する図である。図28は、Lab値とXYZ値との変換を行う変換式を示す図である。図29は、パッチ200の測色の手順を示すフローチャートである。図30は、パッチ200の測色の手順の他の例を示すフローチャートである。図31は、標準の各パッチのLab値に対応するRGB値を特定する方法を説明する図である。
パッチ200の測色を行う場合は、まず、複数のパッチ200を含むテストパターンが形成された記録媒体16がプラテン22上にセットされる。そして、記録媒体16の副走査方向への間欠的な搬送と、キャリッジ5の主走査方向への移動とにより、測色カメラ42を測色対象の各パッチ200と対向する位置に順次移動させる。測色カメラ42のセンサ部430は、測色カメラ42がパッチ200と対向する位置となったときに、当該パッチ200を筐体421内に配置されたチャート板410上の基準チャート部400とともに撮像する。その結果、例えば図26に示すようなパッチ200および基準チャート部400を含む画像データが取得される。センサ部430の撮像範囲は、基準チャート部400を撮像する基準チャート撮像領域と、測色対象の被写体であるパッチ200を撮像する被写体撮像領域とを有している。基準チャート撮像領域に対応する画素から出力される画像データが基準チャート部400の画像データとなり、被写体撮像領域に対応する画素から出力される画像データがパッチ200の画像データとなる。
センサ部430により撮像されたパッチ200および基準チャート部400の画像データは、2次元イメージセンサ431の内部で必要な画像処理が行われた後、フレームメモリ51に格納される。そして、測色値演算部52が、フレームメモリ51に格納された画像データを読み出して、パッチ200の測色値を算出する。
測色値演算部52は、まず、フレームメモリ51から読み出した画像データから、基準チャート部400の距離計測用ライン(主走査・副走査距離基準線)405の四隅にあるチャート位置特定用マーカ407の位置を、パターンマッチング等により特定する。これにより、画像データにおける基準チャート部400の位置を特定することができる。基準チャート部400の位置を特定した後は、基準チャート部400の各パッチの位置を特定する。
次に、測色値演算部52は、基準チャート部400の各パッチの画像データ(RGB値)を用いて、測色対象となるパッチ200の画像データ(RGB値)を、Lab色空間における表色値であるLab値に変換する。以下、この変換の具体的な手法について詳細に説明する。
図27(c)は、図5に示した基準チャート部400の1次色(YMC)の基準パッチ列401および2次色(RGB)の基準パッチ列402の各パッチのLab値を、Lab色空間上にプロットしたものである。なお、これら各パッチのLab値は、予め計測されており、例えば測色カメラ42の基板423に実装された不揮発性メモリ53などに記憶されている。
図27(a)は、図5に示した基準チャート部400の1次色(YMC)の基準パッチ列401および2次色(RGB)の基準パッチ列402の各パッチのRGB値(撮像によって得られる画像データ)を、RGB色空間上にプロットしたものである。
図27(b)は、図27(c)に示すLab値を、所定の変換式を用いてXYZ値に変換し、その変換したXYZ値を、XYZ色空間上にプロットしたものである。Lab値をXYZ値に変換する場合、図28(b)に示す変換式(Lab⇒XYZ)により変換することができる。また、XYZ値をLab値に変換する場合、図28(a)に示す変換式(XYZ⇒Lab)により変換することができる。つまり、図27(c)に示すLab値と図27(b)に示すXYZ値は、図28(a),(b)に示す変換式を用いて相互に変換することができる。
ここで、図29のフローチャートに沿って、図26に示す被写体撮像領域内から得られた測色対象のパッチ200のRGB値をLab値に変換する手順を説明する。測色対象のパッチ200のRGB値が、図27(a)に示すRGB色空間上のPrgb点にあったとする。この場合、まず、図26に示す基準チャート部400の各パッチのRGB値のうち、Prgb点を含む4面体を作ることができる最近傍の4点を検索する(ステップS1)。図27(a)の例では、p0,p1,p2,p3の4点が選択される。ここで、図27(a)に示すRGB色空間上の4点p0,p1,p2,p3の各座標値を、p0(x01,x02,x03),p1(x1,x2,x3),p2(x4,x5,x6),p3(x7,x8,x9)とする。
次に、図27(a)に示すRGB色空間上の4点p0,p1,p2,p3に対応する図27(b)に示すXYZ色空間上の4点q0,q1,q2,q3を検索する(ステップS2)。XYZ色空間上の4点q0,q1,q2,q3の各座標値を、q0(y01,y02,y03),q1(y1,y2,y3),q2(y4,y5,y6),q3(y7,y8,y9)とする。
次に、この4面体内の局所空間を線形変換する線形変換マトリックスを求める(ステップS3)。具体的には、RGB色空間上の4点p0,p1,p2,p3のうち、任意の対応点の対を決定し(本実施形態では、無彩色に最も近いp0,q0とする)、この対応点(p0,q0)を原点とする(p1〜p3、q1〜q3の座標値は、p0,q0からの相対値となる)。
図27(a)に示すRGB色空間と図27(b)に示すXYZ色空間との空間間の変換式をY=AXと線形変換できると仮定すると、下記式(1)のように表される。
ここで、p1→q1、p2→q2、p3→q3に写像されるとすると、各係数aは、下記式(2)〜(10)のように求めることができる。
次に、この線形変換マトリックス(Y=AX)を使って、図27(a)に示すRGB色空間上の測色対象のパッチ200のRGB値であるPrgb点(座標値は(Pr,Pg,Pb))を図27(b)に示すXYZ色空間上に写像する(ステップS4)。ここで得られたXYZ値は、原点q0からの相対値であるため、測色対象のパッチ200のRGB値Prgbに対応する実際のXYZ値Pxyz(座標値は(Px,Py,Pz))は、原点q0(y01,y02,y03)からのオフセット値として、下記式(11)〜(13)のようになる。
次に、以上のように求めたパッチ200のXYZ値Pxyzを、図28(a)に示した変換式によってLab値に変換し、測色対象のパッチ200のRGB値Prgbに対応するLab値を求める(ステップS5)。これにより、センサ部430の感度が変わったり、照明光源426の波長や強度が変化したりした場合でも、測色対象のパッチ200の測色値を正確に求めることができ、高精度の測色を行うことができる。
なお、上述した処理動作で使用した図27(c)は、図5に示した基準チャート部400の1次色(YMC)の基準パッチ列401および2次色(RGB)の基準パッチ列402の各パッチのLab値を、Lab色空間上にプロットしたものである。図5に示した基準チャート部400は、測色カメラ42の筐体421の内部に配置されるチャート板410上に形成されるため、基準チャート部400を構成するパッチの数が制限されることになる。このため、標準のパッチの中から選別した一部のパッチを用いて、図5に示した基準チャート部400を構成することになる。例えば、Japan Colorは928色あり、その928色の中から選択した一部(例えば72色)を用いて、図5に示す基準チャート部400を構成することになる。しかし、標準のパッチの中から選択された一部のパッチのみを用いて測色を行う場合、測色の精度の低下が懸念される。そこで、基準チャート部400を構成するパッチのRGB値から標準のパッチのRGB値を類推し、標準のパッチのRGB値を用いて測色対象のパッチ200の測色を行うことが望ましい。
具体的には、標準のパッチのLab値を記憶しておき、図30に示すように、撮像により得られた基準チャート部400の各パッチのRGB値を基に、標準の各パッチに対応するRGB値を特定し(ステップS0)、その特定した標準の各パッチのRGB値を基に、測色対象のパッチ200のRGB値を内包する4点の検索を行う(ステップS1’)。
図31に示すように、基準チャート部400の各パッチのRGB値(a)と、その基準チャート部400の各パッチのLab値(b)とは、変換式αで対応しているため(b=a×α)、基準チャート部400を構成する各パッチのRGB値を基に、変換式αを算出する。また、基準チャート部400の各パッチのLab値は、標準の各パッチのLab値の一部であるため、標準の各パッチのRGB値(A)と、標準の各パッチのLab値(B)とは、上記変換式αで対応することになる(B=A×α)。このため、上記算出した変換式αを基に、標準の各パッチのLab値に対応するRGB値を特定することができる。これにより、基準チャート部400の各パッチのRGB値を基に、標準の各パッチのLab値に対応するRGB値を特定することができる。
次に、標準の各パッチのLab値に対応するXYZ値を基に、測色対象のパッチ200のRGB値を内包する4点のパッチに対応するXYZ値を検索する(ステップS2’)。
次に、ステップS2’で検索した4点のパッチに対応するXYZ値を基に、線形変換マトリックスを算出し(ステップS3’)、その算出した線形変換マトリックスを基に、測色対象のパッチ200のRGB値をXYZ値に変換する(ステップS4’)。次に、ステップS4’で変換したXYZ値を上述した変換式を用いてLab値に変換する(ステップS5’)。これにより、標準の各パッチのRGB値やXYZ値を基に、測色対象のパッチ200のLab値を得ることができ、パッチ200の測色を高精度に行うことができる。なお、標準のパッチとしては、Japan Colorに限定されるものではなく、例えば米国で使用しているSWOPや欧州で使用しているEuro Press等の標準色を使用することも可能である。
<その他の変形例>
上述した実施形態では、パッチ200の測色値を算出する機能を測色カメラ42に持たせるようにしているが、測色カメラ42の外部でパッチ200の測色値を算出するようにしてもよい。例えば、画像形成装置100のメイン制御基板120に実装されたCPU101や制御用FPGA110が、測色対象のパッチ200の測色値を算出するように構成することができる。この場合、測色カメラ42は、パッチ200の測色値の代わりに、パッチ200と基準チャート部400とを同時に撮像することで得られる画像データをCPU101や制御用FPGA110に送る構成となる。
また、上述した実施形態では、測色カメラ42が画像形成装置100の機構を利用してテストパターンに含まれる各パッチ200と対向する位置に移動するようにしているが、測色カメラ42を画像形成装置100から分離して、独自の移動機構によりテストパターンに含まれる各パッチ200と対向する位置に移動する構成としてもよい。つまり、上述した実施形態は、画像形成装置100に測色装置としての機能を持たせた例であるが、測色装置を画像形成装置100とは異なる独立した装置として構成し、この測色装置により、画像形成装置100が形成したテストパターンに含まれるパッチ200の測色値を算出するようにしてもよい。この場合、独立した構成の測色装置に上述したエラー処理を行う機能を持たせることにより、上述した実施形態と同様の効果を得ることができる。
また、上述した実施形態では、パッチ200の測色値を算出する機能を、測色カメラ42を含む画像形成装置100に持たせるようにしているが、パッチ200の測色値の算出は、必ずしも画像形成装置100内部で実行する必要はない。例えば、図32に示すように、画像形成装置100と外部装置500とが通信可能に接続された画像形成システム(測色システム)を構築し、パッチ200の測色値を算出する測色値演算部52の機能を外部装置500に持たせて、外部装置500において測色値の算出を行うようにしてもよい。つまり、測色システムは、画像形成装置100に設けられた測色カメラ42と、外部装置500に設けられた測色値演算部52と、これら測色カメラ42と測色値演算部52(画像形成装置100と外部装置500)とを接続する通信手段600と、を備えた構成となる。外部装置500は、例えば、DFE(Digital Front End)と呼ばれるコンピュータを用いることができる。また、通信手段600は、有線や無線によるP2P通信のほか、LANやインターネットなどのネットワークを利用した通信などを利用することができる。
上記の構成の場合、例えば、画像形成装置100は、測色カメラ42で撮像したパッチ200などの被写体と基準チャート部400とを含む画像データを、通信手段600を利用して外部装置500に送信する。外部装置500は、画像形成装置100から受信した画像データを用いてパッチ200の測色値を算出し、算出したパッチ200の測色値に基づいて、画像形成装置100の特性を記述したデバイスプロファイルを生成あるいは修正する。そして、外部装置500は、このデバイスプロファイルを、通信手段600を利用して画像形成装置100に送信する。画像形成装置100は、外部装置500から受信したデバイスプロファイルを保持し、画像形成を行う際には、このデバイスプロファイルに基づいて画像データを補正し、補正後の画像データに基づいて画像形成を行う。これにより、画像形成装置100は色再現性の高い画像形成を行うことができる。
また、外部装置500が、パッチ200の測色値に基づいて生成した画像形成装置100のデバイスプロファイルを保持し、外部装置500において画像データの補正を行うようにしてもよい。すなわち、画像形成装置100は、画像形成を行う際に、画像データを外部装置500に送信する。外部装置500は、画像形成装置100から受信した画像データを、自身が保持する画像形成装置100のデバイスプロファイルに基づいて補正し、補正した画像データを画像形成装置100に送信する。画像形成装置100は、外部装置500から受信した補正後の画像データに基づいて画像形成を行う。これにより、画像形成装置100は色再現性の高い画像形成を行うことができる。
なお、上述した本実施形態に係る画像形成装置100や測色装置を構成する各部の制御機能は、ハードウェア、または、ソフトウェア、あるいは、両者の複合構成を用いて実現することができる。本実施形態に係る画像形成装置100や測色装置を構成する各部の制御機能をソフトウェアにより実現する場合は、画像形成装置100や測色装置が備えるプロセッサが処理シーケンスを記述したプログラムを実行する。プロセッサにより実行されるプログラムは、例えば、画像形成装置100や測色装置内部のROMなどに予め組み込まれて提供される。また、プロセッサが実行するプログラムを、インストール可能な形式または実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disc)などのコンピュータで読み取り可能な記録媒体に記録されて提供するようにしてもよい。
また、プロセッサにより実行されるプログラムを、インターネットなどのネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、プロセッサにより実行されるプログラムを、インターネットなどのネットワーク経由で提供または配布するように構成してもよい。
5 キャリッジ
6 記録ヘッド
8 主走査モータ
12 副走査モータ
16 記録媒体
30 エラー処理部
31 中断制御部
32 第1判定部
33 第2判定部
34 第3判定部
35 補正部
36 指示部
37 再開制御部
42,42A,42B,42C,42D,42E,42F 測色カメラ
52 測色値演算部
100 画像形成装置
101 CPU
110 制御用FPGA
200 パッチ
特開2005−132049号公報

Claims (9)

  1. 記録媒体に複数のパッチを形成する形成手段と、
    前記記録媒体に形成された複数の前記パッチの各々と対向する位置に順次移動して前記パッチの色データを取得する取得手段と、
    エラーが検知された場合に、前記色データの取得を中断させる中断制御手段と、
    検知されたエラーが、前記記録媒体に対してダメージを与えるエラーとして予め定められた所定エラーであるか否かを判定する第1判定手段と、
    検知されたエラーが前記所定エラーでないと判定された場合に、前記形成手段による前記パッチの再形成を行わずに、検知されたエラーが解除された後に、前記色データが取得されていない前記パッチから前記色データの取得を再開させる再開制御手段と、を備えることを特徴とするインクジェット記録装置
  2. 前記所定エラーは、前記記録媒体のジャムであることを特徴とする請求項1に記載のインクジェット記録装置
  3. 検知されたエラーが前記所定エラーであると判定された場合に、複数の前記パッチを前記記録媒体に再形成ることを前記形成手段に指示する指示手段をさらに備えることを特徴とする請求項1または2に記載のインクジェット記録装置
  4. 前記指示手段は、複数の前記パッチのうち、前記色データが取得されていない前記パッチのみを前記記録媒体に再形成ることを前記形成手段に指示することを特徴とする請求項に記載のインクジェット記録装置
  5. 記録媒体に形成された複数のパッチの各々と対向する位置に順次移動して前記パッチの色データを取得する取得手段と、
    エラーが検知された場合に、前記色データの取得を中断させる中断制御手段と、
    検知されたエラーが、前記記録媒体に対してダメージを与えるエラーとして予め定められた所定エラーであるか否かを判定する第1判定手段と、
    検知されたエラーが前記所定エラーでないと判定された場合に、前記取得手段が正常に移動できるか否かを判定する第2判定手段
    知されたエラーが前記所定エラーでないと判定され、かつ、前記取得手段が正常に移動できると判定された場合に、検知されたエラーが解除された後に、前記色データが取得されていない前記パッチから前記色データの取得を再開させる再開制御手段と、を備えることを特徴とする測色装置。
  6. 記録媒体に形成された複数のパッチの各々と対向する位置に順次移動して前記パッチの色データを取得する取得手段と、
    エラーが検知された場合に、前記色データの取得を中断させる中断制御手段と、
    検知されたエラーが、前記記録媒体に対してダメージを与えるエラーとして予め定められた所定エラーであるか否かを判定する第1判定手段と、
    検知されたエラーが前記所定エラーでないと判定された場合に、前記記録媒体に位置ずれが生じているか否かを判定する第3判定手段
    知されたエラーが前記所定エラーでないと判定され、かつ、前記記録媒体に位置ずれが生じていないと判定された場合に、検知されたエラーが解除された後に、前記色データが取得されていない前記パッチから前記色データの取得を再開させる再開制御手段と、を備えることを特徴とする測色装置。
  7. 前記記録媒体に位置ずれが生じていると判定された場合に、前記記録媒体の位置ずれを補正する補正手段をさらに備え、
    前記再開制御手段は、検知されたエラーが前記所定エラーでないと判定され、かつ、前記記録媒体の位置ずれが補正された場合に、前記色データが取得されていない前記パッチから前記色データの取得を再開させることを特徴とする請求項に記載の測色装置。
  8. 前記第3判定手段は、エラーが検知される前に最後に前記色データを取得した前記パッチと対向する位置に前記取得手段を移動させて、前記取得手段が前記色データを再度取得できたか否かにより、前記記録媒体に位置ずれが生じているか否かを判定することを特徴とする請求項6または7に記載の測色装置。
  9. 記録媒体に複数のパッチを形成するステップと、
    前記記録媒体に形成された複数の前記パッチの各々と対向する位置に取得手段を順次移動させて前記パッチの色データを取得するステップと、
    エラーが検知された場合に、前記色データの取得を中断させるステップと、
    検知されたエラーが、前記記録媒体に対してダメージを与えるエラーとして予め定められた所定エラーであるか否かを判定するステップと、
    検知されたエラーが前記所定エラーでないと判定された場合に、前記パッチの再形成を行わずに、検知されたエラーが解除された後に、前記色データが取得されていない前記パッチから前記色データの取得を再開させるステップと、を含むことを特徴とする測色方法。
JP2013004044A 2013-01-11 2013-01-11 インクジェット記録装置、測色装置および測色方法 Active JP6142537B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004044A JP6142537B2 (ja) 2013-01-11 2013-01-11 インクジェット記録装置、測色装置および測色方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004044A JP6142537B2 (ja) 2013-01-11 2013-01-11 インクジェット記録装置、測色装置および測色方法

Publications (2)

Publication Number Publication Date
JP2014133396A JP2014133396A (ja) 2014-07-24
JP6142537B2 true JP6142537B2 (ja) 2017-06-07

Family

ID=51412064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004044A Active JP6142537B2 (ja) 2013-01-11 2013-01-11 インクジェット記録装置、測色装置および測色方法

Country Status (1)

Country Link
JP (1) JP6142537B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3064915A1 (en) 2015-03-03 2016-09-07 Seiko Epson Corporation Spectrometry device, image forming apparatus, and spectrometry method
JP7404860B2 (ja) 2019-12-24 2023-12-26 セイコーエプソン株式会社 測定装置、プリンター、及び測定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132049A (ja) * 2003-10-31 2005-05-26 Canon Inc 色度補正方法及びカラー画像形成装置
JP2007018127A (ja) * 2005-07-06 2007-01-25 Seiko Epson Corp 印刷システム、その制御方法、及びプログラム

Also Published As

Publication number Publication date
JP2014133396A (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
JP6127448B2 (ja) 撮像ユニット、測色装置、画像形成装置および測色システム
JP5962239B2 (ja) 測色装置、画像形成装置およびプログラム
JP6111730B2 (ja) 測色装置、画像形成装置、測色システムおよび測色方法
JP5958099B2 (ja) 測色装置、画像形成装置およびプログラム
JP5887998B2 (ja) 測色装置、記録装置、測色方法及びプログラム
JP5942534B2 (ja) 撮像装置、測色装置、測色システムおよび画像形成装置
JP6424586B2 (ja) 撮像装置、媒体種別判定装置および画像形成装置
JP5961985B2 (ja) 撮像装置、測色装置および画像形成装置
JP2015078975A (ja) 光沢度判定装置、測色装置、画像形成装置、および光沢度判定方法
JP6107264B2 (ja) 撮像ユニット、測色装置、画像形成装置、測色システムおよび距離測定方法
JP6543906B2 (ja) 画像形成装置および画像形成装置の制御方法
JP6471437B2 (ja) 撮像装置、測色装置および画像形成装置
JP2014163704A (ja) 測色装置、画像形成装置、測色方法およびプログラム
JP6142537B2 (ja) インクジェット記録装置、測色装置および測色方法
JP6327262B2 (ja) 撮像装置、測色装置、および画像形成装置
JP6163760B2 (ja) 測色装置、画像形成装置および測色システム
JP6048155B2 (ja) 測色装置、画像形成装置および測色システム
JP6131649B2 (ja) 撮像ユニット、測色装置、画像形成装置および測色システム
JP6428830B2 (ja) 画像形成装置及び測色方法
JP7151110B2 (ja) 撮像装置、測色装置および画像形成装置
JP5929133B2 (ja) 撮像装置、測色装置および画像形成装置
JP6237834B2 (ja) 撮像装置、制御装置、画像形成装置、およびインクジェット記録装置
JP2019165412A (ja) 撮像装置、測色装置および画像形成装置
JP2014173948A (ja) 測色装置、画像形成装置、測色方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R151 Written notification of patent or utility model registration

Ref document number: 6142537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151