JP6142001B2 - 蓄電システム、及び蓄電方法 - Google Patents

蓄電システム、及び蓄電方法 Download PDF

Info

Publication number
JP6142001B2
JP6142001B2 JP2015555063A JP2015555063A JP6142001B2 JP 6142001 B2 JP6142001 B2 JP 6142001B2 JP 2015555063 A JP2015555063 A JP 2015555063A JP 2015555063 A JP2015555063 A JP 2015555063A JP 6142001 B2 JP6142001 B2 JP 6142001B2
Authority
JP
Japan
Prior art keywords
storage battery
voltage
power
storage
load device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015555063A
Other languages
English (en)
Other versions
JPWO2015099158A1 (ja
Inventor
和寛 山本
和寛 山本
良二 柳本
良二 柳本
山田 祐司
祐司 山田
健次郎 矢野
健次郎 矢野
岡田 顕一
顕一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of JPWO2015099158A1 publication Critical patent/JPWO2015099158A1/ja
Application granted granted Critical
Publication of JP6142001B2 publication Critical patent/JP6142001B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、環境発電を行う発電素子により発電された電力を蓄電池に蓄電して、外部負荷装置に電力を給電する蓄電システム、及び蓄電方法に関する。
本願は、2013年12月27日に、日本に出願された特願2013−272145号及び2014年1月31日に、日本に出願された特願2014−017346号に基づき優先権を主張し、その内容をここに援用する。
近年、電子回路や無線技術の低消費電力化により、ワイヤレスセンサやリモコンスイッチといったエネルギーハーベスティング(環境発電)デバイスが注目されている。エネルギーハーベスティングデバイスは、周囲の環境から電気エネルギーを得ることで、配線や電池交換なしで動作する。エネルギーハーベスティングデバイスとしては、例えば、蛍光灯やLED照明といった屋内光での使用を想定したエネルギーハーベスティング用の低照度色素増感太陽電池の開発が進められている。
なお、特許文献1には、電力需要量に基づいて太陽電池に要求される適正発電量を求め、この要求される発電量に応じて、太陽電池の発電量を調整する発電システムが開示されている。
また、特許文献2には、太陽電池で発電された電力を有効に充電するために、容量の異なる複数の蓄電部を備える電源装置が開示されている。
特許文献3には、コンデンサの光発電部への接続と、コンデンサのバッテリーへの接続とを切り替えるスイッチ回路を備える電源装置が開示されている。
日本国特開2012−108829号公報 日本国特開2002−199618号公報 日本国特開2009−89585号公報
ところで、発電電力が少ないまたは少ない場合もある環境において、発電素子を発電させて、発電した電力を蓄電池に蓄積し、蓄積した電力により負荷装置に仕事をさせる試みがなされている。この場合、以下の問題がある。
すなわち、負荷装置が連続した仕事を行うためにはそれ相応の容量の蓄電池に電力を蓄積する必要がある。しかし、蓄電池に大きい容量のものを用いた場合、蓄電に時間がかかり、蓄電池で駆動される負荷装置を起動するまでの時間が長くなるという問題がある。
上記特許文献1〜3に記載の発電システム又は電源装置は、上記問題に対応できていない。特に、特許文献2及び3の電源装置では、容量の小さな蓄電部やコンデンサからは外部の装置に給電できないため、容量の大きな蓄電部やバッテリーが十分に充電されるまで外部の装置に給電できない。
本発明は、上記実情に鑑みてなされたものであり、本発明の目的は、大きな容量の蓄電池を用いた場合においても、外部負荷装置に給電する出力電圧を早く立ち上げることができる、蓄電システム、及び蓄電方法を提供することにある。
上記課題を解決するため、本発明の第1態様に係る蓄電システムは、環境発電を行う発電素子の発電電力により給電され、外部負荷装置に電力を供給するように構成される第1蓄電池と、前記第1蓄電池よりも容量が大きく、前記外部負荷装置に電力を供給するように構成される第2蓄電池と、前記第1蓄電池と前記第2蓄電池との間の電気的な接続状態及び切断状態の切換を行う第1スイッチ部と、前記第1蓄電池の電圧と前記外部負荷装置を動作可能な電圧以上である第1閾値の電圧とを比較し、その比較結果に応じて前記第1スイッチ部を制御する第1切換部と、を備え、前記第1切換部は、前記第1蓄電池の電圧が前記第1閾値の電圧以下の場合に、前記第1蓄電池と前記第2蓄電池との間を切断状態にして、前記発電素子の発電電力が前記第1蓄電池のみに給電されるように前記第1スイッチ部を制御し、前記第1切換部は、前記第1蓄電池の電圧が前記第1閾値の電圧を超えている場合に、前記第1蓄電池と前記第2蓄電池との間を接続状態にして、前記第1蓄電池から前記第2蓄電池へ給電が行われるように前記第1スイッチ部を制御する。
上記態様に係る蓄電システムにおいては、容量の異なる2種類の蓄電池を用い、それぞれの蓄電池から外部負荷装置に電力を供給できる。そして、第1切換部は、第1蓄電池に充電される電圧が第1閾値の電圧になるまで、第1蓄電池だけに発電素子の発電電力が給電されるように第1スイッチ部を制御する。そして、第1蓄電池の電圧が所定の電圧である第1閾値の電圧を超えた場合に、第1切換部は、第1蓄電池から第2蓄電池へ給電が行われるように第1スイッチ部を制御する。
これにより、蓄電システムは、大きな容量の蓄電池を用いた場合においても、外部負荷装置に給電する出力電圧を早く立ち上げることができる。特に、第1蓄電池が外部負荷装置に接続されているため、容量の大きな第2蓄電池が充電される前でも外部負荷装置に供給する出力電圧を立ち上げることができる。
また、上記蓄電システムは、前記第1蓄電池及び前記第2蓄電池と前記外部負荷装置との間の電気的な接続状態及び切断状態の切換を行う第2スイッチ部と、前記第1蓄電池の電圧と第2閾値の電圧とを比較し、その比較結果に応じて、前記第2スイッチ部を制御する第2切換部と、を備え、前記第1蓄電池の電圧が前記第2閾値の電圧よりも高い状態の場合、前記第2切換部は、前記第1蓄電池及び前記第2蓄電池と前記外部負荷装置との間が接続状態になるように前記第2スイッチ部を制御し、前記第1蓄電池の電圧が前記第2閾値の電圧よりも低い状態の場合、前記第2切換部は、前記第1蓄電池及び前記第2蓄電池と前記外部負荷装置との間が切断状態になるように前記第2スイッチ部を制御してもよい。
上記態様に係る蓄電システムにおいては、第1蓄電池及び第2蓄電池と、外部負荷装置との間の電気的な接続状態及び切断状態を切り替える第2スイッチ部を設ける。そして、第2切換部は、第1蓄電池の電圧が第2閾値の電圧よりも高い場合に、第2スイッチ部を接続状態にして蓄電システムから外部負荷装置に給電を行う。また、第2切換部は、第1蓄電池の電圧が第2閾値の電圧よりも低い場合に、第2スイッチ部を切断状態にして蓄電システムから外部負荷装置を切り離す。
これにより、蓄電システムは、蓄電装置を初期充電する場合等、第1蓄電池の電圧が低い状態の場合に、外部負荷装置への給電を停止して無駄な電力消費を抑えることにより、第1蓄電池への充電を早めることができる。
また、前記第2閾値の電圧は、前記外部負荷装置が動作可能な動作電圧よりも所定の電圧分だけ高くかつ前記第1閾値の電圧よりも低く設定されてもよい。
これにより、蓄電システムは、外部負荷装置に給電を行う場合に、外部負荷装置を確実に動作させることができる。
また、前記第1切換部は、ヒステリシス特性を有しており、前記ヒステリシス特性を用いて前記第1蓄電池の電圧と前記第1閾値の電圧とを比較し、前記第1切換部は、前記第1蓄電池の電圧が前記第1閾値の電圧を超えている場合に、前記第1蓄電池と前記第2蓄電池との間が接続状態になるように前記第1スイッチ部を制御し、前記第1切換部は、前記第1蓄電池と前記第2蓄電池との間が接続状態で、かつ前記第1蓄電池の電圧が前記第1閾値の電圧よりも所定の電圧だけ低い第3閾値の電圧以下に低下した場合に、前記第1蓄電池と前記第2蓄電池との間が切断状態になるように前記第1スイッチ部を制御してもよい。
上記態様に係る蓄電システムにおいて、第1切換部は、第1蓄電池の電圧が第1閾値の電圧を超えたことを検出した場合に、第1蓄電池と第2蓄電池との間を接続する。その後、第1蓄電池から第2蓄電池に給電が行われることにより第1蓄電池の電圧が低下する。そして、第1切換部は、第1蓄電池の電圧が、第1閾値の電圧から所定の電圧分だけ低い第3閾値の電圧以下に低下したことを検出した場合に、第1蓄電池と前記第2蓄電池との間の接続を切断する。つまり、第1切換部は、ヒステリシス特性を用いて第1スイッチ部の開閉を制御する。
これにより、蓄電システムは、第1蓄電池から第2蓄電池へ給電を行うことができるとともに、第1蓄電池の電圧が所定の電圧以下に低下しないようにすることができる。
また、前記第1切換部の前記ヒステリシス特性における前記第1閾値の電圧と前記第3閾値の電圧との間のヒステリシス幅は、前記第1蓄電池及び前記第2蓄電池と外部負荷装置との間の電気的な接続状態及び切断状態を切り替える第2スイッチ部の開閉を制御する際に使用される第2閾値の電圧に対応して設定されてもよい。
これにより、蓄電システムは、第1蓄電池から第2蓄電池へ給電を行う際に、第1蓄電池の電圧が第2閾値の電圧以下に低下しないようにすることができる。
また、前記第3閾値の電圧は、前記第2閾値の電圧よりも所定の電圧分だけ高くなるように設定されてもよい。
これにより、蓄電システムは、第1蓄電池から第2蓄電池へ給電を行う際に、第2スイッチ部が不連続に開閉を繰り返すことを回避できる。
また、前記第1スイッチ部は、並列に接続された供給回路を有し、前記供給回路は、前記第2蓄電池から前記第1蓄電池に流れる電流を抑止し、かつ前記第2蓄電池から前記外部負荷装置に向けて電流を流すように構成されてもよい。
これにより、蓄電システムでは、第1スイッチ部が開放している場合においても、第2蓄電池から外部負荷装置に給電を行うことができる。
また、前記発電素子の出力電圧を所定の電圧に変換して、前記第1蓄電池と前記第2蓄電池とに給電を行うDC/DCコンバータを備えてもよい。
これにより、蓄電システムは、発電素子の出力電圧をDC/DCコンバータにより昇圧して、蓄電池に給電することができる。
また、前記発電素子は、所定の照度以下の環境において使用可能な低照度用の太陽電池であってもよい。
これにより、蓄電システムは、低照度用の太陽電池から出力される電力を大きな容量の蓄電池を用いて蓄電する場合においても、外部出力する出力電圧を早く立ち上げることができる。
また、前記太陽電池は、太陽電池セルを直列に接続して構成されてもよい。
これにより、蓄電システムにおいて、太陽電池は、必要とされる電圧を出力することができる。
また、前記太陽電池は、低照度色素増感太陽電池であってもよい。
これにより、蓄電システムは、低照度色素増感太陽電池から出力される電力を大きな容量の蓄電池を用いて蓄電する場合においても、外部出力する出力電圧を早く立ち上げることができる。
また、本発明の第2態様に係る蓄電方法は、環境発電を行う発電素子の発電電力により給電され、外部負荷装置に電力を供給するように構成される第1蓄電池と、前記第1蓄電池よりも容量が大きく、前記外部負荷装置に電力を供給するように構成される第2蓄電池と、前記第1蓄電池と前記第2蓄電池との間の電気的な接続状態及び切断状態の切換を行う第1スイッチ部と、前記第1蓄電池の電圧と前記外部負荷装置を動作可能な電圧以上である所定の第1閾値の電圧とを比較し、その比較結果に応じて前記第1スイッチ部を制御する第1切換部と、を備える蓄電システムを準備し、前記第1蓄電池の電圧が前記第1閾値の電圧以下の場合に、前記第1切換部が、前記第1蓄電池と前記第2蓄電池との間を切断状態にして、前記発電素子の発電電力が前記第1蓄電池のみに給電されるように前記第1スイッチ部を制御し、前記第1蓄電池の電圧が前記第1閾値の電圧を超えている場合に、前記第1切換部が、前記第1蓄電池と前記第2蓄電池との間を接続状態にして、前記第1蓄電池から前記第2蓄電池へ給電が行われるように前記第1スイッチ部を制御する。
これにより、蓄電システムは、大きな容量の蓄電池を用いた場合においても、外部負荷装置に給電する出力電圧を早く立ち上げることができる。特に、第1蓄電池が外部負荷装置に接続されているため、容量の大きな第2蓄電池が充電される前でも外部負荷装置に供給する出力電圧を立ち上げることができる。
本発明の上記態様に係る蓄電システムによれば、大きな容量の蓄電池を用いた場合においても、外部負荷装置に給電する出力電圧を早く立ち上げることができる。
本発明の実施形態に係る蓄電システムが用いられる環境監視システムの概略構成を示す構成図である。 太陽電池の概観と太陽電池セルの接続状態を示す説明図である。 太陽電池の概観と太陽電池セルの接続状態を示す説明図である。 蓄電システム101の構成例を示す構成図である。 蓄電池A121及び蓄電池B122を複数の蓄電池で構成する例を示す構成図である。 蓄電池A121及び蓄電池B122への充電動作の態様を示す説明図である。 蓄電池A121と蓄電池B122との電圧の変化のイメージを示す説明図である。 蓄電システム101における処理の流れを示すフローチャートである。 蓄電システム101を週単位で運用する例を示すイメージ図である。 蓄電システム101の変形例を示す構成図である。 切換部170における処理の流れを示すフローチャートである。 外部負荷装置200に給電を行う際の問題点について説明するための説明図である。 外部負荷装置200に給電を行う際の問題点への対処方法について説明するための説明図である。 スイッチSW1とスイッチSW2とのON状態及びOFF状態のタイミングを示す説明図である。 蓄電システム102の構成例を示す構成図である。 蓄電池123への充電動作の態様を示す説明図である。 蓄電システム102における処理の流れを示すフローチャートである。 蓄電システム103の構成例を示す構成図である。
以下、本発明の実施形態を、添付図面を参照して説明する。
[蓄電システムを用いた環境監視システムの例]
図1は、本発明の実施形態に係る蓄電システムが用いられる環境監視システムの概略構成を示す構成図である。図1に示すように環境監視システム1は、環境発電を行う発電素子の発電電力を蓄電池に蓄積する蓄電システム100と、蓄電システム100から給電される外部負荷装置200とで構成される。外部負荷装置200としては、例えば、配線や電池交換なしで動作するワイヤレスセンサとして機能する環境モニタ装置210等が挙げられる。
環境モニタ装置210は、オフィス等の室内の温度を測定する温度センサ211と、室内の湿度を測定する湿度センサ212とを備える。環境モニタ装置210は、温度センサ211により測定した室内温度の情報と、湿度センサ212により測定した室内湿度の情報とを、無線通信ユニット213により、周期的に外部の監視システム300に向けて無線送信する。なお、図1に示す例では、環境モニタ装置210が温度センサ211と湿度センサ212とを備える例を示したが、他の環境に関する情報を検出するセンサであってもよい。他の環境に関する情報とは、例えばCO濃度や、振動、水位、照度、電圧、電流、音声、画像などである。
このようなセンサを備える環境監視システム1であっても、環境に関する情報を送信でき、大きな容量の蓄電池を用いた場合においても、外部負荷装置に給電する出力電圧を早く立ち上げることができる。
外部負荷装置200に電力を供給する蓄電システム100は、発電素子である太陽電池110と、蓄電装置120と、DC/DCコンバータ130とを備えている。太陽電池110は、低照度用の太陽電池であり、例えば、10000Lux(ルクス)以下の照度で使用される。蓄電システム100では、太陽電池110の発電電力を、DC/DCコンバータ130を介して蓄電装置120に給電し、蓄電装置120に電力を蓄積する。蓄電システム100は、蓄電装置120に蓄積された電力を外部負荷装置200に給電する。蓄電システム100の構成と動作との詳細については、後述する。なお、図1に示した例では、発電素子として太陽電池110を示したが、これに限られない。発電素子は、環境発電を行える発電素子であればよい。ここで、光以外の環境発電とは、例えば熱や、振動、風力、電波等による発電である。
図2A及び図2Bは、太陽電池の概観と太陽電池セルの接続状態とを示す説明図である。図2Aの平面図に示すように、太陽電池110の受光面には、4つの太陽電池セルA111,B112,C113,D114が、平面状に配列されている。4つの太陽電池セルA111,B112,C113,D114は、図2Bに示すように、直列に接続されて所定の出力電圧Vsが得られるように構成されている。
図2A及び図2Bに示す太陽電池110は、4つの太陽電池セルを直列に接続した例であるが、直列に接続される太陽電池セルの個数は限定されない。太陽電池セルの個数は、DC/DCコンバータ130に向けて出力される電圧が、DC/DCコンバータ130において所定の効率以上で昇圧動作が行える電圧になるように選択される。例えば、太陽電池セルが低照度色素増感太陽電池である場合、直列に接続される太陽電池セルの個数を、例えば、最低3個以上にすることが望ましい。
ところで、太陽電池110を入力電源とした場合、外部負荷装置200を連続して駆動させようとすると、照明の当たらない夜間の消費電力分を蓄電池に蓄積しておく必要がある。さらに、オフィス等の室内での使用を考慮した場合、土日祝日等の消費電力分も蓄積しておく必要がある。蓄電池に蓄積する電力を増加させるには、蓄電池の容量を増やすか、或いは、蓄電池を高電圧まで充電するなどの方法で対処することができる。しかしながら、何れの方法においても蓄電池の充電に時間がかかるため、外部負荷装置200を駆動できるようになるまでの時間が長くなる。
本実施形態に係る蓄電システムでは、上記問題を解決するために、容量の異なる2種類の蓄電池A121及び蓄電池B122と、スイッチング機構としてのスイッチ部140(第1スイッチ部)とを用いる。
図3は、蓄電システム101の構成を示す構成図である。図3に示す蓄電システム101は、太陽電池110と、蓄電装置120と、DC/DCコンバータ130と、スイッチ部140と、電圧検出部150と、切換部160(第1切換部)と、供給回路165とを備える。
太陽電池110は、図2A及び図2Bに示した低照度用の太陽電池である。蓄電装置120は、エナジーハーベストの用途に対応する二次電池やコンデンサ等で構成され、容量の小さな蓄電池A121と、容量の大きな蓄電池B122と、で構成されている。
蓄電池A121の容量の大きさは、太陽電池110から給電されて、外部負荷装置200を駆動可能な電圧に立ち上げるまでの時間と、蓄電池A121から蓄電池B122に給電を行う際の蓄電池A121の電圧降下の程度と、蓄電池A121から外部負荷装置200を連続して駆動できる時間と、を勘案して設定される。
また、蓄電池B122の容量の大きさは、外部負荷装置200の負荷容量と、外部負荷装置200を連続して駆動できる時間とに応じて設定される。例えば、蓄電池A121に対する蓄電池B122の容量比率は、数倍から数十倍程度に設定される。
なお、蓄電池A121及び蓄電池B122のそれぞれは、単体の蓄電池で構成されるものであってもよく、又は、図4に示すように、複数の蓄電池で構成されるものであってもよい。図4に示す例では、例えば、蓄電池A121が、蓄電池1211と蓄電池1212との2個の蓄電池で構成され、蓄電池B122が、蓄電池1221、蓄電池1222.・・・、蓄電池122nのn個の蓄電池で構成される。つまり、蓄電池A121及び蓄電池B122のそれぞれを、任意の個数の蓄電池で構成することができる。
図3に示すように、太陽電池110の出力側には、給電線DCL0を介してDC/DCコンバータ(ブーストコンバータ)130の入力側が接続される。DC/DCコンバータ130は、DC/DCコンバータ装置等で構成され、太陽電池110の出力電圧Vsを入力し、電圧Vsを所定の電圧に昇圧して給電線DCL1に出力する。なお、本実施形態では、DC/DCコンバータ130は、電圧を昇圧するために設けられているが、必要に応じてDC/DCコンバータ130を用いて電圧を降圧させてもよい。
DC/DCコンバータ130の出力側は、給電線DCL1を介して、蓄電池A121に接続されるとともに、スイッチ部140の一方の端子aに接続されている。スイッチ部140の他方の端子bは、給電線DCL2を介して、蓄電池B122に接続されている。
スイッチ部140は、切換部160から入力される制御信号CNT1の指示内容に応じて、内部のスイッチSW1をON(オン:閉状態)又はOFF(オフ:開状態)にすることにより、給電線DCL1と給電線DCL2との間の電気的な接続状態及び切断状態の切換を行う。つまり、スイッチSW1をONにすることにより、蓄電池A121と蓄電池B122とがスイッチSW1を介して電気的に並列に接続される。また、スイッチSW1をOFFにすることにより、蓄電池A121と蓄電池B122とが電気的に切り離される。
なお、図3では、スイッチ部140として、機械式接点を用いたスイッチSW1で構成される例を示している。しかしながら、実際には、スイッチSW1は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)等の半導体スイッチング素子を用いた半導体スイッチを含んでいる。
また、図3では、給電線DCL0、給電線DCL1、及び給電線DCL2を単線で示しているが、実際には、正極側の給電線と負極側の給電線(或いは、グランド線)とを含んでいる。また、スイッチ部140のスイッチSW1は、正極側の給電線と負極側の給電線とのうち、例えば、正極側の給電線のみの接続状態及び切断状態の切換を行う1回路のスイッチでもあってもよい、或いは、スイッチSW1は、正極側の給電線と負極側の給電線との両方の接続状態及び切断状態の切換を行う2回路のスイッチであってもよい。後述する図9、図14及び図17においても同様である。
電圧検出部150は、例えば、抵抗分圧回路を用いて構成され、給電線DCL1の電圧を検出する。なお、給電線DCL1の電圧は、蓄電池A121の電圧Vaと同じ電圧である。そのため、電圧検出部150は、給電線DCL1の電圧を検出することにより、結果的に、蓄電池A121の充電電圧である電圧Vaを検出することになる。電圧検出部150は、蓄電池A121の電圧Vaの検出信号Vfを切換部160に向けて出力する。
切換部160は、比較器161を備えている。比較器161は、不図示の基準電圧生成回路により生成される所定の基準電圧Ref1と、電圧検出部150から入力した蓄電池A121の電圧Vaの検出信号Vfとを比較する。基準電圧Ref1は、蓄電池A121の電圧V1(第1閾値の電圧)に対応し、蓄電池A121の電圧Vaが、蓄電池B122への給電可能な電圧V1を超えているか否かを判定する際に使用される。
切換部160は、比較器161における比較結果に応じて、スイッチ部140のスイッチSW1をON/OFF(開閉)する制御信号CNT1を、スイッチ部140に向けて出力する。スイッチ部140は、制御信号CNT1に基づいて、スイッチSW1の開閉動作を行う。
つまり、切換部160は、蓄電池A121の電圧Vaが電圧V1よりも低い場合に、制御信号CNT1によりスイッチ部140のスイッチSW1をOFFにして、蓄電池A121と蓄電池B122とを電気的に切り離す。これにより、太陽電池110の発電電力が、DC/DCコンバータ130を介して、蓄電池A121のみに給電されるようになる。
また、切換部160は、蓄電池A121の電圧Vaが電圧V1を超えた場合に、スイッチSW1をONにして蓄電池A121と蓄電池B122とを並列に接続する。その結果、蓄電池A121に蓄積された電荷により、或いは、DC/DCコンバータ130の出力電力と蓄電池A121に蓄積された電荷との両方により、蓄電池B122に給電される。
なお、蓄電池B122に給電を行う際には、DC/DCコンバータ130の出力電力が小さいため、主に蓄電池A121が蓄電池B122へ給電を行う。このため、以下の説明では、蓄電池B122への給電は、蓄電池A121から行われるものとして説明する。
また、切換部160の比較器161は、蓄電池A121の電圧Vaの検出信号Vfと基準電圧Ref1との大小関係を比較する際に、ヒステリシス特性を用いて判定を行う。つまり、比較器161は、蓄電池A121の電圧Vaが電圧V1を超えたことを検出した後、電圧Vaが、電圧V1よりも所定の電圧分ΔVだけ低い電圧V1’(=V1−ΔV)まで低下した時に、蓄電池A121の電圧Vaが電圧V1以下に低下したと判定する。
従って、切換部160は、蓄電池A121の電圧Vaが電圧V1を超えていることを検出して、一旦スイッチSW1をONにする制御信号CNT1を出力した後、電圧Vaが電圧V1’(第3閾値の電圧)に低下するまで、SW1をONにする制御信号CNT1を出力し続ける。
なお、電圧V1’は、電圧V1よりも所定の電圧だけ低く、外部負荷装置200の駆動可能電圧VLよりも所定の電圧だけ高く設定される(V1’>VL)。つまり、電圧V1も外部負荷装置200の駆動可能電圧VLよりも高い電圧に設定される(V1>V1’>VL)。これにより、DC/DCコンバータをコールドスタートモードになりにくくすることができる。
なお、本明細書で使用される用語「駆動可能電圧VL」は、外部負荷装置200が実際に動作可能な動作電圧Voutよりも所定の電圧ΔVoだけ高い電圧である。つまり、駆動可能電圧VLは、動作電圧Voutに対してマージンを有する電圧である。また、以下の説明において、「駆動可能電圧VL」又は「電圧VL」と呼ぶ場合」は、外部負荷装置200が実際に動作可能な動作電圧Voutよりも所定の電圧ΔVoだけ高い電圧「動作電圧Vout+ΔVo」を意味する。
供給回路165がない場合、すでに蓄電池B122に一定量の充電が行われていても、スイッチSW1がOFFになると、蓄電池B122から外部負荷装置200に電力を供給できない。しかし、蓄電システム101は供給回路165を有するので、蓄電池B122に一定量の電荷が充電されている場合、蓄電池B122から外部負荷装置200に電力を供給させることが可能である。これにより、蓄電池A121の充電量だけでは外部装置200を駆動させることができない場合や蓄電池A121の負荷が大きい場合等において、蓄電池B122から外部負荷装置200に電力を供給することができる。従って、適切に外部負荷装置200を駆動させることが可能となる。また、供給回路165は蓄電池A121には電力は供給されない。例えば、供給回路165は、ダイオードを用いて構成することができる。
図5は、蓄電池A121及び蓄電池B122への充電動作の態様を示す説明図である。
以下、図5を参照して、蓄電池A121及び蓄電池B122への充電動作の態様について説明する。
蓄電装置120への給電を最初に開始する場合、つまり、蓄電池A121と蓄電池B122との両方が未充電の場合は、まず、状態(1)に示すように、スイッチ部140のスイッチSW1をOFFにする。それにより、DC/DCコンバータ130から蓄電池A121にのみ充電電流Iaが流され、蓄電池A121が優先して充電される。
そして、蓄電池A121の充電が進み、蓄電池A121の電圧が、蓄電池B122に給電できる電圧V1まで増加した場合に、状態(2)に示すように、スイッチ部140のスイッチSW1をONにする。それにより、蓄電池A121に蓄積された電荷により、蓄電池A121から蓄電池B122に充電電流Iabを流して蓄電池B122に給電が行われる。
その後、蓄電池A121から蓄電池B122へ電流Iabを流すことにより、蓄電池A121の電圧Vaが、蓄電池A121と蓄電池B122とが平衡になる電圧まで低下しようとする。このため、切換部160は、蓄電池A121の電圧Vaが外部負荷装置200の駆動可能電圧VL(=動作電圧Vout+ΔVo)を下回る前に、つまり、蓄電池A121の電圧が電圧V1’(V1>V1’>VL)まで低下した場合に、状態(3)に示すように、スイッチ部140のスイッチSW1をOFFにして、蓄電池B122を蓄電池A121から電気的に切り離す。蓄電池A121の電圧が電圧V1’まで低下したことの検出は、前述した比較器161のヒステリシス特性を利用して行われる。このため、蓄電池A121の電圧Vaは、電圧V1と電圧V1’との間で変動することになる。
その後、状態(2)と状態(3)とを繰り返すことで、蓄電システム101では、外部負荷装置200に電流ILを流して、外部負荷装置200を駆動させつつ、蓄電池B122への蓄電を進めることができる。このように、蓄電システム101では、状態(2)と状態(3)とを繰り返すことで蓄電池B122への蓄電が進められる。これにより、夜間や休日においても外部負荷装置200を連続して駆動できるように蓄電池B122を充電することができる。
また、図6は、蓄電池A121と蓄電池B122との電圧の変化のイメージを示す説明図である。図6では、横軸に時間tの経過を示し、縦軸に電圧を示し、蓄電池A121の電圧Vaの時間変化の態様と、蓄電池B122の電圧Vbの時間変化の態様とを示している。
図6の時刻t0において、太陽電池110からDC/DCコンバータ130を介して蓄電装置120の充電が開始される。時刻t0における充電開始時には、図5の状態(1)に示すように、切換部160は、スイッチ部140のスイッチSW1をOFFにして、蓄電池A121のみへの給電を開始する。
続いて、時刻t0から時刻t1にかけて、蓄電池A121の電圧Vaが次第に上昇し、時刻t1において、外部負荷装置200を駆動可能な電圧VLに到達すると、外部負荷装置200が起動される。
なお、外部負荷装置200は、例えば、前述した環境モニタ装置210であり、環境モニタ装置210は、周期的に温度情報や湿度情報等を外部に無線送信する。
そして、時刻t1から、外部負荷装置200が起動した後の時刻t2に至り、蓄電池A121の電圧Vaが電圧V1まで上昇すると、切換部160は、スイッチ部140のスイッチSW1をONにして、蓄電池A121に蓄積された電荷により蓄電池B122に給電が行われる。
蓄電池A121から蓄電池B122に給電を行う場合、蓄電池A121の電圧Vaが、蓄電池A121と蓄電池B122とが平衡になる電圧まで低下しようとする。このため、切換部160は、蓄電池A121の電圧Vaが外部負荷装置200の駆動可能電圧VLを下回る前、つまり、蓄電池A121の電圧が電圧V1’(V1>V1’>VL)まで低下した場合に、スイッチSW1をOFFにして、蓄電池B122を蓄電池A121から電気的に切り離す。そして、スイッチSW1をOFFにした後、再び、蓄電池A121の電圧Vaが電圧V1を超えた場合に、切換部160は、再び、スイッチSW1をONにすることで、蓄電池A121から蓄電池B122に給電が行われる。つまり、切換部160は、スイッチSW1のON/OFF動作を繰り返しながら、蓄電池A121から蓄電池B122に給電を行う。
このため、蓄電池A121の電圧Vaは、図6の破線で囲んだ部分Eで拡大して示すように、電圧V1と電圧V1’の間で変動する電圧となる。
そして、時刻t2以降、蓄電池B122への充電が進み、蓄電池B122の電圧Vbが、次第に上昇していく。
そして、時刻t3に至ると、蓄電池B122の電圧Vbが、蓄電池A121の電圧とほぼ等しくなるまで充電される。時刻t3以降、外部負荷装置200への給電を、蓄電池A121及び蓄電池B122から行うことが可能になる。
なお、蓄電池A121及び蓄電池B122の電圧が電圧VHになると、DC/DCコンバータ130は、蓄電池A121及び蓄電池B122への過充電を防ぐために、出力を停止して、蓄電池A121及び蓄電池B122への給電を停止する。
また、図7は、蓄電システム101における処理の流れを示すフローチャートであり、上述した蓄電システム101における動作の流れをフローチャートで示す。
以下、図7を参照して、その処理の流れについて説明する。
まず、蓄電池A121及び蓄電池B122が未充電の状態にあるとする。そして、蓄電システム101が起動すると(ステップS11)、切換部160は、スイッチ部140のスイッチSW1をOFFにする(ステップS12)。そして、太陽電池110は、DC/DCコンバータ130を介して、蓄電池A121のみに給電を開始する(ステップS13)。
続いて、蓄電池A121に給電を行うことにより、蓄電池A121の電圧Vaが上昇する。そして、切換部160の比較器161は、蓄電池A121の電圧Vaが、蓄電池B122への給電が可能な電圧V1を超えているか否かを判定する(ステップS14)。
そして、ステップS14において、蓄電池A121の電圧Vaが電圧V1を超えていると判定された場合(ステップS14:Yes)、ステップS15の処理に移行する。ステップS15では、切換部160が、スイッチ部140のスイッチSW1をONにして、蓄電池A121から蓄電池B122への給電が開始される。蓄電池A121から蓄電池B122へ給電を行うことにより、蓄電池A121の電圧Vaが下降する。
続いて、切換部160の比較器161は、蓄電池A121の電圧Vaが、電圧V1’(=V1−ΔV)よりも低下したか否かを判定する(ステップS16)。
そして、ステップS16において、蓄電池A121の電圧Vaが電圧V1’よりも低下していないと判定された場合(ステップS16:No)、切換部160は、ステップS15の処理に戻り、蓄電池A121から蓄電池B122への給電を継続する。
一方、ステップS16において、蓄電池A121の電圧Vaが電圧V1’よりも低下していると判定された場合(ステップS16:Yes)、切換部160は、ステップS12の処理に戻り、スイッチ部140のスイッチSW1をOFFにして、再び、蓄電池A121のみへの給電を開始する。
上記処理の流れにより、蓄電システム101は、大きな容量の蓄電池を用いた場合においても、外部負荷装置200に出力する電圧を早く立ち上げることができる。また、蓄電システム101では、外部負荷装置200を駆動させつつ、蓄電池B122への蓄電を進めることができる。
また、図8は、蓄電システム101を週単位で運用する例を示すイメージ図である。図8に示す例は、横軸に時間tの経過を示し、縦軸に電圧を示し、蓄電池A121の電圧Vaと蓄電池B122の電圧Vbとの電圧推移の様子をイメージで示している。
なお、図8は、蓄電池A121及び蓄電池B122の電圧の詳細な変化特性ではなく、蓄電池A121及び蓄電池B122に対する充電の態様を概念的に示している。つまり、図8は、オフィスの室内が照明や外部光の入射により明るくなる「明」の期間と、夜間等において室内の照明が消灯して暗くなる「暗」の期間とが一日単位で繰り返される場合の、週単位(月曜から日曜日)での蓄電池A121と蓄電池B122との電圧変化の傾向を概念的に示している。
以下、図8を参照して、蓄電池A121の電圧Vaと蓄電池B122の電圧Vbとの週単位での推移の概要について説明する。
まず、第1日目の最初の時点(時刻t10)において、蓄電池A121及び蓄電池B122が共に未充電の状態にあるとする。そして、時刻t10において、オフィスの室内が照明や外部光により明るくなり、時刻t10以降、太陽電池110から蓄電池A121への給電が開始される。
続いて、蓄電池A121の電圧Vaが次第に増加し、時刻t11に至り、蓄電池A121の電圧Vaが電圧Va1になると、蓄電池B122への給電が開始され、蓄電池B122の電圧Vbが上昇し始める。
続いて、時刻t11から時刻t12まで、つまり、時刻t12においてオフィスの照明等が落とされ「暗」の期間に入るまで、蓄電池A121及び蓄電池B122への給電が継続され、時刻t12において、蓄電池A121の電圧Vaは、電圧Va2まで上昇し、蓄電池B122の電圧は、電圧Vb1まで上昇する。
そして、時刻t12において、時刻t12においてオフィスの照明等が消されて暗くなり「暗」の期間に入ると、太陽電池110からの電力の供給が行われなくなる。そして、時刻t12から2日目に照明が点灯される時刻t21までの「暗」の間は、蓄電池A121から、外部負荷装置200へ給電が行われることにより、蓄電池A121の電圧Vaは、時刻t12以降、次第に低下する。また、蓄電池B122への給電も停止されて、蓄電池B122の電圧は、電圧Vb1のまま一定の電圧になる。そして、蓄電池A121の電圧は、時刻t21において、電圧Va1まで低下する。
なお、蓄電池A121の電圧Vaが、電圧Va1まで低下した状態においても、蓄電池A121が電圧Va1を外部負荷装置200に給電して、外部負荷装置200を連続して駆動できるように設定されている。つまり、蓄電池A121の充電容量は、オフィスの照明等が消されて暗くなる「暗」の期間、外部負荷装置200を駆動できるように設定されている。
このように、蓄電システム101では、「明」の期間に、蓄電池A121への給電と、蓄電池B122への給電とが行われ、「暗」の期間に、蓄電池A121から外部負荷装置200に給電が行われるとともに、蓄電池B122への給電が停止される。
続いて、2日目についても同様であり、2日目の時刻t21からt22の「明」の期間において、蓄電池A121及び蓄電池B122に給電が行われ、蓄電池B122は電圧Vb2まで上昇する。また、同様に、3日目の時刻t31からt32の「明」の期間において、蓄電池A121及び蓄電池B122に給電が行われ、蓄電池B122は電圧Vb3まで上昇する。また、同様に、4日目の時刻t41からt42の「明」の期間において、蓄電池A121及び蓄電池B122に給電が行われ、蓄電池B122は電圧Vb4まで上昇する。
続いて、4日目の時刻t42から5日目の時刻t51までの「暗」の期間に、蓄電池A121から外部負荷装置200に給電が行われることにより、蓄電池A121の電圧Vaが次第に低下し、時刻t43において、蓄電池A121の電圧Vaと蓄電池B122の電圧Vbが同じ電圧になる。
そして、4日目の時刻t43以降、スイッチ部140のスイッチSW1が継続的にON状態になり、蓄電池A121の電圧と蓄電池B122の電圧は同じ電圧(Va≒Vb)で推移する。
そして、5日目の時刻t52から「暗」の期間に入り、5日目の時刻t52から時刻t61までの期間と、休日である6日目の時刻t61から時刻t71までの期間と、同じく休日である7日目の時刻t71から時刻t72までの期間とが「暗」の期間になる。時刻t52から時刻t72までの「暗」の期間において、蓄電池A121と蓄電池B122との両方から外部負荷装置200に給電が行われる。
なお、蓄電池A121から蓄電池B122に給電を行う場合、蓄電池A121の電圧Vaは、スイッチ部140のスイッチSW1を構成する半導体素子による電圧降下分(例えば、0.3V程度)だけ、蓄電池B122の電圧よりも高くなる。逆に、蓄電池B122から給電線DCL1に給電が行われる場合は、蓄電池A121の電圧Vaは、蓄電池B122の電圧Vbよりも、スイッチSW1を構成する半導体素子による電圧降下分だけ低くなる。
このため、スイッチ部140のスイッチSW1がON状態においても、蓄電池A121の電圧Vaが蓄電池B122の電圧よりも高い場合には、蓄電池A121の電荷が優先的に外部負荷装置200に供給されることになる。そして、蓄電池A121に蓄積された電荷が少なくなり、蓄電池A121の電圧Vaが低下すると、蓄電池A121が、蓄電池B122から電荷の供給を受ける。それにより、蓄電池A121から外部負荷装置200に給電が行われる。或いは、蓄電池B122からスイッチ部140及び給電線DCL1を介して外部負荷装置200に直接に給電が行われる。
以上説明したように、蓄電システム101を週単位で運用する場合、平日(1日目から5日目)に蓄電池B122の充電を行っておき、休日(6日目及び7日目)に、蓄電池B122に蓄積された電力を利用することができる。
また、図9は、蓄電システム101の変形例を示す構成図である。
図9に示す蓄電システム101Aは、電圧検出部155と、切換部170(第2切換部)と、スイッチ部180(第2スイッチ部)と、制御部185と、を備えている点で図3に示す蓄電システム101と異なる。切換部170と制御部185とを追加した理由については後述するが、まず、蓄電システム101Aの構成と動作とについて説明する。
図9において、電圧検出部150は、蓄電池A121の電圧Vaの検出信号Vfを切換部160、切換部170、及び制御部185に出力する。電圧検出部155は、抵抗分圧回路等を用いて構成され、蓄電池B122の電圧Vbの検出信号Vfbを制御部185に出力する。
また、スイッチ部180は、一方の端子aが給電線DCL1に接続され、他方の端子bが、給電線DCL10を介して、外部負荷装置200に接続されている。
スイッチ部180は、切換部170から入力される制御信号CNT2の指示内容に応じて、内部のスイッチSW2をON又はOFFにすることにより、給電線DCL1と給電線DCL10との間の電気的な接続状態及び切断状態の切換を行う。つまり、スイッチSW2をONにすることにより、給電線DCL1と給電線DCL10とが接続され、蓄電システム101Aから外部負荷装置200に電力が供給される。
上記切換部170は、比較器171を備えている。比較器171は、不図示の基準電圧生成回路により生成される所定の基準電圧RefLと、電圧検出部150から入力した蓄電池A121の電圧Vaの検出信号Vfとを比較する。基準電圧RefLは、外部負荷装置200の動作電圧Voutに応じた駆動可能電圧VL(第2閾値の電圧)に対応する。駆動可能電圧VLは、外部負荷装置200が実際に動作可能な動作電圧Voutよりも所定の電圧ΔVoだけ高い電圧(VL=動作電圧Vout+ΔVo)に設定される。駆動可能電圧VLは、蓄電池A121の電圧Vaが外部負荷装置200を駆動可能な動作電圧Voutを超えているか否かを判定する際に使用される。つまり、駆動可能電圧VLは、外部負荷装置200が実際の動作可能な動作電圧Voutに対してマージンを有する電圧であり、スイッチSW2がONする際に、外部負荷装置200を確実に起動できるようにする。
そして、切換部170は、比較器171における比較結果に応じて、制御信号CNT2を、スイッチ部180に向けて出力する。制御信号CNT2は、スイッチ部180のスイッチSW2のON/OFFを制御する。スイッチ部180は、制御信号CNT2の指示内容に基づいて、スイッチSW2の開閉を行う。
つまり、切換部170は、蓄電池A121の電圧Vaが電圧VLを超える場合に、スイッチ部180のスイッチSW2をONにする。それにより、給電線DCL1と給電線DCL10とが接続され、蓄電システム101Aの電力が外部負荷装置200に供給される。また、切換部170は、蓄電池A121の電圧Vaが電圧VL以下の場合に、スイッチ部180のスイッチSW2をOFFにする。それにより、給電線DCL1と給電線DCL10とが電気的に切り離され、蓄電システム101Aの電力が外部負荷装置200に供給されないようにする。
図10は、切換部170における処理の流れを示すフローチャートである。なお、切換部160における処理の流れについては、図7において説明されている。
図10を参照して、まず、蓄電池A121及び蓄電池B122が未充電の状態にあるとする。そして、蓄電システム101Aが起動すると(ステップS21)、切換部170は、スイッチ部140のスイッチSW2をOFFにして、外部負荷装置200への給電が停止される(ステップS22)。
続いて、切換部170の比較器171は、蓄電池A121の電圧Vaの電圧を検出し(ステップS23)、外部負荷装置200を駆動可能な駆動可能電圧VLを超えているか否かを判定する(ステップS24)。
そして、ステップS24において、蓄電池A121の電圧Vaが駆動可能電圧VLを超えていないと判定された場合(ステップS24:No)、切換部170は、スイッチSW2をOFF状態にして(ステップS25)、再び、ステップS23の処理に戻り、蓄電池A121の電圧Vaを検出する。
一方、ステップS24において、蓄電池A121の電圧Vaが電圧VLを超えていると判定された場合(ステップS24:Yes)、ステップS26の処理に移行し、切換部170は、スイッチSW2をONにして、外部負荷装置200に給電を開始する(ステップS26)。ステップS26の処理を実行した後に、切換部170は、ステップS23に戻り、再び、蓄電池A121の電圧Vaを検出する。
上記処理の流れにより、切換部170は、蓄電池A121の電圧Vaが、駆動可能電圧VLを超える場合に、スイッチSW2をONにして、外部負荷装置200に給電を行うことができる。また、切換部170は、蓄電池A121の電圧Vaが駆動可能電圧VLを下回る場合に、スイッチSW2をOFFにして、外部負荷装置200への給電を停止することができる。
図9において、制御部185は、切換部160及び切換部170の動作を制御する。例えば、制御部185は、外部入力される外部設定信号Setに基づいて、切換部160及び切換部170に制御信号CNTsを送り、切換部160及び切換部170の動作を制御する。例えば、制御部185は、制御信号CNTsにより、切換部160におけるヒステリシス特性を変更することができる。また、制御部185は、制御信号CNTsにより、切換部170における駆動可能電圧VLの設定を変更することができる。
以上、蓄電システム101Aの構成と動作について説明した。その中で、スイッチ部180(スイッチSW2)や制御部185を設けた理由についても一部説明したが、ここで、スイッチ部180や制御部185を設けた理由について、改めて説明する。
図11は、外部負荷装置200に給電を行う際の問題点について説明するための説明図である。図11では、横軸に時間tの経過を示し、縦軸に電圧(V)を示し、蓄電池A121の電圧Vaの時間変化のイメージと、蓄電池B122の電圧Vbの時間変化のイメージとを示している。蓄電池A121の電圧Vaの時間変化のイメージと、蓄電池B122の電圧Vbの時間変化のイメージとは、前述の図6と同じであり、重複する説明は省略する。
図11の時刻t0において、太陽電池110からDC/DCコンバータ130を介して蓄電装置120に初期充電が開始されると、切換部160は、スイッチ部140のスイッチSW1をOFFにして、蓄電池A121のみへの給電を開始する。続いて、時刻t0からt1にかけて、蓄電池A121の電圧Vaが次第に上昇し、時刻t1において、外部負荷装置200が動作可能な動作電圧Voutに到達する。そして、時刻t1から時刻t2にかけて、蓄電池A121の電圧Vaが電圧V1(第1閾値の電圧)まで上昇する。そして時刻t2において、切換部160は、スイッチ部140のスイッチSW1をONにして、蓄電池A121に蓄積された電荷により蓄電池B122に給電される。
図11において、破線で囲んだ部分Fで示すように、時刻t0から時刻t1迄の蓄電池A121の電圧Vaが低い状態において、外部負荷装置200に給電を行うと、DC/DCコンバータ130から蓄電池A121に流れる電流が外部負荷装置200に引き込まれてしまう。このため、外部負荷装置200を駆動できずに無駄に電力が消費される。また、第1の問題点として、無駄に電力が消費された分、蓄電池A121の充電が遅れることになることが挙げられる。
また、時刻t2以降、スイッチSW1のON状態又はOFF状態への動作により、蓄電池A121の電圧Vaは、電圧V1と電圧V1’(第3閾値の電圧)の間で変動する電圧となる。この場合、電圧V1と電圧V1’との間の変動電圧ΔVと、電圧V1’と動作電圧Voutとの間の電圧Vkと、が適切な値でないと、電圧V1’が外部負荷装置200の動作電圧Voutを下回ることになる。従って、第2の問題点として、外部負荷装置200を連続駆動できなくなることが挙げられる。
上記の第1の問題点に対処するため、蓄電システム101Aでは、上述したスイッチSW2を設けている。つまり、図12の破線で囲む部分Fに示すように、蓄電池A121の電圧Vaが、外部負荷装置200の駆動可能電圧VL(=動作電圧Vout+ΔVo)に到達するまでは、スイッチSW2をOFF状態にする。そして、時刻t1において、蓄電池A121の電圧Vaが駆動可能電圧VLに到達した場合に、スイッチSW2をONにする。つまり、時刻t0から時刻t1の間は、スイッチSW2がOFF状態のため、外部負荷装置200に給電が行われず、時刻t1において、スイッチSW2がON状態になるため、時刻t1以降、外部負荷装置200に給電が行われる。
これにより、蓄電システム101Aでは、蓄電装置120を初期充電する場合等、蓄電池A121の電圧が低い状態の場合に、外部負荷装置200への給電を停止して無駄な電力消費を抑えることにより、蓄電池A121への充電を早めることができる。
また、上記の第2の問題については、図12の破線で囲む部分Eに示すように、スイッチSW1をON状態又はOFF状態する際に使用される判定電圧は、電圧ΔV(=V1−V1’)のヒステリシス特性を有している。そのため、電圧V1’と駆動可能電圧VL(=動作電圧Vout+ΔVo)との間に、適切なマージン電圧Vk’が形成されるようにする。すなわち、スイッチSW1がヒステリシス特性を有しているため、切換部160は、蓄電池A121の電圧変動の下限の電圧V1’を、駆動可能電圧VLに対してマージン電圧Vk’分高い電圧に設定する。
このように、蓄電システム101Aでは、スイッチSW1のヒステリシス特性に応じて、電圧V1’と駆動可能電圧VLとの間で、適切なマージン電圧Vk’を設定することにより、スイッチSW2が不連続にON状態又はOFF状態を繰り返すことを回避できる。
また、蓄電システム101Aは、外部負荷装置200の入力電源仕様(入力電圧範囲)に応じた電圧を供給できる場合にのみ、外部負荷装置200に給電を行うようにできる。
なお、図13は、スイッチSW1とスイッチSW2とのON状態及びOFF状態のタイミングを示す説明図である。図13では、横軸に時間tの経過を示し、縦軸に電圧(V)を示し、蓄電池A121の電圧Vaの時間変化のイメージと、蓄電池B122の電圧Vbの時間変化のイメージとを示している。また、図13では、時刻t0から時刻t7までの間は、例えば、昼間などの太陽電池110が発電を行っている期間を示し、時刻t7以降は、例えば、夜間などの太陽電池110が発電を停止している期間を示している。
図13を参照して、時刻t0において、太陽電池110からDC/DCコンバータ130を介して蓄電装置120に初期充電が開始されると、時刻t0の充電開始時において、切換部160は、スイッチ部140のスイッチSW1をOFFにして、蓄電池A121のみへの給電を開始する。また、スイッチSW2は、蓄電池A121の電圧Vaが電圧VL(=Vout+ΔVo)に到達していないので、OFF状態である。
続いて、時刻t0から時刻t1にかけて、蓄電池A121の電圧Vaが次第に上昇し、外部負荷装置200を駆動可能な動作電圧Voutに到達する。さらに、時刻t1に至り、蓄電池A121の電圧Vaが電圧VL(=Vout+ΔVo)まで上昇すると、切換部170は、スイッチ部180のスイッチSW2をONにして、蓄電池A121に蓄積された電荷により外部負荷装置200に給電を開始する。時刻t1から後述する時刻t8までの間、スイッチSW2はON状態を維持する。
そして、時刻t2に至り、蓄電池A121の電圧が電圧V1まで増加すると、切換部160は、スイッチ部140のスイッチSW1をONにして、蓄電池A121に蓄積された電荷により蓄電池B122に給電を行う。
そして、蓄電池A121から蓄電池B122へ電流を流すことにより、蓄電池A121の電圧Vaが低下し始める。そして、時刻t3において、蓄電池A121の電圧が電圧V1’まで低下した場合に、切換部160は、スイッチSW1をOFFにして、蓄電池B122を蓄電池A121から電気的に切り離す。つまり、時刻t2から時刻t3の間、スイッチSW1がONになる。
続いて、時刻t3においてスイッチSW1がOFFになることにより、蓄電池A121の電圧VaがDC/DCコンバータ130からの充電電流により再び増加し始める。そして、時刻t4に至り、蓄電池A121の電圧が再び電圧V1まで増加すると、切換部160は、スイッチSW1をONにして、蓄電池A121に蓄積された電荷により蓄電池B122に給電を行う。つまり、時刻t3から時刻t4の間、スイッチSW1がOFFになる。
続いて、時刻t4以降、スイッチSW1はON状態又はOFF状態を繰り返し、時刻t5において、スイッチSW1がONになり、時刻t5から時刻t6の間に蓄電池A121の電圧Vaが低下するが、時刻t6においては、蓄電池B122の電圧Vbが十分に上昇しており、時刻t6においてスイッチSW1はOFFになることはなく、そのままON状態を維持する。
そして、時刻t6から、後述する時刻t8までの間、スイッチSW1はON状態のままとなり、蓄電池A121の電圧Vaと蓄電池B122の電圧Vbとは、略同じ電圧になる。そして、時刻t6から時刻t7までの間DC/DCコンバータ130から蓄電池A121及び蓄電池B122への充電が継続して、蓄電池A121と蓄電池B122の電圧が上昇する。
そして、時刻t7に至り、例えば、夜間などになり太陽電池110の発電が停止し、DC/DCコンバータ130から蓄電池A121及び蓄電池B122への充電が停止する。
このため、時刻t7以降は、太陽電池110から電力の供給を受けることなく外部負荷装置200への給電を行うため、電力へ蓄電池A121及び蓄電池B122の電圧Va、Vbは、次第に低下する。そして、時刻t7から時刻t8にかけて、蓄電池A121及び蓄電池B122の電圧Va、Vbが電圧V1’まで低下すると、スイッチSW1は再びOFFになるが、DC/DCコンバータ130から蓄電池A121への充電は行われない。従って、蓄電池A121及び蓄電池B122の電圧Va、Vbは上昇することなくそのまま低下しつづける。
なお、時刻t8においてスイッチSW1がOFFの状態においても、蓄電池B122は、供給回路165を介して、外部負荷装置200への給電を行うことができる。
続いて、時刻t8から時刻t9にかけて、蓄電池B122の電圧Va、Vbが、駆動可能電圧VL(=Vout+ΔVo)以下になると、スイッチSW2がOFFになり、蓄電システム101Aから外部負荷装置200への給電が停止される。
このように、切換部160におけるヒステリシス幅(V1−V1’)と、スイッチSW2のON状態とOFF状態とを判定する駆動可能電圧VLとを、適切に設定することにより、スイッチSW2を連続してON状態に維持することができる。それにより、外部負荷装置200を安定して駆動することができる。
また、蓄電システム101Aでは、制御部185を設けることにより、例えば、切換部160におけるヒステリシス幅(V1−V1’)と、スイッチSW2のON状態又はOFF状態を制御する際に使用される駆動可能電圧VLとを、外部設定信号Setにより任意に設定することが可能である。これにより、蓄電システム101Aに接続される外部負荷装置200の動作電圧Voutの値に応じて、ヒステリシス幅(V1−V1’)と、駆動可能電圧VLとを、適切に設定することができる。
また、制御部185は、入力された、蓄電池A121の電圧Vaの検出信号Vfと、蓄電池B122の電圧Vbの検出信号Vfbとに基づいて、切換部160を介して、スイッチ部140のスイッチSW1のON状態又はOFF状態を制御することができる。或いは、制御部185は、蓄電池A121の検出信号Vfと、蓄電池B122の検出信号Vfbとを監視して、制御部185自身が、直接にスイッチSW1とスイッチSW2とのON状態又はOFF状態を制御するようにしてもよい。また、制御部185は、蓄電システム101Aの内部に設備されるのではなく、例えば、外部負荷装置200側に設けるようにしてもよい。
また、スイッチ部180は、DC/DCコンバータを用いて構成するようにしてもよい。DC/DCコンバータを用いる場合は、DC/DCコンバータの昇圧機能により、蓄電池B122の電圧が駆動可能電圧VLを下回った場合においても、外部負荷装置200への給電が可能になる。
また、蓄電システム101Aでは、切換部160だけがヒステリシス特性を持つ例について説明したが、切換部170についてもヒステリシス特性を持たせるようにしてもよい。つまり、切換部170が、蓄電池A121の電圧が駆動可能電圧VLを超えているか否かを検出する際にも、ヒステリシス特性を持つようにしてもよい。
なお、上述した蓄電システム101及び蓄電システム101Aでは、蓄電池A121と、蓄電池B122との2つの蓄電池を用いた例を示した。しかしながら、さらに、蓄電池B122よりも大きな容量の3つ目の蓄電池C(不図示)を設けてもよい。この場合、蓄電池A121の電圧Vaと、蓄電池B122の電圧Vbとが所定の電圧以上になった場合に、蓄電池Cにも給電を行うようにする。これにより、蓄電池Cを、非常用又は月単位などの長期間に対応する蓄電池として使用することができる。
以上説明したように、蓄電システム101は、蓄電池A121(第1蓄電池)と、蓄電池B122(第2蓄電池)とを含む複数の蓄電池と、スイッチ部140と、切換部160と、を備える。蓄電池A121は、環境発電を行う発電素子(例えば太陽電池110)の発電電力により給電され、外部負荷装置200に電力を供給するように構成される。蓄電池B122は、蓄電池A121よりも容量が大きく、外部負荷装置200に電力を供給するように構成される。スイッチ部140は、蓄電池A121と蓄電池B122との間の電気的な接続状態及び切断状態の切換を行う。切換部160は、蓄電池A121の電圧Vaと外部負荷装置を動作可能な電圧以上である電圧V1(所定の第1閾値の電圧)とを比較し、この比較結果に応じてスイッチ部140を制御する。また、切換部160は、蓄電池A121の電圧Vaが電圧V1以下の場合に、蓄電池A121と蓄電池B122とを切断状態にして、発電素子(太陽電池110)の発電電力が蓄電池A121のみに給電されるようにスイッチ部140を制御する。さらに、切換部160は、蓄電池A121の電圧が電圧V1を超えている場合に、蓄電池A121と蓄電池B122との間を接続して、蓄電池A121から蓄電池B122へ給電が行われるようにスイッチ部140を制御する。
このように、蓄電システム101では、容量の異なる2種類の蓄電池A121及び蓄電池B122と、スイッチ部140とを用いる。そして、外部負荷装置200が駆動できる電圧VL(より正確には蓄電池B122に給電が可能になる電圧V1)まで、第1蓄電池A121を優先して給電する。そして、蓄電池A121の電圧Vaが電圧V1を超えた場合に、蓄電池A121から蓄電池B122に給電を行う。
これにより、大きな容量の蓄電池を用いた場合においても、蓄電システム101の出力電圧を早く立ち上げることができる。このため、蓄電システム101は、外部負荷装置200を早く起動することができる。
図14は、蓄電システム102の構成例を示す構成図である。
図14に示す蓄電システム102は、図3に示す蓄電システム101と比較すると、以下の点が異なる。まず、蓄電システム102は、図3に示すスイッチ部140を含まず、スイッチ部141を備える。また、蓄電装置120が単体の蓄電池123で構成される。また、切換部190の比較器191が、蓄電池A121の電圧Vaの検出信号Vfを、不図示の基準電圧生成回路から出力される所定の基準電圧Refmと比較する。そして、スイッチ部141は、接点cが給電線DCL0を介して太陽電池110に接続され、接点aが給電線DCL1に接続され、接点bが給電線DCL3を介してDC/DCコンバータ130に接続されている。
他の構成は、図3に示す蓄電システム101と同様である。このため、同一の構成部分には同一の符号を付し、重複する説明は省略する。
ところで、蓄電池123の電圧が0V(ゼロボルト)に近いような低電圧な状態から充電を行う場合、一般的なDC/DCコンバータは、非常に低い効率でしか昇圧することができず、昇圧の際の変換ロスが大きくなる。このような状態はスタートアップモードやコールドスタートモードと呼ばれ、エナジーハーベストのような微弱な電力を蓄電する場合に大きな問題となる。つまり、DC/DCコンバータ130は、蓄電池123が所定の電圧まで蓄電されて始めてメインブースト(Mainboost)などと呼ばれる高効率な昇圧動作を行うことが可能になる。例えば、DC/DCコンバータ130の変換効率は、変換効率が低いモードであるスタートアップモードやコールドスタートモードでは、10〜40%程度であり、変換効率が高いモードであるメインブーストモードでは70〜90%程度になる。
なお、以下の説明において、DC/DCコンバータ130における変換効率が所定の値以上になる蓄電池123の電圧Vaをメインブーストの電圧Vmと呼ぶ。また、メインブーストの電圧Vm、つまりDC/DCコンバータ130がメインブーストモードになる電圧としては、DC/DCコンバータ130の変換効率が70%以上となる蓄電池123の電圧であることが好ましい。
そこで、蓄電システム102において、切換部190の比較器191が、蓄電池123の電圧Vaの検出信号Vfを所定の基準電圧Refmと比較して、蓄電池123の電圧Vaが、メインブーストの電圧Vm以上の電圧である所定の電圧Vcを超えているか否かを判定する。基準電圧Refmは、蓄電池123の電圧Vm(第4閾値の電圧)に対応し、蓄電池123の電圧Vaがメインブーストが可能な電圧Vmを超えているか否かを判定する際に使用される。なお、本実施形態におけるメインブーストが可能な電圧Vm及び所定の電圧Vcの一例として、メインブーストが可能な電圧Vmは1.8Vであり、所定の電圧Vc(第1閾値の電圧)は2.0Vであることが挙げられる。
そして、蓄電池123の電圧Vaが所定の電圧Vc以下の場合、切換部190は、スイッチSW3の接点aと接点cとを導通させて、太陽電池110から蓄電池123に直接給電を行わせる。また、蓄電池123の電圧が所定の電圧Vcを超えている場合、切換部190は、スイッチSW3の接点bと接点cとを導通させて、DC/DCコンバータ130を介して蓄電池123に給電を行わせる。なお、所定の電圧Vc(第1閾値)は、DC/DCコンバータ130がメインブーストモードになった後に、DC/DCコンバータ130に給電されるように設定されればよく、所定の電圧(第1閾値)Vcと、DC/DCコンバータ130がメインブーストモードになる電圧Vmとが等しくてもよい。
図15は、蓄電池123への充電動作の態様を示す説明図である。
図15の状態(1)に示すように、蓄電池123の電圧Vaが所定の電圧Vcになるまでは、切換部190は、スイッチ部141のスイッチSW3の接点aと接点cとを導通させる。そして、太陽電池110から蓄電池123に電流Iaを流して直接給電が行われる。その後、蓄電池123の電圧Vaが所定の電圧Vcになると、切換部190は、スイッチ部141のスイッチSW3の接点bと接点cとを導通させて、太陽電池110からDC/DCコンバータ130に給電が行われる。さらに、DC/DCコンバータ130から蓄電池123に電流Ibを流して給電が行われる。
また、図16は、蓄電システム102における処理の流れを示すフローチャートであり、上述した蓄電システム102における動作の流れをフローチャートで示す。以下、図16を参照して、その処理の流れについて説明する。
まず、蓄電池123が未充電の状態にあるとする。そして、蓄電システム102が起動すると(ステップS100)、切換部190は、最初に、スイッチ部140に制御信号CNT3を送り、スイッチ部141のスイッチSW3の接点aと接点cとを導通にして、接点bと接点cとを非導通にする(ステップS101)。これにより、切換部190は、太陽電池110から蓄電池123への直接給電を開始させる(ステップS102)。
続いて、蓄電池123に給電を行うことにより、蓄電池123の電圧Va(給電線DCL1と同じ電圧)が次第に上昇する。続いて、切換部190の比較器191は、蓄電池123の電圧Vaが、所定の電圧Vcを超えたか否かを判定する(ステップS103)。
そして、ステップS103において、蓄電池123の電圧Vaが電圧Vcを超えていないと判定された場合(ステップS103:No)、ステップS101の処理に戻る。この場合、切換部190は、スイッチ部141のスイッチSW3の接点aと接点cとを導通にし、接点bと接点cとを非導通にして、太陽電池110から蓄電池123への直接給電を継続させる。
続いて、蓄電池123への充電が進み、蓄電池123の電圧Vaが上昇し、蓄電池123の電圧Vaが電圧Vcを超えていると判定された場合(ステップS103:Yes)、ステップS104の処理に移行する。この場合、切換部190は、スイッチ部141のスイッチSW3の接点aと接点cとを非導通にし、接点bと接点cとを導通にする(ステップS104)。これにより、切換部190は、DC/DCコンバータ130から蓄電池123に給電を行わせる(ステップS105)。
続いて、切換部190は、ステップS103の処理に戻り、再び、ステップS103からの処理を開始する。
上記処理の流れにより、蓄電システム102では、蓄電池123の電圧Vaが所定の電圧Vcになるまでは、太陽電池110から蓄電池123に直接給電を行う。そして、蓄電池123の電圧Vaが所定の電圧Vcを超えると、太陽電池110からDC/DCコンバータ130を介して蓄電池123に給電を行うことができる。つまり、蓄電システム101Aでは、充電電圧が低い状態の蓄電池123に給電を行う際に、DC/DCコンバータによる電圧昇圧時の変換ロスに影響されることなく給電を行うことができる。このため、蓄電池123に充電された電圧Vaが低い状態において、蓄電池123への蓄電時間を早めることができる。
蓄電システム102では、蓄電池123の電圧Vaのみから、DC/DCコンバータ130を介して蓄電池123に給電するかどうかを判断する。
特に、所定の照度以下の環境においては、蓄電池123として低照度用の低照度色素増感太陽電池が用いられ、発生電力が小さい。この場合、蓄電池123と導通するDC/DCコンバータ130は、蓄電池123の電圧Vaが第1閾値の電圧Vm以上になるまでは変換効率の低いモードになる。そして、蓄電池123の電圧が第1閾値の電圧Vm以上になると、DC/DCコンバータ130は変換効率が高いメインブーストモードになる。
従って、蓄電システム102は所定の照度以下の環境において特に有効である。
以上説明したように、蓄電システム102は、蓄電池123と、DC/DCコンバータ130と、スイッチ部141と、切換部190と、を備える。蓄電池123は、環境発電を行う発電素子(例えば太陽電池110)の発電電力により給電される。DC/DCコンバータ130は、発電素子(太陽電池110)の出力電圧を所定の電圧に昇圧する。スイッチ部141は、発電素子(太陽電池110)の出力電圧を蓄電池123に直接給電するか、又は、DC/DCコンバータ130を介して給電するかを切り換える。切換部190は、蓄電池123の電圧をメインブーストの電圧Vm以上の所定の電圧Vc(第4閾値の電圧)と比較し、この比較結果に応じて、スイッチ部141を制御する。また、切換部190は、蓄電池123の電圧が所定の電圧Vc以下の場合に、発電素子(太陽電池110)から蓄電池123へ直接給電を行うようにスイッチ部141を制御する。さらに、切換部190は、蓄電池123の電圧が所定の電圧Vcを超えている場合に、発電素子(太陽電池110)からDC/DCコンバータ130を介して蓄電池123へ給電を行うようにスイッチ部141を制御する。
このような構成の蓄電システム102では、発電素子である太陽電池110から蓄電池123に直接給電するか、DC/DCコンバータ130を介して給電するかを切り換えるスイッチ部141を設ける。そして、切換部190は、蓄電池123の電圧Vaが所定の電圧Vcを超えているか否かを判定し、蓄電池123の電圧Vaが所定の電圧Vc以下の場合に、太陽電池110から蓄電池123に直接給電を行うようにスイッチ部141を制御する。また、切換部190は、蓄電池123の電圧Vaが所定の電圧Vcを超えている場合に、太陽電池110からDC/DCコンバータ130を介して蓄電池123に給電を行うようにスイッチ部141を制御する。
これにより、蓄電システム102では、蓄電池123の電圧Vaが低い状態において、DC/DCコンバータ130の昇圧時の変換ロスに影響されることなく、太陽電池110から蓄電池123に直接給電できる。このように、蓄電システム102では、蓄電池123の電圧Vaが低い状態において、蓄電池123への蓄電時間を早めることができる。従って、蓄電池123の電圧を早く立ち上げることができる。
図17は、蓄電システム103の構成例を示す構成図である。
図17に示す蓄電システム103は、図3に示す蓄電システム101と比較すると、スイッチ部141と切換部190とをさらに備える点だけが異なる。他の構成は、図3に示す蓄電システム101と同様である。このため、同一の構成部分には同一の符号を付し、重複する説明は省略する。
図17に示す蓄電システム103において、蓄電池A121が未充電、或いは、蓄電池A121の電圧Vaが低い場合に、蓄電システム101と同様に、切換部160は、スイッチ部140のスイッチSW1をOFFにして、蓄電池A121のみに給電を行う。
また、同時に、蓄電システム102と同様にして、切換部190は、スイッチ部141のスイッチSW3の接点aと接点cとを導通させて、接点bと接点cとは非導通にさせる。つまり、蓄電システム103では、蓄電池A121が未充電、或いは、蓄電池A121の電圧Vaが低い場合に、DC/DCコンバータ130を介さずに、発電素子である太陽電池110から蓄電池A121に直接給電する。
そして、蓄電池A121への給電を開始した後、蓄電池A121の電圧Vaが次第に上昇し、電圧Vaが所定の電圧Vcに到達した場合、切換部190は、スイッチ部141のスイッチSW3の接点bと接点cとを導通にして(接点aと接点cとは非導通にして)、DC/DCコンバータ130を介して蓄電池A121に給電を行う。
その後は、蓄電システム101と同様にして、蓄電池A121の電圧が外部負荷装置200を駆動可能な駆動可能電圧VL(=動作電圧Vout+ΔVo)に到達した場合に、外部負荷装置200に給電を開始し、蓄電池A121の電圧が電圧V1(V1>VL>Vc)に到達した場合に、蓄電池A121から蓄電池B122への給電を開始する。
この際、蓄電池A121から蓄電池B122への給電によって第1蓄電池A121の電圧と第2蓄電池の電圧B122とが一定になった際の電圧がメインブーストの電圧Vm以上の所定の電圧Vc以上となるように電圧V1が設定されることが好ましい。
容量の小さい第1蓄電池A121から容量の大きい第2蓄電池に給電された後でも所定の電圧Vc以上となることで、第1蓄電池A121から第2蓄電池への給電後も、DC/DCコンバータ130はコールドスタートモードにならない。従って、メインブーストモードを維持することが可能となり、より効率的に蓄電できる。
このように、蓄電システム103では、充電開始時において、最初に、容量の小さな蓄電池A121のみを優先して給電する。さらに、蓄電池A121の電圧Vaが所定の電圧Vcよりも低い間に、DC/DCコンバータ130を介することなく、発電素子である太陽電池110から蓄電池A121に直接給電を行う。これにより、蓄電システム103では、容量の小さな蓄電池A121を選択して給電できるとともに、DC/DCコンバータにおける昇圧時の変換ロスに影響されることなく蓄電池A121に給電できる。このため、蓄電池A121の電圧Vaを早く立ち上げることができる。
なお、蓄電システム103は、図9(蓄電システム101A)に示されるような切換部170とスイッチ部180とをさらに備えていてもよい。
なお、上述した蓄電システム(100、101、101A、102、103)では、発電素子として太陽電池110を用いた例を示したが、発電手段としては、他にも振動や、熱、風力、電波等を用いてもよい。
以上、本発明について説明したが、本発明の蓄電システムは、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得る。
例えば、図17に示した蓄電システム103に、図9に示した蓄電システム101Aのように、切換部170(第2切換部)や、スイッチ部180(第2スイッチ部)や、制御部185を加えてもよい。これにより、図17に示した蓄電システム103の効果に加えて、図9に示した蓄電システム101Aの効果も得ることができる。
100、101、101A、102、103・・・蓄電システム、110・・・太陽電池、111、112、113、114・・・太陽電池セル、120・・・蓄電装置、121・・・蓄電池A(第1蓄電池)、122・・・蓄電池B(第2蓄電池)、130・・・DC/DCコンバータ、140・・・スイッチ部(第1スイッチ部)、141・・・スイッチ部、180・・・スイッチ部(第2スイッチ部)、150、155・・・電圧検出部、160・・・切換部(第1切換部)、170・・・切換部(第2切換部)、190・・・切換部、161、171、191・・・比較器、165・・・供給回路、200・・・外部負荷装置、210・・・環境モニタ装置

Claims (11)

  1. 環境発電を行う発電素子の発電電力により給電され、外部負荷装置に電力を供給するように構成される第1蓄電池と、
    前記第1蓄電池よりも容量が大きく、前記外部負荷装置に電力を供給するように構成される第2蓄電池と、
    前記第1蓄電池と前記第2蓄電池との間の電気的な接続状態及び切断状態の切換を行う第1スイッチ部と、
    前記第1蓄電池の電圧と前記外部負荷装置の駆動可能電圧以上である第1閾値の電圧とを比較し、その比較結果に応じて前記第1スイッチ部を制御する第1切換部と、
    を備え、
    前記第1切換部は、前記第1蓄電池の電圧が前記第1閾値の電圧以下の場合に、前記第1蓄電池と前記第2蓄電池との間を切断状態にして、前記発電素子の発電電力が前記第1蓄電池のみに給電されるように前記第1スイッチ部を制御し、
    前記第1切換部は、前記第1蓄電池の電圧が前記第1閾値の電圧を超えている場合に、前記第1蓄電池と前記第2蓄電池との間を接続状態にして、前記第1蓄電池から前記第2蓄電池へ給電が行われるように前記第1スイッチ部を制御する
    蓄電システム。
  2. 前記第1蓄電池及び前記第2蓄電池と前記外部負荷装置との間の電気的な接続状態及び切断状態の切換を行う第2スイッチ部と、
    前記第1蓄電池の電圧と、前記外部負荷装置が動作可能な動作電圧よりも所定の電圧分だけ高くかつ前記第1閾値の電圧よりも低く設定される第2閾値の電圧とを比較し、その比較結果に応じて、前記第2スイッチ部を制御する第2切換部と、
    を備え、
    前記第1蓄電池の電圧が前記第2閾値の電圧よりも高い状態の場合、前記第2切換部は、前記第1蓄電池及び前記第2蓄電池と前記外部負荷装置との間が接続状態になるように前記第2スイッチ部を制御し、
    前記第1蓄電池の電圧が前記第2閾値の電圧よりも低い状態の場合、前記第2切換部は、前記第1蓄電池及び前記第2蓄電池と前記外部負荷装置との間が切断状態になるように前記第2スイッチ部を制御する
    請求項1に記載の蓄電システム。
  3. 前記第1切換部は、ヒステリシス特性を有しており、前記ヒステリシス特性を用いて前記第1蓄電池の電圧と前記第1閾値の電圧とを比較し、
    前記第1切換部は、前記第1蓄電池の電圧が前記第1閾値の電圧を超えている場合に、前記第1蓄電池と前記第2蓄電池との間が接続状態になるように前記第1スイッチ部を制御し、
    前記第1切換部は、前記第1蓄電池と前記第2蓄電池との間が接続状態で、かつ前記第1蓄電池の電圧が前記第1閾値の電圧よりも所定の電圧だけ低い第3閾値の電圧以下に低下した場合に、前記第1蓄電池と前記第2蓄電池との間が切断状態になるように前記第1スイッチ部を制御する
    請求項1または請求項2に記載の蓄電システム。
  4. 前記第1切換部の前記ヒステリシス特性における前記第1閾値の電圧と前記第3閾値の電圧との間のヒステリシス幅は、前記第1蓄電池及び前記第2蓄電池と前記外部負荷装置との間の電気的な接続状態及び切断状態を切り替える第2スイッチ部の開閉を制御する際に使用される第2閾値の電圧に対応して設定される
    請求項3に記載の蓄電システム。
  5. 前記第3閾値の電圧は、前記第2閾値の電圧よりも所定の電圧分だけ高くなるように設定される
    請求項4に記載の蓄電システム。
  6. 前記第1スイッチ部は、並列に接続された供給回路を有し、
    前記供給回路は、前記第2蓄電池から前記第1蓄電池に流れる電流を抑止し、かつ前記第2蓄電池から前記外部負荷装置に向けて電流を流すように構成される
    請求項1から請求項5のいずれか一項に記載の蓄電システム。
  7. 前記発電素子の出力電圧を所定の電圧に変換して、前記第1蓄電池と前記第2蓄電池とに給電を行うDC/DCコンバータを備える
    請求項1から請求項6のいずれか一項に記載の蓄電システム。
  8. 前記発電素子は、所定の照度以下の環境において使用可能な低照度用の太陽電池である
    請求項1から請求項7のいずれか一項に記載の蓄電システム。
  9. 前記太陽電池は、太陽電池セルを直列に接続して構成される
    請求項8に記載の蓄電システム。
  10. 前記太陽電池は、低照度色素増感太陽電池である請求項8または請求項9に記載の蓄電システム。
  11. 環境発電を行う発電素子の発電電力により給電され、外部負荷装置に電力を供給するように構成される第1蓄電池と、前記第1蓄電池よりも容量が大きく、前記外部負荷装置に電力を供給するように構成される第2蓄電池と、前記第1蓄電池と前記第2蓄電池との間の電気的な接続状態及び切断状態の切換を行う第1スイッチ部と、前記第1蓄電池の電圧と前記外部負荷装置の駆動可能電圧以上である所定の第1閾値の電圧とを比較し、その比較結果に応じて前記第1スイッチ部を制御する第1切換部と、を備える蓄電システムを準備し、
    前記第1蓄電池の電圧が前記第1閾値の電圧以下の場合に、前記第1切換部が、前記第1蓄電池と前記第2蓄電池との間を切断状態にして、前記発電素子の発電電力が前記第1蓄電池のみに給電されるように前記第1スイッチ部を制御し、
    前記第1蓄電池の電圧が前記第1閾値の電圧を超えている場合に、前記第1切換部が、前記第1蓄電池と前記第2蓄電池との間を接続状態にして、前記第1蓄電池から前記第2蓄電池へ給電が行われるように前記第1スイッチ部を制御する
    ことを含む蓄電方法。
JP2015555063A 2013-12-27 2014-12-26 蓄電システム、及び蓄電方法 Active JP6142001B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013272145 2013-12-27
JP2013272145 2013-12-27
JP2014017346 2014-01-31
JP2014017346 2014-01-31
PCT/JP2014/084645 WO2015099158A1 (ja) 2013-12-27 2014-12-26 蓄電システム、及び蓄電方法

Publications (2)

Publication Number Publication Date
JPWO2015099158A1 JPWO2015099158A1 (ja) 2017-03-23
JP6142001B2 true JP6142001B2 (ja) 2017-06-07

Family

ID=53478997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015555063A Active JP6142001B2 (ja) 2013-12-27 2014-12-26 蓄電システム、及び蓄電方法

Country Status (5)

Country Link
US (1) US9997954B2 (ja)
EP (1) EP3089315A4 (ja)
JP (1) JP6142001B2 (ja)
CN (1) CN105850003B (ja)
WO (1) WO2015099158A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668132B1 (ja) * 2013-12-27 2015-02-12 株式会社フジクラ 蓄電システム、及び蓄電方法
US9997954B2 (en) * 2013-12-27 2018-06-12 Fujikura Ltd. Power storage system and power storage method
JP5857119B1 (ja) 2014-12-18 2016-02-10 株式会社フジクラ 蓄電システム、及び蓄電方法
JP6142024B1 (ja) * 2016-02-16 2017-06-07 株式会社フジクラ 蓄電システム及び蓄電方法
JP6152919B1 (ja) * 2016-12-27 2017-06-28 パナソニックIpマネジメント株式会社 エナジーハーベスト端末
CN110326179B (zh) * 2017-02-28 2022-04-01 开利公司 用于检测运输冷藏单元中的电流过载及泄漏的设备和方法
CN110943505B (zh) * 2018-09-21 2023-05-05 精工爱普生株式会社 移动设备
WO2020239532A1 (en) * 2019-05-29 2020-12-03 E-Peas S.A. Method and device for energy harvesting and charging rechargeable energy storage devices
KR102607145B1 (ko) * 2021-01-18 2023-11-30 가부시키가이샤 소셜 에리어 네트웍스 디맨드 제어 시스템
GB202209891D0 (en) * 2022-07-05 2022-08-17 Lightricity Ltd Ultra-low power energy harvesting electronic devices with energy efficient backup circuits

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820757B2 (ja) * 1998-07-23 2006-09-13 日新電機株式会社 分散型電源設備
JP2002199618A (ja) * 2000-12-26 2002-07-12 Casio Comput Co Ltd 電源装置
JP3872758B2 (ja) * 2003-01-08 2007-01-24 株式会社日立製作所 電源制御装置
JP3887635B2 (ja) * 2003-10-30 2007-02-28 シャープ株式会社 独立電源システム
US7642753B2 (en) * 2005-09-16 2010-01-05 Motorola, Inc. Apparatus and switching method for improving cycle-life and capacity of a battery pack
US7692411B2 (en) 2006-01-05 2010-04-06 Tpl, Inc. System for energy harvesting and/or generation, storage, and delivery
JP2009033892A (ja) * 2007-07-27 2009-02-12 Panasonic Corp 独立電源システム
JP5359090B2 (ja) * 2007-09-13 2013-12-04 株式会社リコー 電源装置、スキャナ用電源装置及び画像形成装置
US8120331B2 (en) 2007-09-13 2012-02-21 Ricoh Company, Ltd. Power supply device, scanner power supply device, and image forming apparatus
US20100000804A1 (en) * 2008-07-02 2010-01-07 Ming-Hsiang Yeh Solar vehicle
JP2010273519A (ja) * 2009-05-25 2010-12-02 Nippon Telegr & Teleph Corp <Ntt> 充放電制御方法
JP2011200096A (ja) * 2010-02-26 2011-10-06 Sanyo Electric Co Ltd 蓄電システム
JP2012108829A (ja) 2010-11-19 2012-06-07 Konica Minolta Business Technologies Inc 発電システムおよび発電監視装置
WO2012132282A1 (ja) * 2011-03-29 2012-10-04 パナソニック株式会社 電力制御装置および電力制御方法
CN102364810B (zh) 2011-09-30 2014-04-23 长沙学院 一种多级吸收太阳能光伏电池电能的控制方法与控制器
US20130099721A1 (en) * 2011-10-21 2013-04-25 Moneer Azzam Combination energy storage system for solar, wind and other "non-dispatchable" energy sources serving variable loads in various conditions
TWM438026U (en) 2012-04-17 2012-09-21 Dar Yun Energy Science Technology Co Ltd Multiple backup Solar power supply system with multiple backups
WO2014162686A1 (ja) * 2013-04-03 2014-10-09 パナソニック株式会社 バッテリーシステム
CN105103404A (zh) * 2013-04-03 2015-11-25 株式会社自动网络技术研究所 控制装置、供电控制装置、充电控制方法、充电控制装置以及车辆用电源装置
US9997954B2 (en) * 2013-12-27 2018-06-12 Fujikura Ltd. Power storage system and power storage method

Also Published As

Publication number Publication date
CN105850003B (zh) 2018-06-29
US9997954B2 (en) 2018-06-12
JPWO2015099158A1 (ja) 2017-03-23
EP3089315A4 (en) 2017-10-04
CN105850003A (zh) 2016-08-10
EP3089315A1 (en) 2016-11-02
US20160322859A1 (en) 2016-11-03
WO2015099158A1 (ja) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6142001B2 (ja) 蓄電システム、及び蓄電方法
JP6186450B2 (ja) 蓄電システム、及び蓄電方法
JP6122974B2 (ja) センサノード、及びセンサノードの制御方法
US9893389B2 (en) Power storage system and power storage method
US9893527B2 (en) Power storage system and power storage method
US8704450B2 (en) Flash LED controller
US9112405B2 (en) Voltage converter with step-down converter circuit and method for converting voltage
US8823211B2 (en) Photovoltaic inverter and method for controlling photovoltaic inverter
JP2019511197A (ja) 高速充電方法及びシステム、端末並びに充電器
JP5857118B1 (ja) 蓄電システム、及び蓄電方法
JP2004336974A (ja) 電源装置
KR20220028119A (ko) 전력 저장 장치, 제어 장치, 및 전력 저장 시스템
CN111465143A (zh) 开关调色温的led驱动电源及其恒流控制器
JP2008079464A (ja) 充電制御方式
JP2019030097A (ja) 電源装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R151 Written notification of patent or utility model registration

Ref document number: 6142001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250