JP6132363B2 - Composite laminates with improved impact strength and uses thereof - Google Patents

Composite laminates with improved impact strength and uses thereof Download PDF

Info

Publication number
JP6132363B2
JP6132363B2 JP2014535984A JP2014535984A JP6132363B2 JP 6132363 B2 JP6132363 B2 JP 6132363B2 JP 2014535984 A JP2014535984 A JP 2014535984A JP 2014535984 A JP2014535984 A JP 2014535984A JP 6132363 B2 JP6132363 B2 JP 6132363B2
Authority
JP
Japan
Prior art keywords
carbon fiber
layer
composite laminate
epoxy resin
fiber fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014535984A
Other languages
Japanese (ja)
Other versions
JP2015500748A (en
JP2015500748A5 (en
Inventor
ヨン ワン
ヨン ワン
ハイフア シェン
ハイフア シェン
ヨンチャオ マ
ヨンチャオ マ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of JP2015500748A publication Critical patent/JP2015500748A/en
Publication of JP2015500748A5 publication Critical patent/JP2015500748A5/ja
Application granted granted Critical
Publication of JP6132363B2 publication Critical patent/JP6132363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/083Combinations of continuous fibres or fibrous profiled structures oriented in one direction and reinforcements forming a two dimensional structure, e.g. mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/226Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure comprising mainly parallel filaments interconnected by a small number of cross threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/52Sports equipment ; Games; Articles for amusement; Toys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/18Fabrics, textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/20Fibres of continuous length in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3301Coated, impregnated, or autogenous bonded
    • Y10T442/3309Woven fabric contains inorganic strand material

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、炭素繊維強化ポリマーの複合材料に関し、さらに具体的には、本発明は、向上した衝撃強度を有する炭素繊維強化ポリマーの複合積層体、その調製方法およびそれらの使用に関する。   The present invention relates to carbon fiber reinforced polymer composite materials, and more specifically, the present invention relates to carbon fiber reinforced polymer composite laminates having improved impact strength, methods for their preparation, and uses thereof.

炭素繊維強化ポリマー(CFRP)は、高強度および高弾性率の炭素繊維ならびにエポキシ樹脂系基材から作製され、高い比強度および比弾性率(密度に対する強度または弾性率の比)、抜群の熱安定性、良好な耐腐食性の非常に魅力的な組み合わせを提供するので、輸送、スポーツ用具、または軽量で高強度の構造構成部材を必要とする他の分野で広く使用される。エネルギー消費削減に対する要求が徐々に増大するに伴い、特に輸送の分野において、軽量車両、高速列車、さらに商用航空機における構成部材として金属材料に取って替わって炭素繊維強化ポリマー材料を使用することが、益々一般的になってきた。高まる環境への意識を伴う社会において、炭素繊維強化ポリマー材料の適用を促進することは、益々重要になるだろう。   Carbon fiber reinforced polymer (CFRP) is made from high strength and high modulus carbon fiber and epoxy resin base material, with high specific strength and specific modulus (ratio of strength or modulus to density), excellent thermal stability Provides a very attractive combination of safety and good corrosion resistance, so it is widely used in transportation, sports equipment, or other fields requiring lightweight, high strength structural components. As the demand for energy consumption reduction gradually increases, the use of carbon fiber reinforced polymer materials to replace metal materials as components in lightweight vehicles, high speed trains, and even commercial aircraft, especially in the field of transportation, It has become more and more common. In societies with growing environmental awareness, it will become increasingly important to promote the application of carbon fiber reinforced polymer materials.

炭素繊維強化ポリマー材料の主要な適用領域に関して、必要とされる重要な特性の一つは、予期しない衝撃または打撃に直面する際でさえも構造健全性を保持できることである。特に、重量を低減する目的のため、車両の構造構成部品として炭素繊維強化ポリマー材料を使用することを考慮する場合、炭素繊維強化ポリマーから作製された構造構成部品が、従来の鋼もしくはアルミニウムから作製された構成要素と同様なもしくは同じ保全への成果を付与することを確実にすることは、きわめて重大である。他の高性能繊維(例えば、パラ−アラミド繊維またはガラス繊維から作製された複合材料等)と比較して、炭素繊維強化ポリマー材料は、高い比強度および比弾性率を提供するが、比較的に不十分な衝撃強度を提供するので、炭素繊維強化ポリマー材料の適用の推進が制限される。今日、複合材料産業において、炭素繊維強化ポリマー材料の衝撃強度を向上させるために2つの方法が一般的に提案されている:(1)炭素繊維強化ポリマー材料の厚みを増大させるが、同時に最終重量および構成要素のコストも増大させる方法:(2)より良好な耐衝撃性能を有する他の高性能繊維との組み合わせで炭素繊維強化ポリマー材料を使用する方法で、より良好な耐衝撃性能を有する前記高性能繊維には、パラ−アラミド繊維もしくはガラス繊維が含まれる方法。しかしながら、このような繊維材料の組み合わせは、その組み合わせが最終製品の総重量および厚みを増大させる問題を依然として有する。   With regard to the main application area of carbon fiber reinforced polymer materials, one of the important properties required is that it can maintain structural integrity even in the face of unexpected impacts or blows. Especially for the purpose of reducing weight, when considering using carbon fiber reinforced polymer material as vehicle structural component, structural component made from carbon fiber reinforced polymer is made from conventional steel or aluminum It is crucial to ensure that the same or the same conservation outcome is given as the components made. Compared to other high performance fibers (such as composites made from para-aramid fibers or glass fibers), carbon fiber reinforced polymer materials provide high specific strength and specific modulus, but relatively Providing insufficient impact strength limits the application of carbon fiber reinforced polymer materials. Today, in the composite industry, two methods are generally proposed to improve the impact strength of carbon fiber reinforced polymer materials: (1) increase the thickness of the carbon fiber reinforced polymer material but at the same time the final weight And a method of increasing the cost of the component: (2) A method of using a carbon fiber reinforced polymer material in combination with other high-performance fibers having a better impact resistance performance, which has a better impact resistance performance. A method wherein the high performance fibers include para-aramid fibers or glass fibers. However, such fiber material combinations still have the problem that the combination increases the total weight and thickness of the final product.

カナダ国特許第25454981号明細書は、スポーツ用具に用いる複合積層体を開示し、前記複合積層体は、(a)外層として、複数の繊維含有樹脂が予め含浸された複合材料層と、(b)コア層として、複数の繊維含有樹脂が予め含浸された複合材料層の間に挟まれたより高い剛性を有する予め含浸された繊維層とを含んでなる。外層として、樹脂で予め含浸された前記複合材料層の繊維は、高性能繊維(例、ガラス繊維、Kevlar(登録商標)繊維、Vectran(登録商標)繊維等)を含んでなり、前記繊維は、織成でも不織でも可能であり、コア層として使用される繊維は、高性能繊維(例、炭素繊維、グラファイト繊維、または炭素繊維と混合されたガラス繊維等)から選択されうる。前記複合積層体は、通例、1〜6層の前記コア層(炭素繊維層が好ましい)と4〜12層の前記外層の複合材料層(ガラス繊維層であるのが好ましい)を含んでなり、前記複合積層体の厚みは、通常、4〜30mmである。   Canadian Patent No. 25454981 discloses a composite laminate for use in sports equipment, the composite laminate comprising: (a) a composite material layer pre-impregnated with a plurality of fiber-containing resins as an outer layer; ) The core layer comprises a pre-impregnated fiber layer having a higher rigidity sandwiched between composite material layers pre-impregnated with a plurality of fiber-containing resins. As an outer layer, the fibers of the composite material layer pre-impregnated with resin include high-performance fibers (for example, glass fibers, Kevlar (registered trademark) fibers, Vectran (registered trademark) fibers, etc.), The fibers used as the core layer can be woven or non-woven and can be selected from high performance fibers (eg, carbon fibers, graphite fibers, or glass fibers mixed with carbon fibers). The composite laminate typically comprises 1-6 layers of the core layer (preferably a carbon fiber layer) and 4-12 layers of the outer composite material layer (preferably a glass fiber layer), The thickness of the composite laminate is usually 4 to 30 mm.

米国特許第6,995,099B1号明細書は、繊維強化ポリマー材料の複合材料を開示し、前記複合材料は、(a)シート状の繊維強化ポリマー材料層と、(b)繊維強化ポリマー材料層の少なくとも一方の面に積層された不織層を含んでなり、前記繊維強化ポリマー材料層に使用される繊維(例、ガラス繊維、パラ−アラミド繊維、炭素繊維(炭素繊維が好ましい)等)は、高強度および高い弾性率を有し、その層は、一方向の編成布帛、二方向編成布帛または縫合布であることが可能であり、前記不織層の繊維は、ナイロン6、ナイロン66、ビニロン、パラ−アラミド、ポリエステル、ポリエチレン等を含んでなる。これらの繊維のうちで、高い結晶化度を有するナイロン6およびナイロン66が好ましい。この発明は、層(a)と層(b)を一体化する3つの方法を開示し、1番目の方法は、層(b)に短繊維を用い、層(b)の短繊維が例えばニードルパンチ法により層(a)を通り抜けて層(a)を層(b)と一体化する方法であり、2番目の方法は、感圧性接着を用いて層(a)と層(b)を一体化する方法であり、3番目の方法は、層(b)に低融点繊維(低融点繊維の含有量は、5〜50重量%である)を加えて、低融点繊維を熱結合することにより、層(a)を層(b)と一体化する方法である。   US Pat. No. 6,995,099B1 discloses a composite of fiber reinforced polymer material, the composite material comprising: (a) a sheet-like fiber reinforced polymer material layer; and (b) a fiber reinforced polymer material layer. A fiber (for example, glass fiber, para-aramid fiber, carbon fiber (preferably carbon fiber), etc.) used for the fiber-reinforced polymer material layer comprising a non-woven layer laminated on at least one side of And having a high strength and a high elastic modulus, the layer can be a unidirectional knitted fabric, a bi-directional knitted fabric or a suture, and the fibers of the nonwoven layer are nylon 6, nylon 66, It comprises vinylon, para-aramid, polyester, polyethylene and the like. Of these fibers, nylon 6 and nylon 66 having high crystallinity are preferable. The present invention discloses three methods for integrating the layer (a) and the layer (b). The first method uses short fibers in the layer (b), and the short fibers in the layer (b) are needles, for example. This is a method in which the layer (a) is integrated with the layer (b) through the layer (a) by a punching method. The second method is to integrate the layer (a) and the layer (b) by using pressure-sensitive adhesion. The third method is to add a low melting point fiber (the content of the low melting point fiber is 5 to 50% by weight) to the layer (b) and thermally bond the low melting point fiber. In this method, layer (a) is integrated with layer (b).

特開2005−336407号公報は、表面平滑性に優れた複合材料を開示し、前記複合材料は、繊維強化層と、繊維強化層の片面もしくは両面に積層された不織布層と、形成した積層体に含浸せしめたマトリックス樹脂とを含んでなり、前記繊維強化層に使用される繊維は、いかなる繊維でも可能であり、炭素繊維、ガラス繊維およびp−芳香族ポリアミド繊維が好ましく、不織布層に使用される繊維は、炭素繊維、ガラス繊維、p−芳香族ポリアミド繊維、ホウ素繊維、金属繊維等でありうる。これらの繊維のうちで、炭素繊維とガラス繊維が好ましい。複合積層体の表面平滑性を考慮すると、不織繊維層は、0.05〜0.5mmの厚みを有し、繊維強化層は、0.2mm以下の厚みを有し、不織繊維層と繊維強化層の厚み比率は、0.5以上である。   JP-A-2005-336407 discloses a composite material having excellent surface smoothness, and the composite material includes a fiber reinforced layer, a nonwoven fabric layer laminated on one or both sides of the fiber reinforced layer, and a laminate formed. The fiber used for the fiber reinforced layer can be any fiber, and carbon fiber, glass fiber and p-aromatic polyamide fiber are preferable, and the fiber used in the nonwoven fabric layer is used. The fibers may be carbon fibers, glass fibers, p-aromatic polyamide fibers, boron fibers, metal fibers, and the like. Of these fibers, carbon fibers and glass fibers are preferred. Considering the surface smoothness of the composite laminate, the nonwoven fiber layer has a thickness of 0.05 to 0.5 mm, the fiber reinforced layer has a thickness of 0.2 mm or less, and the nonwoven fiber layer and The thickness ratio of the fiber reinforced layer is 0.5 or more.

現在刊行されている技術文献において、ガラス繊維、グラファイト繊維、アラミド繊維等の材料との組み合わせで炭素繊維強化ポリマー材料を用いることが取り組まれているが、材料の厚みや重量が殆ど変らないままで、その衝撃強度を向上させることが望まれる複合材料を依然として見出す必要がある。   In the currently published technical literature, the use of carbon fiber reinforced polymer materials in combination with materials such as glass fibers, graphite fibers, and aramid fibers has been addressed, but the thickness and weight of the materials remain almost unchanged. There remains a need to find composite materials that are desired to improve their impact strength.

本発明の一態様は、向上した衝撃強度を有する複合積層体であり、前記複合積層体は、以下の構成要素
(a)多層炭素繊維布帛であって、前記炭素繊維布帛が、二方向織を有しても一方向織を有してもよい布帛と、
(b)多層不織マットであって、前記不織マットがパラ−アラミドから作製されるマットと、
(b)硬化エポキシ樹脂とを含んでなり、もしくは実質的に構成され、
前記硬化エポキシ樹脂が、炭素繊維布帛層への含浸用に設計されたエポキシ樹脂系から作製され、少なくとも1層の不織マットが、2層の炭素繊維布帛層の間に挟まれ、複合積層体の両外面層は、炭素繊維布帛層である。
One aspect of the present invention is a composite laminate having improved impact strength, wherein the composite laminate is the following component (a) a multilayer carbon fiber fabric, wherein the carbon fiber fabric has a bi-directional weave. A fabric that may have a unidirectional weave;
(B) a multilayer nonwoven mat, wherein the nonwoven mat is made from para-aramid;
(B) comprises or substantially comprises a cured epoxy resin,
The cured epoxy resin is made from an epoxy resin system designed for impregnation into a carbon fiber fabric layer, and at least one nonwoven mat is sandwiched between two carbon fiber fabric layers to form a composite laminate Both the outer surface layers are carbon fiber fabric layers.

本発明は、最終製品の単位面積当たりの重量および厚みを変えることなく、炭素繊維強化ポリマー層と、パラ−アラミドから作製される不織マットとを用いる複合積層体を形成することによる製品の衝撃強度、曲げ強さおよび曲げ弾性率を著しく向上させる。   The present invention relates to the impact of a product by forming a composite laminate using a carbon fiber reinforced polymer layer and a nonwoven mat made from para-aramid without changing the weight and thickness per unit area of the final product. Significantly improves strength, bending strength and flexural modulus.

本発明の別の態様に従って、向上した衝撃強度を有する複合積層体を調製する方法であって、前記方法は、
(i)多層炭素繊維布帛と多層不織マットを提供する工程であって、前記炭素繊維布帛が、二方向織を有しても一方向織を有してもよく、前記不織マットがパラ−アラミドから作製される工程と、
(ii)含浸用に設計されたエポキシ樹脂系で前記炭素繊維布帛層を含浸せしめる工程と、
(iii)少なくとも1層の含浸された炭素繊維布帛層を第一外面層に位置付けする工程と、
(iv)複合積層体の総厚みが0.5〜30mmになるまで、少なくとも1層の不織マットと少なくとも1層の含浸された炭素繊維布帛層とを交互に位置付ける工程であって、プリフォームを形成するために、第二外面層が、含浸された炭素繊維布帛層である工程と、
(v)工程(iv)で得られたプリフォームを型に入れて、型を締める工程と、
(vi)任意選択的に、プリフォームを含有する前記型に減圧をかけて、層間に残留する気泡を放出する工程と、
(vii)含浸用に設計された前記エポキシ樹脂系が硬化されるまで、工程(iv)および工程(vi)で得られたプリフォームを0.5〜12時間オートクレーブする工程(オートクレーブは50〜200℃で0.2〜5.0MPaに定格されている)と、
(viii)複合積層体を得るために、温度が室温まで下がった際にプリフォームを型から取り出す工程とを含む。
In accordance with another aspect of the present invention, a method for preparing a composite laminate having improved impact strength comprising:
(I) A step of providing a multilayer carbon fiber fabric and a multilayer nonwoven mat, wherein the carbon fiber fabric may have a bi-directional woven fabric or a unidirectional woven fabric, and the nonwoven mat -A process made from aramid;
(Ii) impregnating the carbon fiber fabric layer with an epoxy resin system designed for impregnation;
(Iii) positioning at least one impregnated carbon fiber fabric layer on the first outer surface layer;
(Iv) a step of alternately positioning at least one nonwoven mat and at least one impregnated carbon fiber fabric layer until the total thickness of the composite laminate is 0.5-30 mm, The second outer surface layer is an impregnated carbon fiber fabric layer,
(V) placing the preform obtained in step (iv) into a mold and tightening the mold;
(Vi) optionally applying a vacuum to the mold containing the preform to release bubbles remaining between the layers;
(Vii) autoclaving the preform obtained in steps (iv) and (vi) for 0.5-12 hours until the epoxy resin system designed for impregnation is cured (autoclave is 50-200) At a temperature of 0.2 to 5.0 MPa at a temperature)
(Viii) including a step of removing the preform from the mold when the temperature falls to room temperature in order to obtain a composite laminate.

本発明の別の態様は、本発明の複合積層体を含んでなるスポーツ用具の部品および構成要素を提供することであり、前記スポーツ用具には、テニスラケット、バトミントンラケット、スカッシュラケット、自転車の複合部品、野球用バット、ホッケー用スティック、スノーボード、およびそりが含まれる。   Another aspect of the present invention is to provide parts and components of a sports equipment comprising the composite laminate of the present invention, the sports equipment comprising a tennis racket, a badminton racket, a squash racket, a bicycle composite. Includes parts, baseball bats, hockey sticks, snowboards, and sleds.

本発明の別の態様は、本発明の複合積層体を含んでなる輸送手段の製品および構成要素を提供することであり、前記輸送手段には、乗用車、船舶、列車、磁気浮上式車両、さらに航空機が含まれる。   Another aspect of the present invention is to provide a product and components of a transportation means comprising the composite laminate of the present invention, the transportation means comprising a passenger car, a ship, a train, a magnetic levitation vehicle, and Includes aircraft.

本発明に係る複合積層体の一形態の側断面図である。It is a sectional side view of one form of the composite laminated body which concerns on this invention. 本発明に係る複合積層体の一形態の部分断面図である。It is a fragmentary sectional view of one form of a composite layered product concerning the present invention. 本発明に係る複合積層体の別の形態の部分断面図である。It is a fragmentary sectional view of another form of the composite laminated body which concerns on this invention. 本発明に係る複合積層体の別の形態の部分断面図である。It is a fragmentary sectional view of another form of the composite laminated body which concerns on this invention.

特に明記しない限り、本明細書において使用される全ての技術用語および科学用語は、本発明が関係する当業者が通例理解するのと同じ意味を有する。争議の場合には、本発明の明細書(定義を含む)が、照査するだろう。   Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention relates. In case of dispute, the present specification, including definitions, will be reviewed.

本明細書に記載の全てのパーセンテージ、部、比率は、特に明記されない限り、重量によるものである。   All percentages, parts, ratios described herein are by weight unless otherwise specified.

量、濃度、または他の値もしくはパラメーターが、ある範囲、好ましい範囲または好ましい上限値および/または好ましい下限値のリストのいずれかとして示されている場合、これは、その範囲が別々に開示されているかどうかにかかわらず、任意の上限範囲限界または好ましい値と、任意の下限範囲限界または好ましい値との対から形成される全ての範囲を具体的に開示するものとして理解される。数値の範囲が、本明細書において記載される場合、特に明記しない限り、その範囲は、その終点、および範囲内の全ての整数および分数を含むことを意図する。   Where an amount, concentration, or other value or parameter is shown as either a range, preferred range or preferred upper limit and / or list of preferred lower limits, this is the case when the range is disclosed separately It is understood that all ranges formed from pairs of any upper range limit or preferred value and any lower range limit or preferred value, whether or not, are specifically disclosed. When numerical ranges are described herein, unless otherwise stated, the ranges are intended to include the endpoints and all integers and fractions within the ranges.

本明細書において、用語「により形成される」、または「により構成される」は、「含んでなる」と同義である。本明細書において使用される用語「含んでなる」、「含んでなっている」、「含む」、「含んでいる」、「有する」、「有している」、「含有する」または「含有している」、もしくはそれらの他の変形は、非限定な包含に適用されることを意図する。例えば、要素のリストを含んでなる組成物、プロセス、方法、物品、または装置は、必ずしもこれらの要素だけに限定されず、はっきりと列記されておらず、このような組成物、プロセス、方法、物品、または装置に固有でない他の要素を含んでもよい。さらに、そうでないと特に明記されない限り、「または」は、包括的な「または」を意味し、排他的な「または」ではない。例えば、条件A「または」Bは、以下のいずれか1つにより満たされる。Aは真であり(または存在する)かつBは偽(または存在しない)、Aは偽であり(または存在しない)かつBは真であり(または存在する)、およびAとBの両方とも真であり(または存在する)。   In this specification, the term “formed by” or “consisting of” is synonymous with “comprising”. As used herein, the terms “comprising”, “comprising”, “comprising”, “comprising”, “having”, “having”, “containing” or “containing” Or other variations thereof are intended to apply to non-limiting inclusions. For example, a composition, process, method, article, or device comprising a list of elements is not necessarily limited to these elements, and is not explicitly listed; such compositions, processes, methods, It may include other elements that are not unique to the article or device. Further, unless otherwise specified, “or” means an inclusive “or” and not an exclusive “or”. For example, the condition A “or” B is satisfied by any one of the following. A is true (or present) and B is false (or nonexistent), A is false (or nonexistent) and B is true (or exists), and both A and B are true Is (or exists).

炭素繊維布帛
用語「炭素繊維」は、90%を超える炭素含有量を有する無機ポリマー繊維を指し、グラファイト繊維の炭素含有量は、99%を超える。炭素繊維は、高い強度および弾性率を有し、クリープがなく、良好な耐疲労性を有し、非金属と金属との間の比熱および導電率を有し、低い熱膨張率、良好な耐腐食性、低い繊維密度、および良好なX線透過性を有する。しかしながら、炭素繊維は、耐衝撃性に乏しく、損傷され易く、強酸中で酸化される。従って、炭素繊維は、使用前に表面処理を施されなければならない。
Carbon Fiber Fabric The term “carbon fiber” refers to an inorganic polymer fiber having a carbon content greater than 90%, and the carbon content of graphite fiber is greater than 99%. Carbon fiber has high strength and elastic modulus, no creep, good fatigue resistance, specific heat and conductivity between non-metal and metal, low thermal expansion coefficient, good resistance to resistance. Has corrosivity, low fiber density, and good X-ray transmission. However, carbon fibers have poor impact resistance, are easily damaged, and are oxidized in strong acids. Therefore, the carbon fiber must be surface treated before use.

炭素繊維は、レーヨン、ピッチ、フェノールアルデヒド、ポリビニルアルコール、ポリ塩化ビニル、および他の繊維に使用されてよい。特に、高強度、高弾性率および高耐熱を有する無機ポリマー繊維を作製するために、ポリアクリロニトリル(PAN)原繊維を予め酸化し、大気中200〜300℃で炭化した後、不活性ガス保護の下1000〜2000℃で高温乾留し、2500〜3200℃で高温黒鉛化した後、表面処理を含む最終工程を施す。   Carbon fibers may be used for rayon, pitch, phenol aldehyde, polyvinyl alcohol, polyvinyl chloride, and other fibers. In particular, in order to produce inorganic polymer fibers having high strength, high elastic modulus and high heat resistance, polyacrylonitrile (PAN) fibrils are pre-oxidized and carbonized in the atmosphere at 200 to 300 ° C. After low temperature dry distillation at 1000 to 2000 ° C. and high temperature graphitization at 2500 to 3200 ° C., a final process including surface treatment is performed.

用語「二方向織物」は、連続した長いフィラメントを用いる当業者に公知な機械織りの任意の形態を指し、このタイプの織りは、そのたて糸とよこ糸はかなりの数の連続フィラメントを有し、通常、一方向布帛よりも安定性がある。   The term “bidirectional fabric” refers to any form of mechanical weaving known to those skilled in the art that uses continuous long filaments, this type of weaving having warps and wefts having a significant number of continuous filaments, usually , More stable than unidirectional fabrics.

用語「一方向織物」は、80%を超える連続長繊維が縦方向(またはたて糸)に沿って並行に配列され、別の方向(またはよこ糸)に連続長繊維が全然配列されていないか或いは20%未満しか配列されない、通常、紡績糸で紡糸接合された布帛を指す。一方向布(機械織りの一方向布帛、一方向のよこ糸の無い布帛および縫合の一方向布を含む)を織成する様々な方法が存在する。   The term “unidirectional fabric” means that more than 80% continuous long fibers are arranged in parallel along the machine direction (or warp) and no continuous long fibers are arranged in the other direction (or weft) or 20 Usually refers to a fabric spun and joined with spun yarn, which is arranged in less than%. There are various ways of weaving unidirectional fabrics, including machine woven unidirectional fabrics, unidirectional weft-free fabrics and stitched unidirectional fabrics.

図1は、本発明の複合積層体の一形態の側断面図であり、1は、複合積層体を表し、2は、硬化エポキシ樹脂を含有する炭素繊維織布層を表し、3は、パラ−アラミド不織マットを表し、硬化エポキシ樹脂を用いて作製される炭素繊維織布層は、不織マットと交互に配列され、複合積層体の2枚の外面層は、硬化エポキシ樹脂を用いて作製された炭素繊維織布層を含有する。   FIG. 1 is a side cross-sectional view of one embodiment of a composite laminate of the present invention, wherein 1 represents a composite laminate, 2 represents a carbon fiber woven fabric layer containing a cured epoxy resin, and 3 represents a parallax. A carbon fiber woven fabric layer representing an aramid nonwoven mat and produced using a cured epoxy resin is arranged alternately with the nonwoven mat, and the two outer surface layers of the composite laminate are composed of a cured epoxy resin The produced carbon fiber woven fabric layer is contained.

本発明の複合積層体において、炭素繊維織布の織り方に対して特別の制限はない。図2、図3および図4は、本発明の複合積層体のある形態における2つの交互の層の部分模式図を示し、1は、複合積層体を表し、2は、硬化エポキシ樹脂を含有する炭素繊維織布層を表し、3は、パラ−アラミド不織マットを表し、4は、炭素繊維を表す。図2は、炭素繊維織布が、一方向のよこ糸の無い布帛であることを示し、そして図3および4は、炭素織布が2種の一般的なノンクリンプ織の一方向布であることを示す。   In the composite laminate of the present invention, there is no particular restriction on the weave of the carbon fiber woven fabric. 2, 3 and 4 show partial schematic views of two alternating layers in one form of a composite laminate of the present invention, where 1 represents the composite laminate and 2 contains a cured epoxy resin. Represents a carbon fiber woven fabric layer, 3 represents a para-aramid nonwoven mat, and 4 represents carbon fiber. FIG. 2 shows that the carbon fiber woven fabric is a unidirectional weft-free fabric, and FIGS. 3 and 4 show that the carbon woven fabric is two common non-crimp unidirectional fabrics. Show.

本発明のいくつかの形態において、炭素繊維布帛層の厚みは、約0.01〜1.0mm、もしくはさらには約0.05〜0.5mmである。   In some forms of the invention, the carbon fiber fabric layer has a thickness of about 0.01 to 1.0 mm, or even about 0.05 to 0.5 mm.

本発明で使用される炭素繊維織布の引張り強さは、約1000〜8000MPaの範囲であり、約2000〜5000MPaの範囲の引張り強さが好ましい。その引張り弾性率の範囲は、約100〜800GPa、好ましくは約200〜400GPaである。   The tensile strength of the carbon fiber woven fabric used in the present invention is in the range of about 1000 to 8000 MPa, and the tensile strength in the range of about 2000 to 5000 MPa is preferable. The range of the tensile elastic modulus is about 100 to 800 GPa, preferably about 200 to 400 GPa.

炭素繊維織布が二方向織物である場合、炭素繊維布帛の各層の織成の配列は、同じでも異なってもよい。炭素繊維織布が、一方向布帛である場合、炭素繊維布帛層の各層における炭素繊維のたて糸方向は、同じ(0度)でも異なって(例えば90度、+45度、−45度等)でもよく、炭素繊維の織布層の各々が、たて糸方向で同一であるのが好ましい。   When the carbon fiber woven fabric is a bi-directional woven fabric, the arrangement of the layers of the carbon fiber fabric may be the same or different. When the carbon fiber woven fabric is a unidirectional fabric, the warp direction of the carbon fiber in each layer of the carbon fiber fabric layer may be the same (0 degree) or different (for example, 90 degrees, +45 degrees, -45 degrees, etc.). Each of the carbon fiber woven fabric layers is preferably the same in the warp direction.

不織マット
用語「パラ−アラミド」は、アミド結合またはイミド結合でパラ芳香族基を結合することにより組み立てられる直鎖ポリマーを指し、少なくとも85%のアミド結合またはイミド結合が、芳香族環と直接連結されており、イミド結合が存在する場合、イミド結合は、アミド結合の数を超えない。
Nonwoven Mat The term “para-aramid” refers to a linear polymer assembled by linking para-aromatic groups with amide or imide bonds, where at least 85% of the amide or imide bonds are directly linked to the aromatic ring. When linked and imide bonds are present, the imide bonds do not exceed the number of amide bonds.

市販のパラ−アラミドの例は、E.I.du Pont de Nemours and Company Wilmington,DE(DuPont)により製造されるKevlar(登録商標)製品(これに限定されない)である。   Examples of commercially available para-aramids are described in E.I. I. A Kevlar® product manufactured by, but not limited to, Du Pont de Nemours and Company Wilmington, DE (DuPont).

用語「不織マットは、繊維の紡糸や製織をしない、たて糸もよこ糸も無い布帛であり、平均的に軽量であり、容易く付形されることが可能である。その製造プロセスは、通常、ステープルファイバーまたは長いフィラメントを支柱上に方向を示してまたはランダムに配向して繊維ネットワーク構造を形成した後、機械結合、熱結合または化学的方法により強化して製品を作製することである。異なる生産プロセスに基づく不織製品は、スパンレース、ヒートシール、エアレイド、ウェットレイド、スパンボンド、メルトブローン、ニードル加工、ステッチボンドなどとして分類されることができる。   The term “nonwoven mat” refers to a fabric that does not spin or weave fibers, is free of warp or weft, is light on average, and can be easily shaped. Fibers or long filaments are oriented or randomly oriented on struts to form a fiber network structure, which is then reinforced by mechanical bonding, thermal bonding or chemical methods to produce a product. Nonwoven products based on can be classified as spunlace, heat seal, airlaid, wet laid, spunbond, meltblown, needlework, stitchbond, and the like.

本発明のいくつかの形態において、本発明の組成物における不織マットは、パラ−アラミドステープルファイバーを用いて、不織プロセスにおいて当業者に公知な方法により形成される薄層を指し、不織プロセスには、例えば、パラ−アラミドステープルファイバーを用いてメッシュまたはフラッフを形成するための、加熱、絡合、縫合および/または圧力印加等が含まれる(これらに限定されない)。   In some forms of the invention, the nonwoven mat in the composition of the invention refers to a thin layer formed by para-aramid staple fibers by methods known to those skilled in the art in the nonwoven process, Processes include, but are not limited to, heating, entanglement, stitching and / or pressure application, etc., to form a mesh or fluff using, for example, para-aramid staple fibers.

本発明の複合積層体において、パラ−アラミド不織マットの数に特に制限はない。本発明のいくつかの形態において、本発明の複合積層体におけるパラ−アラミド不織マットは、5〜35層またはさらには10〜25層である。   In the composite laminate of the present invention, the number of para-aramid nonwoven mats is not particularly limited. In some forms of the invention, the para-aramid nonwoven mat in the composite laminate of the invention is 5 to 35 layers or even 10 to 25 layers.

本発明のいくつかの形態において、本発明に使用されるパラ−アラミド不織マットの厚みは、0.005mm〜0.10mmまたはさらには0.01mm〜0.05mmである。   In some forms of the invention, the thickness of the para-aramid nonwoven mat used in the invention is from 0.005 mm to 0.10 mm or even from 0.01 mm to 0.05 mm.

本発明の複合積層体において、各不織マット層の単位面積当たりの重量は、同一でも異なってもよい。本発明のいくつかの形態において、個々の不織マットの単位面積当たりの重量は、5〜40g/m2またはさらには8〜20g/m2である。 In the composite laminate of the present invention, the weight per unit area of each nonwoven mat layer may be the same or different. In some forms of the invention, the weight per unit area of the individual nonwoven mat is 5 to 40 g / m 2 or even 8 to 20 g / m 2 .

含浸用途のためのエポキシ樹脂系
本発明の組成物積層体は、硬化エポキシ樹脂を含有する。前記硬化エポキシ樹脂は、エポキシ樹脂系を前記炭素繊維織布層に含浸させた後に硬化することにより、作製される。含浸用の前記エポキシ樹脂系は、硬化剤、促進剤、充填剤および他の補助材料をエポキシ樹脂に加えることによる硬化系を指し、それは、周囲条件または加熱条件下で液体である。エポキシ樹脂は、一般的に、エポキシ基を含有する樹脂を指し、主にエピクロロヒドリンとフェノール類(例、ビスフェノールA等)などの重縮合により得られる。
Epoxy resin system for impregnation applications The composition laminate of the present invention contains a cured epoxy resin. The cured epoxy resin is produced by impregnating the carbon fiber woven fabric layer with an epoxy resin system and then curing. Said epoxy resin system for impregnation refers to a curing system by adding curing agents, accelerators, fillers and other auxiliary materials to the epoxy resin, which is liquid under ambient or heated conditions. The epoxy resin generally refers to a resin containing an epoxy group, and is mainly obtained by polycondensation of epichlorohydrin and phenols (eg, bisphenol A).

使用されるエポキシ樹脂には、例えば、ビスフェノール型エポキシ樹脂、エポキシアルコール、水素化フタル酸型エポキシ樹脂、二量体エポキシ樹脂、グリシジルアミノ基含有のエポキシ樹脂、脂環式エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、およびノボラックエポキシ樹脂が含まれてよい。さらに、様々な変性エポキシ樹脂(例、ウレタン変性エポキシ樹脂およびゴム変性エポキシ樹脂等)が利用されることができる。   Examples of the epoxy resin used include bisphenol type epoxy resin, epoxy alcohol, hydrogenated phthalic acid type epoxy resin, dimer epoxy resin, glycidylamino group-containing epoxy resin, alicyclic epoxy resin, and phenol novolac type epoxy. Resins, cresol novolac type epoxy resins, and novolac epoxy resins may be included. Furthermore, various modified epoxy resins (eg, urethane-modified epoxy resin and rubber-modified epoxy resin) can be used.

本発明は、好ましくはビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミノ基含有のエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、およびウレタン変性エポキシ樹脂を使用する。   The present invention preferably uses a bisphenol type epoxy resin, an alicyclic epoxy resin, an epoxy resin containing a glycidylamino group, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, and a urethane-modified epoxy resin.

ビスフェノール型エポキシ樹脂の例として、ビスフェノールA型樹脂、ビスフェノールF型樹脂、ビスフェノールAD型樹脂、およびビスフェノールS型樹脂が挙げられる。さらに具体的な形態として、市販のエポキシ樹脂、例えば、EP815、EP828、EP834、EP1001、およびEP807(油化シェルエポキシ株式会社製)、Epomik R−710(三井石油化学工業(MITSUI PETROCHEMICAL)製)およびEXA 1514(DIC製)が挙げられる。   Examples of bisphenol type epoxy resins include bisphenol A type resins, bisphenol F type resins, bisphenol AD type resins, and bisphenol S type resins. As a more specific form, commercially available epoxy resins such as EP815, EP828, EP834, EP1001, and EP807 (manufactured by Yuka Shell Epoxy Co., Ltd.), Epomik R-710 (manufactured by Mitsui Petrochemical) and EXA 1514 (made by DIC) is mentioned.

脂環式エポキシ樹脂の例として、Araldite CY−179、CY−178、CY−182およびCY−183(HUNTSMAN製)等の市販の樹脂が挙げられる。   Examples of the alicyclic epoxy resin include commercially available resins such as Araldite CY-179, CY-178, CY-182 and CY-183 (manufactured by HUNTSMAN).

グリシジルアミノ含有のエポキシ樹脂の例として、日本チバガイギー株式会社によるMY−720、東都化成株式会社によるEpototo YH434、油化シェルエポキシ株式会社によるEP604、住友化学株式会社によるELM−120およびELM−100、ならびに日本化薬株式会社によるGAN等の市販の樹脂が挙げられる。   Examples of epoxy resins containing glycidylamino include MY-720 by Nippon Ciba-Geigy Co., Ltd., Epototo YH434 by Toto Kasei Co., Ltd., EP604 by Yuka Shell Epoxy Co., Ltd., ELM-120 and ELM-100 by Sumitomo Chemical Co., Ltd., and Examples include commercially available resins such as GAN manufactured by Nippon Kayaku Co., Ltd.

フェノールノボラック型エポキシ樹脂の例として、油化シェルエポキシ株式会社によるEP152およびEP154、Dow ChemicalによるDEN431、DEN485およびDEN438、ならびに大日本インキ化学工業株式会社によるEPICLON N740が挙げられる。   Examples of phenol novolac type epoxy resins include EP152 and EP154 by Yuka Shell Epoxy Co., Ltd., DEN431, DEN485 and DEN438 by Dow Chemical, and EPICLON N740 by Dainippon Ink & Chemicals, Inc.

クレゾールノボラック型エポキシ樹脂の例として、HUNTSMANによるECN1235、ECN1273およびECN1280、ならびに日本化薬株式会社によるEOCN102、EOCN103およびEOCN104が挙げられる。   Examples of cresol novolac type epoxy resins include ECN1235, ECN1273 and ECN1280 by HUNTSMAN, and EOCN102, EOCN103 and EOCN104 by Nippon Kayaku Co., Ltd.

さらに、ウレタン変性ビスフェノールA型エポキシ樹脂の例として、旭電化工業株式会社よるAdeka Resin EPU−6およびEPU−4が挙げられる。   Furthermore, examples of urethane-modified bisphenol A type epoxy resins include Adeka Resin EPU-6 and EPU-4 by Asahi Denka Kogyo Co., Ltd.

これらのエポキシ樹脂は、個別に用いても、2種以上を適切に組み合わせて用いてもよい。それらのうちで、二官能性エポキシ樹脂(例、ビスフェノール型エポキシ樹脂等)は、その分子量に応じて、液体から固体の範囲の異なる段階の製品が存在しうる。ビスフェノール型エポキシ樹脂の異なる段階を適切に組み合わせることにより、含浸せしめたエポキシ系の最終粘性を調整することができる。   These epoxy resins may be used individually or in combination of two or more. Among them, bifunctional epoxy resins (eg, bisphenol type epoxy resins) may exist in different stages of products ranging from liquid to solid depending on their molecular weight. By appropriately combining the different stages of the bisphenol type epoxy resin, the final viscosity of the impregnated epoxy system can be adjusted.

本発明の組成物積層体において、前記炭素繊維織布層は、含浸用途のためのエポキシ樹脂系中に浸され、含浸された炭素繊維布帛層を形成する。前記含浸は、炭素繊維織布層に均一にもしくは部分的に浸漬されたエポキシ樹脂系を指し、前記含浸用のエポキシ樹脂系は、炭素繊維布帛層の厚み全体かもしくは一部のどちらかに浸漬されることができる。   In the composition laminate of the present invention, the carbon fiber woven fabric layer is immersed in an epoxy resin system for impregnation applications to form an impregnated carbon fiber fabric layer. The impregnation refers to an epoxy resin system that is uniformly or partially immersed in the carbon fiber woven fabric layer, and the epoxy resin system for impregnation is immersed in either the entire thickness or a part of the carbon fiber fabric layer. Can be done.

含浸された炭素繊維布帛層の総重量に基づいて、含浸用のエポキシ樹脂系は、10〜80重量%、またはさらに20〜70重量%、もしくはさらには30〜45重量%の割合を占める。   Based on the total weight of the impregnated carbon fiber fabric layer, the impregnating epoxy resin system may comprise 10 to 80 wt%, or even 20 to 70 wt%, or even 30 to 45 wt%.

本発明の複合積層体における含浸された炭素繊維布帛層は、上述のように、炭素繊維織布層を1種もしくは複数種のエポキシ樹脂系に含浸せしめることにより得られることができる。含浸された炭素繊維布帛層を直接購入することも可能であり、それは一般にプリプレグと呼ばれている。前記プリプレグは、含浸用エポキシ樹脂系の調製および炭素繊維布帛層の含浸を含む2工程を省略することができ、それは時間を削減できる代替材料である。   The impregnated carbon fiber fabric layer in the composite laminate of the present invention can be obtained by impregnating one or more epoxy resin systems with a carbon fiber woven fabric layer as described above. It is also possible to purchase an impregnated carbon fiber fabric layer directly, which is commonly referred to as a prepreg. The prepreg can omit two steps including preparation of an impregnation epoxy resin system and impregnation of a carbon fiber fabric layer, which is an alternative material that can save time.

本発明の他の形態において、上述の複合積層体は、以下の原料を含み、または基本的に以下の構成要素により構成され、或いは以下の混合物により調製される:
多層プリプレグ層(エポキシ樹脂で含浸された炭素繊維を含んでなる);上述の炭素繊維織布は、二方向布か一方向布かのどちらかである。
多層不織マット(ポリパラフェニレンテレフタルアミドから作製される);不織マットの少なくとも1層が、2枚のプリプレグ層の間に挟まれ、複合積層体の2枚の外面層は、前記プリプレグ層である。
In another form of the invention, the composite laminate described above comprises the following ingredients, or is basically constituted by the following components, or prepared by the following mixture:
Multi-layer prepreg layer (comprising carbon fibers impregnated with epoxy resin); the carbon fiber woven fabric described above is either a bi-directional fabric or a unidirectional fabric.
Multilayer nonwoven mat (made from polyparaphenylene terephthalamide); at least one layer of nonwoven mat is sandwiched between two prepreg layers, and the two outer surface layers of the composite laminate are the prepreg layers It is.

本発明において、含浸に使用される上述のエポキシ樹脂系は、最初に、炭素繊維布帛層に含浸し、次に、エポキシ樹脂で含浸された炭素繊維布帛層は、不織マットが積層された後に、硬化されて複合積層体に含まれる。   In the present invention, the above-described epoxy resin system used for impregnation is first impregnated into the carbon fiber fabric layer, and then the carbon fiber fabric layer impregnated with the epoxy resin is applied after the nonwoven mat is laminated. And cured to be included in the composite laminate.

本発明に記載される複合積層体において、含浸された炭素繊維布帛層またはプリプレグ層の各層の厚みは、同じでも異なってもよい。本発明のいくつかの形態において、含浸された炭素繊維布帛層またはプリプレグ層の各層は、独立している。含浸された炭素繊維布帛層またはプリプレグ層の各々の厚みは、約0.001〜1.00mmまたはさらには約0.05〜0.5mmである。   In the composite laminate described in the present invention, the thickness of each of the impregnated carbon fiber fabric layer or prepreg layer may be the same or different. In some forms of the invention, each layer of impregnated carbon fiber fabric layer or prepreg layer is independent. The thickness of each impregnated carbon fiber fabric layer or prepreg layer is about 0.001 to 1.00 mm or even about 0.05 to 0.5 mm.

本発明に記載される複合積層体において、含浸された炭素繊維布帛層またはプリプレグ層の各層の重量は、同じでも異なってもよい。本発明のいくつかの形態において、含浸された炭素繊維布帛層またはプリプレグ層の各層は、独立している。含浸された炭素繊維布帛層またはプリプレグ層の各々の単位面積当たりの重量は、約50〜660g/m2、またはさらに約80〜300g/m2、もしくはさらには約90〜200g/m2である。 In the composite laminate described in the present invention, the weight of each layer of the impregnated carbon fiber fabric layer or prepreg layer may be the same or different. In some forms of the invention, each layer of impregnated carbon fiber fabric layer or prepreg layer is independent. The weight per unit area of each impregnated carbon fiber fabric layer or prepreg layer is about 50-660 g / m 2 , or even about 80-300 g / m 2 , or even about 90-200 g / m 2 . .

本発明に記載される複合積層体において、含浸された炭素繊維布帛層またはプリプレグ層に関して層数に制限はない。本発明のいくつかの形態において、複合積層体中の含浸された炭素繊維布帛層またはプリプレグ層の層数は、約10〜40層、好ましくは15〜30層である。   In the composite laminate described in the present invention, there is no limit to the number of layers with respect to the impregnated carbon fiber fabric layer or prepreg layer. In some forms of the invention, the number of impregnated carbon fiber fabric layers or prepreg layers in the composite laminate is about 10 to 40 layers, preferably 15 to 30 layers.

複合積層体は、単層炭素繊維布帛層と単層不織マットとの交互配置を含みうる。多層炭素繊維布帛層と単層不織マットの交互配置、または単層炭素繊維布帛層と多層不織マットとの交互配置も含みうる。多層炭素繊維布帛層と炭素繊維布帛層の2枚の層の間に配置される少なくとも1枚を超える層の不織マットとの交互配置も含みうる。このような複合積層体の両方の外層は、プリプレグ層であるのが望ましい。この場合は、「炭素繊維織布層」は、「含浸された炭素繊維布帛層または「プリプレグ層に相当する。   The composite laminate can include an alternating arrangement of single-layer carbon fiber fabric layers and single-layer nonwoven mats. Alternate arrangements of multilayer carbon fiber fabric layers and single-layer nonwoven mats, or alternating arrangements of single-layer carbon fiber fabric layers and multilayer nonwoven mats may also be included. Alternate arrangements of a multilayer carbon fiber fabric layer and a nonwoven mat of at least one layer disposed between two layers of the carbon fiber fabric layer may also be included. Both outer layers of such a composite laminate are preferably prepreg layers. In this case, the “carbon fiber woven fabric layer” corresponds to an “impregnated carbon fiber fabric layer” or a “prepreg layer”.

本発明のいくつかの形態において、複合積層体の総重量は、以下のように配分される:炭素繊維織層と含浸用エポキシ樹脂は、85〜95%、好ましくは90〜95%を占め;ポリパラフェニレンテレフタルアミド多層不織マットは、総重量の5〜15%、好ましくは5〜10%を占める。   In some forms of the invention, the total weight of the composite laminate is distributed as follows: the carbon fiber woven layer and the impregnating epoxy resin comprise 85-95%, preferably 90-95%; The polyparaphenylene terephthalamide multilayer nonwoven mat comprises 5-15%, preferably 5-10% of the total weight.

本発明のいくつかの形態において、硬化エポキシ樹脂層に対するポリパラフェニレンテレフタルアミド多層不織マットの厚みの比は、0.2以下である。   In some forms of the invention, the ratio of the thickness of the polyparaphenylene terephthalamide multilayer nonwoven mat to the cured epoxy resin layer is 0.2 or less.

本発明は、また、
(i)多層炭素繊維布帛層および多層不織マットを提供し、多層炭素繊維布帛は、二方向または一方向繊維を有し、多層不織マットは、ポリパラフェニレンテレフタルアミドから作製される工程と、
(ii)多層炭素繊維布帛層を含浸せしめるエポキシ樹脂系で浸し、含浸された炭素繊維織布層を得る工程と、
(iii)少なくとも1層の含浸された炭素繊維布帛層を第一外面層として位置付けする工程と、
(iv)複合積層体の総厚みが0.5〜30mmに到達するまで、少なくとも1層の不織マットと少なくとも1層の含浸した炭素繊維布帛層とを交互に(alternative manner)位置付ける工程で、第二外面層が、プリフォームを作製する含浸された炭素繊維布帛層でもある工程と、
(v)工程(iv)で得られたプリフォームを型に入れて、型を締める工程と、
(vi)任意選択的に、プリフォームに減圧をかけて、内層に残留する気泡を放出する工程と、
(vii)含浸せしめたエポキシ樹脂系が硬化されるまで、工程(v)または工程(iv)におけるプリフォームを50〜200℃、0.2〜5.0MPaで0.5〜12時間オートクレーブする工程と、
(viii)温度が室温まで下がった時点で誘導された複合積層体を剥離する工程と、
を含む、向上した耐衝撃性を有する複合積層体を作製する方法も提供する。
The present invention also provides
(I) providing a multilayer carbon fiber fabric layer and a multilayer nonwoven mat, the multilayer carbon fiber fabric having bi-directional or unidirectional fibers, wherein the multilayer nonwoven mat is made from polyparaphenylene terephthalamide; ,
(Ii) immersing with an epoxy resin system impregnating the multilayer carbon fiber fabric layer to obtain an impregnated carbon fiber woven fabric layer;
(Iii) positioning at least one impregnated carbon fiber fabric layer as a first outer surface layer;
(Iv) alternately positioning at least one nonwoven mat and at least one impregnated carbon fiber fabric layer until the total thickness of the composite laminate reaches 0.5-30 mm; The second outer surface layer is also an impregnated carbon fiber fabric layer to make a preform;
(V) placing the preform obtained in step (iv) into a mold and tightening the mold;
(Vi) optionally subjecting the preform to reduced pressure to release bubbles remaining in the inner layer;
(Vii) Autoclaving the preform in step (v) or step (iv) at 50 to 200 ° C. and 0.2 to 5.0 MPa for 0.5 to 12 hours until the impregnated epoxy resin system is cured When,
(Viii) peeling the composite laminate induced when the temperature is lowered to room temperature;
A method of making a composite laminate having improved impact resistance is also provided.

向上した耐衝撃性を有する複合積層体を作製する方法における工程(vii)に関して、熱圧力処理に関して温度は、50〜200℃または80〜150℃であることが可能であり、熱圧力処理に関して圧力は、0.2〜5.0MPaまたは0.5〜2.5MPaあることが可能である。   With respect to step (vii) in the method of making a composite laminate with improved impact resistance, the temperature can be 50-200 ° C. or 80-150 ° C. for the thermal pressure treatment, and the pressure for the thermal pressure treatment Can be 0.2-5.0 MPa or 0.5-2.5 MPa.

本発明は、適切な芳香族ポリアミド組成物の不織マットおよび炭素繊維強化プリプレグ層によって形成された複合積層体を用いて、最終製品の厚みおよび重量が殆ど変らないままで、最終製品の衝撃強度の向上を達成した。   The present invention uses a composite laminate formed by a non-woven mat of suitable aromatic polyamide composition and a carbon fiber reinforced prepreg layer, and the impact strength of the final product remains almost unchanged. Improved.

パラ−アラミド組成物から作製された他の炭素繊維強化ポリマー積層体(本発明を包含しない)と比べると、層厚みおよび単位重量が同一の条件で、本発明の組成物の複合層(即ち、不織マットが、エポキシ樹脂系で含浸して前記エポキシ樹脂系化合物を硬化した炭素繊維布帛層の間に挟まれた)は、衝撃強度が20〜45%かなり改善され、曲げ強さが3〜11.7%増大し、曲げ弾性率が3〜7.1%増大する。   Compared to other carbon fiber reinforced polymer laminates made from para-aramid compositions (not including the present invention), the composite layer of the composition of the present invention (ie, with the same layer thickness and unit weight) (ie, The non-woven mat was sandwiched between carbon fiber fabric layers impregnated with an epoxy resin system and cured with the epoxy resin compound), and the impact strength was significantly improved by 20 to 45%, and the bending strength was 3 to 3. Increased by 11.7% and flexural modulus increased by 3 to 7.1%.

さらに、本発明の複合積層体は、通常の炭素繊維プリプレグの熱成形もしくは他の加工と同じように処理されることができる。本明細書に記載される本発明の様々な形態の説明は、前記複合積層体に適切であるだけでなく、複合積層体の調製方法およびその製造部品にも適切である任意の組み合わせおよび様々な形態において実施されることができる。   Furthermore, the composite laminate of the present invention can be treated in the same manner as normal carbon fiber prepreg thermoforming or other processing. The description of the various aspects of the invention described herein is not only suitable for the composite laminate, but also any combination and variety suitable for the method of preparing the composite laminate and its manufactured parts. It can be implemented in the form.

次に、本発明は、実施例によりさらに詳細に説明されるだろう。注目すべき、本発明の材料、以下の実施例に記載される方法および形態は、説明する目的のためでだけあって、制限されるものではない。   The invention will now be described in more detail by way of examples. It should be noted that the materials of the invention, the methods and forms described in the following examples are for illustrative purposes only and are not limiting.

材料
a)一方向炭素繊維布プリプレグ
WuXi Tianniao Composites Companyから購入した。単位面積当たりの重量は、185g/m2(120g/m2の炭素繊維一方向布を含む)である。この炭素繊維の一方向布の嵩密度は、1.8g/cm3であり、その厚みは、0.067mmである。その一方向布は、エポキシ樹脂系で含浸される。
b)パラ−芳香族ポリアミド不織マット
化学的方法で調製することにより、短いKevlar(登録商標)繊維から作製し、単位面積当たりの重量は、15g/cm2である。この不織マットの嵩密度は、1.8g/cm3であり、その厚みは、0.01mmである。
c)ナイロン不織マット
不織マットを作製するため手動での配置SYSTEM 13NTD81835により、短いナイロン繊維(WuXi Belt Rubber Belts Co.,Ltd.製)から作製した。不織マットは、単位面積当たりの重量は、15g/m2、嵩密度、1.14g/cm3であり、厚みは、0.01mmである。
Materials a) Unidirectional carbon fiber fabric prepreg Purchased from WuXi Tiannio Composites Company. The weight per unit area is 185 g / m 2 (including 120 g / m 2 carbon fiber unidirectional fabric). The carbon fiber has a bulk density of 1.8 g / cm 3 and a thickness of 0.067 mm. The unidirectional fabric is impregnated with an epoxy resin system.
b) Made from short Kevlar® fibers by preparation with para-aromatic polyamide nonwoven mat chemical method, weight per unit area is 15 g / cm 2 . The nonwoven mat has a bulk density of 1.8 g / cm 3 and a thickness of 0.01 mm.
c) Nylon Nonwoven Mat Made from short nylon fibers (manufactured by WuXi Belt Rubber Belts Co., Ltd.) by manual placement SYSTEM 13NTD81835 to make a nonwoven mat. The nonwoven mat has a weight per unit area of 15 g / m 2 , a bulk density of 1.14 g / cm 3 , and a thickness of 0.01 mm.

試験方法
GB/T3356〜99に準拠して、実施例および比較例の積層体試料の曲げ強さおよび曲げ弾性率を試験した。
Test Method Based on GB / T3356-99, the bending strength and bending elastic modulus of the laminate samples of the examples and comparative examples were tested.

ISO 179における規格に準拠してResil Impactor計器を用いて、実施例および比較例の積層体試料の平均のノッチなしシャルピー衝撃強度を決定した。   Using the Resil Impactor instrument according to the standard in ISO 179, the average unnotched Charpy impact strength of the laminate samples of the examples and comparative examples was determined.

比較例1
185g/m2の単位面積当たりの重量を有する一方向炭素繊維の予め含浸したシートを約300mm×300mmのシートに切断し、積層プリフォームを調製するために、同じ繊維配向(子午線状)に従って14層のこの予め含浸したシートを一緒に積み重ねた。プリフォームを平らなアルミニウム型上に置き、次に型を130℃に予熱したプレス機に移し、型を締め(即ち、クランプ機構によって締める)、1.0MPaの圧力を型に印加した。積層プリフォームを130℃で1時間維持した後、加熱処理を止め、試料を室温まで冷却した。炭素繊維強化ポリマー積層体を型から取り出し、積層体の最終厚みを1.746mmであると測定した。
Comparative Example 1
A pre-impregnated sheet of unidirectional carbon fibers having a weight per unit area of 185 g / m 2 is cut into approximately 300 mm × 300 mm sheets and 14 according to the same fiber orientation (meridian) to prepare a laminated preform. This pre-impregnated sheet of layers was stacked together. The preform was placed on a flat aluminum mold, then the mold was transferred to a press preheated to 130 ° C., the mold was clamped (ie, clamped by a clamping mechanism), and a pressure of 1.0 MPa was applied to the mold. After maintaining the laminated preform at 130 ° C. for 1 hour, the heat treatment was stopped and the sample was cooled to room temperature. The carbon fiber reinforced polymer laminate was removed from the mold and the final thickness of the laminate was measured to be 1.746 mm.

実施例1
185g/m2の単位面積当たりの重量を有する一方向炭素繊維の予め含浸したシートを約300mm×300mmのシートに切断した。15g/m2の単位面積当たりの重量を有するKevlar(登録商標)不織マットも同様に約300mm×300mmのシートに切断した。予め含浸したシートの1枚の層(即ち、含浸された炭素繊維布帛層)を第一外層の表面として最初に配置した後、Kevlar(登録商標)不織マットを予め含浸したシートの2枚の層の間に挟むように、不織マット層と予め含浸したシートのもう一方の層を交互に配置した。同じ繊維配向(子午線状)に従って各々の予め含浸したシートを一緒に積み重ね、Kevlar(登録商標)不織マットと炭素繊維強化ポリマーからなる複合積層体のプリフォームを調製するために、合計12枚の予め含浸したシート層と合計11枚のKevlar(登録商標)不織マット層を用いた。プリフォームを平らなアルミニウム型上に置き、次に型を130℃に予熱したプレス機に移し、型を締めて(即ち、クランプ機構により締める)、1.0MPaの圧力を型に印加した。プリフォームを130℃で1時間維持した後、加熱処理を止め、試料を室温まで冷却した。Kevlar(登録商標)不織マットと炭素繊維強化ポリマーからなる複合積層体プリフォームを型から取り出し、積層体の最終厚みを1.742mmであると測定した。
Example 1
A pre-impregnated sheet of unidirectional carbon fibers having a weight per unit area of 185 g / m 2 was cut into approximately 300 mm × 300 mm sheets. A Kevlar® non-woven mat having a weight per unit area of 15 g / m 2 was similarly cut into approximately 300 mm × 300 mm sheets. After first placing one layer of pre-impregnated sheet (ie, impregnated carbon fiber fabric layer) as the surface of the first outer layer, two sheets of sheet pre-impregnated with Kevlar® non-woven mat The non-woven mat layer and the other layer of the pre-impregnated sheet were alternately arranged so as to be sandwiched between the layers. A total of 12 sheets were prepared to stack each pre-impregnated sheet together according to the same fiber orientation (meridian) to prepare a composite laminate preform consisting of Kevlar® non-woven mat and carbon fiber reinforced polymer. A pre-impregnated sheet layer and a total of 11 Kevlar® non-woven mat layers were used. The preform was placed on a flat aluminum mold, then the mold was transferred to a press preheated to 130 ° C., the mold was clamped (ie, clamped by a clamping mechanism), and a pressure of 1.0 MPa was applied to the mold. After maintaining the preform at 130 ° C. for 1 hour, the heat treatment was stopped and the sample was cooled to room temperature. A composite laminate preform composed of Kevlar® non-woven mat and carbon fiber reinforced polymer was removed from the mold and the final thickness of the laminate was measured to be 1.742 mm.

比較例2
比較例1の方法と同様な方法を用いて、150mm×150mmのサイズを有する31層の炭素繊維の予め含浸したシートを炭素繊維強化ポリマー積層体(その最終の厚みは3.674mmであると測定された)の調製に用いた。
Comparative Example 2
Using a method similar to that of Comparative Example 1, a pre-impregnated sheet of 31 layers of carbon fiber having a size of 150 mm x 150 mm was measured as a carbon fiber reinforced polymer laminate (final thickness was 3.674 mm). Was used in the preparation of

実施例2
実施例1の方法と同様な方法を用いて、炭素繊維強化ポリマー複合積層体(その最終の厚みが3.662mmであると測定される)の調製に、150mm×150mmのサイズを有する26層の炭素繊維の予め含浸したシートと、150mm×150mmのサイズを有する25層のKevlar(登録商標)不織マットとを用いた。予め含浸したシートの1枚の層を第一外層の表面として最初に配置した後、Kevlar(登録商標)不織マットを予め含浸したシートの2枚の層の間に挟むように、不織マット層と予め含浸したシート層を交互に配置した。同じ繊維配向(子午線状)に従って各々の予め含浸したシートを一緒に積み重ねた。
Example 2
Using a method similar to that of Example 1, for the preparation of a carbon fiber reinforced polymer composite laminate (whose final thickness is measured to be 3.662 mm), 26 layers having a size of 150 mm × 150 mm A pre-impregnated sheet of carbon fiber and 25 layers of Kevlar® non-woven mat having a size of 150 mm × 150 mm were used. Non-woven mat so that one layer of pre-impregnated sheet is initially placed as the surface of the first outer layer and then Kevlar® non-woven mat is sandwiched between two layers of pre-impregnated sheet Layers and pre-impregnated sheet layers were alternately arranged. Each pre-impregnated sheet was stacked together according to the same fiber orientation (meridian).

比較例3
実施例2の方法と同様な方法を用いて、炭素繊維強化ポリマー複合積層体(その最終の厚みが3.709mmであると測定される)の調製に、150mm×150mmのサイズを有する26層の炭素繊維の予め含浸したシートと150mm×150mmのサイズを有する25層のナイロン不織マットとを用いた。予め含浸したシートの1枚の層を第一外層の表面として最初に配置した後、ナイロン不織マットを予め含浸したシートの2枚の層の間に挟むように、不織マット層と予め含浸したシート層を交互に配置した。同じ繊維配向に従って各々の予め含浸したシートを一緒に積み重ねた。
Comparative Example 3
Using a method similar to that of Example 2, for the preparation of a carbon fiber reinforced polymer composite laminate (whose final thickness is measured to be 3.709 mm), 26 layers having a size of 150 mm × 150 mm are prepared. A pre-impregnated sheet of carbon fibers and a 25 layer nylon nonwoven mat having a size of 150 mm x 150 mm were used. Pre-impregnated with the non-woven mat layer so that one layer of the pre-impregnated sheet is initially placed as the surface of the first outer layer and then the nylon non-woven mat is sandwiched between the two layers of the pre-impregnated sheet The laminated sheet layers were alternately arranged. Each pre-impregnated sheet was stacked together according to the same fiber orientation.

試料試験
a)比較例1と実施例1から得られた積層体試料(長さ300mm、幅300mm、厚み各々1.746mm、1.742mm)を曲げ強さと曲げ弾性率に関して試験した。
b)比較例2、比較例3および実施例3から得られた積層体試料(長さ150mm、幅150mm、厚み各々3.674mm、3.709mmおよび3.662mm)を衝撃強度に関して試験した。
Sample Tests a) Laminate samples (length 300 mm, width 300 mm, thickness 1.746 mm and 1.742 mm, respectively) obtained from Comparative Example 1 and Example 1 were tested for flexural strength and flexural modulus.
b) Laminate samples obtained from Comparative Example 2, Comparative Example 3 and Example 3 (length 150 mm, width 150 mm, thicknesses 3.674 mm, 3.709 mm and 3.662 mm, respectively) were tested for impact strength.

これらの試験の結果を表1および表2に示す。   The results of these tests are shown in Tables 1 and 2.

Figure 0006132363
Figure 0006132363

Figure 0006132363
Figure 0006132363

上の試験結果から、パラ−アラミド不織マットを加えたことにより、同じ厚みを有する炭素繊維強化ポリマー複合積層体の曲げ強さおよび曲げ弾性率が効果的に向上したことがわかる。実施例1および比較例1の厚みおよび測定した重量は、ほぼ同様であるが、比較例1の試料と比べると、実施例1の試料の曲げ強さは、11.7%向上し、曲げ弾性率は、7.1%向上している。   From the above test results, it can be seen that the addition of para-aramid nonwoven mat effectively improved the flexural strength and flexural modulus of the carbon fiber reinforced polymer composite laminate having the same thickness. The thicknesses and measured weights of Example 1 and Comparative Example 1 are substantially the same, but compared with the sample of Comparative Example 1, the bending strength of the sample of Example 1 is improved by 11.7% and flexural elasticity is increased. The rate has improved by 7.1%.

衝撃強度試験結果から、パラ−アラミド不織マットを加えたことにより、炭素繊維強化ポリマー複合積層体の衝撃強度が効果的に向上したことがわかる。実施例2および比較例2は、同様な重量および厚みを有するが、実施例2の衝撃強度は、比較例2と比べると、45.3%増大した。さらに、比較例2と比較する場合、実施例2が26層の炭素繊維の予め含浸したシートのみを用いたことは、炭素繊維の予め含浸したシートの16.1%が削減されたことを意味し、驚くべきことに、衝撃強度が予期しないほど大きな向上を達成したことが判明した。   From the impact strength test results, it can be seen that the impact strength of the carbon fiber reinforced polymer composite laminate was effectively improved by adding the para-aramid nonwoven mat. Example 2 and Comparative Example 2 had similar weight and thickness, but the impact strength of Example 2 was increased by 45.3% compared to Comparative Example 2. Furthermore, when compared with Comparative Example 2, the fact that Example 2 used only a 26 layer pre-impregnated sheet of carbon fiber meant that 16.1% of the pre-impregnated sheet of carbon fiber was reduced. Surprisingly, it was found that the impact strength was improved unexpectedly.

さらに、実施例2および比較例3は、同様な重量および厚みを有するが、実施例2の衝撃強度は、比較例3と比べると、10%増大した。これは、パラ−アラミド不織マットの使用により、同様な重量および厚みを有するナイロン不織マットと比べると、炭素繊維強化ポリマー複合積層体の衝撃強度が効果的に向上したことがわかる。   Furthermore, Example 2 and Comparative Example 3 had similar weight and thickness, but the impact strength of Example 2 was increased by 10% compared to Comparative Example 3. This shows that the impact strength of the carbon fiber reinforced polymer composite laminate was effectively improved by using a para-aramid nonwoven mat as compared to a nylon nonwoven mat having a similar weight and thickness.

本発明は、代表的な形態に基づいて詳細に記載されているが、本発明は、これらの例を限定するのではなく、本発明の範囲を逸脱することなく適切に修正されてもよい。従って、当業者は、様々な修正形態および同等な実施形態がこれらの形態において作られ、様々な修正形態および同等な実施形態が本発明の範囲を逸脱しないことを、理解しているだろう。
本発明のまた別の態様は、以下のとおりであってもよい。
〔1〕向上した衝撃強度を有する複合積層体であって、
(a)多層炭素繊維布帛であって、前記炭素繊維布帛が、二方向織であっても一方向織であってもよい多層炭素繊維布帛と、
(b)多層不織マットであって、前記不織マットが、パラ−アラミドから作製される不織マットと、
(c)硬化エポキシ樹脂とを含んでなり、
前記硬化エポキシ樹脂が、前記炭素繊維布帛層に含浸せしめられる含浸用に設計されたエポキシ樹脂系から作製され、前記不織マットの少なくとも1層が、炭素繊維布帛層の2つ層の間に挟まれる複合積層体。
〔2〕前記複合積層体が、0.5mm〜30mm、もしくは1.0mm〜10mm、または1.5mm〜5mmの総厚みを有する前記〔1〕に記載の複合積層体。
〔3〕前記炭素繊維布帛層と硬化エポキシ樹脂の総重量が、前記複合積層体の総重量の85〜95%であり、かつ前記多層不織マットの重量が、前記複合積層体の総重量の5〜15%である前記〔1〕に記載の複合積層体。
〔4〕含浸用に設計された前記エポキシ樹脂系のエポキシ樹脂が、ビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルおよびアミノ基を含有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、ベンゼクレゾールノボラック型エポキシ樹脂およびウレタン変性エポキシ樹脂からなる群から選択される前記〔1〕に記載の複合積層体。
〔5〕含浸された炭素繊維布帛層の各層の単位面積当たりの重量が、独立して、50〜660g/m 2 、または80〜300g/m 2 もしくは90〜200g/m 2 を表す前記〔1〕に記載の複合積層体。
〔6〕含浸用に設計されたエポキシ樹脂系の重量が、前記含浸された炭素繊維布帛層の総重量の10〜80%、もしくは20〜70%、或いは30〜45%である前記〔1〕に記載の複合積層体。
〔7〕前記不織マットの各層の単位面積当たりの重量が、独立して、5〜40g/m 2 、または8〜20g/m 2 を表す前記〔1〕に記載の複合積層体。
〔8〕向上した衝撃強度を有する複合積層体を調製する方法であって、
(i)多層炭素繊維布帛と多層不織マットを調製する工程であって、前記炭素繊維布帛が、二方向織であっても一方向織であってもよく、前記不織マットがパラ−アラミドから作製される工程と、
(ii)含浸用に設計されたエポキシ樹脂系で前記炭素繊維布帛層を含浸せしめる工程と、
(iii)少なくとも1層の含浸された炭素繊維布帛層を第一外面層として位置付けする工程と、
(iv)前記複合積層体の総厚みが0.5〜30mmになるまで、プリフォームを形成するために、少なくとも1層の不織マットと、第二外面層としての少なくとも1層の含浸された炭素繊維布帛層とを交互に位置付ける工程と、
(v)工程(iv)で得られたプリフォームを型に入れて、前記型を締める工程と、
(vi)任意選択的に、前記プリフォームを含有する前記型に減圧をかけて、前記層の間に残留する気泡を放出する工程と、
(vii)含浸用に設計された前記エポキシ樹脂系が硬化されるまで、工程(iv)および工程(vi)で得られた前記プリフォームを0.5〜12時間オートクレーブする工程(オートクレーブは50〜200℃で0.2〜5.0MPaに定格されている)と、
(viii)前記複合積層体を得るために、前記温度が室温まで下がった際に前記プリフォームを前記型から取り出す工程と
を備える方法。
〔9〕スポーツ用具の部品および構成要素に使用される前記〔1〕に記載の複合積層体であって、前記スポーツ用具が、テニスラケット、バトミントンラケット、スカッシュラケット、自転車の複合部品、野球用バット、ホッケー用スティック、スノーボードおよびそりを含む複合積層体。
〔10〕輸送手段の製品および構成要素に使用される前記〔1〕に記載の複合積層体であって、前記輸送手段が、乗用車、船舶、列車、磁気浮上式車両、および航空機を含む複合積層体。
〔11〕スポーツ用具の調製における前記〔1〕に記載の複合積層体の使用であって、前記スポーツ用具が、テニスラケット、バトミントンラケット、スカッシュラケット、自転車の複合部品、野球用バット、ホッケー用スティック、スノーボードおよびそりを含む複合積層体の使用。
〔12〕輸送手段の製品および構成要素の調製における前記〔1〕に記載の複合積層体の使用であって、前記輸送手段が、乗用車、船舶、列車、磁気浮上式車両、および航空機を含む複合積層体の使用。
Although the present invention has been described in detail on the basis of representative forms, the present invention is not limited to these examples, and may be appropriately modified without departing from the scope of the present invention. Accordingly, those skilled in the art will appreciate that various modifications and equivalent embodiments may be made in these forms, and that various modifications and equivalent embodiments do not depart from the scope of the invention.
Another aspect of the present invention may be as follows.
[1] A composite laminate having improved impact strength,
(A) a multilayer carbon fiber fabric, wherein the carbon fiber fabric may be a bi-directional woven fabric or a unidirectional woven fabric;
(B) a multilayer nonwoven mat, wherein the nonwoven mat is made from para-aramid;
(C) comprising a cured epoxy resin,
The cured epoxy resin is made from an epoxy resin system designed for impregnation in which the carbon fiber fabric layer is impregnated, and at least one layer of the nonwoven mat is sandwiched between two layers of carbon fiber fabric layers. Composite laminate.
[2] The composite laminate according to [1], wherein the composite laminate has a total thickness of 0.5 mm to 30 mm, or 1.0 mm to 10 mm, or 1.5 mm to 5 mm.
[3] The total weight of the carbon fiber fabric layer and the cured epoxy resin is 85 to 95% of the total weight of the composite laminate, and the weight of the multilayer nonwoven mat is the total weight of the composite laminate. The composite laminate according to [1], which is 5 to 15%.
[4] The epoxy resin-based epoxy resin designed for impregnation is a bisphenol type epoxy resin, an alicyclic epoxy resin, an epoxy resin containing glycidyl and amino groups, a phenol novolac type epoxy resin, a benzcresol novolac type epoxy The composite laminate according to [1], selected from the group consisting of a resin and a urethane-modified epoxy resin.
[5] a weight per unit area of each layer of the impregnated carbon fiber fabric layers, independently, the representative of the 50~660g / m 2 or 80~300g / m 2 or 90 to 200 g / m 2, [1 ] The composite laminated body as described in above.
[6] The weight of the epoxy resin system designed for impregnation is 10 to 80%, or 20 to 70%, or 30 to 45% of the total weight of the impregnated carbon fiber fabric layer [1] The composite laminate according to 1.
[7] The composite laminate according to [1], wherein the weight per unit area of each layer of the nonwoven mat independently represents 5 to 40 g / m 2 , or 8 to 20 g / m 2 .
[8] A method of preparing a composite laminate having improved impact strength,
(I) A step of preparing a multilayer carbon fiber fabric and a multilayer nonwoven mat, wherein the carbon fiber fabric may be bi-directional or unidirectional, and the nonwoven mat is para-aramid. A process made from
(Ii) impregnating the carbon fiber fabric layer with an epoxy resin system designed for impregnation;
(Iii) positioning at least one impregnated carbon fiber fabric layer as a first outer surface layer;
(Iv) impregnated with at least one non-woven mat and at least one layer as a second outer surface layer to form a preform until the total thickness of the composite laminate is 0.5-30 mm Alternately positioning the carbon fiber fabric layers;
(V) putting the preform obtained in step (iv) into a mold and fastening the mold;
(Vi) optionally subjecting the mold containing the preform to a reduced pressure to release any remaining bubbles between the layers;
(Vii) autoclaving the preform obtained in steps (iv) and (vi) for 0.5-12 hours until the epoxy resin system designed for impregnation is cured (autoclave is 50- Rated at 0.2 to 5.0 MPa at 200 ° C.)
(Viii) removing the preform from the mold when the temperature is lowered to room temperature to obtain the composite laminate;
A method comprising:
[9] The composite laminate according to [1] used for parts and components of a sports equipment, wherein the sports equipment includes a tennis racket, a badminton racket, a squash racket, a bicycle composite part, and a baseball bat. Composite laminates, including hockey sticks, snowboards and sleds.
[10] The composite laminate according to [1] used for a product and a component of a transportation means, wherein the transportation means includes a passenger car, a ship, a train, a magnetic levitation vehicle, and an aircraft. body.
[11] Use of the composite laminate according to [1] in the preparation of sports equipment, wherein the sports equipment is a tennis racket, badminton racket, squash racket, bicycle composite part, baseball bat, hockey stick Use of composite laminates, including snowboards and sleds.
[12] Use of the composite laminate according to [1] in the preparation of products and components of a transportation means, wherein the transportation means includes a passenger car, a ship, a train, a magnetically levitated vehicle, and an aircraft. Use of laminates.

Claims (4)

向上した衝撃強度を有する複合積層体であって、
(a)多層炭素繊維布帛であって、前記炭素繊維布帛が、二方向織であっても一方向織であってもよい多層炭素繊維布帛と、
(b)多層不織マットであって、前記不織マットが、パラ−アラミドから作製される不織マットと、
(c)硬化エポキシ樹脂とを含んでなり、
前記硬化エポキシ樹脂が、前記炭素繊維布帛層に含浸せしめられる含浸用に設計されたエポキシ樹脂系から作製され、前記不織マットの少なくとも1層が、炭素繊維布帛層の2つ層の間に挟まれる複合積層体。
A composite laminate having improved impact strength,
(A) a multilayer carbon fiber fabric, wherein the carbon fiber fabric may be a bi-directional woven fabric or a unidirectional woven fabric;
(B) a multilayer nonwoven mat, wherein the nonwoven mat is made from para-aramid;
(C) comprising a cured epoxy resin,
The cured epoxy resin is made from an epoxy resin system designed for impregnation in which the carbon fiber fabric layer is impregnated, and at least one layer of the nonwoven mat is sandwiched between two layers of carbon fiber fabric layers. Composite laminate.
向上した衝撃強度を有する複合積層体を調製する方法であって、
(i)多層炭素繊維布帛と多層不織マットを調製する工程であって、前記炭素繊維布帛が、二方向織であっても一方向織であってもよく、前記不織マットがパラ−アラミドから作製される工程と、
(ii)含浸用に設計されたエポキシ樹脂系で前記炭素繊維布帛層を含浸せしめる工程と、
(iii)少なくとも1層の含浸された炭素繊維布帛層を第一外面層として位置付けする工程と、
(iv)前記複合積層体の総厚みが0.5〜30mmになるまで、プリフォームを形成するために、少なくとも1層の不織マットと、第二外面層としての少なくとも1層の含浸された炭素繊維布帛層とを交互に位置付ける工程と、
(v)工程(iv)で得られたプリフォームを型に入れて、前記型を締める工程と、
(vi)記プリフォームを含有する前記型に減圧をかけて、前記層の間に残留する気泡を放出してもよい工程と、
(vii)含浸用に設計された前記エポキシ樹脂系が硬化されるまで、工程(iv)および工程(vi)で得られた前記プリフォームを0.5〜12時間オートクレーブする工程(オートクレーブは50〜200℃で0.2〜5.0MPaに定格されている)と、
(viii)前記複合積層体を得るために、前記温度が室温まで下がった際に前記プリフォームを前記型から取り出す工程と
を備える方法。
A method of preparing a composite laminate having improved impact strength,
(I) A step of preparing a multilayer carbon fiber fabric and a multilayer nonwoven mat, wherein the carbon fiber fabric may be bi-directional or unidirectional, and the nonwoven mat is para-aramid. A process made from
(Ii) impregnating the carbon fiber fabric layer with an epoxy resin system designed for impregnation;
(Iii) positioning at least one impregnated carbon fiber fabric layer as a first outer surface layer;
(Iv) impregnated with at least one non-woven mat and at least one layer as a second outer surface layer to form a preform until the total thickness of the composite laminate is 0.5-30 mm Alternately positioning the carbon fiber fabric layers;
(V) putting the preform obtained in step (iv) into a mold and fastening the mold;
Over vacuum to the mold containing (vi) pre-Symbol preform, a step may be to release the air bubbles remaining between the layers,
(Vii) autoclaving the preform obtained in steps (iv) and (vi) for 0.5-12 hours until the epoxy resin system designed for impregnation is cured (autoclave is 50- Rated at 0.2 to 5.0 MPa at 200 ° C.)
(Viii) a step of removing the preform from the mold when the temperature falls to room temperature in order to obtain the composite laminate.
スポーツ用具の調製における請求項1に記載の複合積層体の使用であって、前記スポーツ用具が、テニスラケット、バトミントンラケット、スカッシュラケット、自転車の複合部品、野球用バット、ホッケー用スティック、スノーボードおよびそりを含む複合積層体の使用。   Use of the composite laminate of claim 1 in the preparation of sports equipment, wherein the sports equipment is a tennis racket, badminton racket, squash racket, bicycle composite part, baseball bat, hockey stick, snowboard and sled. Use of a composite laminate comprising 輸送手段の製品および構成要素の調製における請求項1に記載の複合積層体の使用であって、前記輸送手段が、乗用車、船舶、列車、磁気浮上式車両、および航空機を含む複合積層体の使用。   Use of a composite laminate according to claim 1 in the preparation of products and components of a vehicle, wherein the vehicle comprises a passenger car, a ship, a train, a magnetically levitated vehicle, and an aircraft. .
JP2014535984A 2011-10-14 2012-10-15 Composite laminates with improved impact strength and uses thereof Active JP6132363B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110317035.4A CN103042777B (en) 2011-10-14 2011-10-14 Composite bed compound of impact strength with improvement and its production and use
CN201110317035.4 2011-10-14
PCT/US2012/060300 WO2013056254A2 (en) 2011-10-14 2012-10-15 Composite laminate having improved impact strength and the use thereof

Publications (3)

Publication Number Publication Date
JP2015500748A JP2015500748A (en) 2015-01-08
JP2015500748A5 JP2015500748A5 (en) 2015-12-03
JP6132363B2 true JP6132363B2 (en) 2017-05-24

Family

ID=47178293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014535984A Active JP6132363B2 (en) 2011-10-14 2012-10-15 Composite laminates with improved impact strength and uses thereof

Country Status (6)

Country Link
US (1) US20140234600A1 (en)
EP (1) EP2766173A2 (en)
JP (1) JP6132363B2 (en)
KR (1) KR102006511B1 (en)
CN (1) CN103042777B (en)
WO (1) WO2013056254A2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101575397B1 (en) * 2013-06-12 2015-12-07 코오롱인더스트리 주식회사 Bulletproof Material
CN103738610A (en) * 2013-12-16 2014-04-23 金川集团股份有限公司 Manufacturing method for enhancing axial strength of structural layers of glass fiber reinforced plastics storage tank
CN104826305B (en) * 2014-02-11 2017-11-24 威捷国际有限公司 Bat
CN103935051A (en) * 2014-04-22 2014-07-23 黄建 Cold and hot compression molding technology of carbon fiber 3D (three dimensional) product
JP6523859B2 (en) * 2014-08-28 2019-06-05 帝人株式会社 Method of manufacturing cut body, and method of cutting fiber reinforced resin
DE102015115879A1 (en) * 2015-09-21 2017-03-23 Fvv Gmbh & Co. Kg Component of a composite material and method for its production
CN108353512B (en) * 2015-11-06 2021-12-07 惠普发展公司有限责任合伙企业 Carbon fiber composite material
CN106863969B (en) * 2015-12-14 2018-10-12 杜邦公司 Thermoplastic composite lamilate and product prepared therefrom
JP2019508292A (en) * 2016-02-19 2019-03-28 カーボン コンバージョンズ インコーポレイテッド Thermoplastic bonded preform and thermosetting matrix formed using the same
US20170284099A1 (en) * 2016-04-01 2017-10-05 Taiyoi Graphite Co., Ltd. Composite structural element and method of producing the same
CN110191667B (en) 2016-08-18 2022-06-03 海王星医疗公司 Device and method for enhancing the visual effects of the small intestine
KR20180035990A (en) * 2016-09-29 2018-04-09 현대자동차주식회사 Multilayer structure of prepreg and manufacturing method thereof
US11261289B2 (en) 2016-10-17 2022-03-01 Warren Environmental & Coating, Llc Method of lining a pipeline with a delayed curing resin composition
US10121100B2 (en) 2016-12-20 2018-11-06 Capital One Services, Llc Two piece transaction card having fabric inlay
JP6846927B2 (en) * 2016-12-27 2021-03-24 昭和電工株式会社 Manufacturing method of thermosetting sheet-shaped molding material and fiber reinforced plastic
CN107032658B (en) * 2017-06-07 2023-02-28 国电联合动力技术有限公司 Carbon fiber composite material and preparation method thereof
USD831978S1 (en) * 2017-09-14 2018-10-30 Ping-Kun Lin Fabric
CN107719128B (en) * 2017-09-29 2024-01-23 江苏天鸟高新技术股份有限公司 Carbon fiber composite metal material needled preform and preparation method thereof
USD852515S1 (en) * 2017-12-29 2019-07-02 Tesa Se Liner for adhesive film
CN108839398B (en) * 2018-05-31 2020-06-02 大连交通大学 Propeller with carbon fiber-porous nylon composite structure and preparation method thereof
EP3823711A4 (en) 2018-07-19 2022-05-18 Neptune Medical Inc. Dynamically rigidizing composite medical structures
CN109291595A (en) * 2018-09-21 2019-02-01 上海华迎汽车零部件有限公司 Composite material, automobile spare tire lid and preparation method thereof
JP7242358B2 (en) * 2019-03-15 2023-03-20 東レ株式会社 Composite materials, laminates and protective articles using them
US11793392B2 (en) 2019-04-17 2023-10-24 Neptune Medical Inc. External working channels
KR102663205B1 (en) * 2019-05-21 2024-05-03 현대자동차주식회사 Center pillar for vehicle
CN110511537A (en) * 2019-07-22 2019-11-29 石狮市鸿兴文体器材有限公司 A kind of racket and its manufacture craft
CA3178444A1 (en) 2020-03-30 2021-10-07 Neptune Medical Inc. Layered walls for rigidizing devices
CN111534048A (en) * 2020-04-09 2020-08-14 上海大学 Thermosetting resin-based PBO fiber composite material and preparation method thereof
CN112810259B (en) * 2021-01-18 2022-01-04 吉林大学 Synergistic bionic composite material laminated plate based on bird feathers and preparation method thereof
CN113370607A (en) * 2021-05-31 2021-09-10 潍坊歌尔电子有限公司 Intelligent wearable equipment shell and manufacturing method thereof
CN113636784B (en) * 2021-07-13 2023-03-17 福建泉州洛江振丰模配制造有限公司 Special foundation composite material for large-scale marine equipment and production process thereof
CN113550147B (en) * 2021-07-29 2023-06-09 吉祥三宝高科纺织有限公司 Preparation method of carbon fiber-based stab-resistant and cut-resistant garment fabric
CN113650315A (en) * 2021-08-06 2021-11-16 合众新能源汽车有限公司 Carbon fiber composite material for hair cover outer plate and manufacturing method thereof
WO2023133403A1 (en) * 2022-01-04 2023-07-13 Neptune Medical Inc. Reconfigurable rigidizing structures
CN114919249B (en) * 2022-04-29 2024-04-16 杭州电子科技大学 Bumper beam adopting front chelating improved structure of mantis of sparrow tail and preparation method of bumper beam
EP4283116A1 (en) * 2022-05-24 2023-11-29 LM Wind Power A/S A wind turbine blade with an improved lightning protecting system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532169A (en) * 1981-10-05 1985-07-30 Ppg Industries, Inc. High performance fiber ribbon product, high strength hybrid composites and methods of producing and using same
JPS6360743A (en) * 1986-09-02 1988-03-16 東レ株式会社 Light-weight composite material
JP2556995Y2 (en) * 1991-12-02 1997-12-08 一瀬産業株式会社 Helmet cap
JPH09267400A (en) * 1996-04-02 1997-10-14 Toray Ind Inc Frp bent pipe
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
JP2005336407A (en) 2004-05-28 2005-12-08 Toho Tenax Co Ltd Composite material excellent in surface smoothness
CN1746021A (en) * 2004-09-09 2006-03-15 航天特种材料及应用研究所 Reinforced fibre metal laminated composite materials and production thereof
CA2545498A1 (en) 2006-02-23 2007-08-23 Bulletproof Skateboards Composite materials for sports articles and method of manufacturing the composite materials
JP4974916B2 (en) * 2008-01-28 2012-07-11 三菱電機株式会社 Composite material sheet and composite part including the same

Also Published As

Publication number Publication date
EP2766173A2 (en) 2014-08-20
KR20140079819A (en) 2014-06-27
KR102006511B1 (en) 2019-08-01
WO2013056254A3 (en) 2013-07-04
CN103042777B (en) 2016-09-14
JP2015500748A (en) 2015-01-08
CN103042777A (en) 2013-04-17
US20140234600A1 (en) 2014-08-21
WO2013056254A2 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP6132363B2 (en) Composite laminates with improved impact strength and uses thereof
US9770844B2 (en) Fibre reinforced composites
JP5940521B2 (en) Structured thermoplastics in composite interleaf
TWI447028B (en) Prepreg,fiber-reinforced composite material and method for manufacturing prepreg
US9868266B2 (en) Prepreg materials
JP2015500748A5 (en)
JP2009235182A (en) Base material for preform and method for manufacturing the same
CN113853286A (en) Prepreg, laminate, and molded article
JPH0575575B2 (en)
WO2020235490A1 (en) Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate
EP3086923A2 (en) Improvements in or relating to laminates
GB2508078A (en) Non-woven moulding reinforcement material
JP5280982B2 (en) Fiber reinforced composite material
JPH07227939A (en) Honeycomb cocuring molding method
JPH10158417A (en) Prepreg
JPH01148545A (en) Interlaminar hybrid laminated material
EP3067200A1 (en) Prepregs for mouldings of reduced void content
KR930009294B1 (en) Interply-hybridized laminated material
JP2021098319A (en) Fiber reinforced resin molding and composite molding
JP2020192807A (en) Method for producing fiber-reinforced resin base material, fiber-reinforced resin base material and integral molding of the same
Rahmani et al. Mechanical Properties of Carbon Fiber/Epoxy Composites: Effects of Number of Plies, Fiber
JPH01148546A (en) Fiber-reinforced resin laminated material
JPH01193326A (en) Unidirectional hybrid prepreg and laminated material
JP2010005932A (en) Substrate for preform, its manufacturing method, and laminated substrate for preform

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170413

R150 Certificate of patent or registration of utility model

Ref document number: 6132363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250