JPH01148546A - Fiber-reinforced resin laminated material - Google Patents

Fiber-reinforced resin laminated material

Info

Publication number
JPH01148546A
JPH01148546A JP62305592A JP30559287A JPH01148546A JP H01148546 A JPH01148546 A JP H01148546A JP 62305592 A JP62305592 A JP 62305592A JP 30559287 A JP30559287 A JP 30559287A JP H01148546 A JPH01148546 A JP H01148546A
Authority
JP
Japan
Prior art keywords
fiber
prepreg
laminated material
carbon fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62305592A
Other languages
Japanese (ja)
Inventor
Shinji Yamamoto
新治 山本
Hideho Tanaka
秀穂 田中
Kazuo Nishimura
西村 一夫
Hiroyuki Otsuka
博之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62305592A priority Critical patent/JPH01148546A/en
Priority to KR1019880016114A priority patent/KR930009294B1/en
Priority to EP88311494A priority patent/EP0319346A3/en
Publication of JPH01148546A publication Critical patent/JPH01148546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve bending properties, by a method wherein a laminated material is constituted so that one side of the outermost layers of the laminated material is constituted of a prepreg layer containing a carbon fiber and the other side of the outermost layers of the laminated material is constituted of a prepreg layer containing an inorganic fiber constituted of each element of Si, Ti or Zr, C and O. CONSTITUTION:Carbon fiber prepreg, which is in a semi-cured state and arranged unidirectionally, is prepared by a method wherein a carbon fiber is impregnated with epoxy resin, then the same is wound round a drum winder unidirectionally for heating. Inorganic fiber prepreg, which is in the semi-cured state and arranged unidirectionally, is prepared similarly by making use of inorganic fiber prepreg comprised of Si, Ti or Zr, C and O. Bending properties of a laminated material is improved by a method wherein those two kinds of the prepreg are superposed upon each other by making one side of a surface layer a prepreg layer containing the carbon fiber and the other side of the same a prepreg layer containing the inorganic fiber and press lamination is performed at 100-250 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維及び特定の無機繊維のそれぞれに熱
硬化性樹脂を含浸させたプリプレグを積層して製造され
る、特に曲げ特性の優れた繊維強化樹脂積層材に関する
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a prepreg having particularly excellent bending properties, which is manufactured by laminating prepregs in which carbon fibers and specific inorganic fibers are each impregnated with a thermosetting resin. This invention relates to a fiber reinforced resin laminate.

(従来技術及びその問題点) 炭素繊維強化プラスチツク複合体は、比強度、比弾性率
が高いために、スポーツ・レジャー用品などに使用され
ている。しかし、この材料は、圧縮強度あるいは曲げ強
度が低く、さらに伸びが小さく脆いという技術的問題点
を有している。
(Prior art and its problems) Carbon fiber-reinforced plastic composites have high specific strength and specific modulus, and are therefore used in sports and leisure goods. However, this material has technical problems such as low compressive strength or bending strength, low elongation and brittleness.

このため、炭素繊維層と他の繊維層とを組み合わせたい
わゆるハイブリッド積層材によって、上記問題点の屏消
を図る試みがされている。炭素繊維と組み合わせる繊維
としては、従来、ガラス繊維及びアラミド繊維が好んで
使用されてきた。しかし、ガラス繊維は強度及び弾性率
が低く、そのうえ重いという問題を有しており、また、
アラミド繊維は、伸びは大きいが圧縮強度が小さく吸湿
しやすいという問題を有している。従って、これら繊維
と炭素繊維とを併用して得られるプラスチックス複合材
も実用上必ずしも満足のできる材料とは言いがたい。
Therefore, attempts have been made to eliminate the above-mentioned problems by using a so-called hybrid laminate material that combines a carbon fiber layer and another fiber layer. Conventionally, glass fibers and aramid fibers have been preferably used as fibers to be combined with carbon fibers. However, glass fiber has the problem of low strength and elastic modulus, and is also heavy.
Aramid fibers have a problem of high elongation but low compressive strength and easy moisture absorption. Therefore, it is difficult to say that a plastics composite material obtained by using a combination of these fibers and carbon fibers is a material that is practically satisfactory.

特開昭62−7737号公報には、Si、Ti又はZr
、C及び0の各元素から構成される無機繊維及び炭素繊
維のそれぞれにプラスチックスが含浸されたプリプレグ
を積層し、この積層物を加圧加熱して得られる複合材、
いわゆる層間ハイブリッド複合材が開示されている。こ
の複合材は、上記無機繊維の優れた特長、即ち、マトリ
ックス樹脂との良好な接着性及び繊維自体の可撓性が生
かされることによって、炭素繊維強化プラスチツク複合
材に比較して、引張強度、層間剪断強度及びシャルピー
衝撃強度において優れている。
JP-A-62-7737 discloses that Si, Ti or Zr
, a composite material obtained by laminating prepregs impregnated with plastics on inorganic fibers and carbon fibers each composed of the elements C and 0, and pressurizing and heating this laminate,
So-called interlayer hybrid composites have been disclosed. This composite material takes advantage of the excellent features of the above-mentioned inorganic fibers, namely good adhesion with the matrix resin and flexibility of the fibers themselves, and has a higher tensile strength than carbon fiber reinforced plastic composite materials. Excellent in interlaminar shear strength and Charpy impact strength.

近年、無機繊維強化プラスチツク複合材には、上述した
優れた強度と共に高い曲げ特性が要求されている。この
観点からすると、前記公報に記載の複合材は、同公報の
実施例に示されているように、曲げ特性においていまだ
充分な特性を有する複合材とは言いがたい。
In recent years, inorganic fiber-reinforced plastic composite materials are required to have not only the above-mentioned excellent strength but also high bending properties. From this point of view, it is difficult to say that the composite material described in the above-mentioned publication has sufficient bending properties as shown in the examples of the publication.

(発明の目的) 本発明の目的は、特開昭62−7737号公報に記載さ
れた眉間ハイブリッド積層材の長所を維持しつつ、その
最大の問題点である曲げ特性を改善した積層材を提供す
ることにある。
(Object of the Invention) The object of the present invention is to provide a laminate that maintains the advantages of the glabella hybrid laminate described in JP-A-62-7737, while improving its bending properties, which is its biggest problem. It's about doing.

(問題点を解決するための技術的手段)本発明の上記目
的は、炭素繊維及び実質的にSl、T1又はZr、C及
びOの各元素から構成される無機繊維のそれぞれに熱硬
化性樹脂を含浸させたプリプレグを積層して製造される
繊維強化樹脂積層材において、該積層材の最外層の一方
が該炭素繊維含有プリプレグ層で構成されており、他方
が該無機繊維台をプリプレグ層で構成されていることを
特徴とする繊維強化樹脂積層材によって達成される。
(Technical Means for Solving the Problems) The above object of the present invention is to apply a thermosetting resin to each of the carbon fibers and the inorganic fibers substantially composed of the elements Sl, T1 or Zr, C and O. In a fiber-reinforced resin laminate manufactured by laminating prepreg impregnated with carbon fiber, one of the outermost layers of the laminate is composed of the carbon fiber-containing prepreg layer, and the other is composed of the inorganic fiber base with the prepreg layer. This is achieved by a fiber-reinforced resin laminate material characterized by the following structure.

本発明における炭素繊維は、その前駆体としてポリアク
リロニトリル、石油ピッチ及び石炭ピッチのいずれを使
用したものであってもよい。また、焼成温度に依存して
呼称される炭素質繊維、黒鉛質繊維のいずれであっても
よい。
The carbon fiber in the present invention may be one using any of polyacrylonitrile, petroleum pitch, and coal pitch as its precursor. Further, it may be either carbonaceous fiber or graphite fiber, which are called depending on the firing temperature.

本発明における無機繊維はアメリカ特許第434271
2号明細書及び同第4515742号明細書に記載の方
法に従って調製することができ、これら明細書の記載は
本明細書の一部として援用される。
The inorganic fiber in the present invention is US Patent No. 434271.
It can be prepared according to the method described in Specification No. 2 and Specification No. 4515742, the descriptions of which are incorporated herein by reference.

調製法の一例を以下に示す。An example of the preparation method is shown below.

式    R →Si CHz→− (但し、式中のRは水素原子、低級アルキル基又はフェ
ニル基を示す)で表される主鎖骨格を有する数平均分子
量的200〜10000のポリカルボシラン、及び 式MX4 (但し、式中のMはTi又はZrを示し、Xは炭素数1
〜20個のアルコキシ基、フェノキシ基又はアセチルア
セトキシ基を示す)で表される有機金属化合物を、上記
ポリカルボシランの−Ji−CH2+−の構造単位の全
数対上記有機金属化合物の4ト0弁の構造単位の全数の
比率が2:工ないし200:1の範囲内となる量比に添
加し、反応に対して不活性な雰囲気中において加熱反応
して、前記ポリカルボシランの珪素原子の少なくとも一
部を、前記有機金属化合物の金属原子と酸素原子を介し
て結合させて、数平均分子量的700〜100000の
有機金属共重合体を生成させる第1工程、上記共重合体
の紡糸原液を調製し紡糸する第2工程、紡糸繊維を不融
化する第3工程、及び不融化した紡糸繊維を真空中ある
いは不活性ガス雰囲気中で800〜1500°Cの温度
範囲で焼成する第4工程からなる製造方法によって、本
発明における無機繊維を得ることができる。
A polycarbosilane with a number average molecular weight of 200 to 10,000 having a main chain skeleton represented by the formula R →Si CHz→- (wherein R in the formula represents a hydrogen atom, a lower alkyl group, or a phenyl group), and the formula MX4 (However, M in the formula represents Ti or Zr, and X has a carbon number of 1
~20 alkoxy groups, phenoxy groups, or acetylacetoxy groups) is combined with the total number of -Ji-CH2+- structural units of the polycarbosilane to 4 to 0 valves of the above organometallic compound. The total number of structural units of the polycarbosilane is added in a quantitative ratio such that the ratio of the total number of structural units is within the range of 2:2 to 200:1, and the polycarbosilane is heated and reacted in an inert atmosphere to remove at least one of the silicon atoms of the polycarbosilane. A first step in which a part of the organometallic compound is bonded to a metal atom of the organometallic compound via an oxygen atom to produce an organometallic copolymer having a number average molecular weight of 700 to 100,000, and a spinning stock solution of the above copolymer is prepared. A manufacturing process consisting of a second step of spinning, a third step of making the spun fibers infusible, and a fourth step of firing the infusible spun fibers in a vacuum or in an inert gas atmosphere at a temperature range of 800 to 1500°C. The inorganic fibers of the present invention can be obtained by the method.

無機繊維中の各構成元素の割合は、 Si:30〜60重量%、 Ti又はZr:0.5〜35重量%、好ましくは1〜1
0重量%、 C:25〜40重量%、 0 : 0.01〜30重景% である。
The proportions of each constituent element in the inorganic fiber are: Si: 30-60% by weight, Ti or Zr: 0.5-35% by weight, preferably 1-1
0% by weight, C: 25-40% by weight, 0: 0.01-30% by weight.

無機繊維と炭素繊維との合計に対する無機繊維の割合は
1〜80体積%、特に3〜70体積%であることが好ま
しい。上記割合が1体積%未満では積層材の曲げ特性の
改善効果が小さく、80体積%より大きいと、相対的に
炭素繊維の割合が低下し、積層材に炭素繊維の高引張強
度及び軽量性を付与しがたくなる。
The ratio of inorganic fibers to the total of inorganic fibers and carbon fibers is preferably 1 to 80% by volume, particularly 3 to 70% by volume. If the above proportion is less than 1% by volume, the effect of improving the bending properties of the laminated material is small, and if it is greater than 80% by volume, the proportion of carbon fiber decreases relatively, and the high tensile strength and lightweight properties of carbon fiber are added to the laminated material. It becomes difficult to grant.

積層材に対する炭素繊維と無機繊維との合計割合は、通
常30〜80体積%、好ましくは45〜65体積%であ
る。
The total proportion of carbon fibers and inorganic fibers in the laminate is usually 30 to 80% by volume, preferably 45 to 65% by volume.

炭素繊維及び無機繊維は一方向に引き揃えた形態として
使用することが好ましいが、それぞれの繊維を織って形
成された織布(織物)の形態で使用することもできる。
Although carbon fibers and inorganic fibers are preferably used in the form of unidirectionally aligned fibers, they can also be used in the form of a woven fabric (fabric) formed by weaving the respective fibers.

また、両繊維は公知の表面処理、サイジング処理が施さ
れていてもよい。
Further, both fibers may be subjected to known surface treatment and sizing treatment.

本発明における熱硬化性樹脂については特に制限はなく
、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエス
テル樹脂、フェノール’MMLビスマレイミド樹脂、ポ
リイミド樹脂などが挙げられる。これらの樹脂の中でも
エポキシ樹脂が好んで使用される。上記エポキシ樹脂は
、ポリエポキシド、硬化剤、硬化触媒などからなる樹脂
組成物である。
The thermosetting resin in the present invention is not particularly limited, and examples include epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol'MML bismaleimide resin, and polyimide resin. Among these resins, epoxy resins are preferably used. The above-mentioned epoxy resin is a resin composition consisting of polyepoxide, a curing agent, a curing catalyst, and the like.

ポリエポキシドどしては、例えば、ビスフェノールA、
F及びSのグリシジル化合物、タレゾールノボラック又
はフェノールノボラックのグリシジル化合物及び脂環族
ポリエポキシドなどが挙げられる。
Examples of polyepoxides include bisphenol A,
Examples include glycidyl compounds of F and S, glycidyl compounds of talesol novolak or phenol novolak, and alicyclic polyepoxides.

ポリエポキシドの別の例としては、多価フェノール、多
価アルコール又は芳香族アミンのグリシジル化合物が挙
げられる。
Other examples of polyepoxides include glycidyl compounds of polyhydric phenols, polyhydric alcohols or aromatic amines.

これらのポリエポキシドの内、ビスフェノールAのグリ
シジルエーテル、タレゾールノボラック又はフェノール
ノボランクのグリシジル化合物、ジアミノジフェニルメ
タンのグリシジル化合物、アミノフェノールのグリシジ
ル化合物が一般に使用される。また、本発明の積層材を
航空機の一次構造材料のような高機能を要求される部材
として使用する場合は、上記ポリエポキシドの中でも、
ジアミノジフェニルメタンなどの多官能アミンのグリシ
ジル化合物を使用することが好ましい。
Among these polyepoxides, the glycidyl ether of bisphenol A, the glycidyl compound of talesol novolac or phenol novolank, the glycidyl compound of diaminodiphenylmethane, and the glycidyl compound of aminophenol are generally used. In addition, when the laminate material of the present invention is used as a member requiring high functionality such as a primary structural material of an aircraft, among the above polyepoxides,
Preference is given to using glycidyl compounds of polyfunctional amines such as diaminodiphenylmethane.

本発明の積層材は、炭素繊維及び無機繊維のそれぞれに
熱硬化性樹脂を含浸したプリプレグを積層し、ついで熱
硬化性樹脂を硬化させることによって製造される。
The laminate of the present invention is manufactured by laminating prepregs in which carbon fibers and inorganic fibers are each impregnated with a thermosetting resin, and then curing the thermosetting resin.

プリプレグの調製法としては、多数本の前記繊維かなる
フィラメント糸を一方向に引き揃えて熱硬化性樹脂に挟
み込んでプリプレグとする方法、熱硬化性樹脂を含浸し
たフィラメント糸束をドラムに巻き掛けてプリプレグと
する方法、多数本のフィラメント糸を引き揃えた後に熱
硬化性樹脂のフィルム状物を溶融含浸させてプリプレグ
とする方法、織布又は不織布を熱硬化性樹脂溜まりに導
き、含浸、乾燥してプリプレグとする方法、熱硬化性樹
脂製のシート状物を織布又は不織布に溶融含浸させてプ
リプレグとする方法などの、それ自体公知の方法を適宜
採用することができる。
Methods for preparing prepreg include a method in which a large number of filament threads made of the above-mentioned fibers are aligned in one direction and sandwiched between thermosetting resins to make a prepreg, and a bundle of filament threads impregnated with thermosetting resin is wound around a drum. A method of preparing prepreg by pulling a large number of filament threads together and then melting and impregnating them with a thermosetting resin film. A method of introducing a woven or nonwoven fabric into a thermosetting resin reservoir, impregnating it, and drying it. Methods known per se can be appropriately employed, such as a method of preparing a prepreg by melting and impregnating a sheet-like material made of a thermosetting resin into a woven or nonwoven fabric.

本発明においては、上記プリプレグを積層するに際して
、積層材の最外層(表面層)の一方を炭素繊維含有プリ
プレグ層とし、他方を無機繊維含有プリプレグ層とする
ことが必要である。プリプレグを上記のように積層する
ことにより、本発明の積層材に曲げ静的又は動的過電が
加わった場合、最大の圧縮応力が発生する最外層部に圧
縮特性の優れた無機繊維強化樹脂層を配置し、また最大
の引張応力の発生する他方の最外層部に引張特性の優れ
た炭素繊維強化樹脂層を配置することによって、積層材
全体の曲げ特性を著しく向上させるこ   ゛とができ
る。積層材の最外層の両方をどちらか一方の繊維を使用
したプリプレグ層で構成すると、積層材の曲げ特性、例
えば、静的又は動的曲げ強度あるいはシャルピー衝撃強
度を大幅に向上させることができなくなる。
In the present invention, when laminating the above-mentioned prepregs, it is necessary to make one of the outermost layers (surface layers) of the laminated material a carbon fiber-containing prepreg layer and the other one an inorganic fiber-containing prepreg layer. By laminating the prepregs as described above, when static bending or dynamic overcurrent is applied to the laminated material of the present invention, the outermost layer where the maximum compressive stress occurs is an inorganic fiber-reinforced resin with excellent compressive properties. By arranging the layers and placing a carbon fiber-reinforced resin layer with excellent tensile properties on the other outermost layer where the maximum tensile stress occurs, the bending properties of the entire laminate can be significantly improved. . If both outermost layers of the laminate are made of prepreg layers using one or the other fiber, the flexural properties of the laminate, such as static or dynamic bending strength or Charpy impact strength, cannot be significantly improved. .

プリプレグを積層する方法については特に制限はなく、
ハンドレイアップ法、自動レイアップなどの公知の方法
をすべて採用することができる。
There are no particular restrictions on the method of laminating prepreg.
All known methods such as hand layup method and automatic layup method can be employed.

プリプレグの積層形態、構成、順序、繰り返し厚みに関
しては、前記した最外層部の構成を除いて特別の限定は
ない。
There are no particular limitations on the stacking form, configuration, order, and repeating thickness of the prepreg, except for the configuration of the outermost layer described above.

プリプレグの積層物から積層材を形成する方法はなんら
制限されるものではなく、減圧バック/オートクレーブ
硬化法、ホットプレス成形法、シートワインディング法
、シートラッピング法、テープワインディング法、テー
プラッピング法などの公知の方法を適宜採用することが
できる。
The method of forming a laminate from a prepreg laminate is not limited in any way, and may include known methods such as vacuum bag/autoclave curing method, hot press molding method, sheet winding method, sheet wrapping method, tape winding method, tape wrapping method, etc. The following methods can be adopted as appropriate.

硬化温度、硬化圧力、硬化時間などの硬化条件は、使用
される熱硬化性樹脂によって決定される。
Curing conditions such as curing temperature, curing pressure, and curing time are determined by the thermosetting resin used.

例えば、熱硬化性樹脂としてエポキシ樹脂を使用する場
合の一般的硬化温度は100〜250°c1好ましくは
120〜200°Cである。また、プレキュア−あるい
はポストキュアーも適宜行うことができる。
For example, when an epoxy resin is used as the thermosetting resin, the general curing temperature is 100 to 250°C, preferably 120 to 200°C. Moreover, pre-cure or post-cure can be performed as appropriate.

本発明の繊維強化樹脂積層材は、板、パイプなどの単純
形状の製品の他に、曲面あるいは凹凸を有する種々の大
きさの三次元形状の製品を再現性よく容易に与えること
ができる。
The fiber-reinforced resin laminate of the present invention can be easily produced with good reproducibility into products with simple shapes such as plates and pipes, as well as products with three-dimensional shapes of various sizes having curved surfaces or irregularities.

(実施例) 以下に実施例及び比較例を示す。各側における層間ハイ
ブリッド積層材の特性は以下の試験片について、温度2
3“C1相対湿度50%の条件下に繊維の長さ方向に各
10回測定した。上記特性の内、引張強度、圧縮強度及
び曲げ強度は、オリエンチック−製のテンシロンUTM
5Tを用いて測定し、シャルピー衝撃強度は東洋精機■
製のシャルピー衝撃試験機を用いて測定した。曲げ試験
はスパン/幅=32における三点曲げ試験である。
(Example) Examples and comparative examples are shown below. The properties of the interlaminar hybrid laminate on each side were determined for the following specimens at temperature 2
3"C1 Measurements were made 10 times each in the longitudinal direction of the fiber under conditions of 50% relative humidity. Among the above properties, tensile strength, compressive strength, and bending strength were measured using Tensilon UTM manufactured by Orientic.
Measured using 5T, Charpy impact strength is Toyo Seiki ■
The measurements were carried out using a Charpy impact tester manufactured by Kogyo. The bending test is a three-point bending test at span/width=32.

また、曲げ試験及びシャルピー衝撃試験においては、積
層材のチラノ層面に荷重をかけて各強度を測定した。
In addition, in the bending test and Charpy impact test, each strength was measured by applying a load to the tyranno layer surface of the laminate.

■張試験  12.7 200  1.5 2  皿/
分圧縮試験  10   60  2  0.5肛/分
曲げ試験  12.7  85  2  2mm/分シ
ャルピー 10   80  2  3.8m/秒衝撃
試験 積層材の繊維体積含有率(Vf)はASTMD3171
に従って測定した。その単位は体積%である。
■Tension test 12.7 200 1.5 2 plates/
Minute compression test 10 60 2 0.5 mm/min bending test 12.7 85 2 2 mm/min Charpy 10 80 2 3.8 m/sec impact test The fiber volume content (Vf) of the laminate is based on ASTM D3171
Measured according to Its unit is volume %.

以下において部はすべて重量部である。In the following, all parts are by weight.

実施例1 ビスフェノールA型エポキシ樹脂(チバガイギー社製、
XB2879A)100部及びジシアンジアミド硬化剤
(チバガイギー社製、XB2879B)20部を均一に
混合した後に、混合物を重量比で1=1のメチルセロソ
ルブとアセトンとの混合溶媒に溶解して、上記混合物の
28重景%溶液を8周製した。
Example 1 Bisphenol A epoxy resin (manufactured by Ciba Geigy,
After uniformly mixing 100 parts of XB2879A) and 20 parts of a dicyandiamide curing agent (manufactured by Ciba Geigy, XB2879B), the mixture was dissolved in a mixed solvent of methyl cellosolve and acetone in a weight ratio of 1=1 to obtain 28 parts of the above mixture. Eight cycles of the % heavy weight solution were prepared.

炭素繊維(東邦レーヨン■製、ベスファイ)HTA60
00:引張弾性率24 t 7mm” 、比重1゜77
)に上記溶液を含浸した後に、ドラムヮインダーを用い
て一方向に巻き取り、熱風循環オーブン中100°Cで
14分間加熱することによって、半硬化状態の一方向引
揃え炭素繊維プリプレグを調製した。このプリプレグの
樹脂含有量は38重量%、厚みは0.2 mmであった
Carbon fiber (manufactured by Toho Rayon, Besphi) HTA60
00: Tensile modulus 24t 7mm”, specific gravity 1°77
) was impregnated with the above solution, wound in one direction using a drum winder, and heated in a hot air circulation oven at 100°C for 14 minutes to prepare a semi-cured unidirectionally aligned carbon fiber prepreg. This prepreg had a resin content of 38% by weight and a thickness of 0.2 mm.

St、Ti、C及び0からなる無機繊維(宇部興産■製
、チラノ繊維:引張弾性率21 t 7mm2、比重2
.35 )を用いて上記と同様にして、半硬化状態の一
方向引揃えチラノ繊維プリプレグを調製した。このプリ
プレグの樹脂含有量は30重量%、厚みは0.2胴であ
った。
Inorganic fibers consisting of St, Ti, C and 0 (manufactured by Ube Industries, Tyranno fiber: tensile modulus 21t 7mm2, specific gravity 2
.. A unidirectionally aligned tyranno fiber prepreg in a semi-cured state was prepared using 35) in the same manner as above. The resin content of this prepreg was 30% by weight, and the thickness was 0.2 mm.

上記2種類のプリプレグを用いて、第1表に示す構成で
一方向に重ね合わせ、130℃、11kg/Ciで90
分間プレス成形することによって、250mmX250
mmの大きさの一方向層間ハイブリッド積層材を製造し
た。この積層材から各種試験片をダイアモンド鋸を用い
て切り出し試験に供した。結果を第2表に示す。
Using the above two types of prepregs, overlap them in one direction with the configuration shown in Table 1,
By press forming for 250mm x 250mm
A unidirectional interlayer hybrid laminate with a size of mm was produced. Various test pieces were cut out from this laminated material using a diamond saw and subjected to tests. The results are shown in Table 2.

実施例2及び3 積層構成を第1表に記載のように変えた以外は実施例1
と同様の方法を繰り返した。結果を第2表に示す。
Examples 2 and 3 Example 1 except that the laminated structure was changed as shown in Table 1.
The same method was repeated. The results are shown in Table 2.

実施例4 炭素繊維として、引張弾性率42t/睡2、比重1.8
3の炭素繊維(東邦レーヨン■製、ベスファイ)HM4
0)を使用した以外は実施例1と同様の方法を繰り返し
た。結果を第2表に示す。
Example 4 As carbon fiber, tensile modulus of elasticity 42t/co2, specific gravity 1.8
3 carbon fiber (manufactured by Toho Rayon ■, Besphi) HM4
The same method as in Example 1 was repeated except that 0) was used. The results are shown in Table 2.

実施例5 炭素繊維として実施例4で使用したものを使用した以外
は実施例2と同様の方法を繰り返した。
Example 5 The same method as in Example 2 was repeated except that the carbon fiber used in Example 4 was used.

結果を第2表に示す。The results are shown in Table 2.

実施例6 炭素繊維として実施例4で使用したものを使用した以外
は実施例3と同様の方法を繰り返した。
Example 6 The same method as in Example 3 was repeated except that the carbon fiber used in Example 4 was used.

結果を第2表に示す。The results are shown in Table 2.

比較例1及び2 積層構成を第1表に記載のように変えた以外は実施例1
と同様の方法を繰り返した。結果を第2表に示す。
Comparative Examples 1 and 2 Example 1 except that the laminated structure was changed as shown in Table 1.
The same method was repeated. The results are shown in Table 2.

比較例3 チラノ繊維プリプレグを使用しなかった以外は実施例1
を同様の方法を繰り返した。結果を第2表に示す。
Comparative Example 3 Example 1 except that tyranno fiber prepreg was not used
The same method was repeated. The results are shown in Table 2.

比較例4及び5 積層構成を第1表に記載のように変えた以外は実施例4
と同様の方法を繰り返した。結果を第2表に示す。
Comparative Examples 4 and 5 Example 4 except that the laminated structure was changed as shown in Table 1.
The same method was repeated. The results are shown in Table 2.

比較例6 チラノ繊維プリプレグを使用しなかった以外は実施例4
を同様の方法を繰り返した。結果を第2表に示す。
Comparative Example 6 Example 4 except that tyranno fiber prepreg was not used
The same method was repeated. The results are shown in Table 2.

第1表 T割合   構  成 =U本積j○一 実施例1    31   、  TTTTCCCCC
C”  2    13    TTCCCCCCCC
〃3     6    TCCCCCCCCC”  
4    31    TTTTCCCCCC〃5  
  13    TTCCCCCCCC〃6     
6    TCCCCCCCCC比較例1    31
    TCTCCCCTCTN  2    13 
   TCCCCCCCCTN  3     0  
  CCCCCCCCCC〃4    31    T
CTCCCCTCT//  5    13    T
CCCCCCCCTN  6     0    CC
CCCCCCCC第1表の構成の欄において、Tはチラ
ノ繊維層を示し、Cは炭素繊維層を示す。
Table 1 T ratio Composition = U book product j○1 Example 1 31, TTTTCCCCCC
C” 2 13 TTCCCCCCCC
〃3 6 TCCCCCCCCC”
4 31 TTTTCCCCCC〃5
13 TTCCCCCCC〃6
6 TCCCCCCCCCC Comparative Example 1 31
TCTCCCCTCTN 2 13
TCCCCCCCCTN 3 0
CCCCCCCCCC〃4 31 T
CTCCCCCT// 5 13 T
CCCCCCCCTN 6 0 CC
CCCCCCCC In the structure column of Table 1, T indicates a tyranno fiber layer, and C indicates a carbon fiber layer.

派  舷  ポ  扛  田sect

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維及び実質的にSi、Ti又はZr、C及びOの
各元素から構成される無機繊維のそれぞれに熱硬化性樹
脂を含浸させたプリプレグを積層して製造される繊維強
化樹脂積層材において、該積層材の最外層の一方が該炭
素繊維含有プリプレグ層で構成されており、他方が該無
機繊維含有プリプレグ層で構成されていることを特徴と
する繊維強化樹脂積層材。
A fiber-reinforced resin laminate manufactured by laminating prepregs in which carbon fibers and inorganic fibers substantially composed of the elements Si, Ti, or Zr, C, and O are each impregnated with a thermosetting resin, A fiber-reinforced resin laminate, wherein one of the outermost layers of the laminate is composed of the carbon fiber-containing prepreg layer, and the other is composed of the inorganic fiber-containing prepreg layer.
JP62305592A 1987-12-04 1987-12-04 Fiber-reinforced resin laminated material Pending JPH01148546A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62305592A JPH01148546A (en) 1987-12-04 1987-12-04 Fiber-reinforced resin laminated material
KR1019880016114A KR930009294B1 (en) 1987-12-04 1988-12-03 Interply-hybridized laminated material
EP88311494A EP0319346A3 (en) 1987-12-04 1988-12-05 Interply-hybridized laminated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305592A JPH01148546A (en) 1987-12-04 1987-12-04 Fiber-reinforced resin laminated material

Publications (1)

Publication Number Publication Date
JPH01148546A true JPH01148546A (en) 1989-06-09

Family

ID=17946996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305592A Pending JPH01148546A (en) 1987-12-04 1987-12-04 Fiber-reinforced resin laminated material

Country Status (1)

Country Link
JP (1) JPH01148546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289056A (en) * 2004-03-09 2005-10-20 Toray Ind Inc Impact resistant fiber reinforced plastic and multi-layered structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627737A (en) * 1985-07-03 1987-01-14 Ube Ind Ltd Hybrid fiber-reinforced plastic composite material
JPS6259028A (en) * 1985-09-09 1987-03-14 松下電工株式会社 Fiber reinforced resin structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627737A (en) * 1985-07-03 1987-01-14 Ube Ind Ltd Hybrid fiber-reinforced plastic composite material
JPS6259028A (en) * 1985-09-09 1987-03-14 松下電工株式会社 Fiber reinforced resin structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289056A (en) * 2004-03-09 2005-10-20 Toray Ind Inc Impact resistant fiber reinforced plastic and multi-layered structure

Similar Documents

Publication Publication Date Title
TWI447028B (en) Prepreg,fiber-reinforced composite material and method for manufacturing prepreg
TWI595030B (en) High modulus fiber reinforced polymer composite and method for manufacturing the same
EP2935421B1 (en) Fast cure epoxy resin systems
WO1998026912A1 (en) Carbon fiber prepreg and method of production thereof
KR20140127868A (en) Fiber-reinforced composite material
JPS627737A (en) Hybrid fiber-reinforced plastic composite material
US5116668A (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
EP3197933B1 (en) Fast curing compositions
JPH10231372A (en) Prepreg and its production
JP2592932B2 (en) Thermosetting epoxy resin adhesive
JP4671890B2 (en) Prepreg
JP2002363253A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6637503B2 (en) Epoxy resin composition for composite materials
JPH01148546A (en) Fiber-reinforced resin laminated material
JPH01148545A (en) Interlaminar hybrid laminated material
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
KR102108053B1 (en) Method for manufacturing prepreg having high toughness, high strength and heat resistance characteristic, prepreg manufactured by the same
KR930009294B1 (en) Interply-hybridized laminated material
JPH01148547A (en) Symmetric hybrid laminated material
JPH01193326A (en) Unidirectional hybrid prepreg and laminated material
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
JPH01192841A (en) Hybrid yarn
JP3867377B2 (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JPH01171852A (en) Composite of prepreg for fiber reinforced composite material
US4533686A (en) Curable epoxy resin compositions