JPH01148545A - Interlaminar hybrid laminated material - Google Patents

Interlaminar hybrid laminated material

Info

Publication number
JPH01148545A
JPH01148545A JP62305591A JP30559187A JPH01148545A JP H01148545 A JPH01148545 A JP H01148545A JP 62305591 A JP62305591 A JP 62305591A JP 30559187 A JP30559187 A JP 30559187A JP H01148545 A JPH01148545 A JP H01148545A
Authority
JP
Japan
Prior art keywords
carbon fiber
prepreg
fiber
fibers
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62305591A
Other languages
Japanese (ja)
Inventor
Shinji Yamamoto
新治 山本
Hideho Tanaka
秀穂 田中
Hiroshige Sasaki
博成 佐々木
Takefumi Taga
健文 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62305591A priority Critical patent/JPH01148545A/en
Priority to KR1019880016114A priority patent/KR930009294B1/en
Priority to EP88311494A priority patent/EP0319346A3/en
Publication of JPH01148545A publication Critical patent/JPH01148545A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a laminated body whose compression strength has been improved, by a method wherein a ratio of the tensile modulus of an inorganic fiber constituted of each element of Si, Ti or Zr and O to that of a carbon fiber is decided to fall within a range of a specific value. CONSTITUTION:An inorganic fiber constituted of a carbon fiber and each ele ment of Si, Ti or Zr, C and O is selected and prepared so that a ratio of the tensile modulus of the inorganic fiber to that of the carbon fiber falls within a range of 0.6-1.4. An epoxy resin is infiltrated into the carbon fiber which is wound up round a drum winder, heated and carbon fiber prepreg which is in a semi-cured state and arranged unidirectionally is prepared. The inorganic fiber prepreg which is in a semi-cured state and arranged unidirectionally is prepared similarly by making use of the inorganic fiber comprised of the Si, Ti or the Zr, C and O. Two kinds of the prepreg are superposed upon each other in a unidirectional direction under necessary constitution by making use of the two kinds of the prepreg and press lamination of them is performed at 100-250 deg.C, through which a laminated material whose interlaminar separation is rare and compression strength has been improved is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維及び特定の無機繊維のそれぞれに熱
硬化性樹脂を含浸させたプリプレグを積層して製造され
る、特に圧縮強度の優れた眉間ハイブリッド積層材↓こ
関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a prepreg having particularly excellent compressive strength, which is manufactured by laminating prepregs in which carbon fibers and specific inorganic fibers are each impregnated with a thermosetting resin. Regarding the eyebrow hybrid laminated material ↓.

(従来技術及びその問題点) 炭素繊維強化プラスチツク複合体は、比強度、比弾性率
が高いために、スポーツ・レジャー用品などに使用され
ている。しかし、この材料は、圧縮強度あるいは曲げ強
度が低く、さらに伸びが小さく脆いという技術的問題点
を有している。
(Prior art and its problems) Carbon fiber-reinforced plastic composites have high specific strength and specific modulus, and are therefore used in sports and leisure goods. However, this material has technical problems such as low compressive strength or bending strength, low elongation and brittleness.

このため、炭素繊維層と他の繊維層とを組み合わせたい
わゆるハイブリッド積層材によって、上記問題点の解消
を図る試みがされている。炭素繊維と組み合わせる繊維
としては、従来、ガラス繊維及びアラミド繊維が好んで
使用されてきた。しかし、ガラス繊維は強度及び弾性率
が低く、そのうえ重いという問題を有しており、また、
アラミド繊維は、伸びは大きいが圧縮強度が小さく吸湿
しやすいという問題を有している。従って、これら繊維
と炭素繊維とを併用して得られるプラスチックス複合材
も実用上必ずしも満足のできる材料とは言いがたい。
Therefore, attempts have been made to solve the above-mentioned problems by using a so-called hybrid laminate material that combines a carbon fiber layer and other fiber layers. Conventionally, glass fibers and aramid fibers have been preferably used as fibers to be combined with carbon fibers. However, glass fiber has the problem of low strength and elastic modulus, and is also heavy.
Aramid fibers have a problem of high elongation but low compressive strength and easy moisture absorption. Therefore, it is difficult to say that a plastics composite material obtained by using a combination of these fibers and carbon fibers is a material that is practically satisfactory.

特開昭62−7737号公報には、Si、Ti又はZr
、C及び0の各元素から構成される無機繊維及び炭素繊
維のそれぞれにプラスチックスが含浸されたプリプレグ
を積層し、この積層物を加圧加熱して得られる複合材、
いわゆる層間ハイブリッド複合材が開示されている。こ
の複合材は、上記無機繊維の優れた特長、即ち、マトリ
ックス樹脂との良好な接着性及び繊維自体の可撓性が生
かされることによって、炭素繊維強化プラスチツク複合
材に比較して、引張強度、層間剪断強度及びシャルピー
衝撃強度において優れている。
JP-A-62-7737 discloses that Si, Ti or Zr
, a composite material obtained by laminating prepregs impregnated with plastics on inorganic fibers and carbon fibers each composed of the elements C and 0, and pressurizing and heating this laminate,
So-called interlayer hybrid composites have been disclosed. This composite material takes advantage of the excellent features of the above-mentioned inorganic fibers, namely good adhesion with the matrix resin and flexibility of the fibers themselves, and has a higher tensile strength than carbon fiber reinforced plastic composite materials. Excellent in interlaminar shear strength and Charpy impact strength.

近年、無機繊維強化プラスチツク複合材には、上述した
優れた強度と共に高い曲げ強度及び圧縮強度が要求され
ている。この観点からすると、前記公報に記載の複合材
は、同公報の実施例に示されているように、曲げ強度に
おいて改善されるべき余地がある。
In recent years, inorganic fiber-reinforced plastic composite materials are required to have high bending strength and compressive strength in addition to the above-mentioned excellent strength. From this point of view, the composite material described in the above publication has room for improvement in bending strength, as shown in the Examples of the publication.

(発明の目的) 本発明の目的は、特開昭62−7737号公報に記載さ
れた眉間ハイブリッド積層材の長所を維持しつつ、その
最大の問題点である圧縮強度を改善した積層材を提供す
ることにある。
(Objective of the Invention) The object of the present invention is to provide a laminate material that maintains the advantages of the glabellar hybrid laminate material described in JP-A-62-7737, while improving its compressive strength, which is its biggest problem. It's about doing.

(問題点を解決するための技術的手段)本発明の上記目
的は、炭素繊維及び実質的に5iXTi又はZr、C及
び0の各元素から構成される無機繊維のそれぞれに熱硬
化性樹脂を含浸させたプリプレグを積層して製造される
層間ハイブリッド積層材において、前記炭素繊維の引張
弾性率に対する前記無機繊維の引張弾性率の比が0.6
〜1.4の範囲内にあることを特徴とする眉間ハイブリ
ッド積層材によって達成される。
(Technical Means for Solving the Problems) The above object of the present invention is to impregnate each of carbon fibers and inorganic fibers substantially composed of 5iXTi or each element of Zr, C and 0 with a thermosetting resin. In the interlayer hybrid laminate manufactured by laminating prepregs, the ratio of the tensile modulus of the inorganic fiber to the tensile modulus of the carbon fiber is 0.6.
This is achieved by a glabella hybrid laminate characterized in that it is within the range of ~1.4.

本発明における炭素繊維は、その前駆体としてポリアク
リロニトリル、石油ピッチ及び石炭ピッチのいずれを使
用したものであってもよい。また、焼成温度に依存して
呼称される炭素質繊維、黒鉛質繊維のいずれであっても
よい。
The carbon fiber in the present invention may be one using any of polyacrylonitrile, petroleum pitch, and coal pitch as its precursor. Further, it may be either carbonaceous fiber or graphite fiber, which are called depending on the firing temperature.

炭素繊維の引張弾性率は、前駆体の種類、焼成温度など
によって種々異なるが、一般には炭素質繊維では15〜
30 t /nun2、黒鉛質繊維では30〜50t/
胴2である。
The tensile modulus of carbon fiber varies depending on the type of precursor, firing temperature, etc., but generally carbon fiber has a tensile modulus of 15 to 15.
30t/nun2, 30-50t/nun2 for graphite fibers
This is body 2.

本発明における無機繊維はアメリカ特許第434271
2号明細書及び伺第4515742号明細書に記載の方
法に従って調製することができ、これら明細書の記載は
本明細書の一部として援用される。
The inorganic fiber in the present invention is US Patent No. 434271.
It can be prepared according to the method described in Specification No. 2 and Specification No. 4515742, the descriptions of which are incorporated herein by reference.

調製法の一例を以下に示す。An example of the preparation method is shown below.

式    R 一+5i−CH2+ (但し、式中のRは水素原子、低級アルキル基又はフェ
ニル基を示す)で表される主鎖骨格を有する数平均分子
量的200〜10000のポリカルボシラン、及び 式MX4 (但し、式中のMはTi又はZrを示し、Xは炭素数1
〜20個のアルコキシ基、フェノキシ基又はアセチルア
セトキシ基を示す)で表される有機金属化合物を、上記
ポリカルボシランの(Si−CHz+の構造単位の全数
対上記有機金属化合物の咲ト0←の構造単位の全数の比
率が2=1ないし200:1の範囲内となる量比に添加
し、反応に対して不活性な雰囲気中において加熱反応し
て、前記ポリカルボシランの珪素原子の少なくとも一部
を、前記有機金属化合物の金属原子と酸素原子を介して
結合させて、数平均分子量的700〜100000の有
機金属共重合体を生成させる第1工程、上記共重合体の
紡糸原液を調製し紡糸する第2工程、紡糸繊維を不融化
する第3工程、及び不融化した紡糸繊維を真空中あるい
は不活性ガス雰囲気中で800〜1500°Cの温度範
囲で焼成する第4工程からなる製造方法によって、本発
明における無機繊維を得ることができる。
A polycarbosilane having a number average molecular weight of 200 to 10,000 and having a main chain skeleton represented by the formula R 1+5i-CH2+ (wherein R represents a hydrogen atom, a lower alkyl group, or a phenyl group), and a formula MX4 (However, M in the formula represents Ti or Zr, and X has 1 carbon number.
~20 alkoxy groups, phenoxy groups, or acetylacetoxy groups) of the polycarbosilane (total number of structural units of Si-CHz+ vs. At least one of the silicon atoms of the polycarbosilane is added at a quantitative ratio such that the ratio of the total number of structural units is within the range of 2=1 to 200:1, and heated and reacted in an atmosphere inert to the reaction. a first step in which a spinning stock solution of the above-mentioned copolymer is prepared; A manufacturing method consisting of a second step of spinning, a third step of making the spun fibers infusible, and a fourth step of firing the infusible spun fibers in a vacuum or in an inert gas atmosphere at a temperature range of 800 to 1500°C. In this way, the inorganic fibers of the present invention can be obtained.

無機繊維中の各構成元素の割合は、 Si:30〜60重景%、 Ti又はZr:0.5〜35重量%、好ましくは1〜1
0重量%、 C:25〜40重景%、 0:0.01〜30重量% である。
The proportions of each constituent element in the inorganic fiber are: Si: 30 to 60% by weight, Ti or Zr: 0.5 to 35% by weight, preferably 1 to 1% by weight.
0% by weight, C: 25-40% by weight, and 0: 0.01-30% by weight.

一般に上記無機繊維の引張弾性率は20〜25t/mm
2の範囲内である。
Generally, the tensile modulus of the above inorganic fibers is 20 to 25 t/mm.
It is within the range of 2.

本発明において重要なことは、炭素繊維と無機繊維との
引張弾性率の相対値に関することである。
What is important in the present invention is the relative value of the tensile modulus of carbon fiber and inorganic fiber.

即ち、使用される炭素繊維の引張弾性率に対する無機繊
維に引張弾性率の比が0.6〜1.4、好ましくは0.
8〜1.2の範囲内になければならない。両者の弾性率
の比が上記範囲をはずれると、引張弾性率の相違のため
に、これら繊維を用いて獲られる層間ハイブリッド積層
材において、炭素繊維層と無機繊維層との間で眉間剥離
が発生しやすくなり、その結果、積層材の圧縮強度は低
いものとなる。従って、本発明においては、引張弾性率
の比が前記範囲内になるように、無機繊維及び炭素繊維
を選択することが必要である。
That is, the ratio of the tensile modulus of the inorganic fiber to the tensile modulus of the carbon fiber used is 0.6 to 1.4, preferably 0.6 to 1.4.
Must be within the range of 8 to 1.2. If the ratio of the elastic modulus of both is out of the above range, delamination between the carbon fiber layer and the inorganic fiber layer will occur in the interlayer hybrid laminate made using these fibers due to the difference in tensile modulus. As a result, the compressive strength of the laminate becomes low. Therefore, in the present invention, it is necessary to select inorganic fibers and carbon fibers so that the ratio of tensile modulus falls within the above range.

無機繊維と炭素繊維との合計に対する無機繊維の割合は
1〜80体積%、特に3〜70体積%であることが好ま
しい。上記割合が1体積%未満では積層材の圧縮強度の
改善効果が小さく、80体積%より大きいと、相対的に
炭素繊維の割合が低下し、積層材に炭素繊維の高引張強
度及び軽量性を付与しがたくなる。
The ratio of inorganic fibers to the total of inorganic fibers and carbon fibers is preferably 1 to 80% by volume, particularly 3 to 70% by volume. If the above proportion is less than 1% by volume, the effect of improving the compressive strength of the laminated material is small, and if it is greater than 80% by volume, the proportion of carbon fiber decreases relatively, and the high tensile strength and lightweight properties of carbon fiber are added to the laminated material. It becomes difficult to grant.

積層材に対する炭素繊維と無機繊維との合計割合は、通
常30〜旧0体積%、好ましくは45〜65体積%であ
る。
The total proportion of carbon fibers and inorganic fibers in the laminate is usually 30 to 0% by volume, preferably 45 to 65% by volume.

炭素繊維及び無機繊維は一方向に引き揃えた形態として
使用することが好ましいが、それぞれの繊維を織って形
成された織布(織物)の形態で使用することもできる。
Although carbon fibers and inorganic fibers are preferably used in the form of unidirectionally aligned fibers, they can also be used in the form of a woven fabric (fabric) formed by weaving the respective fibers.

また、両繊維は公知の表面処理、サイジング処理が施さ
れていてもよい。
Further, both fibers may be subjected to known surface treatment and sizing treatment.

本発明における熱硬化性樹脂については特に制限はなく
、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエス
テル樹脂、フェノール樹脂、ビスマレイミド樹脂、ポリ
イミド樹脂などが挙げられる。これらの樹脂の中でもエ
ポキシ樹脂が好んで使用される。上記エポキシ樹脂は、
ポリエポキシド、硬化剤、硬化触媒などからなる樹脂組
成物である。
The thermosetting resin in the present invention is not particularly limited, and examples include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, bismaleimide resins, and polyimide resins. Among these resins, epoxy resins are preferably used. The above epoxy resin is
It is a resin composition consisting of polyepoxide, a curing agent, a curing catalyst, etc.

ポリエポキシドとしては、例えば、ビスフェノールA、
F及びSのグリシジル化合物、クレゾールノボラック又
はフェノールノボラックのグリシジル化合物及び脂環族
ポリエポキシドなどが挙げられる。
Examples of polyepoxide include bisphenol A,
Examples include glycidyl compounds of F and S, glycidyl compounds of cresol novolak or phenol novolak, and alicyclic polyepoxides.

ポリエポキシドの別の例としては、多価フェノール、多
価アルコール又は芳香族アミンのグリシジル化合物が挙
げられる。
Other examples of polyepoxides include glycidyl compounds of polyhydric phenols, polyhydric alcohols or aromatic amines.

これらのポリエポキシドの内、ビスフェノールAのグリ
シジルエーテル、タレゾールノボラック又はフェノール
ノボラックのグリシジル化合物、ジアミノジフェニルメ
タンのグリシジル化合物、アミノフェノールのグリシジ
ル化合物が一般に使用される。また、本発明の積層材を
航空機の一次構造材料のような高機能を要求される部材
として使用する場合は、上記ポリエポキシドの中でも、
ジアミノジフェニルメタンなどの多官能アミンのグリシ
ジル化合物を使用することが好ましい。
Among these polyepoxides, the glycidyl ether of bisphenol A, the glycidyl compound of talesol novolak or phenol novolak, the glycidyl compound of diaminodiphenylmethane, and the glycidyl compound of aminophenol are generally used. In addition, when the laminate material of the present invention is used as a member requiring high functionality such as a primary structural material of an aircraft, among the above polyepoxides,
Preference is given to using glycidyl compounds of polyfunctional amines such as diaminodiphenylmethane.

本発明の積層材は、炭素繊維及び無機繊維のそれぞれに
熱硬化性樹脂を含浸したプリプレグを積層し、ついで熱
硬化性樹脂を硬化させることによって製造される。
The laminate of the present invention is manufactured by laminating prepregs in which carbon fibers and inorganic fibers are each impregnated with a thermosetting resin, and then curing the thermosetting resin.

プリプレグの調製法としては、多数本の前記繊維かなる
フィラメント糸を一方向に引き揃えて熱硬化性樹脂に挟
み込んでプリプレグとする方法、熱硬化性樹脂を含浸し
たフィラメント糸束をドラムに巻き掛けてプリプレグと
する方法、多数本のフィラメント糸を引き揃えた後に熱
硬化性樹脂のフィルム状物を溶融含浸させてプリプレグ
とする方法、織布又は不織布を熱硬化性樹脂溜まりに導
き、含浸、乾燥してプリプレグとする方法、熱硬化性樹
脂製のシート状物を織布又は不織布に溶融含浸させてプ
リプレグとする方法などの、それ自体公知の方法を適宜
採用することができる。
Methods for preparing prepreg include a method in which a large number of filament threads made of the above-mentioned fibers are aligned in one direction and sandwiched between thermosetting resins to make a prepreg, and a bundle of filament threads impregnated with thermosetting resin is wound around a drum. A method of preparing prepreg by pulling a large number of filament threads together and then melting and impregnating them with a thermosetting resin film. A method of introducing a woven or nonwoven fabric into a thermosetting resin reservoir, impregnating it, and drying it. Methods known per se can be appropriately employed, such as a method of preparing a prepreg by melting and impregnating a sheet-like material made of a thermosetting resin into a woven or nonwoven fabric.

プリプレグを積層する方法については特に制限はなく、
ハンドレイアップ法、自動レイアップなどの公知の方法
をすべて採用することができる。
There are no particular restrictions on the method of laminating prepreg.
All known methods such as hand layup method and automatic layup method can be employed.

積層形態は通常よく行われる対称積層、非対称積層、逆
対称積層などのいずれであってもよい。また、積層順序
についても特に制限はなく、任意の繰り返し厚みを用い
ることができる。
The lamination form may be any of the commonly practiced symmetrical lamination, asymmetrical lamination, reverse symmetrical lamination, etc. Further, there is no particular restriction on the lamination order, and any repeating thickness can be used.

プリプレグの積層物から積層材を形成する方法はなんら
制限されるものではなく、減圧バック/オートクレーブ
硬化法、ホットプレス成形法、シートワインディング法
、シートラッピング法、テープワインディング法、テー
プラッピング法などの公知の方法を適宜採用することが
できる。
The method of forming a laminate from a prepreg laminate is not limited in any way, and may include known methods such as vacuum bag/autoclave curing method, hot press molding method, sheet winding method, sheet wrapping method, tape winding method, tape wrapping method, etc. The following methods can be adopted as appropriate.

硬化温度、硬化圧力、硬化時間などの硬化条件は、使用
される熱硬化性樹脂によって決定される。
Curing conditions such as curing temperature, curing pressure, and curing time are determined by the thermosetting resin used.

例えば、熱硬化性樹脂としてエポキシ樹脂を使用する場
合の一般的硬化温度は100〜250’C。
For example, when using an epoxy resin as the thermosetting resin, the general curing temperature is 100 to 250'C.

好ましくは120〜200°Cである。また、プレキュ
ア−あるいはポストキュアーも適宜行うことができる。
Preferably it is 120-200°C. Moreover, pre-cure or post-cure can be performed as appropriate.

本発明の眉間ハイブリッド積層材は、板、パイプなどの
単純な形状の製品の他に、曲面あるいは凹凸を有する種
々の大きさの三次元形状の製品を再現性よく容易に与え
ることができる。
The glabellar hybrid laminate material of the present invention can be easily produced with good reproducibility into products with three-dimensional shapes of various sizes having curved surfaces or irregularities, in addition to products with simple shapes such as plates and pipes.

(実施例) 以下に実施例及び比較例を示す。各側における眉間ハイ
ブリッド積層材の物性は以下の試験片について、オリエ
ンチック■製のテンシロンUTM5Tを用い、温度23
°C1相対湿度50%の条件下に繊維の長さ方向に各1
0回測定した。曲げ試験はスパン/幅=32における三
点曲げ試験である。
(Example) Examples and comparative examples are shown below. The physical properties of the glabellar hybrid laminate on each side were measured using Tensilon UTM5T manufactured by Orientic ■ at a temperature of 23°C for the following test pieces.
1 each along the length of the fiber under conditions of 50% relative humidity at °C1.
Measured 0 times. The bending test is a three-point bending test at span/width=32.

−5    立:胴  試験速度 ■張試験  12.7 200  1.5 2  mm
7分圧縮試験  10   60  2  0.5mm
/分曲げ試験  12.7  85  2  2mm/
分積層材の繊維体積含有率(Vf)はASTMD317
1に従って測定した。その単位は体積%である。
-5 Vertical: Torso Test speed ■Tension test 12.7 200 1.5 2 mm
7 minute compression test 10 60 2 0.5mm
/min bending test 12.7 85 2 2mm/
The fiber volume content (Vf) of the fractionally laminated material is ASTM D317
Measured according to 1. Its unit is volume %.

以下において部はすべて重量部である。In the following, all parts are by weight.

実施例1 ビスフェノールA型エポキシ樹脂(チバガイギー社製、
XB2879A)100部及びジシアンジアミド硬化剤
(チバガイギー社製、XB2879B)20部を均一に
混合した後に、混合物を重量比で1:1のメチルセロソ
ルブとアセトンとの混合溶媒に溶解して、上記混合物の
28重景%溶液を調製した。
Example 1 Bisphenol A epoxy resin (manufactured by Ciba Geigy,
After uniformly mixing 100 parts of XB2879A) and 20 parts of a dicyandiamide curing agent (manufactured by Ciba Geigy, XB2879B), the mixture was dissolved in a mixed solvent of methyl cellosolve and acetone at a weight ratio of 1:1 to obtain 28 parts of the above mixture. A % weight solution was prepared.

炭素繊維(東邦レーヨン■製、ベスファイトHTA60
00:引張弾性率24 t /+nm2、比重1゜77
)に上記溶液を含浸した後に、ドラムワインダーを用い
て一方向に巻き取り、熱風循環オーブン中100°Cで
14分間加熱することによって、半硬化状態の一方向引
揃え炭素繊維プリプレグを調製した。このプリプレグの
樹脂含有量は38重量%、厚みは0.2 mmであった
Carbon fiber (manufactured by Toho Rayon ■, Besphite HTA60
00: Tensile modulus 24t/+nm2, specific gravity 1°77
) was impregnated with the above solution, then wound in one direction using a drum winder and heated in a hot air circulation oven at 100°C for 14 minutes to prepare a semi-cured unidirectionally aligned carbon fiber prepreg. This prepreg had a resin content of 38% by weight and a thickness of 0.2 mm.

Si、Ti、C及び0からなる無機繊維(宇部興産■製
、チラノ繊維:引張弾性率21 t /mm”、比重2
.35 )を用いて上記と同様にして、半硬化状態の一
方向引揃えチラノ繊維プリプレグを調製した。このプリ
プレグの樹脂含有量は30重量%、厚みは0.2 mm
であった。
Inorganic fiber consisting of Si, Ti, C and 0 (manufactured by Ube Industries, Tyranno fiber: tensile modulus 21 t/mm", specific gravity 2
.. A unidirectionally aligned tyranno fiber prepreg in a semi-cured state was prepared using 35) in the same manner as above. The resin content of this prepreg is 30% by weight, and the thickness is 0.2 mm.
Met.

上記2種類のプリプレグを用いて、第1表に示す構成で
一方向に重ね合わせ、130°C111kg/dで90
分間プレス成形することによって、250mmX250
mmの大きさの一方向層間ハイブリッド積層材を製造し
た。この積層材から各種試験片をダイアモンド鋸を用い
て切り出し試験に供した。結果を第2表に示す。
Using the above two types of prepregs, overlap them in one direction with the configuration shown in Table 1, and
By press forming for 250mm x 250mm
A unidirectional interlayer hybrid laminate with a size of mm was produced. Various test pieces were cut out from this laminated material using a diamond saw and subjected to tests. The results are shown in Table 2.

実施例2 積層構成を第1表に記載のように変えた以外は実施例1
と同様の方法を繰り返した。結果を第2表に示す。
Example 2 Example 1 except that the laminated structure was changed as shown in Table 1.
The same method was repeated. The results are shown in Table 2.

実施例3 チラノ繊維プリプレグの厚みを0.15nnnに変えた
以外は実施例2と同様の方法を繰り返した。結果を第2
表に示す。
Example 3 The same method as Example 2 was repeated except that the thickness of the tyranno fiber prepreg was changed to 0.15 nnn. Second result
Shown in the table.

実施例4 チラノ繊維プリプレグの厚みを0.1mmに変えた以外
は実施例2と同様の方法を繰り返した。結果を第2表に
示す。
Example 4 The same method as Example 2 was repeated except that the thickness of the tyranno fiber prepreg was changed to 0.1 mm. The results are shown in Table 2.

比較例1 炭素繊維として、引張弾性率42 t 7mm2、比重
1.83の炭素繊維(東邦レーヨン■製、ベスファイ)
HM40)を使用した以外は実施例1と同様の方法を繰
り返した。結果を第2表に示す。
Comparative Example 1 As carbon fiber, carbon fiber with tensile modulus of elasticity 42t 7mm2 and specific gravity 1.83 (manufactured by Toho Rayon ■, Besphi)
The same method as in Example 1 was repeated except that HM40) was used. The results are shown in Table 2.

比較例2 炭素繊維として比較例1で用いた炭素繊維を使用した以
外は実施例2と同様の方法を繰り返した。
Comparative Example 2 The same method as in Example 2 was repeated except that the carbon fiber used in Comparative Example 1 was used as the carbon fiber.

結果を第2表に示す。The results are shown in Table 2.

比較例3 チラノ繊維プリプレグを使用しなかった以外は実施例1
を同様の方法を繰り返した。結果を第2表に示す。
Comparative Example 3 Example 1 except that tyranno fiber prepreg was not used
The same method was repeated. The results are shown in Table 2.

第  1  表 引張弾性  T割合  構  成 率勿ルー 」左債X月 実施例1  0.9    31   TCTCCCC
TCTN  2  0.9    13  ’ TCC
CCCCCCT〃3  0.9    10   TC
CCCCCCCT”  4  0.9     6  
 TCCCCCCCCT比較例1  0.5    3
1   TCTCCCCTCT〃2  0.5    
13   TCCCCCCCCT//  3  −  
    OCCCCCCCCCC第1表の構成の欄にお
いて、Tはチラノ繊維層を示し、Cは炭素繊維層を示す
Table 1 Tensile Elasticity T Ratio Composition Ratio "Left Bond X Month Example 1 0.9 31 TCTCCCC
TCTN 2 0.9 13' TCC
CCCCCCT〃3 0.9 10 TC
CCCCCCCT" 4 0.9 6
TCCCCCCCCCT Comparative Example 1 0.5 3
1 TCTCCCCT〃2 0.5
13 TCCCCCCCCCT // 3 -
OCCCCCCCCCCC In the structure column of Table 1, T indicates a tyranno fiber layer, and C indicates a carbon fiber layer.

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維及び実質的にSi、Ti又はZr、C及びOの
各元素から構成される無機繊維のそれぞれに熱硬化性樹
脂を含浸させたプリプレグを積層して製造される層間ハ
イブリッド積層材において、前記炭素繊維の引張弾性率
に対する前記無機繊維の引張弾性率の比が0.6〜1.
4の範囲内にあることを特徴とする層間ハイブリッド積
層材。
In the interlayer hybrid laminate material manufactured by laminating prepregs in which carbon fibers and inorganic fibers substantially composed of Si, Ti, or each element of Zr, C, and O are impregnated with a thermosetting resin, the above-mentioned The ratio of the tensile modulus of the inorganic fiber to the tensile modulus of the carbon fiber is 0.6 to 1.
An interlayer hybrid laminate material characterized by being within the range of 4.
JP62305591A 1987-12-04 1987-12-04 Interlaminar hybrid laminated material Pending JPH01148545A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62305591A JPH01148545A (en) 1987-12-04 1987-12-04 Interlaminar hybrid laminated material
KR1019880016114A KR930009294B1 (en) 1987-12-04 1988-12-03 Interply-hybridized laminated material
EP88311494A EP0319346A3 (en) 1987-12-04 1988-12-05 Interply-hybridized laminated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305591A JPH01148545A (en) 1987-12-04 1987-12-04 Interlaminar hybrid laminated material

Publications (1)

Publication Number Publication Date
JPH01148545A true JPH01148545A (en) 1989-06-09

Family

ID=17946983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305591A Pending JPH01148545A (en) 1987-12-04 1987-12-04 Interlaminar hybrid laminated material

Country Status (1)

Country Link
JP (1) JPH01148545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812673A2 (en) * 1996-06-13 1997-12-17 Fuji Jukogyo Kabushiki Kaisha Cylindrical article made of fiber reinforced plastic material and method for its manufacture
CN113043502A (en) * 2021-05-11 2021-06-29 湖北三江航天红阳机电有限公司 W-shaped cabin section forming tool and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658852A (en) * 1979-10-18 1981-05-22 Mitsubishi Heavy Ind Ltd Tabular molding blank for structure
JPS5750326A (en) * 1980-09-06 1982-03-24 Ibm Substrate for magnetic disc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658852A (en) * 1979-10-18 1981-05-22 Mitsubishi Heavy Ind Ltd Tabular molding blank for structure
JPS5750326A (en) * 1980-09-06 1982-03-24 Ibm Substrate for magnetic disc

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0812673A2 (en) * 1996-06-13 1997-12-17 Fuji Jukogyo Kabushiki Kaisha Cylindrical article made of fiber reinforced plastic material and method for its manufacture
EP0812673A3 (en) * 1996-06-13 1999-05-12 Fuji Jukogyo Kabushiki Kaisha Cylindrical article made of fiber reinforced plastic material and method for its manufacturing
CN113043502A (en) * 2021-05-11 2021-06-29 湖北三江航天红阳机电有限公司 W-shaped cabin section forming tool and method

Similar Documents

Publication Publication Date Title
KR100554969B1 (en) Fiber material partially impregnated with a resin
KR102006511B1 (en) Composite laminate having improved impact strength and the use thereof
TWI447028B (en) Prepreg,fiber-reinforced composite material and method for manufacturing prepreg
JP5158778B2 (en) Epoxy resin impregnated yarn and its use for producing preforms
EP2935421B1 (en) Fast cure epoxy resin systems
JPS627737A (en) Hybrid fiber-reinforced plastic composite material
JP2008088276A (en) Partially impregnated prepreg and method for producing fiber-reinforced composite material by using the same
EP0326409B1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
EP3197933B1 (en) Fast curing compositions
JP6637503B2 (en) Epoxy resin composition for composite materials
JPH10231372A (en) Prepreg and its production
JPH01148545A (en) Interlaminar hybrid laminated material
GB2508078A (en) Non-woven moulding reinforcement material
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
KR930009294B1 (en) Interply-hybridized laminated material
JPH01148546A (en) Fiber-reinforced resin laminated material
JPH0812861A (en) Epoxy resin composition and prepreg
GB2509616A (en) A fast cure epoxy resin formulation
JP2006274110A (en) Prepreg and fiber-reinforced composite material
JPH01148547A (en) Symmetric hybrid laminated material
JPH01193326A (en) Unidirectional hybrid prepreg and laminated material
JPH0820654A (en) Epoxy resin composition and prepreg using the same
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
JPH01192841A (en) Hybrid yarn
JP2007262355A (en) Impact-resistant prepreg and manufacturing method thereof