JP5280982B2 - Fiber reinforced composite material - Google Patents

Fiber reinforced composite material Download PDF

Info

Publication number
JP5280982B2
JP5280982B2 JP2009242821A JP2009242821A JP5280982B2 JP 5280982 B2 JP5280982 B2 JP 5280982B2 JP 2009242821 A JP2009242821 A JP 2009242821A JP 2009242821 A JP2009242821 A JP 2009242821A JP 5280982 B2 JP5280982 B2 JP 5280982B2
Authority
JP
Japan
Prior art keywords
fiber
resin
composite material
reinforced composite
aromatic polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009242821A
Other languages
Japanese (ja)
Other versions
JP2011088335A (en
Inventor
美帆子 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009242821A priority Critical patent/JP5280982B2/en
Publication of JP2011088335A publication Critical patent/JP2011088335A/en
Application granted granted Critical
Publication of JP5280982B2 publication Critical patent/JP5280982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、繊維強化複合材料に関し、例えば自動車、電車、船舶、航空機などの輸送機械における天井、床、側壁、ボンネット、その他スポーツ用品や日用品等に適した、軽量且つ耐衝撃性に優れた繊維強化複合材料に関する。   The present invention relates to a fiber-reinforced composite material, for example, a lightweight and excellent impact-resistant fiber suitable for ceilings, floors, side walls, bonnets, other sports equipment, daily necessities, and the like in transport machines such as automobiles, trains, ships, and aircraft. It relates to a reinforced composite material.

ガラス繊維や炭素繊維などの強化繊維で強化した繊維強化複合材料は、軽量で剛性が高く、また強度も優れているので、スポーツ用品、自動車産業、航空機産業、建材などにおいて幅広く使用されている。例えば、テニスラケットにおいては重量当たりの面積を大きくできることから、またゴルフクラブシャフトにおいては軽量でありかつシャフトの剛性設計自由度が大きく、ゴルファーのレベルに合わせたしなり具合の設計ができるため、このような繊維強化複合材料が好んで用いられている。また、以前から軽量・高剛性のメリットが大きい航空機構造材料や人工衛星やロケットの構造部材としても使用されている。   Fiber reinforced composite materials reinforced with reinforcing fibers such as glass fibers and carbon fibers are widely used in sports equipment, the automobile industry, the aircraft industry, building materials and the like because they are lightweight, have high rigidity, and have excellent strength. For example, a tennis racket can have a large area per weight, and a golf club shaft is lightweight and has a high degree of freedom in rigidity design of the shaft, and can be designed flexibly according to the level of the golfer. Such fiber reinforced composite materials are preferably used. It has also been used as a structural material for aircraft structural materials and satellites and rockets, which have great advantages in terms of lightweight and high rigidity.

最近では用途展開が拡がるにつれ、剛性・強度といった特性だけでなく、軽量かつ耐衝撃性を高めた材料が求められている。しかしながら、ガラス繊維強化複合材料は、無機繊維の中でも比較的高重量であるため大型化には限界があり、衝撃に対して脆くクラック伝播をおこして完全破壊に到りやすい。また、炭素繊維強化複合材料は、強化繊維の弾性が高いため材料が割れ易く、破壊に至った際に材料が飛散する等の問題点がある。   Recently, as the application development has expanded, not only properties such as rigidity and strength, but also materials that are lightweight and have improved impact resistance are required. However, since the glass fiber reinforced composite material is relatively heavy among inorganic fibers, there is a limit to the increase in size, and the glass fiber reinforced composite material is brittle with respect to impact and easily propagates to cracks and easily breaks down. In addition, the carbon fiber reinforced composite material has a problem that the material is easily broken because the elasticity of the reinforcing fiber is high, and the material is scattered when it breaks.

かかる事情より、耐衝撃性を改良した繊維強化複合材料として、ハニカム構造体の両面に繊維強化複合材を配置した積層構造体(特許文献1)や、金属板と繊維強化樹脂組成物が発泡樹脂組成物を介して接合されている金属樹脂複合構造体(特許文献2)が提案されているが、これら手法によれば耐衝撃性の一定の改善が認められるものの、その性能は十分ではない。   Under such circumstances, as a fiber reinforced composite material with improved impact resistance, a laminated structure (Patent Document 1) in which fiber reinforced composite materials are arranged on both sides of a honeycomb structure, or a metal plate and a fiber reinforced resin composition are foamed resins. A metal-resin composite structure (Patent Document 2) bonded through a composition has been proposed. Although these techniques show a certain improvement in impact resistance, the performance is not sufficient.

一方、芳香族ポリアミド繊維や超高分子量ポリエチレン繊維などの高強度、高弾性率の有機高分子繊維を補強材とする繊維強化複合材料は、耐衝撃性が優れているものの、剛性が不足しており、用途が著しく限定されている。そこで、有機繊維にガラス繊維を併用した複合材料を用いることが考えられるが、それでも、有機繊維の持つ軽量性の特徴が生かされず、剛性も低下することになる。このため、軽量性を保持しながら、耐衝撃性と剛性も兼ね備えた繊維強化複合材料が望まれている。   On the other hand, fiber reinforced composite materials using high-strength, high-modulus organic polymer fibers such as aromatic polyamide fibers and ultrahigh molecular weight polyethylene fibers as a reinforcing material have excellent impact resistance but lack rigidity. And uses are significantly limited. Therefore, it is conceivable to use a composite material in which glass fibers are used in combination with organic fibers. However, the light weight characteristics of organic fibers are not utilized, and rigidity is also lowered. For this reason, a fiber reinforced composite material having both impact resistance and rigidity while maintaining light weight is desired.

特開2007−215328号公報JP 2007-215328 A 特開2007−196545号公報JP 2007-196545 A

本発明の目的は、上述した従来技術における問題点に鑑み、有機繊維が本来持つ軽量性を損なうことなく、剛性と耐衝撃性を兼ね備えた繊維強化複合材料を提供することにある。   An object of the present invention is to provide a fiber-reinforced composite material that has both rigidity and impact resistance without impairing the lightness inherent in organic fibers in view of the above-described problems in the prior art.

本発明者らは、上記課題を解決するために鋭意検討した結果、強化繊維とマトリクス樹脂とからなる繊維強化複合材料であって、該強化繊維が、単繊維繊度が10〜45dtex、結晶化度が55〜70%の芳香族ポリアミド繊維であることを特徴とする繊維強化複合材料により上記課題を解決できることを見出し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a fiber-reinforced composite material composed of a reinforcing fiber and a matrix resin, and the reinforcing fiber has a single fiber fineness of 10 to 45 dtex, a crystallinity degree. The present inventors have found that the above-mentioned problems can be solved by a fiber-reinforced composite material characterized by being 55 to 70% aromatic polyamide fiber.

本発明の繊維強化複合材料は、繊維繊度が10〜45dtex、結晶化度が55〜70%の芳香族ポリアミド繊維により補強されていることによって、軽量で、しかも優れた剛性及び耐衝撃性とを同時に兼ね備えている。   The fiber-reinforced composite material of the present invention is light and yet has excellent rigidity and impact resistance by being reinforced with aromatic polyamide fibers having a fiber fineness of 10 to 45 dtex and a crystallinity of 55 to 70%. Have both at the same time.

以下、本発明の実施の形態について詳細に説明する。本発明の繊維強化複合材料は、強化繊維とマトリクス樹脂とからなる繊維強化複合材料であって、該強化繊維が、芳香族ポリアミド繊維である。   Hereinafter, embodiments of the present invention will be described in detail. The fiber-reinforced composite material of the present invention is a fiber-reinforced composite material composed of reinforcing fibers and a matrix resin, and the reinforcing fibers are aromatic polyamide fibers.

本発明の構成する芳香族ポリアミドは、芳香族ジカルボン酸、芳香族ジアミン、芳香族アミノカルボン酸などを、カルボキシル基とアミノ基とが略等モルとなる割合で重縮合して得られるもので、かつ延鎖結合が共軸又は平行であり且つ反対方向に向いているポリアミドである。本発明においては、パラ型全芳香族ポリアミド繊維が好ましく、さらに具体的には、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン・3,4’−オキシジフェニレンテレフタルアミド繊維等を例示することができ、特に共重合型である後者は、複合材料とした時の機械的強度、特に衝撃強度が高く好ましい。   The aromatic polyamide constituting the present invention is obtained by polycondensation of aromatic dicarboxylic acid, aromatic diamine, aromatic aminocarboxylic acid, etc. at a ratio such that the carboxyl group and amino group are approximately equimolar, And polyamides whose chain bonds are coaxial or parallel and oriented in opposite directions. In the present invention, para-type wholly aromatic polyamide fibers are preferable, and more specifically, polyparaphenylene terephthalamide fibers, copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fibers and the like can be exemplified. In particular, the latter, which is a copolymer type, is preferable because of its high mechanical strength, particularly impact strength, when a composite material is used.

本発明においては、上記の芳香族ポリアミド繊維が、単繊維繊度が10〜45dtex、結晶化度が55〜70%のであることが肝要である。これにより、剛性と耐衝撃性を同時に兼ね備えた複合材料とするができる。以下、さらに詳細に述べる。   In the present invention, it is important that the aromatic polyamide fiber has a single fiber fineness of 10 to 45 dtex and a crystallinity of 55 to 70%. Thereby, it can be set as the composite material which has rigidity and impact resistance simultaneously. The details will be described below.

本発明においては、芳香族ポリアミド繊維の単繊維繊度は10〜45dtexとする。複合材料の剛性を高くしようとすれば、一般にはこれを補強する繊維に、高倍率で延伸した単繊維繊度が5dtex以下の高強度、高弾性率繊維を採用することが考えられる。しかし、われわれが検討を行った結果、単繊維繊度を10dtexよりも細くすると、複合材料としたときの剛性が小さくなるだけでなく、例えば、一方向強化プリプレグを作製する時に糸条を開繊させる場合や、樹脂含浸性を良くするため扁平化した糸条で織物を成形する場合、わずかな負荷でも繊維が毛羽立ちや単糸切れが発生したり、開繊性が低下したりするため、著しく成形性を阻害することがわかった。一方、単繊維繊度45dtexよりも太くなると、同じ総重量の繊維を用いた場合、複合材料内の繊維構成本数が少なくなるため繊維補強部分が不均一になり、部分的に十分な補強効果を得られなくなる。また、従来、このように太い単繊維繊度を有する芳香族ポリアミド繊維は一般的でなく、ましてや複合材料用途の応用することは提案されていないのが実情である。   In the present invention, the single fiber fineness of the aromatic polyamide fiber is 10 to 45 dtex. In order to increase the rigidity of the composite material, it is generally considered to employ a high-strength, high-modulus fiber having a single fiber fineness of 5 dtex or less drawn at a high magnification as a fiber for reinforcing the composite material. However, as a result of our investigation, if the single fiber fineness is made thinner than 10 dtex, not only the rigidity when the composite material is made is reduced, but also, for example, when the unidirectional reinforced prepreg is produced, the yarn is opened. When forming fabrics with flattened yarns to improve resin impregnation, the fibers may become fuzzy or single yarn breakage may occur even with a slight load, and the openability may be reduced. It was found to inhibit sex. On the other hand, when the fiber is thicker than the single fiber fineness of 45 dtex, when the fibers having the same total weight are used, the number of fiber components in the composite material is reduced, so that the fiber reinforced portion becomes non-uniform and a sufficient reinforcing effect is partially obtained. It becomes impossible. Conventionally, aromatic polyamide fibers having such a thick single fiber fineness are not common, and moreover, it is actually not proposed to apply them for composite materials.

さらに本発明においては、芳香族ポリアミド繊維の結晶化度を55〜70%、好ましくは57〜63%とする必要がある。結晶化度が55%よりも小さいと、繊維が軟らかすぎて十分な補強効果が得ることができない。一方、結晶化度が70%より大きいと、繊維が硬く脆くなり割れてしまい、耐衝撃性に劣る。   Furthermore, in the present invention, the degree of crystallinity of the aromatic polyamide fiber needs to be 55 to 70%, preferably 57 to 63%. If the degree of crystallinity is less than 55%, the fiber is too soft to obtain a sufficient reinforcing effect. On the other hand, if the degree of crystallinity is greater than 70%, the fiber becomes hard and brittle and cracks, resulting in poor impact resistance.

本発明において、上記繊度と結晶化度を同時に有する芳香族ポリアミド繊維は、芳香族ポリアミドポリマーを溶媒に溶解したドープを、紡糸口金から吐出し、エアーギャップを介して溶媒水溶液中に紡出し、その後、さらに複数槽の濃度勾配を設けた脱溶媒槽で脱溶媒した後、1.2〜1.4倍に延伸させながら乾燥し、次いで、450〜550℃で8〜15倍に延伸した後、巻き取ることにより製造することができる。   In the present invention, the aromatic polyamide fiber having the fineness and the crystallinity at the same time is prepared by discharging a dope obtained by dissolving an aromatic polyamide polymer in a solvent from a spinneret and spinning it into an aqueous solvent solution through an air gap. In addition, after removing the solvent in a solvent removal tank provided with a concentration gradient of a plurality of tanks, drying while stretching 1.2 to 1.4 times, and then stretching 8 to 15 times at 450 to 550 ° C., It can be manufactured by winding.

本発明において、強化繊維は、長繊維フィラメントまたは短繊維からなる繊維構造体の形状を有していることが好ましい。特に長繊維フィラメントとして用いる場合は、強化繊維の強度を十分に活用することができる点で好ましく、無撚のマルチフィラメントを用いることが好ましい。一方、補強形態によっては、短繊維として用いる方が適している場合もある。   In the present invention, the reinforcing fiber preferably has a shape of a fiber structure composed of long fiber filaments or short fibers. In particular, when it is used as a long fiber filament, it is preferable in that the strength of the reinforcing fiber can be sufficiently utilized, and it is preferable to use a non-twisted multifilament. On the other hand, depending on the form of reinforcement, it may be more suitable to use as a short fiber.

長繊維フィラメントとして用いる場合は、繊維構造体は、織物、不織布、編物、一方向に引き揃えられた繊維集合体であることが好ましい。たとえば、織物の場合は、平織、平織バスケット織、綾織、朱子織、簾織、あるいは3軸織、4軸織、あるいは3次元織など何れのものであってもかまわない。また、不織布の場合は、ニードルパンチ不織布、ウォータージェットパンチ不織布、スパンボンド不織布などを使用することができる。   When used as a long fiber filament, the fiber structure is preferably a woven fabric, a nonwoven fabric, a knitted fabric, or a fiber assembly aligned in one direction. For example, in the case of a woven fabric, any of a plain weave, a plain weave basket weave, a twill weave, a satin weave, a cocoon weave, a triaxial weave, a tetraaxial weave, or a three-dimensional weave may be used. Moreover, in the case of a nonwoven fabric, a needle punch nonwoven fabric, a water jet punch nonwoven fabric, a spunbond nonwoven fabric, etc. can be used.

一方、短繊維として用いる場合は、繊維構造体は、不織布、紙、あるいは紡績糸として、織物、不織布、編物、一方向に引き揃えられた繊維集合体として用いることができる。織物および不織布の種類としは、上記長繊維フィラメントと同様のものを採用することができる。   On the other hand, when used as a short fiber, the fiber structure can be used as a nonwoven fabric, paper, or spun yarn as a woven fabric, a nonwoven fabric, a knitted fabric, or a fiber assembly aligned in one direction. As the kind of the woven fabric and the non-woven fabric, those similar to the above-mentioned long fiber filament can be employed.

上記繊維構造体は、多層積層して用いられるのが一般的である。繊維構造体の厚みは、特に限定されるものではなく、通常0.1〜2mmである。また該繊維構造体の目付については100g/m未満のものを用いた場合は、必要な剛性を持たせるために積層枚数を多くしなければならず、そのため工程数が多くなって作業性が悪くなる。一方目付が500g/mを越える場合は、布帛が嵩高くなって樹脂含浸性が悪くなる。従って上記繊維構造体の目付は100〜500g/mの範囲のものが好ましい。 The fiber structure is generally used by being laminated in multiple layers. The thickness of the fiber structure is not particularly limited, and is usually 0.1 to 2 mm. In addition, when a fabric structure having a basis weight of less than 100 g / m 2 is used, it is necessary to increase the number of laminated layers in order to provide the necessary rigidity. Deteriorate. On the other hand, if the basis weight exceeds 500 g / m 2 , the fabric becomes bulky and the resin impregnation property is deteriorated. Accordingly, the basis weight of the fiber structure is preferably in the range of 100 to 500 g / m 2 .

繊維強化複合材料における繊維含有体積比率Vfは40〜90%が好ましく、50〜80%がより好ましい。Vfが90%を越えると層間の密着力が弱くプレス成形機からの取り出しなどの取り扱い時あるいは切断等の二次加工の際に、はく離が生じるおそれがある。一方、Vfが40%未満ではプレスによる成形で繊維構造体から樹脂が流出し実質的に40%と変わらない結果となる。   The fiber-containing volume ratio Vf in the fiber-reinforced composite material is preferably 40 to 90%, and more preferably 50 to 80%. If Vf exceeds 90%, the adhesion between the layers is weak, and there is a risk of peeling during handling such as removal from the press molding machine or during secondary processing such as cutting. On the other hand, if Vf is less than 40%, the resin flows out of the fiber structure by molding by pressing, and the result is substantially unchanged from 40%.

一方、本発明に用いるマトリックス樹脂は、熱硬化樹脂であっても、熱可塑性樹脂であってもかまわない。
上記熱硬化性樹脂には特に制限はなく、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、ウレタン樹脂、ジアリルフタレート樹脂、ビスマレイミドトリアジン樹脂、シアネートエステル樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、シリコーン樹脂等が挙げられる。これらは共重合体、変性体、あるいは2種以上の樹脂を混合した樹脂であってもよい。
On the other hand, the matrix resin used in the present invention may be a thermosetting resin or a thermoplastic resin.
There is no particular limitation on the thermosetting resin, epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin, urethane resin, diallyl phthalate resin, bismaleimide triazine resin, cyanate ester resin, polyphenylene ether resin, polyimide resin, A silicone resin etc. are mentioned. These may be copolymers, modified products, or resins in which two or more resins are mixed.

上記熱可塑性樹脂においても特に制限はなく、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリオキシメチレン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリアクリレート樹脂、ポリフェニレンサルファイド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリアクリル樹脂、ポリケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、アクリロニトリル−ブタジエン−スチレン樹脂、ポリアミドイミド樹脂、フッ素系樹脂、上記のエラストマー樹脂等が挙げられる。これらは同様に共重合体、変性体、あるいは2種以上の樹脂を混合した樹脂であってもよい。   There is no particular limitation on the thermoplastic resin, and polyethylene resin, polypropylene resin, polybutylene resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polytrimethylene terephthalate resin, polyethylene naphthalate resin, polyarylate resin, polystyrene resin, polyvinyl alcohol resin. , Polyphenylene oxide resin, polyphenylene ether resin, polyamide resin, polyoxymethylene resin, polycarbonate resin, polyurethane resin, polyvinyl chloride resin, polyacrylate resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyacrylic resin, polyketone Resin, polyetheretherketone resin, polyimide resin, polyetherimide resin, acrylonitrile Le - butadiene - styrene resin, a polyamide imide resin, fluorine resin, said elastomer resins. These may similarly be copolymers, modified products, or resins in which two or more resins are mixed.

また、上記の熱硬化性樹脂と熱可塑性樹脂は複合してもよい。あるいは上記樹脂中に、難燃剤、耐光剤、紫外線吸収剤、平滑剤、帯電防止剤、酸化防止剤、離型剤、可塑剤、着色剤、抗菌剤、顔料、導電剤、シランカップリング剤、無機系コーティング剤など機能剤を包含していても良い。   The thermosetting resin and the thermoplastic resin may be combined. Or in the above resin, flame retardant, light resistance agent, ultraviolet absorber, smoothing agent, antistatic agent, antioxidant, mold release agent, plasticizer, colorant, antibacterial agent, pigment, conductive agent, silane coupling agent, A functional agent such as an inorganic coating agent may be included.

以上に説明した本発明の繊維強化複合材料の製造方法としては、ハンドレイアップ法、圧縮成形法などを公知の方法を採用することができ、目的とする形状や、熱硬化性樹脂や熱可塑性樹脂といったマトリックス樹脂の種類に応じて最適な成形方法を適用すれば良い。特に圧縮成形法が好ましく、繊維表面に付着した接着剤成分との化学結合を促進させ、強化繊維、特に織物や不織布などの布帛や一方向に引き揃えた繊維集合体とマトリックス樹脂との接着性向上をより効果的に発現させることができる。   As the method for producing the fiber-reinforced composite material of the present invention described above, a known method such as a hand lay-up method or a compression molding method can be adopted, and the target shape, thermosetting resin or thermoplasticity can be used. An optimal molding method may be applied depending on the type of matrix resin such as resin. The compression molding method is particularly preferable, promotes chemical bonding with the adhesive component adhering to the fiber surface, and adheres to reinforcing fibers, especially fabrics such as woven fabrics and non-woven fabrics, and fiber aggregates arranged in one direction and matrix resin. Improvement can be expressed more effectively.

さらに、具体的には強化繊維からなる繊維構造体に前記樹脂を含浸、塗布またはラミネートしたシート状プリプレグを用い、積層成形した積層板とすることができる。この際、積層板は、プリプレグを内部に含まれる強化繊維の向きが互いに直交するようにして積層して構成することができる。熱硬化性樹脂の場合、前記強化繊維に熱硬化性樹脂を溶剤に溶解した樹脂組成物を調製し、それを含浸又は塗布後、バーコーターやクリアランスロールなどを用いて余分な樹脂組成物を掻き取ってプリプレグを作製し、このプリプレグを複数枚重ねて積層板とし、加熱加圧する圧縮成形法、あるいはプリプレグを作らないハンドレイアップ法などがある。   Furthermore, it can be set as the laminated board which carried out the lamination | stacking using the sheet-like prepreg which specifically impregnated, apply | coated or laminated the said resin to the fiber structure which consists of a reinforced fiber. At this time, the laminate can be configured by laminating prepregs so that the directions of the reinforcing fibers contained therein are orthogonal to each other. In the case of a thermosetting resin, a resin composition is prepared by dissolving a thermosetting resin in a solvent in the reinforcing fiber, and after impregnating or applying the resin composition, the excess resin composition is scraped using a bar coater or a clearance roll. A prepreg is prepared, and a plurality of prepregs are stacked to form a laminated plate, and a compression molding method in which heat and pressure are applied, or a hand lay-up method in which no prepreg is produced.

一方、熱可塑性樹脂の場合、強化繊維と熱可塑性樹脂フィルムとを交互に複数枚重ね合わせて加熱、加圧する圧縮成形法や、樹脂を予め溶融しておき、その樹脂を強化繊維に付着させる方法も採用することができる。   On the other hand, in the case of a thermoplastic resin, a compression molding method in which a plurality of reinforcing fibers and thermoplastic resin films are alternately stacked and heated and pressed, or a method in which the resin is previously melted and the resin is adhered to the reinforcing fibers Can also be adopted.

本発明の繊維強化複合材料は、強化繊維である芳香族ポリアミド繊維に太繊度でありながら結晶化度を向上させた繊維を用いることにより、複合材料を目的の用途で使用する際に受ける外力によっても単繊維が変形しにくいため、強化繊維とマトリックス樹脂との密着が維持され、それにより機械的強度が高く、且つ耐衝撃性に優れた繊維強化複合材料を提供することができる。   The fiber-reinforced composite material of the present invention uses a fiber having a high fineness and improved crystallinity for the aromatic polyamide fiber, which is a reinforcing fiber, so that an external force applied when the composite material is used for the intended application is used. However, since the single fiber is not easily deformed, the adhesion between the reinforcing fiber and the matrix resin is maintained, whereby a fiber-reinforced composite material having high mechanical strength and excellent impact resistance can be provided.

以下、実施例により本発明をさらに詳細に説明する。なお、実施例で用いた評価方法は下記の通りである。   Hereinafter, the present invention will be described in more detail with reference to examples. The evaluation methods used in the examples are as follows.

(1)補強用繊維の結晶化度
広角X線回折法にて、Bruker AXS製X線回折装置(D8 DISCOVER with RAD−3a RU−300 GADDS Super Speed)を用い、Cu−Kα線での散乱強度を測定し、次式で結晶化度を計算した。
結晶化度=結晶部の散乱強度/全散乱強度×100(%)
(1) Crystallinity of reinforcing fiber Using a wide-angle X-ray diffraction method, a scattering intensity of Cu-Kα rays using a Bruker AXS X-ray diffractometer (D8 DISCOVER with RAD-3a RU-300 GADDS Super Speed) Was measured, and the crystallinity was calculated by the following formula.
Crystallinity = Scattering intensity of crystal part / total scattering intensity × 100 (%)

(2)繊維強化複合材料の曲げ弾性率
JIS K 7171に準拠し、厚さ2mm、長さ60mm、幅15mmの試験片を用いて、支点間距離48mmでの3点曲げにて測定した。
(2) Flexural modulus of fiber reinforced composite material Based on JIS K 7171, it was measured by three-point bending at a fulcrum distance of 48 mm using a test piece having a thickness of 2 mm, a length of 60 mm, and a width of 15 mm.

(3)繊維強化複合材料の衝撃強度
JIS K 7111に準拠し、厚さ2mm、長さ80mm、幅10mmの試験片を用いて測定した。
(3) Impact strength of fiber reinforced composite material Measured according to JIS K 7111 using a test piece having a thickness of 2 mm, a length of 80 mm, and a width of 10 mm.

[実施例1]
紡糸用のドープは、コポリパラフェニレン・3,4’−オキシジフェニレンテレフタルアミド(共重合モル比が1:1の全芳香族ポリアミド)の濃度6重量%のNMP溶液を用いた。得られたドープを用い、孔数200ホールの紡糸口金から吐出し、エアーギャップ約10mmを介してNMP濃度30重量%の水溶液中に紡出し、その後、15槽かつ濃度勾配が10%〜0.001重量%の脱溶媒槽で脱溶媒した後、1.3倍に延伸させながら乾燥し、次いで、温度500℃下で10倍に延伸した後、巻き取ることにより、結晶化度が70%、単繊維繊度が10dtexのコポリパラフェニレン・3,4’−オキシジフェニレン・テレフタルアミド繊維を得た。得られた繊維を用い、ビスフェノールA型エポキシ樹脂とポリアミン系硬化剤を混合して塗付した離型紙(樹脂目付40g/m)をあらかじめ巻きつけておいたドラムワインダーに、繊維目付が100g/mとなるように巻きつけた。さらに繊維の上から前記エポキシ樹脂を塗布した離型紙を貼り合せて一方向引き揃えシート(以下、UDシート)を作成し、このUDシートを真空下、温度90℃、圧力5kg/cmで5分間加熱加圧加工を行い、プリプレグシートとした。さらに前記プリプレグシート表裏面の離型紙を剥離した後、所定の大きさにカットして17枚積層し、真空下、温度130℃、圧力5kg/cmで2時間加熱加圧加工を行い、厚さ2mm、Vf60%の繊維強化複合材料を得た。この繊維強化複合材料について、前記(2)、(3)に示した諸特性は、表1に示すとおりであった。
[Example 1]
As the dope for spinning, an NMP solution having a concentration of 6% by weight of copolyparaphenylene 3,4'-oxydiphenylene terephthalamide (fully aromatic polyamide having a copolymerization molar ratio of 1: 1) was used. The obtained dope was discharged from a spinneret with 200 holes and spun into an aqueous solution having an NMP concentration of 30% by weight through an air gap of about 10 mm. Thereafter, 15 tanks and a concentration gradient of 10% to 0. After removing the solvent in a 001% by weight desolvation tank, the film was dried while being stretched 1.3 times, then stretched 10 times at a temperature of 500 ° C., and then wound up to obtain a crystallinity of 70%, A copolyparaphenylene · 3,4'-oxydiphenylene · terephthalamide fiber having a single fiber fineness of 10 dtex was obtained. Using the resulting fiber, a drum winder in which a release paper (resin weight 40 g / m 2 ) coated with a mixture of a bisphenol A type epoxy resin and a polyamine-based curing agent is wound in advance is 100 g / wound so that the m 2. Further, a release paper coated with the epoxy resin is bonded onto the fiber to prepare a unidirectionally aligned sheet (hereinafter referred to as a UD sheet). The UD sheet is heated under vacuum at a temperature of 90 ° C. and a pressure of 5 kg / cm 2 . Heat-press processing was performed for a minute, and it was set as the prepreg sheet. Further, after releasing the release paper on the front and back surfaces of the prepreg sheet, the sheet was cut into a predetermined size and laminated 17 sheets, and heated and pressed at a temperature of 130 ° C. and a pressure of 5 kg / cm 2 for 2 hours under vacuum. A fiber-reinforced composite material having a thickness of 2 mm and Vf of 60% was obtained. The properties shown in (2) and (3) of this fiber-reinforced composite material were as shown in Table 1.

[実施例2]
得られるパラ型全芳香族ポリアミド繊維の単繊維繊度が45dtexとなる以外は、実施例1と同様に実施し、繊維強化複合材料を得た。この繊維強化複合材料について、前記(2)、(3)に示した諸特性は、表1に示すとおりであった。なお、単繊維繊度は、口金からのポリマー吐出量を実施例1より増加させることにより調整した。
[Example 2]
Except that the single fiber fineness of the obtained para-type wholly aromatic polyamide fiber was 45 dtex, the same procedure as in Example 1 was performed to obtain a fiber-reinforced composite material. The properties shown in (2) and (3) of this fiber-reinforced composite material were as shown in Table 1. The single fiber fineness was adjusted by increasing the amount of polymer discharged from the die from Example 1.

[比較例1]
製糸において延伸倍率を10倍から5倍に変更した以外は、実施例1と同様に実施し、繊維強化複合材料を得た。この繊維強化複合材料について、前記(2)、(3)に示した諸特性は、表1に示すとおりであった。なお、単繊維繊度は、延伸倍率に合わせて口金からのポリマー吐出量を実施例1より減少させて調整した。
[Comparative Example 1]
Except that the draw ratio was changed from 10 times to 5 times in yarn making, the same procedure as in Example 1 was performed to obtain a fiber-reinforced composite material. The properties shown in (2) and (3) of this fiber-reinforced composite material were as shown in Table 1. The single fiber fineness was adjusted by reducing the amount of polymer discharged from the die from Example 1 in accordance with the draw ratio.

[比較例2]
得られるパラ型全芳香族ポリアミド繊維の単繊維繊度が45dtexとなる以外は、比較例1と同様に実施し、繊維強化複合材料を得た。この繊維強化複合材料について、前記(2)、(3)に示した諸特性は、表1に示すとおりであった。なお、単繊維繊度は、口金からのポリマー吐出量を比較例1より増加させて調整した。
[Comparative Example 2]
A fiber reinforced composite material was obtained in the same manner as in Comparative Example 1 except that the single-fiber fineness of the obtained para-type wholly aromatic polyamide fiber was 45 dtex. The properties shown in (2) and (3) of this fiber-reinforced composite material were as shown in Table 1. The single fiber fineness was adjusted by increasing the amount of polymer discharged from the die from Comparative Example 1.

[比較例3]
得られるパラ型全芳香族ポリアミド繊維の単繊維繊度が1.7dtexとし、脱溶媒した後に延伸せず乾燥した以外は、実施例1と同様に実施し、繊維強化複合材料を得た。この繊維強化複合材料について、前記(2)、(3)に示した諸特性は、表1に示すとおりであった。なお、単繊維繊度は、口金からのポリマー吐出量を実施例1より減少させて調整した。
[Comparative Example 3]
The fiber-reinforced composite material was obtained in the same manner as in Example 1 except that the single-fiber fineness of the obtained para-type wholly aromatic polyamide fiber was 1.7 dtex, and the solvent was removed without solvent after stretching. The properties shown in (2) and (3) of this fiber-reinforced composite material were as shown in Table 1. The single fiber fineness was adjusted by reducing the amount of polymer discharged from the die from that in Example 1.

Figure 0005280982
Figure 0005280982

本発明の耐衝撃性複合材料は、高い強度と優れた耐衝撃性とを兼備し、例えば自動車、電車、船舶、航空機などの輸送機械における天井、床、側壁、ボンネット、その他スポーツ用品や日用品等広範な用途に用いることができる。   The impact-resistant composite material of the present invention has both high strength and excellent impact resistance. For example, ceilings, floors, side walls, bonnets, other sporting goods and daily necessities in transportation machines such as automobiles, trains, ships, and aircrafts. It can be used for a wide range of applications.

Claims (5)

強化繊維とマトリクス樹脂とからなる繊維強化複合材料であって、該強化繊維が、単繊維繊度が10〜45dtex、結晶化度が55〜70%の芳香族ポリアミド繊維であることを特徴とする繊維強化複合材料。   A fiber reinforced composite material comprising a reinforced fiber and a matrix resin, wherein the reinforced fiber is an aromatic polyamide fiber having a single fiber fineness of 10 to 45 dtex and a crystallinity of 55 to 70%. Reinforced composite material. 繊維強化複合材料において、強化繊維が、繊維構造体の形状で存在する請求項1記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 1, wherein the reinforcing fiber is present in the form of a fiber structure. 繊維構造体が、織物、不織布、紙、編物、または、一方向に引き揃えられた長繊維集合体である請求項2に記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 2, wherein the fiber structure is a woven fabric, a nonwoven fabric, paper, a knitted fabric, or a long-fiber assembly aligned in one direction. 芳香族ポリアミド繊維がパラ型芳香族ポリアミドである請求項1記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 1, wherein the aromatic polyamide fiber is a para-type aromatic polyamide. パラ型芳香族ポリアミド繊維が、コポリパラフェニレン・3,4’−オキシジフェニレン・テレフタルアミド繊維である請求項4に記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 4, wherein the para-type aromatic polyamide fiber is a copolyparaphenylene · 3,4'-oxydiphenylene · terephthalamide fiber.
JP2009242821A 2009-10-21 2009-10-21 Fiber reinforced composite material Expired - Fee Related JP5280982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242821A JP5280982B2 (en) 2009-10-21 2009-10-21 Fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242821A JP5280982B2 (en) 2009-10-21 2009-10-21 Fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2011088335A JP2011088335A (en) 2011-05-06
JP5280982B2 true JP5280982B2 (en) 2013-09-04

Family

ID=44107051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242821A Expired - Fee Related JP5280982B2 (en) 2009-10-21 2009-10-21 Fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP5280982B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257893B1 (en) * 2016-06-15 2018-12-26 LANXESS Deutschland GmbH Fibre-matrix semi-finished product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049593A (en) * 1999-07-22 2001-02-20 E I Du Pont De Nemours & Co Fiber paper comprising wholly aromatic synthetic fiber and method for producing the same and laminate
JP4653612B2 (en) * 2005-09-22 2011-03-16 帝人テクノプロダクツ株式会社 Method for producing para-type aromatic polyamide fiber with improved chemical resistance

Also Published As

Publication number Publication date
JP2011088335A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US11806977B2 (en) Flexible composite systems and methods
JP3894035B2 (en) Carbon fiber reinforced substrate, preform and composite material comprising the same
US9770844B2 (en) Fibre reinforced composites
JP5497786B2 (en) Composite material
CA3020694C (en) Blister free composite materials molding
EP1145841A1 (en) Reinforcing fiber base for composite material
US11465388B2 (en) Peel strength between dissimilar fabrics
CA2836017A1 (en) Multilayered fabric, its use including processes for production of composites
JP2003136550A (en) Method for manufacturing carbon fiber base material, method for manufacturing preform, and method for manufacturing composite material
JP2007063710A (en) Thin leaf woven fabric and laminate, prepreg, fiber-reinforcing resin composition and protector each using the same
JP2007063710A5 (en)
KR101659591B1 (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
JP2012139841A (en) Fiber reinforced resin composite material
JP2017524839A (en) Hybrid woven fabric for composite reinforcement
KR101155765B1 (en) Composite of aramid and Method for manufacturing tComposite of aramid and Method for manufacturing the same he same
TWI484078B (en) Manufacturing method of high strength sheet material and product thereof
JP6629751B2 (en) Fiber-reinforced composite laminate and articles made therefrom
JPH0575575B2 (en)
US20230124757A1 (en) Stitched fiber-reinforced substrate material, preform material, fiber-reinforced composite material, and production method for same
JP5280982B2 (en) Fiber reinforced composite material
JP6499029B2 (en) Sheet material for manufacturing vibration damping member, vibration damping member using the sheet material, and method for manufacturing the same
JP2004182923A (en) Prepreg and method for manufacturing fiber-reinforced composite material using the same
JP5580035B2 (en) Head protection
JP7455466B2 (en) Base material for molding fiber-reinforced resin composites and fiber-reinforced resin composites
WO2022149591A1 (en) Reinforcing fiber base material for resin transfer molding, method for producing same, reinforcing fiber laminate for resin transfer molding, and fiber-reinforced resin

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees