JPH10158417A - Prepreg - Google Patents

Prepreg

Info

Publication number
JPH10158417A
JPH10158417A JP8333141A JP33314196A JPH10158417A JP H10158417 A JPH10158417 A JP H10158417A JP 8333141 A JP8333141 A JP 8333141A JP 33314196 A JP33314196 A JP 33314196A JP H10158417 A JPH10158417 A JP H10158417A
Authority
JP
Japan
Prior art keywords
prepreg
nonwoven fabric
resin
fibers
matrix resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8333141A
Other languages
Japanese (ja)
Inventor
Takeshi Naito
猛 内藤
Masato Ando
正人 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP8333141A priority Critical patent/JPH10158417A/en
Publication of JPH10158417A publication Critical patent/JPH10158417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a prepreg excellent in toughness, resistances to impact and heat, and mechanical properties by forming a prepreg from a thermosetting matrix resin, a nonwoven fabric, and a fibrous reinforcement made from long fibers and by positioning the nonwoven fabric at the surface of the prepreg. SOLUTION: This prepreg comprises a thermosetting matrix resin, a nonwoven fabric, and a fibrous reinforcement made from long fibers, and the nonwoven fabric is positioned at the surface of the prepreg. For instance, nonwoven fabric layers 1 are positioned at both the surfaces and a carbon fiber layer 2 is positioned between the nonwoven fabric layers. Pref. the nonwoven fabric forms a separate phase after the curing of the matrix resin and, though embedded in and unified with the resin, exhibits a distinct boundary, enabling the nonwoven fabric part to be distinguished from the resin part. Pref. the nonwoven fabric is one made from poly-p-phenylenebenzobisoxazole fibers and/or polybenzimidazole fibers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐衝撃性に優れ、
衝撃時のクラック伝播を抑制する能力のある成形物を製
造するためのプリプレグ・成形物及びその成形方法に関
するものである。更に詳しくは、高強度炭素繊維などを
強化繊維とした場合に、マトリックス樹脂の優れた機械
的特性及び熱的特性を損ねることなく、靭性(タフネ
ス)が付与された成形物を得るためのプリプレグに関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to a high impact resistance
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg / molded article for producing a molded article capable of suppressing crack propagation upon impact and a molding method therefor. More specifically, the present invention relates to a prepreg for obtaining a molded article to which toughness (toughness) is imparted without impairing excellent mechanical and thermal properties of a matrix resin when a high-strength carbon fiber or the like is used as a reinforcing fiber. Things.

【0002】[0002]

【従来の技術】近年、炭素繊維、芳香族ポリアミド繊維
等を強化繊維として用いた複合材料は、その高い比強
度、比剛性を利用して、航空機等の構造材として多く用
いられてきている。
2. Description of the Related Art In recent years, composite materials using carbon fibers, aromatic polyamide fibers, and the like as reinforcing fibers have been widely used as structural materials for aircraft and the like by utilizing their high specific strength and specific rigidity.

【0003】これらの複合材料は、強化材にマトリック
ス樹脂が含浸された中間製品であるプリプレグから、加
熱・加圧といった成形・加工工程を経て用いられる場合
が多い。
[0003] These composite materials are often used from a prepreg, which is an intermediate product in which a reinforcing material is impregnated with a matrix resin, through molding and processing steps such as heating and pressing.

【0004】プリプレグにおけるマトリックス樹脂とし
ては、熱硬化性樹脂であるエポキシ樹脂、ビスマレイミ
ド樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂等が
用いられ、また、最近ではポリエ−テルエ−テルケトン
といった熱可塑性樹脂も用いられるようになってきてい
る。いずれの樹脂を用いた場合も、複合材料は、その優
れた機械的特性、寸法安定性、耐熱性、耐薬品性、耐候
性が特徴となっている。
As a matrix resin in a prepreg, a thermosetting resin such as an epoxy resin, a bismaleimide resin, an unsaturated polyester resin, or a polyimide resin is used, and recently, a thermoplastic resin such as polyether-terketone is also used. It is becoming possible. Regardless of which resin is used, the composite material is characterized by its excellent mechanical properties, dimensional stability, heat resistance, chemical resistance, and weather resistance.

【0005】熱可塑性樹脂をマトリックス樹脂とした場
合、良好な耐熱性、機械的特性に加え複合材料の衝撃特
性も優れていることが期待されているが、プリプレグと
しての取扱性、例えばドレ−プ性に乏しいために、現状
の成形加工技術では取り扱いにくい材料であり、複雑形
状物への適用が難しい状況にある。
[0005] When a thermoplastic resin is used as a matrix resin, it is expected that the composite material has excellent impact properties in addition to good heat resistance and mechanical properties. However, handleability as a prepreg, for example, drape Due to poor properties, it is a material that is difficult to handle with current molding technology, and it is difficult to apply it to complicated shapes.

【0006】一方、エポキシ樹脂系プリプレグのように
熱硬化性樹脂をマトリックス樹脂に用いた場合、耐熱
性、機械的特性が良好であることが認められていたが、
反面、マトリックス樹脂の伸度が低く、脆いために複合
材料の靭性、耐衝撃性に劣ることが指摘され、その改善
が求められてきた。そこで、これらの複合材料に靭性、
耐衝撃性を付与させるため、種々の手法が提案されてい
る。
On the other hand, when a thermosetting resin such as an epoxy resin prepreg is used as a matrix resin, it has been recognized that heat resistance and mechanical properties are good.
On the other hand, it has been pointed out that the matrix material has low elongation and is brittle, so that the toughness and impact resistance of the composite material are inferior, and improvement thereof has been demanded. Therefore, toughness,
Various techniques have been proposed to impart impact resistance.

【0007】例えば、 (1)リプレグ用マトリックス樹脂を高靭性化し、複合材
料の耐衝撃性を向上させる技術として、特開昭58−1
20639号、同61−250021号、同62−36
421号、同62−57417号、特開平1−1046
25号の公報等で知られるように、マトリックス樹脂に
特定のエラストマ−成分、高分子量ゴム成分、熱可塑性
樹脂微粉末を配合し、複合材料の靭性(耐衝撃性)を高
めたプリプレグ組成物も開発されている。
For example, (1) Japanese Patent Laid-Open No. 58-1 discloses a technique for improving the toughness of a matrix resin for prepreg and improving the impact resistance of a composite material.
No. 20639, No. 61-250021, No. 62-36
Nos. 421 and 62-57417;
As known from Japanese Patent Publication No. 25, etc., a prepreg composition in which a specific elastomer component, a high molecular weight rubber component, and a thermoplastic resin fine powder are blended with a matrix resin to enhance the toughness (impact resistance) of the composite material is also provided. Is being developed.

【0008】(2)また、複合材料の積層間に異種材料を
挿入して、複合材料の衝撃特性を向上させる技術とし
て、特開昭60−63229号、同63−162733
号の公報に示されるようなインタ−リ−フ技術がある。
インタ−リ−フ材料としては、一般に厚さ0.03〜
0.06mmの可撓性に優れたエポキシ樹脂層を用いた
り、厚さ0.01〜0.05mmの例えば、ポリエ−テ
ルイミド、ポリエ−テルサルホン、ポリエ−テルエ−テ
ルケトンのフィルムといった熱可塑性樹脂フィルムを使
用している。
(2) Japanese Patent Application Laid-Open Nos. 60-63229 and 63-162733 disclose a technique for improving the impact characteristics of a composite material by inserting a different material between the composite materials.
There is an interleaf technique as disclosed in Japanese Patent Application Publication No.
The thickness of the interleave material is generally from 0.03 to 0.03.
An epoxy resin layer having excellent flexibility of 0.06 mm is used, or a thermoplastic resin film having a thickness of 0.01 to 0.05 mm, for example, a film of polyetherimide, polyethersulfone, or polyetheretheroketone is used. I'm using

【0009】(3)また、複合材料用プリプレグの外表面
に繊維状の熱可塑性樹脂を配置させ、複合材料の靱性を
向上させる技術として、特開平4−292634号、同
4−292912号、同4−306238号、同4−3
25527号、同8−92392号の公報等が開示され
ている。
(3) Japanese Patent Application Laid-Open Nos. 4-292634, 4-292912 and 4-292912 disclose a technique for improving the toughness of a composite material by disposing a fibrous thermoplastic resin on the outer surface of a prepreg for a composite material. 4-306238, 4-3
Nos. 25527 and 8-92392 are disclosed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、これら
の手法はいずれも多くの問題を抱えている。例えば、 (1)マトリックス樹脂に特定のエラストマ−成分、高分
子量ゴム成分を配合する手法では、複合材料の耐衝撃性
の改善効果が低かったり、マトリックス樹脂の粘度が著
しく上昇する等の問題を有している。
However, each of these methods has many problems. For example, (1) The method of blending a specific elastomer component and a high molecular weight rubber component into the matrix resin has problems such as a low effect of improving the impact resistance of the composite material and a significant increase in the viscosity of the matrix resin. doing.

【0011】マトリックス樹脂に熱可塑性樹脂微粉末を
配合する手法では、耐衝撃性は向上するものの、空気雰
囲気下の暴露によりプリプレグのタックが経時的に変化
する(徐々に低下する)という問題があった。
According to the method of blending the thermoplastic resin fine powder with the matrix resin, although the impact resistance is improved, there is a problem that the tack of the prepreg changes with time (gradual decrease) due to exposure in an air atmosphere. Was.

【0012】(2)インタ−リ−フを用いる手法では、イ
ンタ−リ−フ材料に可撓性に優れたエポキシ樹脂、例え
ばエラストマ−成分の多いエポキシ樹脂層を用いた場
合、衝撃特性の向上を図るためにはエラストマ−成分を
多量配合することが必要であるが、そうすると、エラス
トマ−成分の種類や量により複合材料の耐熱性や機械的
特性の低下を招くことがあり、その種類や量に制限が加
えられるため、充分な効果を発揮できないことが多い。
(2) In the method using an interface, when an epoxy resin excellent in flexibility, for example, an epoxy resin layer containing a large amount of an elastomer component is used as an interface material, the impact characteristics are improved. In order to achieve this, it is necessary to incorporate a large amount of an elastomer component, but if this is done, the heat resistance and mechanical properties of the composite material may be reduced depending on the type and amount of the elastomer component. Is often limited to a sufficient effect.

【0013】また、複合材料の積層間に熱可塑性樹脂フ
ィルムを挿入した場合、複合材料の耐衝撃性を向上させ
る効果は認められているが、隣接した層と層との間が樹
脂フィルムにより完全に遮断されるため、プリプレグの
タックやマトリックス樹脂と熱可塑性樹脂フィルムとの
接着性に問題があり、コンポジットの靭性、特に歪エネ
ルギ−開放率(GIC)が低いという欠点を有してい
る。また積層間方向の樹脂フロ−が遮断されるため、不
均一な樹脂フロ−が起こり、成形物の変形を招いたり、
または、熱可塑性樹脂フィルムが比較的厚いために、マ
トリックス樹脂に対する熱可塑性樹脂フィルムの割合が
高くなり、それに伴う複合材料の性能(コンポジット性
能)の低下を引き起こす場合もあった。
[0013] When a thermoplastic resin film is inserted between the laminated layers of the composite material, the effect of improving the impact resistance of the composite material has been recognized, but the resin film completely interposed between adjacent layers. Therefore, there is a problem in tackiness of the prepreg or adhesion between the matrix resin and the thermoplastic resin film, and there is a defect that the toughness of the composite, particularly, the strain energy release rate (GIC) is low. Further, since the resin flow in the direction between the laminations is blocked, uneven resin flow occurs, causing deformation of the molded product,
Alternatively, since the thickness of the thermoplastic resin film is relatively large, the ratio of the thermoplastic resin film to the matrix resin is increased, and the performance (composite performance) of the composite material may be reduced accordingly.

【0014】(3)また、繊維状の熱可塑性樹脂を配置す
る手法では、一方向に引き揃えられた状態で繊維状の熱
可塑性樹脂をプリプレグの外表面に配置する手法が例示
されているが、この方法では、靱性を向上させるために
は、多くの繊維状の熱可塑性樹脂をプリプレグの外表面
に配置しなければならない。その結果、プリプレグのタ
ック性が低下するという問題があった。
(3) In the method of arranging the fibrous thermoplastic resin, a method of arranging the fibrous thermoplastic resin on the outer surface of the prepreg in an aligned state in one direction is exemplified. In this method, in order to improve toughness, many fibrous thermoplastic resins must be arranged on the outer surface of the prepreg. As a result, there is a problem that the tackiness of the prepreg is reduced.

【0015】また、特開平4−325527号公報に例
示されている通り、充分な靱性改良効果を得るため、引
き揃えた繊維状の熱可塑性樹脂がプリプレグの中心部に
完全に埋没しないように留意して製造しなければならな
いという制約があった。更に、繊維状の熱可塑性樹脂を
使用すると、成形物が熱暴露された時、熱可塑性樹脂が
軟化して、マトリックス樹脂が本来持っていた優れた耐
熱性が損われるという問題があった。
Also, as exemplified in Japanese Patent Application Laid-Open No. 4-325527, in order to obtain a sufficient toughness improving effect, care should be taken that the aligned fibrous thermoplastic resin is not completely buried in the center of the prepreg. There was a restriction that it had to be manufactured. Furthermore, when a fibrous thermoplastic resin is used, when the molded product is exposed to heat, there is a problem that the thermoplastic resin is softened, and the excellent heat resistance inherent to the matrix resin is impaired.

【0016】[0016]

【課題を解決するための手段】
本発明者らは、上述の問題を解決する
為、鋭意研究した結果、以下の手法を用いることで、樹
脂の粘度、タック性等の取扱性、複合材料の靭性、耐衝
撃性、耐熱性、機械的特性を兼備した優れたプリプレグ
を見出し、本発明に至った。
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result of using the following methods, the viscosity of the resin, handleability such as tackiness, toughness of composite materials, impact resistance, heat resistance, An excellent prepreg having both mechanical properties was found, and the present invention was achieved.

【0017】即ち、本発明は、(A)長繊維からなる強
化繊維、(B)不織布及び(C)熱硬化性マトリックス
樹脂からなるプリプレグにおいて、(B)がプリプレグ
の表面に配置されていることを特徴とする。
That is, the present invention relates to a prepreg comprising (A) a reinforcing fiber composed of long fibers, (B) a nonwoven fabric, and (C) a thermosetting matrix resin, wherein (B) is disposed on the surface of the prepreg. It is characterized by.

【0018】更に、具体的には本発明は次の態様を含
む。すなわち本発明は、 1:(A)長繊維からなる強化繊維、(B)不織布及び
(C)熱硬化性マトリックス樹脂からなるプリプレグに
おいて、(B)がプリプレグの表面に配置されたプリプ
レグ。
More specifically, the present invention includes the following aspects. That is, the present invention relates to: 1. A prepreg comprising (A) a reinforcing fiber composed of long fibers, (B) a nonwoven fabric, and (C) a prepreg composed of a thermosetting matrix resin, wherein (B) is disposed on the surface of the prepreg.

【0019】2:(B)が、熱分解開始熱温度が300
℃以上の有機繊維からなる不織布であることを特徴とす
る上記1記載のプリプレグ。
2: (B) has a thermal decomposition onset heat temperature of 300
2. The prepreg according to 1 above, wherein the prepreg is a nonwoven fabric made of organic fibers having a temperature of not less than ° C.

【0020】3:(B)が(C)の硬化後において分離
した相を形成することを特徴とする上記1又2記載のプ
リプレグ。
(3) The prepreg as described in (1) or (2) above, wherein (B) forms a separated phase after curing of (C).

【0021】4:(B)がポリパラフェニレンベンゾビ
スオキサゾ−ル繊維又は/及びポリベンズイミダゾール
繊維の不織布であることを特徴とする上記1乃至3記載
のプリプレグ。
4: The prepreg according to the above-mentioned items 1 to 3, wherein (B) is a non-woven fabric of polyparaphenylene benzobisoxazole fiber and / or polybenzimidazole fiber.

【0022】5:(B)がポリパラフェニレンベンゾビ
スオキサゾ−ル繊維からなる不織布であり、(C)がビ
スマレイミド樹脂であることを特徴とする上記1乃至3
記載のプリプレグ。
5: (B) is a non-woven fabric made of polyparaphenylene benzobisoxazole fiber, and (C) is a bismaleimide resin.
The prepreg described.

【0023】6:(A)長繊維からなる強化繊維と
(B)不織布とを含み、硬化した(C)熱硬化性マトリ
ックス樹脂からなる成形物であって、(A)と(B)と
が互いに隣接して配置された層を含み、(B)と(C)
とが互いに分離した相を形成していることを特徴とする
耐衝撃性に優れ、衝撃時のクラック伝播を抑制する能力
を有する成形物。
6: A molded article comprising a cured (C) thermosetting matrix resin containing (A) a reinforcing fiber composed of long fibers and (B) a nonwoven fabric, wherein (A) and (B) are (B) and (C) comprising layers arranged adjacent to each other.
A molded article having excellent impact resistance, characterized by forming phases separated from each other, and capable of suppressing crack propagation upon impact.

【0024】7:(B)が熱分解開始熱温度が300℃
以上の有機繊維からなる不織布であり且つ(B)と
(C)とが互いに分離した相を形成していることを特徴
とする耐衝撃性に優れ、衝撃時のクラック伝播を抑制す
る能力を有する上記6記載の成形物。
7: (B) is a thermal decomposition start heat temperature of 300 ° C.
It is a nonwoven fabric made of the above organic fibers, and (B) and (C) form phases separated from each other, and is excellent in impact resistance and has the ability to suppress crack propagation upon impact. 7. The molded article according to the above item 6.

【0025】8:(B)がポリパラフェニレンベンゾビ
スオキサゾ−ル繊維又は/及びポリベンズイミダゾール
繊維であり且つ(B)不織布と硬化した(C)とが互い
に分離した相を形成していることを特徴とする耐衝撃性
に優れ、衝撃時のクラック伝播を抑制する能力を有する
上記6記載の成形物。
8: (B) is a polyparaphenylene benzobisoxazole fiber and / or a polybenzimidazole fiber, and (B) the nonwoven fabric and the cured (C) form separate phases. 7. The molded article according to the above item 6, which is excellent in impact resistance and has an ability to suppress crack propagation upon impact.

【0026】9:(B)と(C)とがそれぞれポリパラ
フェニレンベンゾビスオキサゾ−ル繊維とビスマレイミ
ド樹脂であり且つ(B)と(C)とが互いに分離した相
を形成していることを特徴とする耐衝撃性に優れ、衝撃
時のクラック伝播を抑制する能力を有する上記6記載の
成形物。
9: (B) and (C) are polyparaphenylene benzobisoxazole fibers and bismaleimide resin, respectively, and (B) and (C) form phases separated from each other. 7. The molded article according to the above item 6, which is excellent in impact resistance and has an ability to suppress crack propagation upon impact.

【0027】10:(A)長繊維からなる強化繊維、
(B)不織布及び(C)熱硬化性マトリックス樹脂から
なるプリプレグであって、(B)がプリプレグの表面に
配置されているプリプレグを積層し成形物を製造するに
当たり、(A)長繊維からなる強化繊維の層と(B)不
織布の層とが隣接するように配置して積層し成形するこ
とを特徴とする、耐衝撃性に優れ、衝撃時のクラック伝
播を抑制する能力を有する上記6記載の成形物の製造
法。 11:(B)不織布が熱分解開始温度が300℃以上の
有機繊維からなる不織布であることを特徴とする、耐衝
撃性に優れ、衝撃時のクラック伝播を抑制する能力を有
する上記6記載の成形物の製造法。
10: (A) a reinforcing fiber comprising a long fiber;
A prepreg comprising (B) a non-woven fabric and (C) a thermosetting matrix resin, wherein (B) is formed by laminating a prepreg disposed on the surface of the prepreg to produce a molded product, and comprises (A) a long fiber. The above-mentioned item 6, which is excellent in impact resistance and has an ability to suppress crack propagation upon impact, characterized in that the reinforcing fiber layer and the (B) nonwoven fabric layer are arranged so as to be adjacent to each other and laminated and molded. Method for producing molded articles. 11: The non-woven fabric according to the above item 6, wherein the (B) non-woven fabric is a non-woven fabric made of an organic fiber having a thermal decomposition onset temperature of 300 ° C or higher, and has excellent impact resistance and ability to suppress crack propagation upon impact. Manufacturing method of molded product.

【0028】[0028]

【発明の実施の形態】本発明に用いられる(A)長繊維
からなる強化繊維は、炭素繊維、ガラス繊維、アラミド
繊維などの有機もしくは無機繊維の単独または2種類以
上の組合せである。特に本発明においては、引張強度4
00kgf/mm2 以上、引張弾性率29x103 kg
f/mm2 以上の、いわゆる高強度中弾性炭素繊維を用
いることが好ましい。繊維の形態としては、長繊維状モ
ノフィラメントあるいはこれらを束にしたものが使用さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION The reinforcing fibers composed of long fibers (A) used in the present invention are single or a combination of two or more organic or inorganic fibers such as carbon fibers, glass fibers and aramid fibers. In particular, in the present invention, a tensile strength of 4
00 kgf / mm 2 or more, tensile modulus of elasticity 29 × 10 3 kg
It is preferable to use a so-called high-strength medium-elasticity carbon fiber of f / mm 2 or more. As the form of the fiber, a long fiber monofilament or a bundle thereof is used.

【0029】本発明における(B)不織布は、中でも熱
分解開始温度が300℃以上である有機繊維が好まし
い。例えば、メタ型アラミド繊維、パラ型アラミド繊
維、ポリパラフェニレンベンゾビスオキサゾ−ル繊維等
の有機繊維からなる不織布である。ポリパラフェニレン
ベンゾビスオキサゾ−ル繊維の不織布は、耐熱性があ
り、かつ、靭性の付与効果が大きいので、特に好まし
い。
The nonwoven fabric (B) in the present invention is preferably an organic fiber having a thermal decomposition initiation temperature of 300 ° C. or higher. For example, it is a non-woven fabric made of organic fibers such as meta-type aramid fiber, para-type aramid fiber, and polyparaphenylene benzobisoxazole fiber. A non-woven fabric of polyparaphenylene benzobisoxazole fiber is particularly preferable because it has heat resistance and a large effect of imparting toughness.

【0030】有機繊維として、繊維状の熱可塑性樹脂を
使用すると、成形物が熱暴露された時、熱可塑性樹脂が
軟化して、マトリックス樹脂が本来持っていた優れた耐
熱性が損われるので好ましくない。ここでいう熱可塑性
樹脂とは、岡村ら著「第2版高分子化学序論」化学同人
(1982)に定義されているように、加熱により流動
性をもち、冷却により固化するという可逆的性質を示す
樹脂であり、その流動性を利用して、型に押し込むなど
して形を与え、そのまま冷却して成形する樹脂である。
When a fibrous thermoplastic resin is used as the organic fiber, the thermoplastic resin is softened when the molded product is exposed to heat, and the excellent heat resistance inherent to the matrix resin is impaired. Absent. As used herein, the term “thermoplastic resin” refers to the reversible property of having fluidity by heating and solidifying by cooling, as defined in Okamura et al. The resin is a resin which is shaped by being pressed into a mold or the like by utilizing its fluidity, and then cooled and molded as it is.

【0031】さらに詳しく説明すると、熱可塑性は、三
田監修「最新耐熱性高分子」総合技術センター(198
7)では、加熱により溶融可塑化し、流動することによ
り成形が可能になる性質と定義されており、有機繊維と
して、繊維状の熱可塑性樹脂を使用すると成形物の一部
が溶融可塑化するという不安定要因を抱えることになり
好ましくない。従って、明確な融点をもたない有機繊維
を用いることが好ましい。
To explain in more detail, thermoplasticity is described in “Latest heat-resistant polymer” General Technology Center (198), supervised by Mita.
In 7), it is defined as a property that can be molded by being melt-plasticized by heating and flowing, and when a fibrous thermoplastic resin is used as an organic fiber, a part of the molded product is melt-plasticized. It is not preferable because it has unstable factors. Therefore, it is preferable to use an organic fiber having no distinct melting point.

【0032】また、本発明における(B)熱分解開始温
度が300℃以上の有機繊維からなる不織布は、(C)
熱硬化性マトリックス樹脂の硬化後において分離した相
を形成することが好ましい。即ち、(B)熱分解開始温
度が300℃以上の有機繊維からなる不織布は、(C)
熱硬化性マトリックス樹脂に埋没し、一体化はしている
が、明確な境界があり、不織布部分とマトリックス樹脂
部分が識別できることが好ましい。
In the present invention, the nonwoven fabric (B) composed of organic fibers having a thermal decomposition onset temperature of 300 ° C. or higher is a nonwoven fabric comprising (C)
It is preferred to form a separate phase after curing of the thermosetting matrix resin. That is, (B) a nonwoven fabric composed of organic fibers having a thermal decomposition initiation temperature of 300 ° C. or higher is (C)
It is preferably embedded in the thermosetting matrix resin and integrated, but has a clear boundary so that the nonwoven fabric portion and the matrix resin portion can be distinguished.

【0033】この場合、不織布は繊維形状を留めていな
くてもよいが、配置した不織布の体積の90%以上がマ
トリックス樹脂と明確に相分離していることが好まし
い。分離した相を形成させるためには、不織布溶解能を
有しない熱硬化性マトリックス樹脂を選定することが好
ましい。不織布の目付は特に限定されないが、10〜5
0g/m2 が好ましい。その理由は10g/m2 未満で
は靭性の付与効果が不十分であり、50g/m2 を越え
ると、機械的特性が低下するからである。
In this case, the nonwoven fabric does not have to keep the fiber shape, but it is preferable that 90% or more of the volume of the arranged nonwoven fabric is clearly phase-separated from the matrix resin. In order to form a separated phase, it is preferable to select a thermosetting matrix resin having no nonwoven fabric dissolving ability. Although the basis weight of the nonwoven fabric is not particularly limited,
0 g / m 2 is preferred. The reason is that if it is less than 10 g / m 2 , the effect of imparting toughness is insufficient, and if it exceeds 50 g / m 2 , the mechanical properties deteriorate.

【0034】本発明における(C)熱硬化性マトリック
ス樹脂は、特に限定されないが、ビスマレイミド樹脂、
アセチレン末端を有するポリイミド樹脂及びポリイソイ
ミド樹脂、ナジック酸末端を有するポリイミド樹脂等が
好ましく用いられる。プリプレグに占める樹脂組成物
(不織布は除く)の含有率は好ましくは20〜60重量
%、更に好ましくは25〜45重量%である。
The thermosetting matrix resin (C) in the present invention is not particularly limited, but includes bismaleimide resin,
A polyimide resin and a polyisoimide resin having an acetylene terminal, a polyimide resin having a nadic acid terminal and the like are preferably used. The content of the resin composition (excluding the nonwoven fabric) in the prepreg is preferably 20 to 60% by weight, more preferably 25 to 45% by weight.

【0035】本発明のプリプレグを図1、図2、図3に
示す。図1、図2に示されるように、本発明では、
(A)長繊維からなる強化繊維、(B)熱分解開始温度
が300℃以上の有機繊維からなる不織布及び(C)熱
硬化性マトリックス樹脂からなるプリプレグにおいて、
(B)をプリプレグ表面の片面(図1)あるいは両面
(図2)に配置する。
The prepreg of the present invention is shown in FIGS. 1, 2 and 3. As shown in FIGS. 1 and 2, in the present invention,
(A) a reinforcing fiber composed of a long fiber, (B) a nonwoven fabric composed of an organic fiber having a thermal decomposition initiation temperature of 300 ° C. or higher, and (C) a prepreg composed of a thermosetting matrix resin,
(B) is placed on one side (FIG. 1) or both sides (FIG. 2) of the prepreg surface.

【0036】これら(A),(B),(C)からなるプ
リプレグは、一方向引き揃え、一方向織物、織物等の基
材の繊維間に未硬化の熱硬化性樹脂組成物を含浸させた
ものである。
The prepreg composed of (A), (B) and (C) is unidirectionally aligned, and an uncured thermosetting resin composition is impregnated between fibers of a base material such as a unidirectional fabric or a woven fabric. It is a thing.

【0037】本発明のプリプレグの製造法は特に限定さ
れないが、例えば、ホットメルト法あるいは溶剤法によ
り製造することができる。ホットメルト法を適用する場
合は、まず、調合した熱硬化性樹脂組成物をフィルムコ
−タ−等で樹脂フィルムにする。次いで、樹脂フィルム
上に長繊維からなる強化繊維と不織布を供給し、プレ−
ト、ロ−ラ−等で加熱・加圧し、プリプレグとする。
The method for producing the prepreg of the present invention is not particularly limited. For example, it can be produced by a hot melt method or a solvent method. When applying the hot melt method, first, the prepared thermosetting resin composition is formed into a resin film using a film coater or the like. Next, a reinforcing fiber composed of long fibers and a nonwoven fabric are supplied on the resin film,
The prepreg is heated and pressurized with a roller and a roller.

【0038】また、溶剤法を適用する場合は、不織布を
溶解しない溶剤を使用して樹脂溶液を作製し、強化繊維
と不織布を樹脂溶液に供給して、乾燥した後、プリプレ
グとする。
When the solvent method is applied, a resin solution is prepared using a solvent that does not dissolve the nonwoven fabric, the reinforcing fibers and the nonwoven fabric are supplied to the resin solution, dried, and then prepreg.

【0039】本発明のプリプレグを用いて成形された成
形物では、(A)長繊維からなる強化繊維と、(B)有
機繊維からなる不織布とが互いに隣接するように配置さ
れた積層構成とされる。具体的には、本発明のプリプレ
グの積層構成は、(B)をプリプレグ表面の両面に配置
し、2枚以上積層する場合は、特に制約はない。(B)
をプリプレグ表面の片面に配置し、2枚積層する場合
は、プリプレグの1枚目の不織布層に2枚目の炭素繊維
層を貼り合わせて、2枚のプリプレグの層間に不織布層
が配置されるように積層する。
The molded article molded using the prepreg of the present invention has a laminated structure in which (A) a reinforcing fiber composed of long fibers and (B) a nonwoven fabric composed of organic fibers are arranged adjacent to each other. You. Specifically, the prepreg lamination structure of the present invention is not particularly limited when (B) is disposed on both surfaces of the prepreg surface and two or more prepregs are laminated. (B)
Is placed on one side of the prepreg surface, and when two sheets are laminated, the second carbon fiber layer is attached to the first nonwoven fabric layer of the prepreg, and the nonwoven fabric layer is disposed between the two prepreg layers. Are laminated as follows.

【0040】あるいは、プリプレグの1枚目の不織布層
に2枚目の不織布層を貼り合わせて、2枚のプリプレグ
の層間に不織布層が配置されるように積層してもよい。
Alternatively, a second non-woven fabric layer may be attached to the first non-woven fabric layer of the prepreg, and the two prepregs may be laminated so that the non-woven fabric layer is disposed between the two layers.

【0041】(B)をプリプレグ表面の片面に配置し、
2枚以上、例えば、3枚積層する場合は、図3に示すよ
うにプリプレグの層間に必ず(B)層が配置されるよう
に積層する。
(B) is placed on one side of the prepreg surface,
When two or more sheets, for example, three sheets are stacked, the layers are stacked such that the (B) layer is always arranged between the layers of the prepreg as shown in FIG.

【0042】また、本発明のプリプレグは、一方向に積
層しても良いし、疑似等方性を有するように、例えば、
(+45O/0O/45O/90O4S というように積層
しても良い。
The prepreg of the present invention may be laminated in one direction, or may be quasi-isotropic, for example,
(+45 O / 0 O / 45 O / 90 O ) 4S may be laminated.

【0043】また、プリプレグを3層以上積層する場
合、特にクラックの入りやすい部分にのみ本発明のプリ
プレグを積層し、それ以外の部分には、(B)の配置さ
れていないプリプレグを積層しても良い。例えば、積層
板が0Ox5層/90Ox1層/0Ox5層で構成されて
いる場合は、中央部の0O層/90O層/0O層の3層の
みに本発明のプリプレグを積層しても良い。
In the case where three or more prepregs are laminated, the prepreg of the present invention is laminated only on a portion where cracks are likely to occur, and a prepreg without (B) is laminated on other portions. Is also good. For example, if the laminate is composed of 0 O x5 layer / 90 O x1 layer / 0 O x5 layer, prepreg of the present invention to three layers of 0 O layer / 90 O layer / 0 O layer in the center portion May be laminated.

【0044】以上のようにして積層された後、マトリッ
クス樹脂の硬化温度にて、通常の成形方法に準じて成形
し、成形物とされる。
After lamination as described above, molding is performed at a curing temperature of the matrix resin in accordance with a usual molding method to obtain a molded product.

【0045】[0045]

【発明の効果】本発明により得られたプリプレグは、優
れた機械的特性及び熱的特性と靭性、耐衝撃性が兼備さ
れた成形物が得られるプリプレグであり、しかも此のプ
リプレグを用いて成形された成形物は、発生したクラッ
クを伝播させにくい特性を有するため、航空機構造材
料、宇宙構造物材料等へ好適に使用される。
The prepreg obtained according to the present invention is a prepreg from which a molded article having excellent mechanical and thermal properties, toughness and impact resistance can be obtained, and molded using this prepreg. The formed article has a property that the generated crack is hardly propagated, and thus is suitably used for an aircraft structural material, a space structural material, and the like.

【0046】[0046]

【実施例1】下記の組成よりなる樹脂組成物を用い、フ
ィルムコ−タ−にて樹脂フィルムを作製した。つぎにホ
ットメルト法にて、一方向に均一に配列させた炭素繊維
の片表面に不織布を供給し、100℃のホットロ−ラ−
に通し、未硬化の熱硬化性樹脂を繊維間及び不織布に含
浸させ、成形物中間体(プリプレグ)を作製した。
Example 1 Using a resin composition having the following composition, a resin film was prepared by a film coater. Next, a non-woven fabric is supplied to one surface of the carbon fibers uniformly arranged in one direction by a hot melt method, and a hot roller at 100 ° C.
And a non-cured thermosetting resin was impregnated between the fibers and the non-woven fabric to produce a molded product intermediate (prepreg).

【0047】1)ビスマレイミド樹脂(シェル社製、Co
mpimide 796)−60重量部 2)4,4'−ヒ゛ス(o-フ゜ロヘ゜ニルフェノキシ)ヘ゛ンソ゛フェノン(シェル社
製、Compimide TM-123)−40重量部
用いた炭素繊維(CF)は、ベス
ファイトIM−600(東邦レ−ヨン社製、引張強度5
80kgf/mm2 、引張弾性率29x103 kgf /mm2 )で
ある。
1) Bismaleimide resin (manufactured by Shell, Co.
mpimide 796) -60 parts by weight 2) 4,4'-bis (o-fluorophenylphenoxy) benzophenone (Compimide TM-123 by Shell) -40 parts by weight
The carbon fiber (CF) used was Vesfight IM-600 (manufactured by Toho Rayon Co., Ltd., tensile strength 5
80 kgf / mm 2 and tensile modulus of elasticity 29 × 10 3 kgf / mm 2 ).

【0048】また、不織布は熱分解開始温度が650℃
のポリパラフェニレンベンゾビスオキサゾ−ル繊維から
なる不織布(日本バイリ−ン社製:略称PBO不織布)
を用いた。
The non-woven fabric has a thermal decomposition onset temperature of 650 ° C.
Nonwoven fabric made of polyparaphenylene benzobisoxazole fiber (manufactured by Nippon Virgin Co., Ltd .: PBO nonwoven fabric)
Was used.

【0049】プリプレグのCF目付は150g/m2
PBO不織布の目付は25g/m2、プリプレグ全体の
樹脂含有率は32重量%(PBO不織布を除く)であっ
た。得られたプリプレグは、良好なタック、ドレ−プ性
を有していた。
The prepreg has a basis weight of 150 g / m 2 ,
The basis weight of the PBO nonwoven fabric was 25 g / m 2 , and the resin content of the entire prepreg was 32% by weight (excluding the PBO nonwoven fabric). The obtained prepreg had good tack and drapability.

【0050】このプリプレグ20枚をプリプレグの層間
に必ずPBO不織布層が配置されるように一方向に積層
し、オ−トクレ−ブ成形により昇温速度2℃/分、18
0℃で2時間の硬化条件で硬化した。その後、210℃
で9時間、250℃で10時間アフタ−キュアして(昇
温速度2℃/分)、成形板を作製した。
Twenty prepregs are laminated in one direction so that the PBO nonwoven fabric layer is always arranged between the layers of the prepreg, and the temperature is increased by autoclave molding at a rate of 2 ° C./min.
The composition was cured at 0 ° C. for 2 hours. Then 210 ° C
For 9 hours, and after-curing at 250 ° C. for 10 hours (heating rate 2 ° C./min) to produce a molded plate.

【0051】この成形板より試験片を切り出し、歪エネ
ルギ−開放率(GIC)をNASARP1092に準拠
して測定した。また、このプリプレグ14枚をプリプレ
グの層間に必ずPBO不織布層が配置されるように一方
向に積層し、同条件で成形後、層間せん断強度(ILS
S)及びガラス転移温度(Tg)をそれぞれASTM
D2344、ASTM D3418に準拠して測定し
た。
A test piece was cut out from this molded plate, and the strain energy release ratio (GIC) was measured in accordance with NASARP1092. The 14 prepregs were laminated in one direction so that the PBO non-woven fabric layer was always arranged between the layers of the prepreg, and molded under the same conditions.
S) and glass transition temperature (Tg) were determined by ASTM
D2344 and ASTM D3418.

【0052】また、このプリプレグの1枚目の不織布層
に2枚目の炭素繊維層を貼り合わせて、2枚のプリプレ
グの層間にPBO不織布層が配置されるように一方向に
積層し、同条件で成形後、T型剥離強さをJIS K 6
854に準拠して積層した。
Further, a second carbon fiber layer is bonded to the first non-woven fabric layer of the prepreg, and is laminated in one direction so that the PBO non-woven fabric layer is disposed between the two prepreg layers. After molding under the conditions, the T-peel strength was measured according to JIS K6.
Laminated according to 854.

【0053】Tgは310℃、GICは790J/m
2 、T型剥離強さは17.4N/25mm幅、ILSS
は12.0kgf/mm2 であった。
Tg is 310 ° C., GIC is 790 J / m
2. T-peel strength is 17.4N / 25mm width, ILSS
Was 12.0 kgf / mm 2 .

【0054】[0054]

【実施例2】実施例1に示したPBO不織布の目付を1
0g/m2 とし、実施例1と同様の手順を繰り返した。
得られたプリプレグは、良好なタック、ドレ−プ性を有
していた。このプリプレグを実施例1と同様に硬化した
成形物のTgは312℃ 、GICは762J/m2
T型剥離強さは10.2N/25mm幅、ILSSは1
3.5kgf/mm2 であった。
Example 2 The PBO nonwoven fabric shown in Example 1 had a basis weight of 1
The procedure was the same as in Example 1, except that the pressure was 0 g / m 2 .
The obtained prepreg had good tack and drapability. The molded product obtained by curing this prepreg in the same manner as in Example 1 had a Tg of 312 ° C., a GIC of 762 J / m 2 ,
T-peel strength is 10.2N / 25mm width, ILSS is 1
It was 3.5 kgf / mm 2 .

【0055】[0055]

【実施例3】実施例1に示したPBO不織布の目付を4
5g/m2 とし、実施例1と同様の手順を繰り返した。
得られたプリプレグは、良好なタック、ドレ−プ性を有
していた。このプリプレグを実施例1と同様に硬化した
成形物のTgは313℃ 、GICは885J/m2
T型剥離強さは19.2N/25mm幅、ILSSは
9.5kgf/ mm2 であった。
Example 3 The PBO nonwoven fabric shown in Example 1 had a basis weight of 4
The same procedure as in Example 1 was repeated at 5 g / m 2 .
The obtained prepreg had good tack and drapability. The molded product obtained by curing this prepreg in the same manner as in Example 1 had a Tg of 313 ° C., a GIC of 885 J / m 2 ,
The T-peel strength was 19.2 N / 25 mm width and the ILSS was 9.5 kgf / mm 2 .

【0056】[0056]

【比較例1】不織布を加えず、実施例1と同様の手順に
よりプリプレグを作製した。得られたプリプレグのCF
目付は150g/m2 、樹脂含有量は32%であリ、良
好なタック、ドレ−プ性を有していた。このプリプレグ
を実施例1と同様に硬化した。この成形物のTgは31
0℃、GICは115J/m2 、T型剥離強さは2.2
N/25mm幅、ILSSは13.0kgf/mm2
あった。
Comparative Example 1 A prepreg was prepared in the same procedure as in Example 1 without adding a nonwoven fabric. CF of the obtained prepreg
The basis weight was 150 g / m 2 , the resin content was 32%, and it had good tack and drapability. This prepreg was cured in the same manner as in Example 1. The Tg of this molded product is 31
0 ° C, GIC: 115 J / m 2 , T-peel strength: 2.2
The N / 25 mm width and the ILSS were 13.0 kgf / mm 2 .

【0057】測定結果を表1にまとめて示すが、実施例
1〜4は比較例1と比較すると、耐熱性(Tg)、機械
的特性(ILSS)が同等の優れたレベルを保持してい
ながら、靭性(GIC)、接着性(T型剥離強さ)が良
好であることが明らかとなった。
The measurement results are shown in Table 1. In Examples 1 to 4, when compared with Comparative Example 1, heat resistance (Tg) and mechanical properties (ILSS) were maintained at the same excellent level. , Toughness (GIC) and adhesion (T-peel strength) were found to be good.

【0058】[0058]

【表1】 [Table 1]

【比較例2】熱分解開始温度が260℃のポリエステル
繊維からなる不織布を用いて、実施例1と同様の手順に
よりプリプレグを作製したが、ビスマレイミド樹脂の2
50℃x10時間のアフタ−キュア中に成形板が剥離
し、試験片を得ることができなかった。
Comparative Example 2 A prepreg was prepared in the same procedure as in Example 1 using a nonwoven fabric made of polyester fiber having a thermal decomposition initiation temperature of 260 ° C.
The molded plate was peeled off during after-curing at 50 ° C. for 10 hours, and a test piece could not be obtained.

【0059】[0059]

【発明の効果】本発明により得られたプリプレグは、優
れた機械的特性及び熱的特性と靭性、耐衝撃性が兼備さ
れたものであり、しかも発生したクラックを伝播させに
くい特性を有するため、航空機構造材料、宇宙構造物材
料等へ好適に使用される。
The prepreg obtained according to the present invention has excellent mechanical and thermal properties, as well as toughness and impact resistance, and has the property that cracks generated are difficult to propagate. It is suitably used for aircraft structural materials, space structure materials, and the like.

【0060】[0060]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプリプレグの一例の斜視図である。FIG. 1 is a perspective view of an example of a prepreg of the present invention.

【図2】本発明のプリプレグの一例の斜視図である。FIG. 2 is a perspective view of an example of the prepreg of the present invention.

【図3】本発明のプリプレグの一例の斜視図である。FIG. 3 is a perspective view of an example of the prepreg of the present invention.

【符号の説明】[Explanation of symbols]

1不織布層 2炭素繊維層 1 non-woven fabric layer 2 carbon fiber layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(A)長繊維からなる強化繊維、(B)不
織布及び(C)熱硬化性マトリックス樹脂からなるプリ
プレグにおいて、(B)がプリプレグの表面に配置され
たプリプレグ。
1. A prepreg comprising (A) a reinforcing fiber composed of long fibers, (B) a nonwoven fabric and (C) a thermosetting matrix resin, wherein (B) is disposed on the surface of the prepreg.
【請求項2】請求項1記載の(B)が(C)の硬化後に
おいて分離した相を形成するプリプレグ。
2. A prepreg according to claim 1, wherein (B) forms a separate phase after curing of (C).
【請求項3】請求項1記載の(B)がポリパラフェニレ
ンベンゾビスオキサゾ−ル繊維又は/及びポリベンズイ
ミダゾール繊維の不織布であることを特徴とするプリプ
レグ。
3. The prepreg according to claim 1, wherein (B) is a non-woven fabric of polyparaphenylene benzobisoxazole fibers and / or polybenzimidazole fibers.
JP8333141A 1996-11-29 1996-11-29 Prepreg Pending JPH10158417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8333141A JPH10158417A (en) 1996-11-29 1996-11-29 Prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8333141A JPH10158417A (en) 1996-11-29 1996-11-29 Prepreg

Publications (1)

Publication Number Publication Date
JPH10158417A true JPH10158417A (en) 1998-06-16

Family

ID=18262758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8333141A Pending JPH10158417A (en) 1996-11-29 1996-11-29 Prepreg

Country Status (1)

Country Link
JP (1) JPH10158417A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818287B1 (en) 1998-09-02 2004-11-16 Nidec Copal Corporation Light shielding blade material for optical apparatus
JP2007284841A (en) * 2006-04-19 2007-11-01 Kyoto Ichi Sheet made of carbon fiber monofilament and use thereof
EP3293366A1 (en) * 2016-09-06 2018-03-14 Rolls-Royce Corporation Reinforced fan containment case for a gas turbine engine
US10641287B2 (en) 2016-09-06 2020-05-05 Rolls-Royce Corporation Fan containment case for a gas turbine engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818287B1 (en) 1998-09-02 2004-11-16 Nidec Copal Corporation Light shielding blade material for optical apparatus
JP2007284841A (en) * 2006-04-19 2007-11-01 Kyoto Ichi Sheet made of carbon fiber monofilament and use thereof
EP3293366A1 (en) * 2016-09-06 2018-03-14 Rolls-Royce Corporation Reinforced fan containment case for a gas turbine engine
EP3293365A1 (en) * 2016-09-06 2018-03-14 Rolls-Royce Corporation Reinforced fan containment case for a gas turbine engine
US10641287B2 (en) 2016-09-06 2020-05-05 Rolls-Royce Corporation Fan containment case for a gas turbine engine
US10655500B2 (en) 2016-09-06 2020-05-19 Rolls-Royce Corporation Reinforced fan containment case for a gas turbine engine

Similar Documents

Publication Publication Date Title
KR102006511B1 (en) Composite laminate having improved impact strength and the use thereof
CN104884512B (en) Conductive fibers enhance polymer composite body and multi-functional complex
CN104736614B (en) Fiber reinforcement high modulus polymer complex with enhancing interface phase
AU2011256922B2 (en) Structured thermoplastic in composite interleaves
US6265333B1 (en) Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces
US9550330B2 (en) Thermoplastic composites and methods of making and using same
JPH01288437A (en) Fiber-reinforced thermoplastic composite body material having interleaf
TW202006025A (en) Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
JPH0575575B2 (en)
JP4716550B2 (en) Paper-free prepreg and method for producing the same
JPH10158417A (en) Prepreg
JPH0583072B2 (en)
KR19980039190A (en) Carbon Fiber Reinforced Composites with Morphology Gradient
JP2008174610A (en) Impact-resistant prepreg and method for producing the same
US20160052235A1 (en) Structured thermoplastic in composite interleaves
JP2004035604A (en) Semi-impregnated prepreg
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2004106347A (en) Intermediate material for fiber reinforced plastic (frp) molding and manufacturing method therefor
JP2510093B2 (en) Prepreg and molded products
Hancox High temperature high performance composites
JP4116361B2 (en) Intermediate material for FRP molding and manufacturing method thereof
JP2008045010A (en) Impact-resistant prepreg and method for producing the same
JP2004346190A (en) Prepreg and fiber reinforced resin composite
JP2007262355A (en) Impact-resistant prepreg and manufacturing method thereof
JP7143473B2 (en) Prepreg, its manufacturing method, and fiber-reinforced composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412