JPH05230230A - Production of fiber-reinforced thermoplastic resin - Google Patents

Production of fiber-reinforced thermoplastic resin

Info

Publication number
JPH05230230A
JPH05230230A JP4032345A JP3234592A JPH05230230A JP H05230230 A JPH05230230 A JP H05230230A JP 4032345 A JP4032345 A JP 4032345A JP 3234592 A JP3234592 A JP 3234592A JP H05230230 A JPH05230230 A JP H05230230A
Authority
JP
Japan
Prior art keywords
resin
thermoplastic resin
fiber
precursor
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4032345A
Other languages
Japanese (ja)
Inventor
Manabu Yasuda
学 安田
Toshiyuki Ito
稔之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP4032345A priority Critical patent/JPH05230230A/en
Publication of JPH05230230A publication Critical patent/JPH05230230A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce efficiently and continuously a fiber-reinforced thermoplastic resin in which the voids among the fibers are filled sufficiently with the resin. CONSTITUTION:A cold- or high-temperature-polymerizable thermoplastic resin precursor having a viscosity of 10-10<4>cP is brought into contact with a reinforcing fiber to form a fiber-reinforced thermoplastic resin precursor composed of the reinforcing fiber impregnated with the resin precursor, and the formed precursor is polymerized and cured at room temperature or/and by heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強化繊維束に熱可塑性
樹脂を均一にかつ、十分に含浸せしめた繊維強化熱可塑
性樹脂に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin in which a reinforcing fiber bundle is uniformly and sufficiently impregnated with a thermoplastic resin.

【0002】[0002]

【従来の技術】炭素繊維、ガラス繊維等の強化繊維で補
強した熱可塑性複合材料は、強化繊維に由来する、優れ
た力学的性質と樹脂に由来する優れた成形性、熱融着及
び短時間の成形性を兼ね備えた優れた材料として良く知
られている。特に、高強度化、軽量化が要求されつつあ
る、スポーツ用品、日用品用として比較的低温で賦型が
可能な、繊維強化アクリル樹脂が提案されている(米国
特許478717号)。
2. Description of the Related Art Thermoplastic composite materials reinforced with reinforcing fibers such as carbon fibers and glass fibers have excellent mechanical properties derived from reinforcing fibers and excellent formability derived from resins, heat fusion and short time. It is well known as an excellent material having the above-mentioned moldability. In particular, there has been proposed a fiber reinforced acrylic resin which can be shaped at a relatively low temperature for sports goods and daily necessities, which is required to have higher strength and lighter weight (US Pat. No. 478717).

【0003】[0003]

【発明が解決しようとする課題】従来、このような材料
を製造する方法としては、下記のような方法が用いられ
てきた。 (1)樹脂を軟化する温度にし、強化繊維ファブリック
に含浸する方法。 (2)溶剤に樹脂を溶解し、この溶液を強化繊維ファブ
リックに含浸した後、溶剤を揮発する方法。 しかし、(1)の方法では、樹脂の溶融粘度が105
ンチポイズ以上と高く、完全に樹脂を繊維に含浸するこ
とが困難であり、また高温高圧を必要とするため、高価
な装置が必要となる。また、(2)の方法では、溶剤を
完全に揮発することが困難であり、材料中に残留した溶
剤は、その力学的性質を低下させるばかりでなく、回収
できない溶剤は製造コストを引き上げる。
Conventionally, the following method has been used as a method for producing such a material. (1) A method of impregnating a reinforcing fiber fabric with a temperature at which the resin is softened. (2) A method of dissolving a resin in a solvent, impregnating this solution into a reinforcing fiber fabric, and then volatilizing the solvent. However, in the method (1), the melt viscosity of the resin is as high as 10 5 centipoise or more, it is difficult to completely impregnate the resin with the fiber, and high temperature and high pressure are required, so an expensive apparatus is required. Become. Further, in the method (2), it is difficult to completely volatilize the solvent, and the solvent remaining in the material not only deteriorates the mechanical properties, but also the solvent that cannot be recovered raises the manufacturing cost.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
強化繊維間の空隙が熱可塑性樹脂で十分に満たされた材
料を効率的、連続的に製造する方法について鋭意検討を
行い、本発明に到達した。本発明は上記の課題を解決し
ようとするもので、その要旨とするところは、粘度が1
0から104センチポイズの範囲にある常温または加熱
重合性熱可塑性樹脂前駆体と強化繊維ファブリックとを
接触させ、前記強化繊維ファブリックに前記樹脂前駆体
が含浸した繊維強化熱可塑性樹脂前駆体とした後、これ
を室温または/および加熱により重合硬化する製造方法
にあり、常温または加熱重合性熱可塑性樹脂前駆体を使
用することを特徴とする。
Therefore, the present inventors have
The present invention has been accomplished by earnestly investigating a method for efficiently and continuously producing a material in which voids between reinforcing fibers are sufficiently filled with a thermoplastic resin. The present invention is intended to solve the above problems, and the gist thereof is that the viscosity is 1
After contacting a reinforcing fiber fabric with a room temperature or heat-polymerizable thermoplastic resin precursor in the range of 0 to 10 4 centipoise to obtain a fiber-reinforced thermoplastic resin precursor in which the reinforcing fiber fabric is impregnated with the resin precursor The present invention is in a production method of polymerizing and curing this at room temperature or / and heating, and is characterized by using a room temperature or heat-polymerizable thermoplastic resin precursor.

【0005】本発明において、粘度が10から104
ンチポイズの範囲にある常温または加熱重合性熱可塑性
樹脂前駆体と強化繊維ファブリックとを接触させ、前記
強化繊維ファブリックに前記樹脂前駆体が含浸した繊維
強化熱可塑性樹脂前駆体とした後、これを室温または/
および加熱により重合硬化して、繊維強化熱可塑性樹脂
を製造するには、たとえば、下記のような操作を順次行
うことにより実施できる。。 (A)常温または加熱重合性熱可塑性樹脂前駆体と強化
繊維ファブリックとを連続的に接触させ、強化繊維ファ
ブリックに該前駆体が付着した付着物を得ること。 (B)前記付着物を連続方向に張力をかけつつ、上下か
らベルトまたは、通気性の少ないフィルムで挟持しつ
つ、移送すること。 (C)前記のベルトまたはフィルムに挟持した状態で1
対以上のローラーにより前記付着物から成る層の厚みを
減少することに依って押圧を加え、樹脂組成物が強化繊
維ファブリックの横断面にわたって含浸すること。 (D)前記、含浸物中の樹脂の重合硬化後、ベルトまた
はフィルムから剥離して、重合硬化した繊維強化熱可塑
性樹脂を得ること。
In the present invention, a fiber obtained by contacting a reinforcing fiber fabric with a room temperature or heat-polymerizable thermoplastic resin precursor having a viscosity in the range of 10 to 10 4 centipoise, and impregnating the reinforcing fiber fabric with the resin precursor. After forming a reinforced thermoplastic resin precursor, this is used at room temperature or /
In order to produce a fiber-reinforced thermoplastic resin by polymerizing and hardening by heating, the following operations can be carried out in sequence. . (A) To obtain a deposit in which the precursor is attached to the reinforcing fiber fabric by continuously contacting the reinforcing fiber fabric with the room temperature or heat-polymerizable thermoplastic resin precursor. (B) Transferring the above adhered matter while applying tension in a continuous direction, sandwiching it from above and below with a belt or a film having low air permeability. (C) 1 while sandwiched between the above belts or films
Impregnation of the resin composition across the cross section of the reinforced fiber fabric by exerting pressure by reducing the thickness of the layer of deposits with a pair of rollers or more. (D) After the polymerization and curing of the resin in the impregnated product, the resin is peeled off from the belt or the film to obtain a polymerized and cured fiber-reinforced thermoplastic resin.

【0006】本発明によれば、前記の(A)項におい
て、樹脂組成を適正化することにより強化繊維ファブリ
ック中に含浸するのに十分な粘度を付与されており、
(B),(C)項において、前記ベルトまたはフィルム
越しに押圧を加えることにより強化繊維ファブリックの
空隙が前記樹脂組成物で完全に満たされた状態が実現さ
れる。
According to the present invention, in the above item (A), by optimizing the resin composition, a viscosity sufficient to impregnate the reinforcing fiber fabric is imparted.
In the items (B) and (C), the state in which the voids of the reinforcing fiber fabric are completely filled with the resin composition is realized by applying pressure over the belt or the film.

【0007】(A)項で使用される樹脂前駆体組成物は
低粘度組成物であり、かつ非反応性の溶剤を含まないた
め、容易に完全な含浸がなされ、かつ、空孔がない製品
が得られる。
Since the resin precursor composition used in the item (A) is a low viscosity composition and does not contain a non-reactive solvent, it can be easily completely impregnated and has no pores. Is obtained.

【0008】(A)項で使用される常温または加熱重合
性熱可塑性樹脂前駆体は低粘度組成物であり、かつ非反
応性の溶剤を含まないため、容易に完全な含浸がなさ
れ、かつ、空孔がない製品が得られる。
Since the room temperature or heat-polymerizable thermoplastic resin precursor used in the item (A) has a low viscosity composition and contains no non-reactive solvent, it is easily impregnated completely, and A product without voids is obtained.

【0009】以下、本発明の詳細を具体的に説明する。
本発明に使用する強化繊維ファブリックとは、高弾性、
高強度の繊維からなる織布、一方向繊維束、チョップ、
ランダムストランドマット、または、これらを組み合わ
せたものであって、繊維としては、炭素繊維、ガラス繊
維、炭化珪素繊維、アルミナ繊維、金属繊維等の無機繊
維、アラミド繊維、ポリエチレン繊維、ポリイミド繊維
等の有機繊維が使用される。これらの2種以上の繊維を
組み合わせて使用することもできる。また、これらの強
化繊維と樹脂との密着性を改良するため、各種の表面処
理を施すこともできる。
The details of the present invention will be specifically described below.
The reinforcing fiber fabric used in the present invention has high elasticity,
Woven fabric made of high-strength fibers, unidirectional fiber bundles, chops,
Random strand mat, or a combination thereof, and as the fibers, carbon fibers, glass fibers, silicon carbide fibers, alumina fibers, inorganic fibers such as metal fibers, aramid fibers, polyethylene fibers, polyimide fibers and the like organic Fiber is used. It is also possible to use a combination of two or more kinds of these fibers. Further, various surface treatments can be applied to improve the adhesion between these reinforcing fibers and the resin.

【0010】本発明に用いる常温または加熱重合性熱可
塑性樹脂前駆体とは、非反応性の溶剤を含まず、繊維束
間に含浸した後、常温または加熱によって重合する、い
わゆるキャスティング法、反応射出成形法使用される樹
脂前駆体であれば良い。このような常温または加熱重合
性熱可塑性樹脂前駆体の一例としては、メタクリル酸ア
ルキルエステルまたは/およびアクリル酸アルキルエス
テルとこれらに溶解する熱可塑性重合体を主成分とし、
レドックス反応により重合するアクリル樹脂前駆体や溶
融したω−ラクタム類とポリエーテルを主成分とし、ア
ルカリ重合法によって重合するナイロン樹脂前駆体等が
挙げられる。本発明に用いる常温または加熱重合性熱可
塑性樹脂前駆体とは、非反応性の溶剤を含まず、繊維束
間に含浸した後、常温または加熱によって重合する、い
わゆるキャスティング法、反応射出成形法使用される樹
脂前駆体であれば良い。
The room-temperature or heat-polymerizable thermoplastic resin precursor used in the present invention does not contain a non-reactive solvent, and is impregnated between fiber bundles and then polymerized at room temperature or heat, so-called casting method, reaction injection Any resin precursor used in the molding method may be used. An example of such a room temperature or heat-polymerizable thermoplastic resin precursor is mainly composed of a methacrylic acid alkyl ester or / and an acrylic acid alkyl ester and a thermoplastic polymer dissolved therein.
Examples thereof include an acrylic resin precursor which is polymerized by a redox reaction, and a nylon resin precursor which contains a melted ω-lactam and a polyether as main components and is polymerized by an alkali polymerization method. The room-temperature or heat-polymerizable thermoplastic resin precursor used in the present invention does not contain a non-reactive solvent, and is impregnated between fiber bundles and then polymerized at room temperature or by heating, so-called casting method, reaction injection molding method is used. Any resin precursor can be used.

【0011】また、前記の常温または加熱重合性熱可塑
性樹脂前駆体の組成物以外に、樹脂の特性を改善するた
めの種々の添加剤、例えば、耐熱剤、耐候剤、帯電防止
剤、潤滑剤、離型剤、染料、顔料、消泡剤、脱酸素剤、
難燃剤及び各種フィラーなどを含有させてもよい。
In addition to the above-mentioned composition of the room temperature or heat-polymerizable thermoplastic resin precursor, various additives for improving the characteristics of the resin, such as heat-resistant agents, weather-resistant agents, antistatic agents, lubricants, etc. , Release agent, dye, pigment, defoaming agent, oxygen absorber,
A flame retardant and various fillers may be included.

【0012】本発明の前記(A)項において、強化繊維
ファブリックに樹脂組成物を連続的に接触させ、強化繊
維ファブリックに樹脂組成物が付着した付着物を得る方
法には特に制限がないが、たとえば、下記の方法が用い
られる。 (1)組成物の浴中に強化繊維ファブリックを浸漬また
は通過させる方法。 (2)1対以上のロールの上に樹脂溜りを設け、その中
を強化繊維ファブリックを通過させる方法。 (3)樹脂組成物をフィルム状に所定の目付けの塗膜と
し、その上に強化繊維ファブリックを重ねる方法。
In the above item (A) of the present invention, there is no particular limitation on the method of continuously contacting the resin composition with the reinforced fiber fabric to obtain an adhered material in which the resin composition adheres to the reinforced fiber fabric. For example, the following method is used. (1) A method of dipping or passing a reinforcing fiber fabric in a bath of the composition. (2) A method in which a resin pool is provided on one or more pairs of rolls and a reinforcing fiber fabric is passed through the resin pool. (3) A method in which the resin composition is formed into a film having a predetermined basis weight and a reinforcing fiber fabric is laminated thereon.

【0013】本発明の前記(B)項において、用いるベ
ルトやフィルムとしては、樹脂前駆体の重合時の加熱に
耐える耐熱性を有し、使用する樹脂前駆体が浸透しない
もの、熱可塑生樹脂前駆体の重合反応を阻害する物質を
浸透しない材質、形態であれば良い。
The belt or film used in the above item (B) of the present invention has heat resistance to withstand heating during polymerization of the resin precursor and does not penetrate the resin precursor to be used, thermoplastic resin Any material and form that does not permeate a substance that inhibits the polymerization reaction of the precursor may be used.

【0014】樹脂付着物の付着量は、前記の(C)の方
法でロール間の間隙を調節することで強化繊維の体積分
率を10〜70容積%に制御することができる。本発明
の前記(C)で使用する1対以上のローラーは(C)項
を満足するものであればよく、金属性、合成樹脂製、合
成ゴム製、木製、あるいは、それらを組み合わせた物を
使用することができるが、樹脂分が付着した際、腐食し
ない材質であることが望ましい。
The amount of the resin deposits can be controlled by adjusting the gap between the rolls by the method (C) to control the volume fraction of the reinforcing fibers to 10 to 70% by volume. The one or more pairs of rollers used in the above (C) of the present invention may be those satisfying the (C) item, and may be made of metal, synthetic resin, synthetic rubber, wood, or a combination thereof. It can be used, but it is desirable that the material does not corrode when the resin component adheres.

【0015】本発明において、ローラー対で付与する押
圧は、前記付着物層の厚みを減少させる程度に加えるこ
とが重要であり、この条件を満足しない場合には、強化
繊維ファブリックへの樹脂組成物の十分な含浸が実現さ
れない。前記付着物層の厚みの減少は、前記付着物層の
10〜80%の範囲が適当であり、減少が小さすぎる場
合には、前述のような未含浸、接着不良の原因となり、
大きすぎる場合には、繊維方向の乱れ、損傷、樹脂不足
を生じるため好ましくない。
In the present invention, it is important that the pressure applied by the roller pair is applied to the extent that the thickness of the deposit layer is reduced. If this condition is not satisfied, the resin composition for the reinforcing fiber fabric is Sufficient impregnation cannot be realized. The reduction of the thickness of the deposit layer is appropriately in the range of 10 to 80% of the deposit layer, and if the reduction is too small, it causes unimpregnation and poor adhesion as described above.
If it is too large, the fiber direction is disturbed, damaged, and resin is insufficient, which is not preferable.

【0016】本発明において、強化繊維ファブリックの
連続方向に付与する張力は、強化繊維ファブリックの形
態を維持できる程度に強く、樹脂性分の含浸を阻害しな
い程度に弱い範囲の張力が好ましい。この前記の張力を
付与する方法は、既存の方法を用いればよく、例えば、
1対以上のロール間に挟持し、張力を付与する方法、強
化繊維ファブリックを供給する際の抵抗、または、樹脂
浴、または、含浸ローラー通過路の抵抗により張力を付
与する方法等が挙げられる。
In the present invention, the tension applied in the continuous direction of the reinforcing fiber fabric is preferably strong enough to maintain the form of the reinforcing fiber fabric and weak enough to prevent impregnation of the resinous component. An existing method may be used for the method of applying the tension, for example,
Examples of the method include a method of applying tension by sandwiching between one or more pairs of rolls, a method of supplying a reinforcing fiber fabric, or a method of applying tension by the resistance of a resin bath or an impregnating roller passage.

【0017】本発明により得られる繊維強化熱可塑性樹
脂は、そのままで種々の用途に利用できるが、例えば、
各種樹脂板に熱融着、あるいは、接着して、米国特許4
778717号に記載されている熱賦型可能なサンドイ
ッチ板に加工することも可能であるし、また、適当な長
さ幅に切断して、あるいは連続した状態で重合硬化した
もの、また、重合が完結する前にフィルムを剥離したも
の、を数枚積層し、室温または/および加熱して重合硬
化することも可能である。また、室温または/および加
熱して重合硬化したものを所望の配列・分散状態とし
て、加熱・加圧する等の成形方法を適用して成形品を得
ることも可能である。
The fiber reinforced thermoplastic resin obtained by the present invention can be used as it is for various purposes.
US Pat. No. 4 by heat fusion or adhesion to various resin plates
It is also possible to process into a heat-moldable sandwich plate described in No. 787717, or to cut into a suitable length and width, or those which are polymerized and cured in a continuous state, It is also possible to laminate several sheets, which are obtained by peeling the film before completion, and polymerize and cure at room temperature or / and heating. Further, it is also possible to obtain a molded product by applying a molding method such as heating and pressurizing with a desired arrangement / dispersion state of what is polymerized and cured by heating at room temperature and / or.

【0018】[0018]

【実施例】以下に実施例を挙げて本発明をさらに具体的
に説明する。下記例中の『部』は『重量部』を意味す
る。 (実施例1)熱可塑性重合体として、重合平均分子95
000のメタクリル酸メチルホモポリマー19部、メタ
クリル酸メチル81部、硬化促進剤として、ジメチル−
p−トルイジン0.8部からなるアクリル系樹脂混合液
(B型粘度計、20℃90センチポイズ)に硬化触媒と
して、ベンゾイルパーオキシドを樹脂液100部に対し
て、1重量部添加し、常温硬化型アクリル系樹脂液を調
製した。強化繊維ファブリックとして、炭素繊維300
0本を集束してなる炭素繊維トウ(三菱レイヨン製パイ
ロフィル TR40)を製織(12.5本/インチ経緯
糸とも)してなる炭素繊維織布を用意した。これから以
下の工程を経て、シート状物を得た。以下の図1により
説明する。上記織布1をドクターナイフ2の直前でポリ
エステルフィルム5上に供給される樹脂成分3とローラ
ー対4直前で接触させ付着物とする一方、上から重ねた
ポリエステルフィルム6とともに移送し(5.0m/
分)、間隙を0.4mmに設定したローラー対4で含浸
し、ついで間隙を0.35mm設定したローラー7でさ
らに含浸を進めた。これを押し切りカッター8で300
mm長に切断し、平坦なガラス板上にこれを26℃の室
温中に40分放置し、硬化を行った。得られたシート状
物の炭素繊維含有率は、40容積%であり、長さ方向、
幅方向に切断した厚み0.29mmの薄片の端面を研磨
して光学顕微鏡観察を行ったところ、炭素繊維トウ中へ
の樹脂の含浸は良好であった。次に、このシート状物を
90mm角に切断、積層し、250℃に設定した平金型
で、5kg/cm2の圧力で一体かし、外観の良好な2
mm厚の成形品を得た。これから切り出した試験片に対
して、ASTM D−790に準じた曲げ試験を実施を
実施したところ、曲げ強度85kg/mm2、曲げ弾性
率5ton/mm2と優れた特性を示した。
EXAMPLES The present invention will be described in more detail with reference to the following examples. In the following examples, "part" means "part by weight". (Example 1) Polymerization average molecule 95 as a thermoplastic polymer
000 methyl methacrylate homopolymer 19 parts, methyl methacrylate 81 parts, dimethyl-
1 part by weight of benzoyl peroxide was added as a curing catalyst to an acrylic resin mixture (B-type viscometer, 20 ° C. 90 centipoise) consisting of 0.8 parts of p-toluidine, and the mixture was cured at room temperature. A type acrylic resin liquid was prepared. Carbon fiber 300 as reinforced fiber fabric
A carbon fiber woven fabric was prepared by weaving carbon fiber tow (Pyrofil TR40 manufactured by Mitsubishi Rayon) obtained by bundling 0 fibers (also 12.5 fibers / inch warp and weft). From this, a sheet-like material was obtained through the following steps. This will be described with reference to FIG. 1 below. The woven fabric 1 is contacted with the resin component 3 supplied onto the polyester film 5 immediately before the doctor knife 2 just before the roller pair 4 to form an adhered substance, and is transferred together with the polyester film 6 overlaid (5.0 m). /
Min), the impregnation was carried out with the roller pair 4 having the gap set to 0.4 mm, and then the impregnation was further advanced with the roller 7 having the gap set to 0.35 mm. Press this to 300 with the cutter 8.
It was cut into a length of mm and left on a flat glass plate at room temperature of 26 ° C. for 40 minutes for curing. The carbon fiber content of the obtained sheet-like product was 40% by volume,
When the end face of a 0.29 mm-thick thin piece cut in the width direction was polished and observed by an optical microscope, the impregnation of the carbon fiber tow with the resin was good. Next, this sheet-like material was cut into 90 mm square pieces, laminated, and integrated with a flat mold set at 250 ° C. under a pressure of 5 kg / cm 2 to give a good appearance.
A molded product having a thickness of mm was obtained. A test piece cut out from this was subjected to a bending test according to ASTM D-790. As a result, excellent properties such as a bending strength of 85 kg / mm 2 and a bending elastic modulus of 5 ton / mm 2 were exhibited.

【0019】(実施例2)100℃に加熱した実質的に
無水のε−カプロラクタム100部にナトリウムメチラ
ート(純度95%)1.3部を添加し、副生するメタノ
ールを減圧下に取り除いて、A液:アルカリ触媒液を調
製した。100℃に加熱した実質的に無水のε−カプロ
ラクタム100部に、数平均分子量2000のポリオキ
シプロピレンジアミン25部、ヘキサメチレン−1,6
−ビスカルバミドカプロラクタム9.9部を添加し、窒
素ガス雰囲気下で攪拌し、B液を調製した。A液、B液
を混合攪拌後、直ちに図中3の位置に供給した。ドクタ
ーナイフ2、ローラー対4、7を100℃に加熱した以
外は実施例1と同様にして、炭素繊維織布にナイロン樹
脂を含浸したシート状物を得た。得られたシート状物の
炭素繊維含有率は、40容積%であり、長さ方向、幅方
向に切断した厚み0.29mmの薄片の端面を研磨して
光学顕微鏡観察を行ったところ、炭素繊維トウ中への樹
脂の含浸は良好であった。次に、このシート状物を90
mm角に切断、積層し、250℃に設定した平金型で、
5kg/cm2の圧力で一体かし、外観の良好な2mm
厚の成形品を得た。これから切り出した試験片に対し
て、ASTM D−790に準じた曲げ試験を実施した
ところ、曲げ強度85kg/mm2、曲げ弾性率5to
n/mm2と優れた特性を示した。
Example 2 1.3 parts of sodium methylate (purity 95%) was added to 100 parts of substantially anhydrous ε-caprolactam heated to 100 ° C., and by-produced methanol was removed under reduced pressure. , Solution A: An alkaline catalyst solution was prepared. To 100 parts of substantially anhydrous ε-caprolactam heated to 100 ° C., 25 parts of polyoxypropylenediamine having a number average molecular weight of 2000 and hexamethylene-1,6
-Biscarbamidocaprolactam (9.9 parts) was added, and the mixture was stirred under a nitrogen gas atmosphere to prepare solution B. The liquids A and B were mixed and stirred and then immediately supplied to the position 3 in the figure. A sheet-shaped product obtained by impregnating a carbon fiber woven fabric with a nylon resin was obtained in the same manner as in Example 1 except that the doctor knife 2 and the roller pairs 4 and 7 were heated to 100 ° C. The carbon fiber content of the obtained sheet-shaped product was 40% by volume, and the end face of a thin piece having a thickness of 0.29 mm cut in the length direction and the width direction was polished and observed by an optical microscope. The resin was well impregnated into the tow. Next, 90
With a flat mold cut into mm square, laminated, and set at 250 ° C,
Together, however at a pressure of 5kg / cm 2, good 2mm of appearance
A thick molded product was obtained. When a bending test according to ASTM D-790 was performed on the test piece cut out from this, the bending strength was 85 kg / mm 2 , and the bending elastic modulus was 5 to.
It showed excellent characteristics of n / mm 2 .

【0020】(比較例1)実施例1と同じ炭素繊維織布
に、実施例1で用いた樹脂を重合固化した樹脂をメチル
エチルケトンに溶解した樹脂溶液(樹脂濃度10重量
%、溶液粘度100センチポイズ)に浸漬・乾燥をくり
かえし、シート状物を得た。得られたシート状物の長さ
方向、幅方向に切断した薄片の端面を研磨して光学顕微
鏡観察を行ったところ、溶剤残留のためと考えられるボ
イドが多数観察された。次に、このシート状物を実施例
1と同様な方法で、2mm厚の成形品を得、これから切
り出した試験片に対して、曲げ試験,層間せん断試験を
実施を実施したところ、曲げ強度40kg/mm2、曲
げ弾性率4ton/mm2、層間せん断強度2.5kg
/mm2と低調であった。
Comparative Example 1 A resin solution prepared by dissolving the resin used in Example 1 by polymerizing and solidifying the resin used in Example 1 in methyl ethyl ketone was applied to the same carbon fiber woven fabric as in Example 1 (resin concentration 10% by weight, solution viscosity 100 centipoise). Dipping and drying were repeated to obtain a sheet. When the end faces of the thin pieces cut in the length direction and the width direction of the obtained sheet-shaped product were polished and observed by an optical microscope, many voids that were considered to be due to the residual solvent were observed. Next, a molded product having a thickness of 2 mm was obtained from this sheet-like product by the same method as in Example 1, and a bending test and an interlaminar shear test were carried out on a test piece cut out from the molded product. / Mm 2 , flexural modulus 4 ton / mm 2 , interlayer shear strength 2.5 kg
/ Mm 2 was low.

【0021】(比較例2)実施例1と同じ炭素繊維織布
に、実施例1で用いた樹脂を重合固化した樹脂フィルム
(0.2mm厚)を重ね、熱プレス(240℃、20k
g/cm2)中で、1時間保持した後、圧力を保ったま
ま室温に冷却した。得られたシート状物を切断し、薄片
の端面を研磨して光学顕微鏡観察を行ったところ、炭素
繊維トウ内部に樹脂の未含浸部分が観察された。次に、
このシート状物を実施例1と同様な方法で、2mm厚の
成形品を得、これから切り出した試験片に対して、曲げ
試験,層間せん断試験を実施を実施したところ、曲げ強
度30kg/mm2、曲げ弾性率3ton/mm2、層間
せん断強度1.5kg/mm2と低調であった。
(Comparative Example 2) A resin film (0.2 mm thick) obtained by polymerizing and solidifying the resin used in Example 1 was placed on the same carbon fiber woven fabric as in Example 1, and hot pressed (240 ° C, 20 k).
After holding for 1 hour in g / cm 2 ), it was cooled to room temperature while maintaining the pressure. When the obtained sheet-like material was cut, the end faces of the thin pieces were polished and observed under an optical microscope, an unimpregnated portion of the resin was observed inside the carbon fiber tow. next,
A molded product having a thickness of 2 mm was obtained from this sheet-shaped product in the same manner as in Example 1, and a bending test and an interlaminar shearing test were carried out on a test piece cut out from the molded product. The bending strength was 30 kg / mm 2. The flexural modulus was 3 ton / mm 2 , and the interlaminar shear strength was 1.5 kg / mm 2 , which were low.

【0022】[0022]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で使用する装置の概略図であ
る。
FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 強化繊維ファブリック 2 ドクターナイフ 3 樹脂 4 ローラー対 5 ポリエステルフィルム 6 ポリエステルフィルム 7 ローラー対 8 押切りカッター 1 Reinforced fiber fabric 2 Doctor knife 3 Resin 4 Roller pair 5 Polyester film 6 Polyester film 7 Roller pair 8 Press cutter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粘度が10から104センチポイズの範
囲にある常温または加熱重合性熱可塑性樹脂前駆体と強
化繊維ファブリックとを接触させ、前記強化繊維ファブ
リックに前記樹脂前駆体が含浸した繊維強化熱可塑性樹
脂前駆体とした後、これを室温または/および加熱によ
り重合硬化することを特徴とする繊維強化熱可塑性樹脂
の製造方法。
1. A fiber-reinforced heat obtained by contacting a reinforcing fiber fabric with a room temperature or heat-polymerizable thermoplastic resin precursor having a viscosity in the range of 10 to 10 4 centipoise, and impregnating the reinforcing fiber fabric with the resin precursor. A method for producing a fiber-reinforced thermoplastic resin, which comprises polymerizing and curing the precursor after being made into a thermoplastic resin precursor at room temperature and / or heating.
JP4032345A 1992-02-19 1992-02-19 Production of fiber-reinforced thermoplastic resin Pending JPH05230230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4032345A JPH05230230A (en) 1992-02-19 1992-02-19 Production of fiber-reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4032345A JPH05230230A (en) 1992-02-19 1992-02-19 Production of fiber-reinforced thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH05230230A true JPH05230230A (en) 1993-09-07

Family

ID=12356373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4032345A Pending JPH05230230A (en) 1992-02-19 1992-02-19 Production of fiber-reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH05230230A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148619A1 (en) * 2010-05-27 2011-12-01 東レコーテックス株式会社 Fiber-reinforced composite material
JP2014529532A (en) * 2011-08-26 2014-11-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of molded product
JP2015113412A (en) * 2013-12-12 2015-06-22 東レコーテックス株式会社 Thermoplastic fiber-reinforced composite material and molded body using the same, and method for producing the composite material
JP2018076510A (en) * 2011-10-21 2018-05-17 アルケマ フランス Composite material of thermoplastic (meth)acrylic resin obtained by in situ polymerization, and use of the same
JP2018162461A (en) * 2012-07-18 2018-10-18 アルケマ フランス Impregnation method for fibrous base material, liquid (meth)acrylic syrup agent for impregnation method, method for polarizing the same, and structured article obtained by the same
CN111978459A (en) * 2019-05-24 2020-11-24 汉能移动能源控股集团有限公司 PMMA/glass fiber composite material and preparation method and application thereof
JP2021501067A (en) * 2017-10-27 2021-01-14 エントロテック・インコーポレーテッドEntrotech,Inc. Method of applying polymer film to substrate and obtained article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856740A (en) * 1971-11-19 1973-08-09
JPS54155267A (en) * 1978-05-29 1979-12-07 Sumitomo Chem Co Ltd Manufacture of glassfiber-reinforced transparent resin plate
JPS60133037A (en) * 1983-11-23 1985-07-16 ハ−キュルス インコ−ポレ−テッド Low density polybutadiene base wet filament wound resin
JPH02229021A (en) * 1989-01-30 1990-09-11 Edison Polymer Innov Corp Manufacture of composite material
JPH03137134A (en) * 1989-10-21 1991-06-11 Nippon Petrochem Co Ltd Fiber-reinforced composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856740A (en) * 1971-11-19 1973-08-09
JPS54155267A (en) * 1978-05-29 1979-12-07 Sumitomo Chem Co Ltd Manufacture of glassfiber-reinforced transparent resin plate
JPS60133037A (en) * 1983-11-23 1985-07-16 ハ−キュルス インコ−ポレ−テッド Low density polybutadiene base wet filament wound resin
JPH02229021A (en) * 1989-01-30 1990-09-11 Edison Polymer Innov Corp Manufacture of composite material
JPH03137134A (en) * 1989-10-21 1991-06-11 Nippon Petrochem Co Ltd Fiber-reinforced composite material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148619A1 (en) * 2010-05-27 2011-12-01 東レコーテックス株式会社 Fiber-reinforced composite material
JPWO2011148619A1 (en) * 2010-05-27 2013-07-25 東レコーテックス株式会社 Fiber reinforced composite material
JP2014529532A (en) * 2011-08-26 2014-11-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of molded product
JP2018076510A (en) * 2011-10-21 2018-05-17 アルケマ フランス Composite material of thermoplastic (meth)acrylic resin obtained by in situ polymerization, and use of the same
JP2018162461A (en) * 2012-07-18 2018-10-18 アルケマ フランス Impregnation method for fibrous base material, liquid (meth)acrylic syrup agent for impregnation method, method for polarizing the same, and structured article obtained by the same
JP2015113412A (en) * 2013-12-12 2015-06-22 東レコーテックス株式会社 Thermoplastic fiber-reinforced composite material and molded body using the same, and method for producing the composite material
JP2021501067A (en) * 2017-10-27 2021-01-14 エントロテック・インコーポレーテッドEntrotech,Inc. Method of applying polymer film to substrate and obtained article
CN111978459A (en) * 2019-05-24 2020-11-24 汉能移动能源控股集团有限公司 PMMA/glass fiber composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4813654B2 (en) Method of prepreg with resin and novel prepreg produced by the method
EP1027206B1 (en) Unidirectional fiber-random mat preform
EP1085968B1 (en) Composite articles including prepregs, preforms, laminates and sandwich moldings, and methods of making the same
JP5706402B2 (en) Method for delivering a thermoplastic resin and / or a crosslinkable resin to a composite laminate structure
WO1997031052A1 (en) Epoxy resin composition for fiber-reinforced composite material, yarn prepreg, and process and apparatus for preparing the same
US20160002409A1 (en) Multifunctional additives in engineering thermoplastics
JPH05230230A (en) Production of fiber-reinforced thermoplastic resin
JP2005313607A (en) Reinforcing fiber base material, prepreg, fiber-reinforced plastic and manufacturing method of fiber-reinforced plastic
JP3035618B2 (en) Fiber-reinforced thermoplastic resin sheet material and method for producing the same
JP6094792B2 (en) Manufacturing method of prepreg
JPH0724830A (en) Production of thermoplastic unidirectional prepreg sheet
JPH09174547A (en) Composite sheet of carbon fiber reinforced thermoplastic resin, manufacture thereof, and manufacture of molded piece using the sheet
US6242090B1 (en) Fibre reinforced resin composite products
US20220227110A1 (en) Hybrid-type fiber-reinforced composite material and apparatus for producing same
JPH05228928A (en) Thermoplastic composite material precursor and thermoplastic composite material
KR20190061662A (en) Preparation method of quasi-isotropic chopped prepreg sheet and composite materials formed using the same for shock absorption and damping effect
JP3209780B2 (en) Method for producing fiber-reinforced thermoplastic resin sandwich plate
JPH03207610A (en) Manufacture of prepreg
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2916187B2 (en) Fiber reinforced resin molding
JPH1087847A (en) Production of fiber-reinforced resin sheet
JPH10158417A (en) Prepreg
JPH07251460A (en) Production of fiber reinforced unsaturated polyester resin molding
JP2000061940A (en) Prepreg
JPS5871123A (en) Preparation of prepreg