JP2510093B2 - Prepreg and molded products - Google Patents

Prepreg and molded products

Info

Publication number
JP2510093B2
JP2510093B2 JP2419159A JP41915990A JP2510093B2 JP 2510093 B2 JP2510093 B2 JP 2510093B2 JP 2419159 A JP2419159 A JP 2419159A JP 41915990 A JP41915990 A JP 41915990A JP 2510093 B2 JP2510093 B2 JP 2510093B2
Authority
JP
Japan
Prior art keywords
prepreg
resin
fibers
fiber
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2419159A
Other languages
Japanese (ja)
Other versions
JPH0542536A (en
Inventor
雅史 穂谷野
正人 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2419159A priority Critical patent/JP2510093B2/en
Publication of JPH0542536A publication Critical patent/JPH0542536A/en
Application granted granted Critical
Publication of JP2510093B2 publication Critical patent/JP2510093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐衝撃性に優れ、衝撃
時のクラック伝播を抑制する能力のある成形物を製造す
るためのプリプレグ及びこのプリプレグを成形してなる
成形物に関するものである。更に詳しくは、高強度炭素
繊維等を強化材とした場合に、マトリックス樹脂の優れ
た機械的特性及び熱的特性を損ねることなく、靭性(タ
フネス)が付与された成形物を与えるためのプリプレグ
及び該成形物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg for producing a molded product which is excellent in impact resistance and has an ability to suppress crack propagation upon impact, and a molded product obtained by molding the prepreg. . More specifically, when a high-strength carbon fiber or the like is used as a reinforcing material, a prepreg and a prepreg for imparting a toughness-imparted molded product without impairing the excellent mechanical properties and thermal properties of the matrix resin, and The present invention relates to the molded product.

【0002】[0002]

【従来技術及び問題点】近年、炭素繊維、芳香族ポリア
ミド繊維等を強化材として用いた複合材料は、その高い
比強度、比剛性を利用して、航空機等の構造材として多
く用いられてきている。これらの複合材料は、強化材に
マトリックス樹脂が含浸された中間製品であるプリプレ
グから、加熱・加圧といった成形・加工工程を経て実際
に用いられる場合が多い。プリプレグにおけるマトリッ
クス樹脂としては、熱硬化性樹脂として知られるエポキ
シ樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹
脂、ポリイミド樹脂等が用いられ、また、最近ではポリ
エーテルエーテルケトンといった熱可塑性樹脂も用いら
れるようになってきており、いずれの樹脂を用いた場合
も、その複合材料は、優れた耐熱性、機械的特性、寸法
安定性、耐薬品性、耐候性が特徴とされていた。熱可塑
性樹脂をマトリックス樹脂とした場合、良好な耐熱性、
機械的特性に加え複合材料の衝撃特性も優れていること
が期待されているが、プリプレグとしての取扱性が悪い
(例えばドレープ性に乏しい)ために、現状の成形加工
技術では取扱性が悪い材料であり、複雑形状物への適用
が難しい状況にある。一方、エポキシ樹脂系プリプレグ
のように熱硬化性樹脂をマトリックス樹脂に用いた場
合、耐熱性、機械的特性に良好な性能を示すことが認め
られていたが、反面、マトリックス樹脂の伸度が低く、
脆いために複合材料の靭性、耐衝撃性に劣ることが指摘
され、その改善が求められてきた。特に、これらのプリ
プレグから作られた複合材料は、これを航空機一次構造
材の用途に使用する場合、離着陸時の小石の跳ね上げ、
整備時の工具の落下等による外部からの衝撃に耐える性
能を有する必要があるが、耐熱性を落とさずに耐衝撃性
を改善することは、これまで困難視されていた。これら
の複合材料に耐衝撃性を付与させるためには、次のよう
なことが重要な点と指摘され研究が進められてきた。 炭素繊維等の強化材の伸度を向上させる。 プリプレグに用いられるマトリックス樹脂の靭性(タ
フネス)を上げる。 強化繊維/マトリックス樹脂の界面特性を最適化す
る。 複合材料を高次構造とする。 プリプレグ用マトリックス樹脂を高靭性化し、複合材料
の耐衝撃性を向上させる技術としては、特開昭58−1
20639号、同61−250021号、同62−36
421号、同62−57417号の公報等で知られるよ
うに、マトリックス樹脂に特定のエラストマー成分、高
分子量ゴム成分、熱可塑性樹脂を配合し、複合材料の靭
性(耐衝撃性)を高めたプリプレグ組成物も開発されて
いるが、複合材料の耐衝撃性の向上が低かったり、マト
リックス樹脂の粘度が著しく上昇する等の問題を有して
いた。また、マトリックス樹脂に熱可塑性樹脂の微粉末
を分散混合する方法も提案されているが、この場合、マ
トリックス樹脂の粘度上昇は少なく、耐衝撃性は向上す
るものの、暴露雰囲気中においてプリプレグのタックが
経時変化するという問題があった。強化繊維/マトリッ
クス樹脂の界面特性を最適化することに関しては、繊維
の表面処理条件、収束剤の種類を選択する等の研究が行
なわれているが、まだ研究段階にあり所望の効果が得ら
れていない。複合材料を高次構造とし、複合材料の耐衝
撃性を改良する技術としては、強化繊維の素材形態をコ
ントロールする方法、積層間に異種材料を挿入する方法
等が考えられる。強化繊維の素材形態をコントロールす
る方法として、等方的な材料にするため、強化素材に三
次元織物を使用する等の試みもされているが、今のとこ
ろ、織物の製造が難しい、樹脂含浸が悪い、繊維体積含
有率のコントロールが難しい等の問題点が多く実用面で
は顕著な効果を発揮させるまでには至っていない。複合
材料の積層間に異種材料を挿入する技術に関しては、特
開昭51−33162号、同61−135712号の公
報に示されるように、プリプレグの表面にスクリーム・
クロスを貼りあわせた材料が知られているが、この場合
のスクリーム・クロスはプリプレグの横割れ防止や繊維
乱れを防止するといった、むしろプリプレグ自身の補強
的な目的のため使用されており、大きな靭性、耐衝撃性
の向上は認められていない。複合材料の積層間に異種材
料を挿入して、複合材料の衝撃特性を向上させる技術と
して、特開昭60−63229号、同63−16273
3号の公報に示されるようなインターリーフ技術があ
る。インターリーフ材料としては、一般に厚さ0.03
〜0.06mmの可撓性に優れたエポキシ樹脂層を用い
たり、厚さ0.01〜0.05mmの例えば、ポリエー
テルイミド、ポリエーテルサルホン、ポリエーテルエー
テルケトンのフィルムといった熱可塑性樹脂フィルムを
使用している。インターリーフ材料に可撓性に優れたエ
ポキシ樹脂、例えばエラストマー成分の多いエポキシ樹
脂層を用いた場合、衝撃特性の向上を図るためにはエラ
ストマー成分を多量配合することが必要であるが、そう
すると、エラストマー成分の種類や量により複合材料の
耐熱性や機械的特性の低下を招くことがあり、その種類
や量に制限が加えられるため、十分な効果を発揮できな
いことが多い。複合材料の積層間に熱可塑性樹脂フィル
ムを挿入した場合、複合材料の耐衝撃性を向上させる効
果は認められているが、隣接した層と層との間が樹脂フ
ィルムにより完全に遮断されるため、プリプレグのタッ
クやマトリックス樹脂と熱可塑性樹脂フィルムとの接着
性に問題があり、複合材料の靭性、特に歪エネルギー開
放率(G IC が低いという欠点を有している。また、
層間方向の樹脂フローが遮断されるため、不均一な樹脂
フローが起こり、成形物の変形を招いたり、又は、熱可
塑性樹脂フィルムが比較的厚いために、マトリックス樹
脂に対する熱可塑性樹脂フィルムの割合が高くなり、そ
れに伴う複合材料の性能(コンポジット性能)の低下を
引き起こす場合もあった。
2. Description of the Related Art In recent years, composite materials using carbon fibers, aromatic polyamide fibers, etc. as reinforcing materials have been widely used as structural materials for aircraft etc. by utilizing their high specific strength and specific rigidity. There is. These composite materials are often actually used from a prepreg, which is an intermediate product in which a reinforcing material is impregnated with a matrix resin, through a molding / processing step such as heating / pressing. As the matrix resin in the prepreg, an epoxy resin known as a thermosetting resin, a bismaleimide resin, an unsaturated polyester resin, a polyimide resin or the like is used, and recently, a thermoplastic resin such as polyether ether ketone is also used. The composite materials have been characterized by excellent heat resistance, mechanical properties, dimensional stability, chemical resistance, and weather resistance regardless of which resin is used. When thermoplastic resin is used as matrix resin, good heat resistance,
It is expected that not only the mechanical properties but also the impact properties of the composite material will be excellent, but the handling property as a prepreg is poor (for example, the drape property is poor), and thus the handling property is poor with the current molding technology. Therefore, it is difficult to apply it to complicated shapes. On the other hand, when a thermosetting resin such as an epoxy resin-based prepreg is used as a matrix resin, it has been confirmed that it exhibits good performance in heat resistance and mechanical properties, but on the other hand, the elongation of the matrix resin is low. ,
It has been pointed out that the toughness and impact resistance of composite materials are inferior due to their brittleness, and their improvement has been demanded. In particular, composite materials made from these prepregs, when used in aircraft primary structural applications, will raise pebbles during takeoff and landing,
Although it is necessary to have the ability to withstand an external impact caused by a tool dropping during maintenance, it has been difficult to improve the impact resistance without lowering the heat resistance. In order to impart impact resistance to these composite materials, the following points have been pointed out as important points and research has been advanced. Improves the elongation of carbon fiber and other reinforcing materials. Increase the toughness of the matrix resin used for prepreg. Optimize the reinforcing fiber / matrix resin interface properties. The composite material has a higher order structure. As a technique for improving the toughness of the matrix resin for prepreg and improving the impact resistance of the composite material, there is disclosed in Japanese Patent Laid-Open No. 58-1.
20639, 61-250021, 62-36
No. 421, No. 62-57417, etc., a prepreg in which a matrix resin is blended with a specific elastomer component, a high molecular weight rubber component, and a thermoplastic resin to improve the toughness (impact resistance) of the composite material. Although a composition has been developed, it has problems such as a low improvement in impact resistance of the composite material and a marked increase in viscosity of the matrix resin. Further, a method of dispersing and mixing a fine powder of a thermoplastic resin in a matrix resin has also been proposed, but in this case, although the viscosity of the matrix resin is small and the impact resistance is improved, the tack of the prepreg in the exposure atmosphere is reduced. There was a problem that it changed over time. Regarding the optimization of the interfacial properties of the reinforcing fiber / matrix resin, researches such as selecting the surface treatment condition of the fiber and the type of sizing agent have been conducted, but it is still in the research stage and the desired effect can be obtained. Not not. As a technique for improving the impact resistance of the composite material by making the composite material a higher-order structure, a method of controlling the material form of the reinforcing fiber, a method of inserting a different material between the laminated layers, and the like are considered. As a method of controlling the material form of the reinforcing fiber, attempts have been made to use a three-dimensional woven fabric as the reinforcing material in order to make it an isotropic material, but at the present time, it is difficult to produce a woven fabric, and it is impregnated with resin. However, there are many problems such as poor control of the fiber volume content and difficulty in controlling the fiber volume content. As for the technique of inserting different materials between the laminated layers of composite materials, as disclosed in JP-A-51-33162 and JP-A-61-135712, a scream.
It is known that a cloth is laminated, but in this case the scream cloth is used for the purpose of reinforcing the prepreg itself, such as preventing lateral cracking of the prepreg and preventing fiber disorder, and has a large toughness. However, no improvement in impact resistance is recognized. As a technique for improving the impact characteristics of a composite material by inserting a different material between the layers of the composite material, JP-A-60-63229 and 63-16273.
There is an interleaf technique as disclosed in Japanese Patent No. As an interleaf material, the thickness is generally 0.03
A thermoplastic resin film having a thickness of 0.01 to 0.05 mm, for example, a film of polyetherimide, polyethersulfone, or polyetheretherketone. Are using. When using an epoxy resin having excellent flexibility in the interleaf material, for example, an epoxy resin layer containing many elastomer components, it is necessary to blend a large amount of the elastomer component in order to improve impact properties. Depending on the type and amount of the elastomer component, the heat resistance and mechanical properties of the composite material may be deteriorated, and the type and amount are limited, so that the sufficient effect cannot be often obtained. When a thermoplastic resin film is inserted between the layers of composite material, the effect of improving the impact resistance of the composite material is recognized, but the resin film completely blocks the space between adjacent layers. However, there is a problem in the tack of the prepreg and the adhesiveness between the matrix resin and the thermoplastic resin film, and there is a drawback that the toughness of the composite material, particularly the strain energy release rate (G IC ) is low. Also,
Since the resin flow in the interlayer direction is blocked, non-uniform resin flow occurs, resulting in deformation of the molded product, or because the thermoplastic resin film is relatively thick, the ratio of the thermoplastic resin film to the matrix resin is In some cases, it becomes higher, and the performance of the composite material (composite performance) is reduced accordingly.

【0003】[0003]

【発明の目的】本発明の目的は、上記の如き問題点を克
服し、優れた耐熱性に加え、靭性、衝撃強さに優れ、衝
撃時のクラックの伝播を抑制する能力を有する成形物を
複合材料に付与させるプリプレグ及び該成形物を提供す
ること、敷えんすると、熱硬化性のマトリックス樹脂を
用いたプリプレグにおいて、プリプレグ中に熱可塑性樹
脂よりなる繊維を混在させることで、プリプレグのタッ
ク、フロー特性、成形後の複合材料の靭性、耐衝撃性に
優れた繊維強化複合材料用プリプレグ及びこれから得ら
れる成形物を提供することにある。
It is an object of the present invention to provide a molded article which overcomes the above problems and has excellent heat resistance, excellent toughness and impact strength, and the ability to suppress the propagation of cracks at the time of impact. Providing a prepreg and a molded product to be applied to a composite material, when spread, in a prepreg using a thermosetting matrix resin, by mixing fibers made of a thermoplastic resin in the prepreg, tack of the prepreg, It is intended to provide a prepreg for a fiber-reinforced composite material, which has excellent flow characteristics, toughness of the composite material after molding, and impact resistance, and a molded product obtained from the prepreg.

【0004】[0004]

【発明の構成】本発明は下記のとおりのものである。 (請求項1)強化材長繊維と、ポリエーテルサルフォ
ン、ポリエーテルイミド、ポリエーテルエーテルケト
ン、ポリイミドの単独又は併用してなる熱可塑性樹脂長
繊維との基材に、該熱可塑性樹脂長繊維の融点又はガラ
ス転移温度より低い温度で硬化する熱硬化性樹脂組成物
を含浸してなるプリプレグ。 (請求項2)請求項1記載のプリプレグを成形してなる
成形物。 本発明の好適な実施態様は、下記のとおりである。 (a)強化材長繊維が、1.3%以上の伸度を有する炭
素繊維長繊維である請求項1記載のプリプレグ。 (b)熱可塑性樹脂長繊維が、ガラス転移温度又は融点
が180℃以上の熱可塑性樹脂繊維である前記請求項1
記載のプリプレグ。 (c)単繊維の太さが1〜50μmであり、その単繊維
が10〜10000本からなる熱可塑性樹脂長繊維束
を、強化材長繊維に対し好ましくは3〜25重量%、更
に好ましくは10〜20重量%の割合でプリプレグ中に
均一に混在させたものである前記請求項1記載のプリプ
レグ。 本発明の成形物は、耐衝撃性に優れ、しかも発生したク
ラックを伝播させにくい特性を有するものである。本発
明に用いられる強化材長繊維は、1.3%以上の伸度を
有する炭素繊維、ガラス繊維、芳香族ポリアミド繊維が
好ましい。通常、ガラス繊維、芳香族ポリアミド繊維
は、2.5%以上の伸度を有している。伸度1.3%未
満の炭素繊維を使用した場合、複合材料の靭性、耐衝撃
性がやや不十分となるきらいがある。炭素繊維として
は、アクリル系炭素繊維、ピッチ系炭素繊維等に制限は
ないが、複合材料の機械的特性を向上させるために、引
張強さ400Kgf/mm以上、弾性率30×10
Kgf/mm以上の、いわゆる高強度中弾性繊維を用
いることが好ましい。また、長繊維としては、一般にフ
ィラメント糸が使用されるが、短繊維の紡績糸を使用す
ることもできる。本発明において、熱可塑性樹脂長繊維
とは、ポリエーテルサルフォン、ポリエーテルイミド、
ポリエーテルエーテルケトン、ポリイミドのフィラメン
ト、紡績糸、混紡糸等の連続的な繊維であり、これらの
繊維は単独又は併用して用いる。マトリックス樹脂の含
浸性の点からフィラメントが好ましい。また、これらの
繊維は耐熱性があり好適である。その単繊維の太さは1
〜50μmであり、その単繊維が10〜10000本か
らなるものがプリプレグ作製工程の容易性及びその成形
物の耐衝撃性の点から好適である。これらの熱可塑性樹
脂長繊維は、特にプリプレグ硬化時(成形時)に、該熱
可塑性樹脂繊維がマトリックス樹脂中に融合して、均一
相とならないよう、熱硬化性マトリックス樹脂の硬化温
度との関係で、該硬化温度より高いガラス転移温度又は
融点の熱可塑性樹脂を選定することが必要である。好ま
しくは、ガラス転移温度又は融点が180℃以上の熱可
塑性樹脂長繊維である。また、これらの繊維はマトリッ
クス樹脂との接着性を向上させるため、その表面に物理
的又は化学的なエッチング処理を施してもよい。熱可塑
性樹脂長繊維の強化材長繊維に対する配合比率は、成形
物の機械的特性・耐熱性・耐衝撃性の点から、3〜25
重量%、好ましくは10〜20重量%である。これらの
繊維を基材としたプリプレグは、一方向引き揃え、一方
向織物、織物等の基材の繊維間に未硬化の熱硬化性樹脂
組成物を含浸させたものである。マトリックス樹脂とし
ての熱硬化性樹脂組成物は、基材の熱可塑性樹脂長繊維
のガラス転移温度又は融点より低い温度で硬化する樹脂
組成物である。具体的には、エポキシ樹脂、ビスマレイ
ミド樹脂、不飽和ポリエステル樹脂、フェノール樹脂、
ポリイミド樹脂であり、プリプレグに占める樹脂組成物
全体(熱可塑性樹脂長繊維を含む)の含有率は好ましく
は20〜60重量%、更に好ましくは25〜45重量%
が適当である。樹脂の変性等により、マトリックス樹脂
の伸度が向上した場合には、成形物は更に発生したクラ
ックを伝播させにくい特性を有するようになる。このよ
うなプリプレグよりなる成形物は、靭性、耐衝撃性に優
れ、しかも剥離を起こしにくい成形物である。本発明の
プリプレグは、通常知られた方法によって基材を作製
し、溶剤法又はホットメルト法によってプリプレグとす
ることができるが、溶剤法を用いる場合は、熱可塑性樹
脂長繊維を溶解しない溶剤を使用する必要がある。強化
材長繊維と熱可塑性樹脂長繊維をプリプレグ作製装置に
導入する際には、個別に行っても或いは予め交絡(コミ
ングル、合糸)させたものを用いてもよい。例えば、以
下の方法により製造することができる。まず、調合した
熱硬化性樹脂を用い、フィルムコーター等により均一な
樹脂フィルムを作製する。次いで、ホットメルト法等に
より、その樹脂フィルム上に強化材長繊維と熱可塑性樹
脂長繊維を一方向に均一に配列させ、プレート、ローラ
ー等にて加熱、加圧し、含浸することによってプリプレ
グとする。
The present invention is as follows. (Claim 1) Reinforcing filaments and polyether sulfo
Polyether imide, polyether ether keto
Thermoplastic resin length consisting of polyimide or polyimide alone or in combination
A prepreg obtained by impregnating a base material with fibers with a thermosetting resin composition which is cured at a temperature lower than the melting point or glass transition temperature of the thermoplastic resin filaments. (Claim 2) A molded product obtained by molding the prepreg according to claim 1. Preferred embodiments of the present invention are as follows. The prepreg according to claim 1, wherein the (a) reinforcing material long fibers are carbon fiber long fibers having an elongation of 1.3% or more. The thermoplastic resin filament (b) is a thermoplastic resin fiber having a glass transition temperature or a melting point of 180 ° C. or higher.
The listed prepreg. (C) The length of the single fiber is 1 to 50 μm, and the thermoplastic resin continuous fiber bundle composed of 10 to 10,000 single fibers is preferably 3 to 25% by weight, and more preferably, the reinforcing fiber continuous fiber. The prepreg according to claim 1, wherein the prepreg is uniformly mixed in the prepreg at a ratio of 10 to 20% by weight. The molded article of the present invention is excellent in impact resistance and has characteristics that it is difficult for a generated crack to propagate. The reinforcing filaments used in the present invention are preferably carbon fibers, glass fibers and aromatic polyamide fibers having an elongation of 1.3% or more. Usually, glass fiber and aromatic polyamide fiber have an elongation of 2.5% or more. When carbon fibers having an elongation of less than 1.3% are used, the toughness and impact resistance of the composite material may be slightly insufficient. The carbon fiber is not limited to acrylic carbon fiber, pitch carbon fiber, etc., but in order to improve the mechanical properties of the composite material, tensile strength is 400 Kgf / mm 2 or more, elastic modulus is 30 × 10 3.
It is preferable to use so-called high-strength medium elastic fibers having a Kgf / mm 2 or more. Although filament yarns are generally used as the long fibers, spun yarns of short fibers can also be used. In the present invention, the thermoplastic resin filaments, polyether sulfone, polyether imide,
Polyether ether ketone, polyimide filament
Continuous fibers such as fiber, spun yarn, and blended yarn.
The fibers are used alone or in combination. Including matrix resin
A filament is preferable from the viewpoint of dipping property. Also, these
The fibers are suitable because they have heat resistance. The thickness of the monofilament is 1
It is preferably from 50 to 50 μm and the number of single fibers thereof is from 10 to 10,000, from the viewpoint of the ease of the prepreg production process and the impact resistance of the molded product. These thermoplastic resin continuous fibers have a relationship with the curing temperature of the thermosetting matrix resin so that the thermoplastic resin fibers do not fuse into the matrix resin to form a uniform phase, particularly during prepreg curing (molding). Therefore, it is necessary to select a thermoplastic resin having a glass transition temperature or a melting point higher than the curing temperature. Preferred are thermoplastic resin filaments having a glass transition temperature or melting point of 180 ° C. or higher. Further, these fibers may be subjected to a physical or chemical etching treatment in order to improve the adhesiveness with the matrix resin. The blending ratio of the thermoplastic resin long fibers to the reinforcing long fibers is 3 to 25 from the viewpoint of mechanical properties, heat resistance and impact resistance of the molded product.
% By weight, preferably 10 to 20% by weight. A prepreg using these fibers as a base material is one-way aligned and impregnated with an uncured thermosetting resin composition between fibers of a base material such as a unidirectional woven fabric or a woven fabric. The thermosetting resin composition as the matrix resin is a resin composition that cures at a temperature lower than the glass transition temperature or the melting point of the thermoplastic resin filaments of the base material. Specifically, epoxy resin, bismaleimide resin, unsaturated polyester resin, phenol resin,
The content of the entire resin composition (including the thermoplastic resin filaments) which is a polyimide resin in the prepreg is preferably 20 to 60% by weight, more preferably 25 to 45% by weight.
Is appropriate. When the elongation of the matrix resin is improved due to the modification of the resin and the like, the molded product has the property of making it difficult for the generated cracks to propagate. A molded product made of such a prepreg is a molded product which is excellent in toughness and impact resistance and does not easily peel off. The prepreg of the present invention can be prepared as a prepreg by a solvent method or a hot melt method by preparing a substrate by a generally known method, but when the solvent method is used, a solvent that does not dissolve the thermoplastic resin filaments is used. Need to use. When introducing the reinforcing material long fibers and the thermoplastic resin long fibers into the prepreg producing apparatus, they may be individually carried out or may be entangled (commingle, combined yarn) in advance. For example, it can be manufactured by the following method. First, using the prepared thermosetting resin, a uniform resin film is produced by a film coater or the like. Then, by a hot melt method or the like, the reinforcing material long fibers and the thermoplastic resin long fibers are uniformly arranged in one direction on the resin film, heated by a plate, a roller, etc., pressurized and impregnated to obtain a prepreg. .

【0005】[0005]

【実施例1】下記の組成よりなる樹脂組成物を用い、フ
ィルムコーターにて樹脂フィルムを作製した。次に、ホ
ットメルト法にて、一方向に均一に配列させた炭素繊維
と熱可塑性樹脂繊維を用い、100℃のホットローラー
に通し、未硬化の熱硬化性樹脂を繊維間に含浸させ、プ
リプレグを作製した。 1)テトラグリシジルアミノジフェニルメタン(チバガ
イギー社製、MY−720)……………………50重量
部 2)フェノールノボラック型エポキシ樹脂(ダウケミカ
ル社製、TACTIX485)……………20重量部 3)ビスフェノールA型エポキシ樹脂(油化シェルエポ
キシ社製、Ep.828)……………30重量部 4)4,4′ジアミノジフェニルスルホン(住友化学工
業社製、スミキュア)………………………40重量部 用いた炭素繊維(CF)は、ベスファイトIM−600
(東邦レーヨン社製、引張強度580Kgf/mm
弾性率30×10Kgf/mm)である。また、熱
可塑性樹脂繊維は単繊維の太さ20μmであり、その単
繊維が150本からなるフィラメント状のポリエーテル
イミド繊維(略称PEI繊維:ガラス転移温度216
℃)を用いた。プリプレグのCF目付は150g/
、PEI繊維の目付は15g/m、プリプレグ全
体の樹脂含有率(PEI繊維を含む)は32重量%であ
った。得られたプリプレグはマトリックス樹脂中にC
F、PEI繊維が均一に混在するものであり、良好なタ
ック、ドレープ性を有していた。このプリプレグより、
所定の寸法及び枚数の小片をカット、積層し、オートク
レーブ成形により昇温速度2℃/分、180℃で2時間
の硬化条件で硬化させ、成形板を作製した。これにより
試験片を切り出し、ガラス転移温度(Tg)、 IC
1500in−lb/in、衝撃後の圧縮強さ(CA
I:32ply擬等方性積層板)を測定したところ、T
gは190℃、GICは480J/m、CAIは35
Kgf/mmであった。
Example 1 Using a resin composition having the following composition, a resin film was produced with a film coater. Next, using the hot melt method, the carbon fibers and the thermoplastic resin fibers uniformly arranged in one direction were passed through a hot roller at 100 ° C. to impregnate the uncured thermosetting resin between the fibers to form a prepreg. Was produced. 1) Tetraglycidylaminodiphenylmethane (manufactured by Ciba-Geigy, MY-720) 50 parts by weight 2) Phenol novolac epoxy resin (manufactured by Dow Chemical Co., TACTIX485) 20 parts by weight 3 ) Bisphenol A type epoxy resin (Yukaka Shell Epoxy Co., Ep. 828) ... 30 parts by weight 4) 4,4'diaminodiphenyl sulfone (Sumitomo Chemical Co., Ltd., Sumikyua) ...... 40 parts by weight The carbon fiber (CF) used is Besfite IM-600.
(Manufactured by Toho Rayon Co., Ltd., tensile strength 580 Kgf / mm 2 ,
The elastic modulus is 30 × 10 3 Kgf / mm 2 ). Further, the thermoplastic resin fiber has a single fiber thickness of 20 μm, and the filamentary polyetherimide fiber (abbreviated as PEI fiber: glass transition temperature 216) having 150 single fibers.
C) was used. CF basis weight of prepreg is 150g /
m 2 , the weight of PEI fiber was 15 g / m 2 , and the resin content (including PEI fiber) of the entire prepreg was 32% by weight. The obtained prepreg has C in the matrix resin.
The F and PEI fibers were uniformly mixed, and had good tack and drape properties. From this prepreg,
Small pieces of a predetermined size and number were cut, laminated, and cured by autoclave molding under a curing condition of a heating rate of 2 ° C./minute and 180 ° C. for 2 hours to prepare a molded plate. Thus, the test piece was cut out, and the glass transition temperature (Tg), G IC ,
1500 in-lb / in, compressive strength after impact (CA
I: 32ply pseudo isotropic laminate)
g is 190 ° C., GIC is 480 J / m 2 , CAI is 35
It was Kgf / mm 2 .

【実施例2】実施例1に示したPEI繊維の目付を7g
/mとし、実施例1と同様の手順を繰り返した。得ら
れたプリプレグはマトリックス樹脂中にCF、PEI繊
維が均一に混在するものであり、良好なタック、ドレー
プ性を有していた。このプリプレグを実施例1と同様に
硬化した成形物のTgは188℃、 IC は410J/
、CAIは31Kgf/mmであった。
Example 2 The weight of the PEI fiber shown in Example 1 was 7 g.
/ M 2 and the same procedure as in Example 1 was repeated. The obtained prepreg was one in which CF and PEI fibers were uniformly mixed in the matrix resin, and had good tack and drape properties. A molded product obtained by curing this prepreg in the same manner as in Example 1 had a Tg of 188 ° C. and a G IC of 410 J /
m 2 and CAI were 31 Kgf / mm 2 .

【実施例3】実施例1に示したPEI繊維の代わりに、
ポリエーテルスルフォン繊維(略称PES繊維:Tg2
23℃)を用い、PES繊維の目付を15g/m
し、実施例1と同様の手順を繰り返した。得られたプリ
プレグはマトリックス樹脂中にCF、PES繊維が均一
に混在するものであり、良好なタック、ドレープ性を有
していた。このプリプレグを実施例1と同様に硬化した
成形物について、Tgは191℃、GICは420J/
、CAIは34Kgf/mmであった。
Example 3 Instead of the PEI fiber shown in Example 1,
Polyether sulfone fiber (abbreviation PES fiber: Tg2)
23 ° C.) and the basis weight of PES fiber was 15 g / m 2, and the same procedure as in Example 1 was repeated. The obtained prepreg was one in which CF and PES fibers were uniformly mixed in the matrix resin, and had good tack and drape properties. A molded article obtained by curing this prepreg in the same manner as in Example 1 had a Tg of 191 ° C. and a G IC of 420 J /
m 2 and CAI were 34 Kgf / mm 2 .

【実施例4】実施例1に示したPEI繊維の太さ40μ
m、その単繊維が70本から成る物に変え、PEI繊維
の目付を15g/mとし、実施例1と同様の手順を繰
り返した。得られたプリプレグはマトリックス樹脂中に
CF、PEI繊維が均一に混在するものであり、良好な
タック、ドレープ性を有していた。このプリプレグを実
施例1と同様に硬化した成形物について、Tgは190
℃、 IC は450J/m、CAIは32Kgf/m
であった。
[Example 4] The thickness of the PEI fiber shown in Example 1 is 40μ.
m, the monofilament was changed to 70 monofilaments, the weight of the PEI fiber was changed to 15 g / m 2, and the same procedure as in Example 1 was repeated. The obtained prepreg was one in which CF and PEI fibers were uniformly mixed in the matrix resin, and had good tack and drape properties. The molded product obtained by curing this prepreg in the same manner as in Example 1 had a Tg of 190.
℃, G IC is 450 J / m 2 , CAI is 32 Kgf / m
It was m 2 .

【0006】[0006]

【比較例1】熱可塑性樹脂繊維を加えず、実施例1と同
様の手順によりプリプレグを作製した。得られたプリプ
レグのCF目付は150g/m、樹脂含有率は32重
量%、良好なタック、ドレープ性を有していた。このプ
リプレグを実施例1と同様に硬化した。この成形物のT
gは191℃、 IC は190J/m、CAIは14
Kgf/mmであった。
Comparative Example 1 A prepreg was produced by the same procedure as in Example 1 without adding thermoplastic resin fibers. The obtained prepreg had a CF areal weight of 150 g / m 2 , a resin content of 32% by weight, and had good tack and drapability. This prepreg was cured as in Example 1. T of this molding
g is 191 ° C., G IC is 190 J / m 2 , CAI is 14
It was Kgf / mm 2 .

【比較例2】熱可塑性樹脂繊維を加えず、実施例1と同
様の手順によりプリプレグを作製した。得られたプリプ
レグの片面に厚さ20μmのポリエーテルイミドフィル
ムを置き、80℃のホットローラー間に通し両者を圧着
させた。得られたプリプレグのCF目付は150g/m
、樹脂含有率は33重量%であった。このプリプレグ
は良好なドレープ性を有しているが、フィルムを圧着さ
せた側はタックがないものであった。このプリプレグを
実施例1と同様に硬化した。この成形物のTgは190
℃、 IC は130J/m、CAIは31Kgf/m
であった。
[Comparative Example 2] A prepreg was produced by the same procedure as in Example 1 except that the thermoplastic resin fiber was not added. A 20 μm-thick polyetherimide film was placed on one surface of the obtained prepreg and passed through a hot roller at 80 ° C. to press them together. The CF weight of the obtained prepreg is 150 g / m.
2. The resin content was 33% by weight. This prepreg had a good drape property, but the side to which the film was pressure bonded had no tack. This prepreg was cured as in Example 1. The Tg of this molding is 190
℃, G IC is 130 J / m 2 , CAI is 31 Kgf / m
It was m 2 .

【0007】[0007]

【表1】 測定結果を表1にまとめてある。実施例1〜4は比較例
1に比較し、Tgに差は認められないものの、CAI、
IC が高く、耐衝撃性、靭性に優れることが明らかと
なった。また、ポリエーテルイミドフィルムをプリプレ
グ層間に配した比較例2と比較してもTg、CAIは同
等であるが、 IC が非常に優れることが認められた。
[Table 1] The measurement results are summarized in Table 1. Compared to Comparative Example 1, Examples 1 to 4 show no difference in Tg, but CAI,
It was revealed that the G IC was high, and the impact resistance and toughness were excellent. Further, even when compared with Comparative Example 2 in which a polyetherimide film was placed between the prepreg layers, it was confirmed that the Tg and CAI were the same but the G IC was very excellent.

【0008】[0008]

【発明の効果】本発明によると、強化材長繊維と熱可塑
性樹脂長繊維とが任意の割合で混在しているプリプレグ
を容易に製造することができる。本発明のプリプレグを
用いて成形された成形物は、熱可塑性樹脂長繊維が成形
物の中で、マトリックス樹脂に融合して均一相とはなら
ず、繊維状態のまま存在するため不均一相を形成する。
しかも、熱可塑性樹脂フィルムを介在させた場合と異な
り、層間を遮断することがない。このため、得られたプ
リプレグ及び成形物は、優れた機械的特性及び熱的特性
と靭性、耐衝撃性が兼備されたものであり、しかも発生
したクラックを伝播させにくい特性を有するため、航空
機構造材料、宇宙構造物材料等へ好適に使用される。
According to the present invention, it is possible to easily manufacture a prepreg in which reinforcing fiber long fibers and thermoplastic resin long fibers are mixed in an arbitrary ratio. The molded product molded using the prepreg of the present invention does not form a homogeneous phase in which the thermoplastic resin filaments are fused to the matrix resin in the molded product, and a heterogeneous phase exists because it exists in a fibrous state. Form.
Moreover, unlike the case where the thermoplastic resin film is interposed, the layers are not blocked. For this reason, the obtained prepreg and molded product have excellent mechanical properties and thermal properties, as well as toughness and impact resistance, and have properties that make it difficult for cracks that occur to propagate. It is preferably used for materials and space structure materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプリプレグの断面図を模式的に示した
ものである。
FIG. 1 is a schematic cross-sectional view of a prepreg of the present invention.

【符号の説明】[Explanation of symbols]

1 熱可塑性樹脂長繊維 2 強化材長繊維 3 未硬化の熱硬化性樹脂 1 long-fiber thermoplastic resin 2 long-fiber reinforcing material 3 uncured thermosetting resin

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 271:00 B29K 271:00 286:00 286:00 Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display area B29K 271: 00 B29K 271: 00 286: 00 286: 00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】強化材長繊維と、ポリエーテルサルフォ
ン、ポリエーテルイミド、ポリエーテルエーテルケト
ン、ポリイミドの単独又は併用してなる熱可塑性樹脂長
繊維との基材に、該熱可塑性樹脂長繊維の融点又はガラ
ス転移温度より低い温度で硬化する熱硬化性樹脂組成物
を含浸してなるプリプレグ。
1. Reinforcement filaments and polyether sulfo.
Polyether imide, polyether ether keto
Thermoplastic resin length consisting of polyimide or polyimide alone or in combination
A prepreg obtained by impregnating a base material with fibers with a thermosetting resin composition which is cured at a temperature lower than the melting point or glass transition temperature of the thermoplastic resin filaments.
【請求項2】 請求項1記載のプリプレグを成形して
なる成形物。
2. A molded product obtained by molding the prepreg according to claim 1.
JP2419159A 1990-12-28 1990-12-28 Prepreg and molded products Expired - Lifetime JP2510093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419159A JP2510093B2 (en) 1990-12-28 1990-12-28 Prepreg and molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419159A JP2510093B2 (en) 1990-12-28 1990-12-28 Prepreg and molded products

Publications (2)

Publication Number Publication Date
JPH0542536A JPH0542536A (en) 1993-02-23
JP2510093B2 true JP2510093B2 (en) 1996-06-26

Family

ID=18526833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419159A Expired - Lifetime JP2510093B2 (en) 1990-12-28 1990-12-28 Prepreg and molded products

Country Status (1)

Country Link
JP (1) JP2510093B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136883B2 (en) * 1994-01-28 2001-02-19 東レ株式会社 Carbon fiber reinforced resin composite and prepreg
DE69913737T3 (en) 1998-05-20 2009-05-14 Cytec Technology Corp., Wilmington Preparation of bubble-free laminates and use of same
GB2451136B (en) * 2007-07-20 2012-11-28 Umeco Structural Materials Derby Ltd Thermoset resin fibres
JP6142737B2 (en) * 2013-08-27 2017-06-07 王子ホールディングス株式会社 Thermoplastic prepreg and method for producing thermoplastic prepreg
JP6394732B2 (en) * 2017-05-09 2018-09-26 王子ホールディングス株式会社 Thermoplastic prepreg and method for producing thermoplastic prepreg

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205726A (en) * 1982-05-27 1983-11-30 Mitsubishi Rayon Co Ltd Mixed unidirectional prepreg or matlike product and manufacture thereof
JPS58205755A (en) * 1982-05-27 1983-11-30 三菱レイヨン株式会社 Hybrid one-direction prepreg and its manufacture
JPH03199011A (en) * 1989-12-28 1991-08-30 Tonen Corp Production of long-sized hybrid prepreg
JPH03202324A (en) * 1989-12-29 1991-09-04 Tonen Corp Hybrid prepreg and its manufacture

Also Published As

Publication number Publication date
JPH0542536A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
EP2298522B1 (en) Prepreg and methods for the production of fiber-reinforced composite materials
KR100554969B1 (en) Fiber material partially impregnated with a resin
EP2794272B1 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
EP3374165B1 (en) Hybrid veil as interlayer in composite materials and method for manufacturing a modified prepreg comprising a hybrid veil
JP5158778B2 (en) Epoxy resin impregnated yarn and its use for producing preforms
JP5090701B2 (en) Partially impregnated prepreg and method for producing fiber reinforced composite material using the same
JP3182967B2 (en) Cross prepreg
JP2510093B2 (en) Prepreg and molded products
JPH0575575B2 (en)
CN107108854B (en) Epoxy composition for composite material
JP2020023691A (en) Fiber-reinforced resin
JP2008174610A (en) Impact-resistant prepreg and method for producing the same
JP2006169541A (en) Prepreg
JPH0269566A (en) Fiber-reinforced composite material toughened with long thin rigid particle
KR101947896B1 (en) Manufacturing method of high heat resistant prepreg with excellent fracture toughness and high heat resistant prepreg using the same
JPS63289034A (en) Thermoplastic resin composition and its production
WO2021152957A1 (en) Composite prepreg, preform and fiber reinforced composite material bonded body using said prepreg, and method for producing said prepreg
TWI855180B (en) Composite prepreg, preform using the same, fiber-reinforced composite material joint body and manufacturing method thereof
JPH0381342A (en) Manufacture of prepreg
JP2005002514A (en) Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform
JP2004285292A (en) Roving prepreg and epoxy resin composition for the same
KR930009294B1 (en) Interply-hybridized laminated material
CN117801508A (en) Thermoplastic carbon fiber composite material and preparation method thereof
JP2023157425A (en) Reinforcing fiber base material, and fiber-reinforced composite material using the same
JPH01148545A (en) Interlaminar hybrid laminated material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 15