JP6126094B2 - 車載用画像認識装置 - Google Patents

車載用画像認識装置 Download PDF

Info

Publication number
JP6126094B2
JP6126094B2 JP2014526897A JP2014526897A JP6126094B2 JP 6126094 B2 JP6126094 B2 JP 6126094B2 JP 2014526897 A JP2014526897 A JP 2014526897A JP 2014526897 A JP2014526897 A JP 2014526897A JP 6126094 B2 JP6126094 B2 JP 6126094B2
Authority
JP
Japan
Prior art keywords
vehicle
degree
image
lens
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014526897A
Other languages
English (en)
Other versions
JPWO2014017403A1 (ja
Inventor
耕太 入江
耕太 入江
雅幸 竹村
雅幸 竹村
彰二 村松
彰二 村松
早川 泰久
泰久 早川
修 深田
修 深田
將裕 清原
將裕 清原
玲 宇田川
玲 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd, Nissan Motor Co Ltd filed Critical Clarion Co Ltd
Publication of JPWO2014017403A1 publication Critical patent/JPWO2014017403A1/ja
Application granted granted Critical
Publication of JP6126094B2 publication Critical patent/JP6126094B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/002Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles specially adapted for covering the peripheral part of the vehicle, e.g. for viewing tyres, bumpers or the like
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/254Analysis of motion involving subtraction of images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • H04N23/811Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation by dust removal, e.g. from surfaces of the image sensor or processing of the image signal output by the electronic image sensor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、車載されたカメラによって、他車両の位置やレーンマーカの位置などを検出する車載用画像認識装置に関するものである。
近年、車両にカメラを搭載して、そのカメラで車両の周辺を観測し、観測された画像の中から、他車両の位置やレーンマーカの位置などを検出して、検出された他車両の位置やレーンマーカの位置に基づいて、他車両との接触の可能性や車線逸脱の可能性を判断して注意喚起を行う車載用画像認識装置が実用化されている。
このようなシステムでは、雨天時の走行場面にあっては、自車両が巻き上げた水分がカメラのレンズ表面に付着する場合がある。また、未舗装路の走行場面にあっては、自車両が巻き上げた埃がカメラのレンズ表面に付着する場合がある。さらに、融雪剤が散布された道路を走行する場面にあっては、自車両が巻き上げた融雪剤がカメラのレンズ表面に付着する場合がある。そして、これらの付着物が乾燥することによって、水分や埃や融雪剤の中に含まれていた不純物が析出してレンズ表面に堆積し、レンズ表面に白い汚れ(以下、白濁と呼ぶ)が生じる。
レンズ表面に白濁した部位(白濁部)が生じると、レンズに入射した光は白濁部において散乱するため、観測される画像の中に、ぼけや滲みが生じる。そして、このぼけや滲みによって、検出対象である他車両やレーンマーカの像のコントラストが減少するため、他車両やレーンマーカの未検出や誤検出が発生する可能性がある。そして、こうした未検出や誤検出の発生によって、他車両の位置やレーンマーカの位置に関する、的確な注意喚起を実行できなくなる恐れがある。
特に、カメラで撮像した画像を、車両の乗員が目視確認できないシステムにあっては、乗員はレンズが白濁していることを確認することができないため、前記した未検出や誤検出は、乗員に、システムに対する不信感を与えることになる。
このような未検出や誤検出を防止するために、例えば、車両用障害物検出装置が開示されている(例えば、特許文献1)。
特開2012−38048号公報
特許文献1に記載された車両用障害物検出装置では、カメラのレンズに付着した異物等を、時間的に位置が変化しない不動領域として検出し、こうして検出された不動領域を障害物の検出対象から除外することによって、障害物検出の精度を向上させていた。
しかしながら、レンズに付着する異物の中には、透光性が高い水滴のように、不動領域として検出するのが困難な物がある。
さらに、レンズに付着した異物の領域が広範囲になった場合には、障害物検出を実行できる領域が狭くなるため、障害物検出性能の劣化をきたす恐れがある。
本発明は、上記課題に鑑みてなされたもので、レンズが白濁した状態やレンズに付着物が付着した状態であっても、他車両の位置やレーンマーカの位置などを確実に検出することができる車載用画像認識装置を提供することを目的とする。
本発明に係る車載用画像認識装置は、レンズに白濁が生じているとき、また、レンズに泥や水滴等の付着物が付着しているときであっても、他車両の位置やレーンマーカの位置を検出することができる車載用画像認識装置に関するものである。
すなわち、本発明の請求項1に係る車載用画像認識装置は、自車両に設置されて、レンズを通して前記自車両の周囲を観測して、観測された前記自車両の周囲の光信号を画像信号に変換する撮像部と、前記撮像部で撮像された画像の中から、所定の検出感度をもって前記自車両の周囲に存在する移動物体の検出を行う画像認識アプリケーション実行部と、前記画像信号の中から、前記レンズの白濁度合を算出する白濁度合算出部と、前記レンズへの泥や水滴等の付着物の付着度合を算出する付着度合算出部と、前記白濁度合の高さに応じて前記検出感度を向上させる方向に調整する検出感度調整部と、を有し、前記検出感度調整部は、前記レンズへの泥や水滴等の付着物の付着度合に基づいて、前記検出感度を補正することを特徴とする。
このように構成された本発明の請求項1に係る車載用画像認識装置によれば、自車両に設置されて、レンズを通して自車両の周囲を観測し、観測された自車両の周囲の光信号を画像信号に変換する撮像部によって撮像された画像の中から、所定の検出感度で自車両の周囲に存在する移動物体の検出を行う画像認識アプリケーション実行部の検出感度を、白濁度合の高さに応じて検出感度を向上させる方向に調整する検出感度調整部において、付着度合算出部によって算出された、レンズへの泥や水滴等の付着物の付着度合に基づいて補正するようにしたため、レンズに泥や水滴等の付着物が付着している場合であっても、必要以上の検出感度の向上が抑制されるため、自車両の周囲に存在する移動物体を確実に検出することができる。
本発明に係る車載用画像認識装置によれば、レンズの白濁度合や付着物の付着状態に関わらず、他車両の位置やレーンマーカの位置などを確実に検出することができる。
本発明に係る車載用画像認識装置が実装された車載システムの一例であるBSW(Blind Spot Warning)システムについて説明する図である。 本発明の実施例1に係る車載用画像認識装置の概略構成を示すブロック図である。 本発明の第1白濁度合算出部の詳細構成を示すブロック図である。 本発明の第2白濁度合算出部の詳細構成を示すブロック図である。 本発明の付着度合算出部の詳細構成を示すブロック図である。 本発明の接近車両検出部の詳細構成を示すブロック図である。 本発明の実施例1において実行されるメインルーチンのフローチャートである。 レンズの白濁の発生状況について説明する図であり、(a)は白濁のない状態で撮像された画像の例と、その画像の中の輝度分布の例を示す。(b)は白濁のある状態で撮像された画像の例と、その画像の中の輝度分布の例を示す。 本発明の実施例1において実行される輝度勾配に基づく白濁度合算出処理の流れを示すフローチャートである。 本発明の実施例1における光源領域検出処理の一例を示す図であり、(a)は撮像された画像を示す。(b)は撮像された画像を縮小した画像を示す。(c)は画像(b)を2値化し、ラベリング処理を行った画像を示す。(d)は画像(c)の中から条件を満たす光源領域を検出した結果を示す。 本発明の実施例1において、輝度勾配に基づいて白濁度合を算出するための光源領域検出処理を行う範囲について説明する図である。 本発明の実施例1において、白濁度合を算出するための光源領域検出処理によって検出する領域の形状について説明する図であり、(a)は検出対象となる光源領域の形状特徴を示す。(b)は検出対象とならない領域の例を示す。 本発明の実施例1において、白濁度合を算出するために輝度勾配を算出する所定ラインの一例と、輝度勾配の一例について説明する図である。 本発明の実施例1において、白濁度合の確信度の推移を表す状態遷移について説明する図である。 本発明の実施例1において実行されるエッジ強度に基づく白濁度合算出処理の流れを示すフローチャートである。 本発明の実施例1において実行される付着物検出処理の流れを示すフローチャートである。 本発明の実施例1において、撮像された画像の中にブロックを設定した例を示す図である。 (a)は撮像された画像の例を示す図である。(b)はその画像の中から検出されたエッジ構成点の例を示す図である。 本発明の実施例1において、明るい周囲ブロックをカウントする工程を説明するための図である。 本発明の実施例1において実行される視点変換画像同士の位置合わせ処理の概要を説明する図であり、(a)は車両の移動状態を示す平面図である。(b)は位置合わせの概要を示す図である。 本発明の実施例1において視点変換画像の差分結果に基づいて差分波形を生成する様子を説明する図であり、(a)は視点変換画像の差分結果から差分波形を生成する方法を説明する図である。(b)は生成された差分波形の例を示す図である。 本発明の実施例1において、立体物検出部によって分割される小領域を示す図である。 本発明の実施例1において、立体物検出部により得られるヒストグラムの一例を示す図である。 レンズの汚れ度合に応じて車両検出処理の閾値を補正する方法を示す図である。 本発明の実施例1において実行される差分演算に基づく車両検出処理の流れを示すフローチャートである。 エッジ情報による立体物検出について説明する図であり、(a)は検出領域等の位置関係を示す平面図である。(b)は実空間における検出領域等の位置関係を示す斜視図である。 輝度差算出部の動作を説明するための図であり、(a)は視点変換画像における注目線、参照線、注目点、および参照点の位置関係を示す図である。(b)は実空間における注目線、参照線、注目点、および参照点の位置関係を示す図である。 輝度差算出部の詳細な動作を説明するための図であり、(a)は視点変換画像における検出領域を示す図である。(b)は視点変換画像における注目線、参照線、注目点、および参照点の位置関係を示す図である。 エッジ線とエッジ線上の輝度分布を示す図であり、(a)は検出領域に立体物(車両)が存在している場合の輝度分布を示す図である。(b)は検出領域に立体物が存在しない場合の輝度分布を示す図である。 レンズの汚れ度合に応じて車両検出処理の閾値を補正する方法を示す別の図である。 本発明の実施例1において実行されるエッジ情報に基づく車両検出処理の流れを示すフローチャートである。
以下、本発明に係る車載用画像認識装置の実施形態について、図面を参照して説明する。なお、以下の説明において、画像に格納された濃淡値を輝度値と呼ぶ。
本実施例は、本発明の車載用画像認識装置を、走行中の自車両の後方を監視して、自車両後方の隣接車線に接近車両があるときに注意喚起や警報を行うBSWシステム(画像認識アプリケーション)が実装された車両に適用した例である。
まず、図1を用いてBSWシステムの動作を説明する。自車両5の後方を監視する撮像部10は、自車両5の後部に後ろ向きに取り付けられて、自車両5の後方の左右隣接車線を含む範囲ω(道路2の車線Y,Y,Yを含む範囲)を撮像する。そして、撮像された画像の中から、画像処理によって隣接する車線Yの検出領域X1、および隣接する車線Yの検出領域X2に存在する接近車両を検出する。
BSWシステムは、自車両5が所定車速以上で走行しているときに起動されて、撮像部10から所定の距離範囲内において、車線Yに隣接する車線Y,Yに他車両6が検出されて、検出された他車両6が自車両5に接近していることが確認されたときに、他車両6を接近車両として認識する。
他車両6が自車両5に接近していることは、撮像部10で撮像した画像を時系列的に分析することによって判定される。詳しくは後述する。
そして、他車両6が接近していると認識されたときには、自車両5に備えられた、例えばインジケータを点灯させることによって、他車両6の存在を、視覚情報として運転者に伝達する(1次警報)。
さらに、運転者がこの視覚情報に気づかずに、他車両6が存在する車線Y側に方向指示器を出して車線変更を行おうとすると、インジケータの点滅と警報音の吹鳴を行って、運転者に対して、他車両6の存在をより明確に伝達して(2次警報)、車線変更動作の中断を促す。
次に、図2を用いて、実施例1に係る車載用画像認識装置の構成を説明する。図2は、本実施例に係る車載用画像認識装置を、前記したBSWシステムが実装された自車両5に適用したときの構成図を示す。
実施例1に係る車載用画像認識装置8は、図2に示すように、自車両5(図1に図示)の後部ライセンスプレート付近に設置されて、図1に示した範囲ωを観測する撮像部10と、撮像部10で撮像された画像の中から、撮像部10の前方に装着されたレンズ12の白濁度合と、泥、水滴等の付着物の付着度合を検出するレンズ汚れ検出部20と、検出されたレンズ12の白濁度合と、泥、水滴等の付着物の付着度合に基づいて、レンズ12の汚れ度合を算出するレンズ汚れ度合算出部30と、後述する車両検出部70における他車両6の検出感度を調整する検出感度調整部50と、自車両5の車速を取得する車両情報取得部60と、自車両5の後方から接近する他車両6を検出する車両検出部70(画像認識アプリケーション実行部)を備えている。
そして、前記撮像部10と、前記検出感度調整部50と、前記車両情報取得部60と、前記車両検出部70とが、BSWシステム9を構成している。
前記撮像部10は、さらに、レンズ12と、光信号を電気信号に光電変換する、例えばCMOS素子で構成された光電変換部14と、光電変換された電気信号のゲインを調整するゲイン調整部16を備えている。
前記レンズ汚れ検出部20は、さらに、撮像部10で撮像された画像の中の輝度勾配に基づいてレンズ12の白濁度合を算出する第1白濁度合算出部22と、撮像部10で撮像された画像の中の輝度値の分散に基づいてレンズ12の白濁度合を算出する第2白濁度合算出部24からなる白濁度合算出部25と、レンズ12に付着した泥や水滴等の付着物を検出する付着度合算出部26を備えている。
また、前記車両検出部70は、撮像部10で撮像された画像の中から自車両5の後方の立体物を検出して、その立体物の移動距離と移動速度を算出し、接近車両として検出する接近車両検出部72と、接近車両検出部72で接近車両が検出されたときに、インジケータやブザーによって注意喚起する警報出力部74を備えている。
次に、図3から図5を用いて、レンズ汚れ検出部20の詳細構成を説明する。
白濁度合算出部25を構成する前記第1白濁度合算出部22は、図3に示すように、後続車両の前照灯の像を検出する領域検出部22aと、領域検出部22aで検出された領域の中の所定ライン上の輝度勾配を算出する輝度勾配算出部22bと、異なる時間に領域検出部22aで検出された領域が、同一光源による像であるか否かを判定する類似性算出部22cと、算出された白濁度合の確信度を決定する確信度決定部22dとから構成されている。
また、白濁度合算出部25を構成する前記第2白濁度合算出部24は、図4に示すように、撮像部10で撮像された画像の中のエッジ強度を算出するエッジ強度算出部24aと、エッジ強度算出部24aで算出されたエッジ強度から、画像の中のエッジ強度の分布を求めて、画面の中のエッジ強度の分布に基づいてレンズ12の白濁度合を算出するエッジ強度分析部24bとから構成されている。
さらに、付着度合算出部26は、図5に示すように、撮像部10で撮像された画像の中に処理領域を設定して複数のブロックに分割する処理領域設定部26aと、前記画像の中からエッジ強度が弱い領域を検出するエッジ検出部26bと、エッジ強度の弱い領域とその周囲の領域の輝度値を取得して輝度分布を算出する輝度分布算出部26cと、時系列で蓄積された輝度値に基づいて輝度値の時系列変化を算出する輝度変化算出部26dと、エッジ検出部26b,輝度分布算出部26c,輝度変化算出部26dの処理結果に基づいてレンズ12の付着物の有無を判定する付着物判定部26eとから構成されている。
次に、図6を用いて、車両検出部70を構成する接近車両検出部72の詳細構成を説明する。
図6に示す接近車両検出部72は、差分波形情報を利用して接近車両(他車両6)を検出する部位であり、視点変換部72aと、位置合わせ部72bと、立体物検出部72cと、を備える。
なお、本実施例1の接近車両検出部72は、エッジ情報を利用して接近車両(他車両6)を検出する構成とすることもできる。この場合は、図6に示す構成のうち、位置合わせ部72bと、立体物検出部72cから構成される検出ブロックA1を、破線で囲んだ、輝度差算出部72gと、エッジ線検出部72hと、立体物検出部72iから構成される検出ブロックA2と置き換えて構成することができる。
もちろん、検出ブロックA1、および検出ブロックA2の両方を備え、差分波形情報を利用して接近車両の検出を行うとともに、エッジ情報を利用した接近車両の検出も行うようにすることができる。検出ブロックA1と検出ブロックA2をともに備える場合には、例えば、明るさなどの環境要因に応じて検出ブロックA1、または検出ブロックA2のいずれかを動作させるようにしてもよい。
次に、実施例1に係る車載用画像認識装置8の一連の動作の流れについて、図7のフローチャートを用いて説明する。
まず、ステップS1において、前記車両情報取得部60によって、自車両5の車両情報として車速を取得する。
次に、ステップS2において、前記車両情報取得部60によって取得した車速信号の値が所定値(例えば1km/h)以上であるか否かが判定される。そして、車速信号の値が所定値以上であるときは、ステップS3に進んで、BSWシステム9が起動される。一方、車速が所定値に満たないときは、ステップS1に戻る。
次に、ステップS4において、前記撮像部10で自車両5の後方の画像を撮像する。そして、レンズ12を透過した光信号が、光電変換部14において電気信号に変換されて、さらに、ゲイン調整部16で増幅されて、画像信号I(x,y)が生成される。以後、こうして生成された画像信号I(x,y)を、単に画像I(x,y)と呼ぶ。
前記ゲイン調整部16は、光電変換部14において変換された電気信号のレベルが所定のレベルになるように、適切なゲインを与えてこれを増幅し、画像I(x,y)としている。これによって、暗い環境であっても、適切なゲインを与えることによってSN比が高い画像I(x,y)が得られる。なお、このゲイン調整は、撮像とともに随時実行されて、ゲイン調整部16では、最新のゲインの値がモニタできる構成になっている。
次に、ステップS5では、前記第1白濁度合算出部22と前記第2白濁度合算出部24において、レンズ12の白濁度合が算出される。この処理の手順は図8,9に示すが、その詳細については後述する。
そして、ステップS6では、前記付着度合算出部26において、レンズ12に付着した泥や水滴等の付着物が検出される。この処理の手順は図10に示すが、その詳細については後述する。
次に、ステップS7では、前記レンズ汚れ度合算出部30において、レンズ12の汚れ度合が算出される。その詳細については後述する。
そして、ステップS8では、前記第1白濁度合算出部22と前記第2白濁度合算出部24で算出されたレンズ12の白濁度合と、前記付着度合算出部26において算出されたレンズ12に付着した泥や水滴等の付着物の付着度合が、前記検出感度調整部50に通知されて、検出感度調整部50において、通知されたレンズ12の白濁度合と付着度合に基づいて車両検出感度が補正される。
次に、ステップS9では、前記接近車両検出部72において、撮像部10で撮像された画像の中から接近車両が検出される。この処理の手順は図25,図31に示すが、その詳細については後述する。
次に、ステップS10では、前記接近車両検出部72において検出された他車両6の有無、および他車両6の自車両5に対する相対速度に基づいて、警報を出力する必要性の有無が判定される。そして、警報を出力する必要性があるときはステップS11に進み、警報を出力する必要性がないときはステップS4に戻る。
そして、ステップS11では、前記警報出力部74において、インジケータやブザーによって警報を出力し、自車両5の乗員に接近車両の存在を報知して注意喚起を行う。
次に、図7のフローチャートの中で行われる個別の処理について、その詳細を順に説明する。
(輝度勾配に基づく白濁度合算出処理)
まず、図7のステップS5で行われる白濁度合算出処理の詳細を、図8〜図15を用いて説明する。白濁度合算出部25では、レンズ12の白濁度合が、撮像部10で撮像された画像の中の輝度勾配に基づく方法と、撮像部10で撮像された画像の中のエッジ強度の分布に基づく方法によって算出される。ここで、輝度勾配に基づいて算出されるレンズ12の白濁度合をU1とし、エッジ強度の分布に基づいて算出されるレンズ12の白濁度合をU2とする。
第1白濁度合算出部22は、撮像部10が撮像した画像I(x,y)の中から、後続車両の前照灯の像、もしくは太陽光の反射によって生じる像を検出し、こうして検出された像の中に所定ラインを設定し、この所定ライン上の輝度勾配に基づいてレンズの白濁度合U1を算出する。
これは、前照灯や太陽のような強い光源の像は、レンズの白濁によって散乱し、なおかつ、レンズの白濁度合に応じて散乱の度合が変化して、白濁度合が高いほど、明るい領域がより広がった像として観測されることを利用するためである。
図8(a),(b)は、車載用画像認識装置8の撮像部10で実際に観測された、自車両5と同一車線を走行している後続車両の前照灯を含む画像I(x,y)である。そして、図8(a)はレンズ12の表面が白濁していない場合の画像を示し、図8(b)は、レンズ12の表面が白濁している場合の画像を示している。
図8(a),(b)の画像I(x,y)の下に示したグラフは、前照灯の像の中の探索開始点Oを始点として、左方向に延びる探索方向(ライン)OP上の輝度値の分布(以後、輝度分布Ldと呼ぶ)と、前照灯の像の中の探索開始点Oを始点として、右方向に延びるラインOQ上の輝度分布Ldを1枚のグラフに示したものである。
図8(a)において、ラインOP上の輝度分布Ldが、閾値Aを下回ってから、閾値Aよりも小さい閾値Bを下回るまでの左右方向画素数をL、また、ラインOQ上の輝度分布Ldが、閾値Aを下回ってから、閾値Aよりも小さい閾値Bを下回るまでの左右方向画素数をRとしたときに、輝度勾配gを、輝度差D(=A−B)を用いて、D/L(ラインOP上の輝度勾配)、および−D/R(ラインOQ上の輝度勾配)として算出すると、白濁のない図8(a)の場合は、輝度勾配gの絶対値は大きな値となり、輝度分布Ldの広がりは狭く急峻になる。
一方、白濁のある図8(b)の場合は、輝度勾配gの絶対値は小さな値となり、輝度分布Ldの広がりは広くなる。
第1白濁度合算出部22は、この輝度勾配gの大きさを利用して、レンズ12の白濁度合U1を算出する。すなわち、輝度勾配gの絶対値が小さいほど、白濁度合U1が高いと算出される。なお、詳しくは後述するが、白濁度合算出の確実性を高めるために、輝度勾配gが小さい状態が一定期間継続した場合に、白濁が発生していると判断している。
以下、図9を用いて、第1白濁度合算出部22で行われる白濁度合U1の算出方法について詳細に説明する。
ステップS20では、前記撮像部10で撮像された画像I(x,y)(以後、単に画像Iと記載する)が所定の比率で縮小されて、縮小画像I’(x,y)(以後、単に縮小画像I’と記載する)が生成される。このように画像を縮小するのは、画像のサイズを小さくして画像処理を行う際に要するメモリ量を削減し、なおかつ、処理速度を向上させるためである。なお、具体的な縮小率は、使用する計算機環境、および、画像の分解能等を勘案して決定される。
また、前記した画像の縮小は、画素の間引きによって行うが、これは近傍画素の輝度値の平均化を行って縮小してもよい。この処理によって、図10(a)に示す画像が、図10(b)に示す画像のように縮小される。
次に、ステップS21では、ステップS20で縮小した縮小画像I’の中に、後続車の前照灯の像、もしくは太陽光の反射像を検出する領域を設定する。本実施例では、自車両5と同じ車線Yを走行する後続車の、前照灯の像が写る領域を設定して、この領域の中から、後続車の前照灯の像、もしくは太陽光の反射像を検出する。このように処理領域を制限することによって、計算機負荷を軽減させることができる。
こうして設定される処理エリアの例を図11に示す。図11に示すように、横方向画素数n、縦方向画素数mの画像に対して、左上を(x1,y1)として、右下を(x2,y2)とする処理エリアEが設定される。
この処理エリアEの上下方向位置は、自車両5に対する、撮像部10の高さ方向の取り付け位置と上下方向の取り付け角度によって定まる、無限遠点に相当する消失点の上下方向座標V(図11参照)の位置を基準にして設定される。
また、この処理エリアEの左右方向位置は、自車両5に対する、撮像部10の左右方向の取り付け位置に応じて設定される。すなわち、撮像部10が自車両5の中央に設置されていれば、処理エリアEは、縮小画像I’の中に左右対称に設定される。図11は、撮像部10の自車両5への取り付け位置が左右にオフセットしている場合の例であり、左右非対称な位置に処理エリアEが設定される。
次に、ステップS22では、ステップS21で設定した処理エリアEの内部に対して、縮小画像I’を所定の閾値で2値化して2値画像に変換し、さらに、2値画像を形成する領域の各々に番号を付けるラベリング処理を行う。ここで、所定の閾値には、予め実験等によって設定された、自車両5と同じ車線Yを走行する後続車の前照灯の像を検出できる値、および、太陽光の反射像を検出できる値が使用される。なお、この閾値は領域検出部22aに記憶されている。
そして、画像Iが撮像された際に、画像Iのゲインの値をゲイン調整部16から読み出して、読み出したゲインの値が所定値以上であるときは、画像Iを撮像した環境が夜間であると判断して、後続車両の前照灯の像を検出する閾値を適用して画像Iの2値化を行う。
一方、画像Iのゲインの値が所定値に満たないときは、画像Iを撮像した環境が昼間であると判断して、太陽光の反射像を検出する閾値を適用して画像Iの2値化を行う。
この2値化、ラベリング処理によって、図10(c)に示す画像が得られる。
次に、ステップS23では、ステップS22でラベリング処理された画像の中に前照灯の像、もしくは太陽光の反射像があるか否かが判定される。ここで行われる処理について、図12(a),(b)を用いて説明する。
前記撮像部10で撮像される、自車両5と同じ車線Yを走行する後続車の前照灯の像は、図12(a)に示す領域Rのように略円形状になる。したがって、ラベリング処理された各々の領域に対して、領域の面積が、その領域に外接する矩形領域(縦方向画素数H、横方向画素数W)の面積Hに対し、所定の割合以上の占有率を有すること、および、領域に外接する四角形の幅と高さが所定割合以上異ならないこと、を判定して、前照灯の像であるか否かを判断することができる。
また、前記撮像部10で撮像される、太陽光の反射像も、領域Rと同様に略円形状になるため、前照灯の像と同様にして、像の形状を表す占有率の閾値と外接四角形の縦横比率の閾値がそれぞれ数値化されて、実際に検出された領域が、その条件を満たすか否かが判定される。
この判定によって、例えば、図12(b)に示す領域R,R,Rのような形状の領域は、前照灯の像、または太陽光の反射像ではないと判断されて棄却される。
この判定によって、図10(d)に示すように、条件を満足する領域が1つ選択される。なお、条件を満足する領域が複数見つかったときには、最も面積の大きい領域を1つ選択する。そして、条件を満たす領域が見つからなかったとき(ステップS23がNOのとき)は、メインルーチン(図7)へ戻る。
次に、ステップS24では、ステップS23で選択された領域の重心位置Gが算出される。領域の重心位置Gの座標をG(Gx、Gy)とすると、重心位置Gの左右方向位置Gxは、領域を構成する全ての画素の左右方向座標の総和を領域の面積で除して算出され、重心位置Gの上下方向位置Gyは、領域を構成する全ての画素の上下方向座標の総和を領域の面積で除して算出される。
次に、ステップS25では、縮小画像I’の中に、輝度勾配gを算出するための探索開始点Oと、輝度勾配を算出するための探索方向(ライン)を設定する。この探索開始点O、およびラインは、自車両5が巻き上げるスプラッシュや、後続車両の前照灯の路面反射や、隣接する車線を走行している車両の前照灯などの影響を受けにくい位置、方向を、実験等によって決定して、設定すればよい。
本実施例では、図13に示すように、領域Rの重心位置Gと、領域Rの最上部の点Jの間に、輝度勾配gを算出するための探索開始点Oを設定する。図13は、輝度勾配を算出するラインOP,OQの設定例と、そのラインOP,OQにおいて算出される輝度勾配の一例について説明する図である。
すなわち、探索開始点Oの上下方向座標をOy、領域Rの最上部の点Jの上下方向座標をJyとして、(式1)によってOyを求める。
Oy=Jy+(Gy−Jy)/Th (式1)
ここで、閾値Thには0より大きい値が設定される。なお、閾値Thの値は、実験等に基づいて設定される。
そして、図13に示すように、探索開始点Oを通り、領域Rの重心位置Gを通過する水平ラインと平行になるラインが、ラインOP,ラインOQとして設定される。
次に、ステップS26において、ラインOP上で、探索開始点Oから点Pに向かって、縮小画像I’に格納された輝度値を読み取って、輝度分布Ldを算出し、さらに、ラインOQ上で、縮小画像I’に格納された輝度値を読み取って、輝度分布Ldを算出する。
こうして算出された輝度分布Ldは、図13に示すグラフのようになる。なお、このグラフは、説明をわかりやすくするために、ラインOP上の輝度分布とラインOQ上の輝度分布を1つのグラフに表している。
次に、ステップS27では、輝度分布Ldの左右の裾野の大きさを求める。ここでは、予め、輝度値の閾値Aと、Aよりも小さい輝度値の閾値Bを準備しておき、先に作成した輝度分布Ldを、探索開始点Oから点Pに向かって左方向に探索して、図13に示すように、輝度値が閾値Aを下回る位置と、輝度値が閾値Bを下回る位置との間隔を、左右方向画素数Lwとして算出する。そして、探索開始点Oから点Qに向かって右方向に探索して、輝度値が閾値Aを下回る位置と、輝度値が閾値Bを下回る位置との間隔を、左右方向画素数Rwとして算出する。
次に、ステップS28において輝度勾配gを算出する。具体的には、前記した閾値Aと閾値Bの差分値である輝度差D(=A−B)を用いて、ラインOP上の輝度勾配gをD/Lwとして算出し、ラインOQ上の輝度勾配gを−D/Rwとして算出する。
次に、ステップS29では、領域Rの左右の輝度勾配gであるD/Lwと−D/Rwに対称性があるか否かが判定される。この対称性は、(式2)によって算出される輝度勾配gのギャップGが、所定の閾値Th以下であるか否かを確認することによって行われる。
=(|Lw|−|Rw|)/(|Lw|+|Rw|) (式2)
複数の領域が左右方向に連接して出現した場合には、先に算出した輝度勾配gの大きさが左右で異なるため、(式2)で算出されたギャップGが閾値Thよりも大きくなる。そして、その場合には白濁度合の算出は行わずに、ステップS35に移行する。
次に、ステップS30では、レンズ12の白濁度合U1が算出される。白濁度合U1は、(式3)に示すように、先に算出した左右の輝度勾配gであるD/Lwと−D/Rwの絶対値の平均値として算出される。
U1={(Lw/D)+(Rw/D)}/2 (式3)
なお、(式3)において、輝度勾配gの逆数を平均化しているが、これは、レンズ12の白濁度合が高いほど(汚れているほど)、U1の値が大きくなるようにするためである。
次に、ステップS31では、先に検出した領域Rが、その1回前の処理で検出した領域Rと同一であるか否か、すなわち、同一の光源による像と考えられるか否かが判定される。
この判定は、過去の処理によって算出された白濁度合U1の平均値Ave(U1)と、(式3)で算出された最新の白濁度合U1を比較することによって行われ、過去の白濁度合の平均値Ave(U1)と、最新の白濁度合U1との差が小さいときに、同一光源によって生じた像による領域であると判定される。
この処理は、前記類似性算出部22cにおいて行われ、具体的には、(式4)を満足するときに、同一の光源による像であると判定される。
ThLOW < U1/Ave(U1) < ThHIGH (式4)
ここで、ThLOWは、同一光源による像と判定する最低閾値であり、ThHIGHは、同一光源による像と判定する最大閾値である。
ステップS31において、同一光源による像であると判定されると、次に、ステップS32において、同一光源によるとみなせる像が連続して検出されたことを示す通算回数Tがインクリメントされて、ステップS34に進む。なお、ステップS32以降の処理は、前記確信度決定部22dにおいて行われ、ステップS32でインクリメントされた通算回数Tの値は、随時、確信度決定部22dに記憶される。
一方、ステップS31において、同一光源による像でないと判定されると、次に、ステップS33において、通算回数Tがデクリメントされて、ステップS35に進む。なお、ステップS33でデクリメントされた通算回数Tの値は、随時、確信度決定部22dに記憶される。
次に、ステップS34では、先にステップS30で算出された白濁度合U1が確信度決定部22dに記憶される。そして、過去の処理によって算出された白濁度合の平均値Ave(U1)と先に算出された白濁度合U1に基づいて、白濁度合の平均値Ave(U1)が再計算されて更新される。更新された白濁度合の平均値Ave(U1)の値は、確信度決定部22dに記憶される。
次に、ステップS35では、算出された白濁度合の確信度Fが判定されて更新される。確信度Fは、前記した通算回数Tの値によって表される。そして、Tの値が大きいほど、すなわち、連続して検出された、同一光源によると考えられる像の輝度勾配に基づいて算出された白濁度合U1ほど、確信度Fが高いと判定されて、確信度Fの値が更新される。
なお、本実施例では、図14に示すように、確信度Fを4つのレベル、すなわち、Ph0,Ph1,Ph2,Ph3に分けて管理している。このうち、Ph3が最も確信度が高い状態、すなわち、算出された白濁度合U1が最も信頼できる状態であることを示す。そして、確信度Fのレベルは、Tの値に応じて遷移する。
すなわち、図14において、初期状態では、確信度FのレベルはPh0であり、同一光源によるものとみなせる像が連続して検出されたことを示す通算回数Tの値が所定値T1を越えると、確信度FのレベルはPh1に移行する。その後、通算回数Tの値が所定値T2を越えると確信度FのレベルはPh2に移行し、さらに、通算回数Tの値が所定値T3を越えると確信度FのレベルはPh3に移行する。
一方、確信度FのレベルがPh3にあったとき、通算回数Tの値がデクリメントされて所定値T4を下回ると確信度FのレベルはPh2に移行し、その後、通算回数Tの値が所定値T5を下回ると確信度FのレベルはPh1に移行し、さらに、通算回数Tの値が所定値T6を下回ると確信度FのレベルはPh0に移行する。
確信度Fが別のレベルに遷移した際には、すぐに元のレベルに戻ってしまうハンチングを防止するため、確信度Fが高いレベルに遷移したときには通算回数Tに所定値Tcを加算し、また、確信度Fが低いレベルに遷移したときには通算回数Tから所定値Tcを減算するようにしてもよい。そして、確信度Fの更新が実行されると、図9の処理を終了してメインルーチン(図7)へ戻る。
(エッジ強度に基づく白濁度合算出処理)
第2白濁度合算出部24は、撮像部10が撮像した画像Iの中から、エッジ強度の分布に基づいてレンズの白濁度合U2を算出する。
レンズ12の表面に白濁が生じると、画像Iが不鮮明になる。その不鮮明さの度合は、白濁度合が高くなるにつれて大きくなる。本実施例では、この不鮮明さの度合を、画像Iの中のエッジ強度の分布に基づいて算出する。
以下、白濁度合U2の算出手順について、図15を用いて説明する。
まず、図15のステップS40では、前記エッジ強度算出部24aにおいて、撮像部10で撮像された画像Iの中に、エッジ検出を行う領域を設定する。エッジ検出を行う領域は、画像I全体としてもよいし、エッジが出現しやすい位置に限定してもよい。
すなわち、昼間であれば、自車両5の後方の地平線を含む領域を設定して、この領域の内部についてエッジ検出を行い、地平線によって形成されるエッジに基づいてエッジ強度を算出してもよい。夜間であれば、自車両5が走行している車線Yに隣接する車線Y,Yを含む領域を設定して、この領域の内部についてエッジ検出を行い、隣接車線に存在する他車両6のエッジに基づいてエッジ強度を算出してもよい。ここで、昼間と夜間の識別は、前記したように、ゲイン調整部16において調整されたゲインの値に基づいて行うことができる。
次に、ステップS41では、前記エッジ強度算出部24aにおいて、ステップS40で設定した領域の中にエッジ検出オペレータを作用させて、画像Iの中の各画素に対してエッジ強度を求める。このとき用いられるエッジ検出フィルタの係数は特に制限されるものではない。
次に、ステップS42では、前記エッジ強度分析部24bにおいて、画像Iの画素毎に算出されたエッジ強度の値を平均して平均エッジ強度を算出する。なお、平均エッジ強度は、エッジ検出を行った領域の面積で正規化しておく。こうして算出された平均エッジ強度が小さいほど、画像Iの鮮明度が低い、すなわち白濁度合が高いと判断される。また、平均エッジ強度が大きいほど、画像Iの鮮明度が高い、すなわち白濁度合が低いと判断される。
なお、平均エッジ強度は、1枚の画像から算出するだけでなく、異なる時間に撮像された複数の画像の平均エッジ強度を平均化することによって算出してもよい。これによって、画像Iの中に突発的なノイズの混入があった場合でも、画像Iの鮮明度を安定して評価することができる。そして、このとき、所定時間に亘って平均エッジ強度の変化を求めて、平均エッジ強度の変化量が小さいときには、算出された平均エッジ強度、すなわち白濁度合の信頼性が高いものとして、先に説明した確信度Fを算出することができる。
そして、ステップS43では、平均エッジ強度に基づいて、白濁度合U2が算出される。具体的には、例えば、前記正規化された平均エッジ強度の逆数が白濁度合U2として算出される。
(付着物検出処理)
次に、図7のステップS6で行われる付着物検出処理の詳細を、図16〜図19を用いて説明する。付着度合算出部26では、レンズ12に付着した泥や水滴等の付着物の付着度合が、画像Iの中のエッジ強度と、輝度値の分布に基づいて算出される。ここで、付着度合算出部26で算出される付着物の付着度合をMとする。
以下、図16を用いて、付着度合算出部26で行われる付着物の付着度合Mの算出方法について、泥の付着を検出する場合を例にあげて詳細に説明する。
まず、ステップS50では、前記処理領域設定部26aにおいて、撮像部10で撮像された画像Iを所定の比率で縮小して縮小画像I’を得る。このように画像を縮小するのは、画像のサイズを小さくして画像処理を行う際に要するメモリ量を削減し、なおかつ、処理速度を向上させるためである。なお、具体的な縮小率は、使用する計算機環境、および、画像の分解能等を勘案して決定される。そして、縮小画像I’の中に、付着物検出を行う領域を設定する。
ここで生成する縮小画像I’は、先述した白濁度合を算出するために生成した縮小画像I’と同じ符号で記載しているが、それらの縮小率は同じ値にする必要はなく、それぞれの画像に応じた比率で縮小すればよい。
付着物検出を行う領域は、縮小画像I’の全体を設定してもよいが、本実施例では、使用する画像認識アプリケーションであるBSWシステム9の車両検出領域を包含する領域を処理対象領域とする。処理対象領域をこのように設定することで、画像認識アプリケーションの精度を向上させることができるとともに、付着物検出処理の処理効率も向上する。
さらに、ステップS50では、設定した処理対象領域を、図17に示すように複数のブロック201に分割する。そして、以降の処理はこのブロック単位で行う。本実施例では、各ブロック201のサイズは、検出する付着物の大きさ以下に設定している。このようなサイズに設定することで、泥汚れのみを確実かつ効率的に検出することができる。また、このように分割された各ブロック201の座標等の情報は、各ブロックに付与されたブロック番号と対応付けられて処理領域設定部26aに記憶される。
次に、ステップS51では、前記エッジ検出部26bにおいて、エッジ検出処理と、エッジ検出結果に対するノイズ除去が行われる。エッジ検出処理は、ステップS50で生成した縮小画像I’に対して行われる。このエッジ検出は、従来公知の手法を用いて行えばよい。そして、エッジ検出の結果得られたエッジ強度に対する閾値処理を行って、必要なエッジ構成点のみを抽出する。すなわち、エッジ強度ρが、所定の範囲内の値を有するエッジ構成点(弱エッジ構成点)のみを有するエッジ画像E(x,y)を生成する。
図18(b)に、こうして生成されたエッジ画像E(x,y)の一例を示す。図18(b)は、図18(a)に示す縮小画像I’から得られたエッジ画像E(x,y)であり、泥汚れ部分が弱いエッジとして検出される。
なお、同じ泥汚れでも、オフロードなどの路面状態の悪い道路を走行している場合の泥汚れと、舗装道路(オンロード)を走行している場合の泥汚れとでは、濃度や色合いなどが異なり、弱いエッジ強度の度合も異なることがある。また、付着物の種類によっても、エッジ強度が異なることもある。そのため、路面状態、その他走行状況、付着物の種類や付着状況等に応じて、エッジ強度ρに対する閾値を複数用意しておき、付着物検出処理を実行するときに、いずれの閾値を用いるか判断してもよい。
ステップS51では、さらに、生成されたエッジ画像E(x,y)の中に存在するノイズを除去するノイズ除去処理を行う。本実施例では、以下の条件を満たすエッジ構成点をノイズと定義する。
(a)前回の処理で検出したエッジ画像E(x,y)の中のエッジ構成点が、今回のエッジ検出処理で同じ位置に検出されないとき
(b)面積が所定値以下のエッジ構成点
まず、時刻tで生成したエッジ画像E(x,y,t)と、その1回前のエッジ検出処理によって、時刻t-Δtで生成したエッジ画像E(x,y,t-Δt)との論理積をとって、前記(a)の条件を満たすエッジ構成点をノイズとして除去する。これは、付着物検出処理で検出したいエッジ構成点は、レンズ12に付着している付着物のエッジであり、レンズ12に付着した付着物は、一定時間同じ場所に存在し続けると考えられるためである。
次に、上記(b)の条件を満たすエッジ構成点をノイズとして除去する。これは、レンズ12に付着した汚れのエッジは、ある程度塊になるため、独立した小さなエッジは汚れではないと考えられるためである。以上のようなノイズ除去を行うことで、レンズ付着物の検出を高精度に行うことができる。
次に、ステップS52では、前記輝度分布算出部26cにおいて、輝度分布算出処理が行われる。ここでは、まず、ステップS50で設定したブロック201毎に、各ブロック201内の画素の平均輝度値Iave(u,v)を算出する。ここで、u,vは、それぞれ、各ブロックの横方向位置、縦方向位置を表す。なお、平均輝度値Iave(u,v)は、ブロック201毎に、ブロック201内部の画素の輝度値の総和を求めて、求められた輝度値の総和をブロック201の面積(画素数)で除算することによって算出される。
次に、ステップS53では、各ブロックの平均輝度値Iave(u,v)に基づいて、注目ブロックと、その注目ブロックの周囲のブロック(以下、周囲ブロックと呼ぶ)とを設定する。図19に太線で示したブロックが注目ブロック201aである。この注目ブロック201aは、平均輝度値が低いブロックの中から選択される。すなわち、泥汚れが付着している領域の輝度値は、付着していない領域の平均輝度値より低くなる傾向があるためである。
また、周囲ブロック201bは、注目ブロック201aの外周の当該注目ブロック201aと隣接するブロック201の外周に位置するブロックが選択される。すなわち、泥汚れは一つのブロックだけでなく、その隣接するブロックにも付着している場合が多いので、注目ブロック201aと、それと隣接するブロックとでは、平均輝度値Iave(u,v)の差が小さいと考えられるためである。したがって、注目ブロック201aに隣接するブロックよりも外側のブロックを周囲ブロック201bとして選択している。
なお、周囲ブロック201bの設定方法は、これに限定されることはなく、付着物の付着面積が小さい場合等は、注目ブロック201aに隣接するブロック201を周囲ブロック201bとして設定してもよい。また、付着物の付着面積が大きい場合は、注目ブロック201aから数ブロック離れたブロックを周囲ブロック201bとして設定してもよい。
次に、ステップS54において、注目ブロック201aの平均輝度値Iave(u,v)よりも高い平均輝度値Iave(u,v)をもつ周囲ブロック201b(明るい周囲ブロック)の数をカウントする。この場合も、2値化前の輝度値を使用してカウントする。次に、明るい周囲ブロック201bの割合(明るい周囲ブロック数/周囲ブロックの総数)を計算する。このとき、泥汚れが存在するブロック(注目ブロック201a)については、明るい周囲ブロック数の割合が高くなる。
次に、ステップS55において、エッジ検出処理で検出されたエッジ画像E(x,y)の中から弱いエッジを構成する画素数をカウントする。この弱いエッジのカウントは、2値化後の画像を用いて行う。レンズ12に付着した泥汚れは、焦点が合わず輪郭がぼやけており、弱いエッジが塊となって存在する傾向にある。そのため、本実施例の付着物検出処理では、ブロック毎に弱いエッジ構成点の数をカウントし、カウント数を記憶する。
一枚の縮小画像I’に対して上記処理が終了した後、ステップS56では、処理時間判定処理が行われる。ステップS56では、一定時間を経過したか否かが判定されて、一定時間経過したときはステップS57に進み、一定時間を経過していない場合は、ステップS50に戻る。
このようにして、ステップS50からステップS55を、所定の時間内で複数回繰り返すことによって、平均輝度値、明るい周囲ブロックの割合、弱いエッジのカウント数などの情報が時系列で記憶される。なお、この所定の時間は、付着物の種類や、車速等の車両情報等に応じて任意に設定することができる。例えば、雨天時やオフロード走行中では、泥汚れが頻繁に付着するため、短時間で泥汚れの検出を行う必要があるとともに、迅速な警告が必要となる。そのため、所定の時間を短く設定するのが好ましい。
これに対して、晴天時やオンロード走行中では、泥汚れが付着しにくいため、高精度な検出を可能とするためには、長時間、情報を蓄積するのが好ましく、そのため、所定の時間を長く設定するのが好ましい。
次に、ステップS57では、前記輝度変化算出部26dにおいて、輝度変化抽出処理を行う。レンズ12に付着した泥汚れは、時間が経過しても動きづらく、透過性が低いため、その領域内の時間方向における輝度値は変動が小さくなる。このような時間方向における輝度値の変化を調べるために、同じブロックの平均輝度値Iave(u,v)の時間方向の平均値と分散を算出する。
ステップS57では、まず、同じブロックの平均輝度値Iave(u,v)を時間方向について平均化することにより、ブロック毎の時間平均輝度値Eを算出する。
次に、算出されたブロック毎の時間平均輝度値Eに基づいて、ブロック毎に時間方向の平均輝度値Iave(u,v)の分散Vを算出する。
続いて、ステップS58では、前記付着物判定部26eにおいて、泥汚れ判定を行う。
泥汚れ判定は、以下に説明する情報に基づいて、ブロック201毎に、泥らしさを表すスコアを算出することによって行われる。
すなわち、弱いエッジのカウント数が閾値より少ないブロック201では、泥の付着率は低く、泥らしさを表すスコアは低いと考えられる。また、周囲ブロック201bにおける明るいブロック数の割合が閾値よりも高い場合は、ブロック201の泥らしさを表すスコアは高いと考えられる。そして、さらに、泥らしさを表すスコアが高いブロック201の平均輝度値の分散が所定の閾値以下であれば、ブロック201に泥が付着している可能性が高いと考えられる。
こうして算出された泥らしさを表すスコアに基づいて、ブロック201の泥らしさスコアが閾値以上であり、なおかつ、ブロック201の時間平均輝度値Eの分散Vが所定の閾値以下であるときは、ブロック201に泥汚れがあると判断する。そして、泥らしさを表すスコアに応じた付着度合Mが算出される。
なお、上記例では泥汚れの判定を行う場合について説明したが、付着物が泥に限定されることはなく、水滴が付着した場合であっても、同様にしてその付着度合Mを算出することができる。そして、ステップS58を終了すると、メインルーチン(図7)へ戻る。
(レンズ汚れ度合算出処理)
次に、図7のステップS7で行われるレンズ汚れ度合算出処理の詳細について説明する。
ここでは、先に算出した第1白濁度合U1,第2白濁度合U2,付着度合Mに基づいて、レンズ12の汚れ度合が定量化される。
具体的には、まず、第1白濁度合U1、もしくは、第2白濁度合U2の値に基づいて、レンズ12の白濁度合Uを算出する。このとき、第1白濁度合U1のみに基づいて白濁度合Uを算出してもよいし、第2白濁度合U2のみに基づいて白濁度合Uを算出してもよい、また、第1白濁度合U1と第2白濁度合U2を両方用いて白濁度合Uを算出してもよい。
そして、第1白濁度合U1,第2白濁度合U2のいずれを用いるかは、それらの値を算出した環境や、第1白濁度合U1,第2白濁度合U2の確信度に基づいて決定すればよい。
すなわち、例えば、ゲイン調整部16で調整されたゲインの値をモニタして、ゲインの大きさが所定値以上であるとき、すなわち夜間であるときは、自車両5の後続車両の前照灯が鮮明に画像化されるため、そこから算出した第1白濁度合U1の値を用いて白濁度合Uの値を算出すればよい。
しかし、夜間であっても、後続車両が存在しないときには、前照灯の像に基づいて第1白濁度合U1を算出することができないため、前照灯の像が検出されないときには、第2白濁度合U2の値を用いて白濁度合Uの値を算出すればよい。
一方、ゲインの大きさが所定値に満たないとき、すなわち昼間であるときには、太陽光の反射像が鮮明に画像化されるため、そこから算出した第1白濁度合U1の値を用いて白濁度合Uの値を算出すればよい。
しかし、昼間であっても、太陽光の反射像が存在しないときには、太陽光の反射像に基づいて第1白濁度合U1を算出することができないため、太陽光の反射像が検出されないときには、第2白濁度合U2の値を用いて白濁度合Uの値を算出すればよい。
そして、こうして算出された白濁度合Uの値と、先に算出した付着度合Mの値が、検出感度調整部50に通知される。
(車両検出閾値の補正処理)
次に、図7のステップS8において、車両検出部70で他車両6の検出を行う際の車両検出感度の補正が行われる。この処理は、前記検出感度調整部50で行われる。
検出感度調整部50では、白濁度合Uの値と付着度合Mの値に応じて、車両検出部70で行う車両検出の際に使用する各種閾値の値を補正する。具体的な閾値の内容については、後述する。
このように閾値の値を補正するのは、白濁度合Uの値が大きいとき、すなわち、レンズ12の表面が白濁しているときは、撮像部10で撮像される画像Iの鮮明度が低下するため、例えばエッジ検出を行う際に、エッジ検出の閾値を、白濁していないときに比べて小さい値に補正しないと、車両を検出することができないためである。
しかし、実際は、白濁度合Uの値のみに基づいて各種閾値を補正したのでは不十分である。すなわち、レンズ12の表面が白濁した上で、さらに泥や水滴が付着しているときには、白濁度合自体は同じであっても、前記第1白濁度合算出部22において、より一層白濁が進んでいるものと判断されて、実際よりも高い白濁度合Uが算出される。
そして、こうして算出された、より高い白濁度合Uに基づいて各種閾値を補正してしまうと、車両の検出感度が高くなりすぎてしまい、不要なノイズを検出しやすくなってしまうことによって、逆に車両の検出が困難になってしまうためである。
そのため、検出感度調整部50は、白濁度合Uの値のみならず、付着度合Mの値も加味して、白濁度合Uの値が大きい(白濁度合が高い)ときであっても、付着度合Mの値が大きいときには、各種閾値の補正量を抑制する。なお、閾値の具体的な補正方法については後述する。
(車両検出処理)
次に、図7のステップS9で行われる車両検出処理の詳細を、図25を用いて説明する。
《差分波形情報による立体物の検出》
まず、ステップS60では、前記検出感度調整部50において、レンズ12の汚れ度合(白濁度合Uと付着度合M)に基づいて補正された各種閾値の値が、接近車両検出部72に設定される。この処理の詳細については後述する。
次に、ステップS61では、前記視点変換部72aにおいて、撮像部10によって撮像された画像Iを、上空から鉛直下向きに見下ろした仮想画像に変換する。以後、この変換を視点変換と呼び、視点変換によって生成された仮想画像を視点変換画像と呼ぶ。
この視点変換は、路面との相対関係が既知の位置に設置されたカメラで撮像した、路面を含む画像Iに対して、画像Iの全体に路面が映っていると仮定して、その路面を真上から見下ろすように座標変換することによって行われる。撮像された画像Iを視点変換画像に変換するのは、立体物に特有の鉛直エッジは、視点変換によって特定の定点を通る直線群に変換されるという原理を利用して、平面物と立体物とを識別するためである。なお、視点変換によって変換された視点変換画像は、後述するエッジ情報による立体物の検出においても利用される。
次に、ステップS62では、視点変換部72aにおいて得られた視点変換画像を、順次、前記位置合わせ部72bに入力して、入力された異なる時刻の視点変換画像同士の位置合わせを行う。
図20は、位置合わせ部72bで行われる処理の概要を説明する図であり、図20(a)は自車両5の移動状態を示す平面図、図20(b)は位置合わせの概要を示している。
図20(a)に示すように、現時刻において自車両5が位置V1にあり、一時刻前に、自車両5が位置V2にあったとする。また、自車両5が走行している車線に隣接する車線の後方に、他車両6が位置して、現時刻において他車両6が位置V3にあり、一時刻前に、他車両6が位置V4にあったとする。さらに、自車両5は、一時刻で移動距離dだけ移動したものとする。なお、一時刻前とは、現時刻から予め定められた時間(例えば1制御周期)だけ過去の時刻であってもよいし、任意の時間だけ過去の時刻であってもよい。
このような状態において、現時刻の視点変換画像PBは図20(b)に示すようになる。この視点変換画像PBでは、路面上に描かれる白線は矩形状となるが、位置V3にある他車両6の領域では倒れ込みが発生する。また、一時刻前の視点変換画像PBt−1についても同様に、路面上に描かれる白線は矩形状となるが、位置V4にある他車両6の領域では倒れ込みが発生する。
これは、立体物の鉛直エッジは、視点変換によって倒れ込み方向に沿った直線群に変換されるのに対し、白線のような路面上に描かれた模様は、鉛直エッジを含まないため、視点変換してもそのような倒れ込みが生じないからである。
位置合わせ部72bは、上記のようにして生成された視点変換画像PBと視点変換画像PBt−1の位置合わせを行う。この際、位置合わせ部72bは、一時刻前の視点変換画像PBt−1を、一時刻の間に自車両5が移動した距離に対応する量だけオフセットさせて、現時刻の視点変換画像PBと位置を一致させる。
図20(b)の左側の視点変換画像PBと中央の視点変換画像PBt−1は、オフセット量d’だけずらした状態を示す。このオフセット量d’は、図20(a)に示した自車両5の実際の移動距離dに対応する視点変換画像上の移動量であり、車両情報取得部60から得られる自車両5の車速と、一時刻前から現時刻までの時間に基づいて決定される。
次に、ステップS63では、視点変換画像PB,PBt−1の位置合わせを行った後で差分をとり、差分画像PDを生成する。ここで、差分画像PDに格納される輝度値は、視点変換画像PB,PBt−1の対応する画素の輝度値の差の絶対値でもよいし、照度環境の変化に対応するために当該絶対値が第1閾値pを超えたときに「1」とし、超えないときに「0」としてもよい。
図20(b)の右側の画像が、差分画像PDである。なお、前記第1閾値pは、予め、検出感度調整部50において補正された後、ステップS60において接近車両検出部72に設定された値である。その補正方法は後述する。
次に、ステップS64以降では、前記立体物検出部72cにおいて、図20(b)に示す差分画像PDに基づいて立体物を検出する。このとき、立体物検出部72cは、立体物の移動距離も合わせて算出する。
立体物の検出、および移動距離の算出にあたり、まず、ステップS64において、前記立体物検出部72cは、差分画像PDに基づいて算出される差分波形DWを生成する。
差分波形DWの生成にあたって、立体物検出部72cは、まず、差分画像PDの内部に、立体物の検出領域を設定する。
前記接近車両検出部72は、自車両5が車線変更する際に接触の可能性がある、自車両5が走行する車線に隣接する車線を走行する他車両6を検出する。
このため、撮像部10により得られた画像Iの中に、自車両5の右側、および左側に二つの検出領域を設定する。本実施例では、図1に示すように自車両5の後方の右側、および左側に、それぞれ矩形状の検出領域X1,X2を設定する。そして、この検出領域X1,X2の内部で検出された他車両6が、接近車両として検出される。なお、このような検出領域X1,X2は、自車両5に対する相対位置から設定してもよいし、道路上の白線の位置を基準に設定してもよい。道路上の白線の位置を基準に設定する場合には、例えば既存の白線認識技術等を利用して検出された白線の位置が基準にされる。
また、立体物検出部72cは、検出領域X1,X2の自車両5側における辺(自車両5の走行方向に沿う辺)を、図1に示す接地線L1,L2として認識する。
図21は、前記立体物検出部72cによる差分波形の生成の様子を示す概略図である。図21に示すように、立体物検出部72cは、位置合わせ部72bで算出した差分画像PD(図20(b)の右図)のうち検出領域X1,X2の内部に相当する部分から、差分波形DWを生成する。このとき、視点変換によって立体物が倒れ込む方向に沿って、差分波形DWを生成する。なお、図21に示す例では、便宜上、検出領域X1のみを用いて説明するが、検出領域X2についても同様の手順で差分波形DWを生成する。
以下、差分波形DWの生成方法を具体的に説明する。立体物検出部72cは、まず、差分画像PDにおいて、図21(a)に示す、立体物が倒れ込む方向に沿う線Laを設定する。そして、設定した線La上において所定値以上の差分値を有する画素DPの数をカウントする。ここで、所定値以上の差分値を有する画素DP(以下、単に画素DPと呼ぶ)とは、差分画像PDの輝度値(画素値)が視点変換画像PB,PBt−1の輝度値の差を絶対値化したものであるときは、第1閾値pを超える画素であり、差分画像PDの輝度値が「0」,「1」で表現されている場合は、「1」を示す画素である。
立体物検出部72cは、第1閾値p以上の差分値を有する画素DPの数をカウントした後、線Laと接地線L1との交点CPを求める。そして、交点CPと画素DPのカウント数とを対応付け、交点CPの位置に基づいて、横軸位置、すなわち図21(b)の上下方向軸上の位置を決定するとともに、画素DPのカウント数から縦軸位置、すなわち図21(b)の左右方向軸上の位置を決定し、こうして決定した横軸位置、縦軸位置の交点にプロットを行う。
以下同様に、立体物検出部72cは、立体物が倒れ込む方向に沿う線Lb,Lc…を設定して、画素DPの数をカウントし、各交点CPの位置に基づいて、図21(b)の対応する横軸位置を決定し、画素DPのカウント数から縦軸位置を決定して、その位置にプロットを行う。こうして、図21(b)に示す差分波形DWを生成する。
なお、図21(a)に示すように、立体物が倒れ込む方向に沿う線Laと線Lbとは検出領域X1を横切る距離が異なっている。このため、検出領域X1が画素DPで満たされているとすると、線Lb上よりも線La上の方が画素DPのカウント数が多くなる。このため、立体物検出部72cは、画素DPのカウント数から縦軸位置を決定するときに、画素DPのカウント数を、立体物が倒れ込む方向に沿う線La,Lbが検出領域X1を横切る距離に基づいて正規化する。
例えば、図21(a)において線La上の画素DPのカウント数は6であり、線Lb上の画素DPのカウント数は5である。このため、図21(a)においてカウント数から縦軸位置を決定するにあたり、立体物検出部72cは、カウント数を前記横切る距離で除算して正規化を行う。
その後、ステップS65では、立体物検出部72cにおいて、ステップS64で生成された差分波形DWのピークが第2閾値α以上であるか否かを判断する。この第2閾値αは、予め、検出感度調整部50において補正された後、ステップS60において接近車両検出部72に設定された値である。その補正方法は後述する。
ここで、差分波形DWのピークが第2閾値α以上でない場合、すなわち差分値が殆どない場合には、撮像された画像Iの中には立体物が存在しないと判断される。このため、差分波形DWのピークが第2閾値α以上でないと判断されたとき(ステップS65がNOのとき)にはステップS74に進み、ステップS74では、立体物、すなわち他車両6が存在しないと判断して、図25の車両検出処理を終了し、その後、メインルーチン(図7)へ戻る。
一方、差分波形DWのピークが第2閾値α以上であると判断されたとき(ステップS65がYESのとき)には、立体物検出部72cは、立体物が存在すると判断し、現時刻の差分波形DWと一時刻前の差分波形DWt−1との対比を行って、立体物の移動距離を算出する。
そのために、まずステップS66では、立体物検出部72cにおいて、図22に示すように、差分波形DWが複数の小領域DWt1〜DWtn(nは2以上の任意の整数)に分割される。このとき、小領域DWt1〜DWtnは、図22に示すように、互いに重複するようにして分割される。すなわち、図22において、小領域DWt1と小領域DWt2とは重複し、小領域DWt2と小領域DWt3とは重複する。
次に、ステップS68では、立体物検出部72cは、分割された小領域DWt1〜DWtn毎にオフセット量(差分波形の横軸方向(図21(b)の上下方向)の移動量)を求める。このオフセット量は、一時刻前の差分波形DWt−1と現時刻の差分波形DWとの差(横軸方向の距離)から求められる。
具体的には、小領域DWt1〜DWtn毎に、一時刻前の差分波形DWt−1を横軸方向(図21(b)の上下方向)に移動させたときに、現時刻の差分波形DWとの誤差が最小となる位置を判定し、差分波形DWt−1の元の位置と誤差が最小となる位置との横軸方向の移動量をオフセット量として求める。
そして、ステップS69では、立体物検出部72cは、小領域DWt1〜DWtn毎に求めたオフセット量をカウントしてヒストグラムを生成する。なお、このとき、複数の小領域DWt1〜DWtn毎に予め重み付けをしておき、小領域DWt1〜DWtn毎に求めたオフセット量を、重みに応じてカウントしてヒストグラム化してもよい。
例えば、小領域DWtiが平坦となっているとき、すなわち、画素DPのカウント数の最大値と最小値との差が小さくなっているときは、重み付けを小さくする。これは、平坦な小領域DWtiでは、特徴がないため、オフセット量の算出にあたり誤差が大きくなる可能性が高いからである。
一方、小領域DWtiが起伏に富んでいるとき、すなわち、画素DPのカウント数の最大値と最小値との差が大きくなっているときは、重み付けを大きくする。これは、起伏に富む小領域DWtiでは、特徴があるため、オフセット量の算出を正確に行える可能性が高いからである。このように重み付けすることにより、移動距離の算出精度を向上することができる。
図23は、ステップS69において生成されたヒストグラムの一例を示す図である。図23に示すように、各小領域DWt1〜DWtnと一時刻前の差分波形DWt−1との誤差が最小となるオフセット量には、多少のばらつきが生じる。
次に、ステップS70では、立体物検出部72cにおいて、ヒストグラムの極大値を与える位置に基づいて、立体物の移動距離である相対移動距離τを算出する。
すなわち、図23に示すヒストグラムの例では、ヒストグラムの極大値を示すオフセット量を相対移動距離τとして算出する。この相対移動距離τは、自車両5に対する他車両6の相対移動距離である。
次に、ステップS71では、立体物検出部72cにおいて、相対移動距離から立体物の絶対移動速度が算出される。ここでは、相対移動距離を時間微分して相対移動速度を算出すると共に、車両情報取得部60で取得された自車速を加算して、絶対移動速度を算出する。
なお、移動距離の算出精度を向上するために、上記したように差分波形DWを複数の小領域DWt1〜DWtnに分割したが、移動距離の算出精度がさほど要求されない場合は小領域DWt1〜DWtnに分割しなくてもよい。この場合に、立体物検出部72cは、差分波形DWと差分波形DWt−1との誤差が最小となるときの差分波形DWのオフセット量から移動距離を算出することとなる。すなわち、一時刻前の差分波形DWt−1と現時刻の差分波形DWとのオフセット量を求める方法は上記内容に限定されるものではない。
次に、ステップS72では、立体物検出部72cにおいて、立体物の絶対移動速度が所定の速度範囲内に入っているか否かが判定される。所定の速度範囲は予め設定された値が用いられる。そして、立体物の絶対移動速度が所定の速度範囲内にあるとき(ステップS72がYESのとき)は、ステップS73に進んで、ステップS73において、立体物が他車両6であると判断し、その後、メインルーチン(図7)へ戻る。
一方、立体物の絶対移動速度が所定の速度範囲内にないとき(ステップS72がNOのとき)は、ステップS74に進んで、ステップS74において、立体物、すなわち他車両6が存在しないと判断されて、図25の車両検出処理を終了し、その後、メインルーチン(図7)へ戻る。
ここで、第1閾値pと第2閾値αの補正方法について、図24を用いて説明する。図24(a)は、レンズ12の汚れ度合に応じた第1閾値pの補正方法について説明する図であり、図24(b)は、レンズ12の汚れ度合に応じた第2閾値αの補正方法について説明する図である。
まず、図24(a)を用いて、第1閾値pの補正方法について説明する。レンズ12の汚れがないとき、第1閾値pは、検出感度調整部50において所定値pに設定される。図24(a)の横軸は、白濁度合算出部25で算出されたレンズ12の白濁度合Uを示しており、右に行くほど白濁度合Uが高いことを表している。
そして、第1閾値pは、白濁度合Uが高くなるほど小さくなるように補正される。第1閾値pを小さく補正することによって、車両の検出感度が向上する。そして、このとき、第1閾値pは、さらに、付着度合算出部26で算出されたレンズ12への泥や水滴等の付着物の付着度合Mに応じて、小さくなる度合が抑制されるように補正される。
すなわち、図24(a)に示すように、付着物があるとき(点線)は、付着物がないとき(実線)に比べて、レンズ12の白濁度合が高くなっても、第1閾値pの値の低減量を小さくしている。
こうして補正された第1閾値pの値が接近車両検出部72に設定されて、車両検出処理に用いられる。そして、車両検出処理において、レンズ12の白濁度合Uが高いときには、検出感度を上げて、差分画像PDに小さな差分値が検出されると、その点を立体物(他車両)の候補として検出するが、レンズ12に付着物があるときには、検出感度の向上を抑制して、差分画像PDの中に、先ほどよりも大きな差分値が検出されないと、立体物の候補として検出されないようにする。
そして、第2閾値αも、第1閾値pと同じ考え方によって補正される。すなわち、レンズ12の汚れがないとき所定値αに設定された第2閾値αが、図24(b)に示すように、付着度合算出部26で算出されたレンズ12への泥や水滴等の付着物の付着度合Mに応じて補正されて、レンズ12の白濁度合Uが高いときには、検出感度を上げて、差分波形DWの中に小さなピークが検出されると、その点を立体物(他車両)の候補として検出するが、レンズ12に付着物があるときには、検出感度の向上を抑制して、差分波形DWの中に、先ほどよりも大きなピークが検出されないと、立体物の候補として検出されないようにする。
なお、図24(a),(b)では、白濁度合Uの高さに応じて、第1閾値p,第2閾値αをそれぞれリニアに補正する例を示したが、第1閾値p,第2閾値αの補正方法は、これに限定されるものではない。すなわち、例えば、白濁度合Uの高さに応じて、第1閾値p,第2閾値αを階段状(ステップ状)に補正してもよい。
また、夜間と昼間で、車両検出感度(第1閾値pと第2閾値α)の補正方法を設定するようにしてもよい。すなわち、夜間は昼間に対して、レンズ12の白濁度合Uに応じた車両検出感度(第1閾値pと第2閾値α)の抑制量を低減して、接近車両をより一層確実に検出することもできる。なお、夜間と昼間の判定は、前記したように、ゲイン調整部16において調整されたゲインの値に基づいて、ゲインの値が所定値以上のときは夜間と判定し、それ以外のときは昼間と判定することができる。
さらに、検出した立体物(接近車両)の絶対移動速度と自車両5の車速に基づいて接近車両の相対速度を算出し、こうして算出した相対速度の大きさに応じて、車両検出感度(第1閾値pと第2閾値α)の補正方法を設定するようにしてもよい。すなわち、算出された相対速度が所定値以上の正の値を有しているとき、すなわち、自車両5が接近車両に後方から追い抜かれるときには、レンズ12の白濁度合Uに応じた車両検出感度(第1閾値pと第2閾値α)の抑制量を低減して、接近車両をより一層確実に検出することもできる。
《エッジ情報による立体物の検出》
次に、図6に示す検出ブロックA1に代えて動作させることが可能である、輝度差算出部72g、エッジ線検出部72h、および立体物検出部72iで構成されるエッジ情報を利用した立体物の検出ブロックA2について説明する。
図26は、前記撮像部10の撮像範囲等を示す図であり、図26(a)は平面図、図26(b)は、自車両5の後側方における実空間上の斜視図を示す。図26(a)に示すように、撮像部10は自車両5の後側方の所定の範囲ωを撮像する。
本実施例の検出領域X1,X2は、視点変換画像の中において台形状とされ、これらの検出領域X1,X2の位置、大きさ、および形状は、距離d1〜d4に基づいて決定される。なお、検出領域X1,X2は台形状に限らず、視点変換画像の中で矩形など他の形状であってもよい。
ここで、距離d1は、自車両5から接地線L1,L2までの距離である。接地線L1,L2は、自車両5が走行する車線に隣接する車線に存在する立体物が地面に接触する線を意味する。本実施例においては、自車両5の後側方において自車両5の車線に隣接する車線を走行する他車両6を検出することが目的である。このため、自車両5から白線Wまでの距離d11、および白線Wから他車両6が走行すると予測される位置までの距離d12から、他車両6の接地線L1,L2となる位置である距離d1を略固定的に決定しておくことができる。
距離d2は、自車両5の後端部から車両進行方向に伸びる距離である。この距離d2は、検出領域X1,X2が少なくとも撮像部10の撮影範囲に収まるように決定されている。距離d3は、検出領域X1,X2の車両進行方向における長さを示す距離である。この距離d3は、検出対象となる立体物の大きさに基づいて決定される。本実施例においては、検出対象が他車両6であるため、距離d3は、他車両6を含む長さに設定される。
距離d4は、図26(b)に示すように、実空間において他車両6等のタイヤを含むように設定された高さを示す距離である。距離d4は、視点変換画像においては図26(a)に示す部位の長さとされる。なお、距離d4は、視点変換画像において左右の隣接車線よりも更に隣接する車線(すなわち2車線隣りの車線)を含まない長さとすることもできる。
以上のように、距離d1〜距離d4が決定され、これにより検出領域X1,X2の位置、大きさ、および形状が決定される。具体的に説明すると、距離d1により、台形をなす検出領域X1,X2の上方の辺b1の位置が決定される。距離d2により、上方の辺b1の始点位置C1が決定される。距離d3により、上方の辺b1の終点位置C2が決定される。撮像部10から始点位置C1に向かって伸びる直線L3により、台形をなす検出領域X1,X2の側方の辺b2が決定される。同様に、撮像部10から終点位置C2に向かって伸びる直線L4により、台形をなす検出領域X1,X2の側方の辺b3が決定される。また、距離d4により、台形をなす検出領域X1,X2の下方の辺b4の位置が決定される。
このように、各辺b1〜b4により囲まれる領域が検出領域X1とされる。この検出領域X1は、図26(b)に示すように、自車両5から後側方における実空間上では真四角(長方形)となる。なお、図26(b)には記載しないが、検出領域X2についても同様である。
図6に示す輝度差算出部72gは、視点変換画像に含まれる立体物のエッジを検出するために、視点変換部72aにより視点変換された視点変換画像に対して、輝度差の算出を行う。輝度差算出部72gは、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置毎に、当該各位置の近傍の2つの画素間の輝度差を算出する。輝度差算出部72gは、実空間における鉛直方向に伸びる鉛直仮想線を1本だけ設定する手法と、鉛直仮想線を2本設定する手法との何れかによって輝度差を算出することができる。
鉛直仮想線を2本設定する具体的な手法について説明する。輝度差算出部72gは、視点変換画像に対して、実空間で鉛直方向に伸びる線分に該当する第1鉛直仮想線と、第1鉛直仮想線と異なり実空間で鉛直方向に伸びる線分に該当する第2鉛直仮想線とを設定する。輝度差算出部72gは、第1鉛直仮想線上の点と第2鉛直仮想線上の点との輝度差を、第1鉛直仮想線、および第2鉛直仮想線に沿って連続的に求める。以下、この輝度差算出部72gの動作について詳細に説明する。
輝度差算出部72gは、図27(a)に示すように、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域X1を通過する第1鉛直仮想線Le(以下、注目線Leという)を設定する。また輝度差算出部72gは、注目線Leと異なり、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域X1を通過する第2鉛直仮想線Lr(以下、参照線Lrという)を設定する。ここで参照線Lrは、実空間における所定距離だけ注目線Leから離間する位置に設定される。なお、実空間で鉛直方向に伸びる線分に該当する線とは、視点変換画像においては撮像部10の位置Psから放射状に広がる線となる。
輝度差算出部72gは、注目線Le上に注目点Pe(第1鉛直仮想線上の点)を設定する。また輝度差算出部72gは、参照線Lr上に参照点Pr(第2鉛直板想線上の点)を設定する。これら注目線Le、注目点Pe、参照線Lr、参照点Prは、実空間上において図27(b)に示す関係となる。すなわち、注目線Le、および参照線Lrは、実空間上において鉛直方向に伸びた線であり、注目点Peと参照点Prとは、実空間上において略同じ高さにある点である。
輝度差算出部72gは、注目点Peと参照点Prとの輝度差を求める。仮に、注目点Peと参照点Prとの輝度差が大きいと、注目点Peと参照点Prとの間にエッジが存在すると考えられる。このため、図6のエッジ線検出部72hは、注目点Peと参照点Prとの輝度差に基づいてエッジ線を検出する。
この点をより詳細に説明する。図28は、輝度差算出部72gの詳細動作を示す図であり、図28(a)は視点変換画像を示し、図28(b)は、図28(a)の視点変換画像の一部分B1を拡大した図である。なお、図28では、検出領域X1のみを図示して説明するが、検出領域X2についても同様の手順で輝度差を算出する。
撮像部10が撮像した画像I内に他車両6が映っていた場合には、図28(a)に示すように、視点変換画像の検出領域X1に他車両6が現れる。そして、図28(b)に示すように、視点変換画像上において、他車両6のタイヤのゴム部分上に注目線Leが設定されていたとする。この状態において、輝度差算出部72gは、まず参照線Lrを設定する。参照線Lrは、注目線Leから実空間上において所定の距離だけ離れた位置に、鉛直方向に沿って設定される。
具体的には、接近車両検出部72において、参照線Lrは、注目線Leから実空間上において、例えば10cmだけ離れた位置に設定される。これにより、参照線Lrは、視点変換画像上において、例えば、他車両6のタイヤのゴムから10cm相当だけ離れた他車両6のタイヤのホイール上に設定される。
次に、輝度差算出部72gは、注目線Le上に複数の注目点Pe1〜PeNを設定する。図28(b)においては、説明の便宜上、6つの注目点Pe1〜Pe6(以下、任意の点を示す場合には単に注目点Peiという)を設定している。なお、注目線Le上に設定する注目点Peの数は任意でよい。以下の説明では、総数N個の注目点Peが注目線Le上に設定されたものとして説明する。
次に、輝度差算出部72gは、実空間上において各注目点Pe1〜PeNと同じ高さとなるように各参照点Pr1〜PrNを設定する。そして、輝度差算出部72gは、同じ高さ同士の注目点Peと参照点Prとの輝度差を算出する。これにより、輝度差算出部72gは、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置毎に、2つの画素の輝度差を算出する。
すなわち、輝度差算出部72gは、例えば第1注目点Pe1と第1参照点Pr1との間で輝度差を算出し、第2注目点Pe2と第2参照点Pr2との間で輝度差を算出することとなる。これにより、輝度差算出部72gは、注目線Le、および参照線Lrに沿って、連続的に輝度差を求める。
輝度差算出部72gは、検出領域X1内において注目線Leをずらしながら、参照線Lrの設定、注目点Pe、および参照点Prの設定、輝度差の算出をそれぞれ繰り返し実行する。すなわち、輝度差算出部72gは、注目線Le、および参照線Lrのそれぞれを、実空間上において接地線L1の延在方向に同一距離だけ位置を変えながら上記の処理を繰り返し実行する。そして、輝度差算出部72gは、例えば、前回処理において参照線Lrとなっていた線を注目線Leに設定し、この注目線Leに対して参照線Lrを設定して、順次輝度差を求めていくことになる。
図6に戻り、エッジ線検出部72hは、輝度差算出部72gにより算出された連続的な輝度差から、エッジ線を検出する。例えば、図28(b)の場合、第1注目点Pe1と第1参照点Pr1とは、同じタイヤ部分に位置するために、輝度差は小さい。一方、第2〜第6注目点Pe2〜Pe6はタイヤのゴム部分に位置し、第2〜第6参照点Pr2〜Pr6はタイヤのホイール部分に位置する。したがって、第2〜第6注目点Pe2〜Pe6と第2〜第6参照点Pr2〜Pr6との輝度差は大きくなる。このため、エッジ線検出部72hは、輝度差が大きい第2〜第6注目点Pe2〜Pe6と第2〜第6参照点Pr2〜Pr6との間にエッジ線が存在することを検出することができる。
具体的には、エッジ線検出部72hは、エッジ線を検出するにあたり、まず(式5)に示す3つの規則に従って、i番目の注目点Pei(座標(xi,yi))とi番目の参照点Pri(座標(xi’,yi’))との輝度差から、i番目の注目点Peiに属性sを付与する。すなわち、
I(xi,yi)>I(xi’,yi’)+w のとき s(xi,yi)=1
I(xi,yi)<I(xi’,yi’)−w のとき s(xi,yi)=−1
上記以外のとき s(xi,yi)=0 (式5)
(式5)において、wは第3閾値を示し、I(xi,yi)はi番目の注目点Peiの輝度値を示し、I(xi’,yi’)はi番目の参照点Priの輝度値を示す。前記(式5)によれば、注目点Peiの輝度値が、参照点Priに第3閾値wを加えた輝度値よりも高い場合には、当該注目点Peiの属性s(xi,yi)は「1」となる。一方、注目点Peiの輝度値が、参照点Priから第3閾値wを減じた輝度値よりも低い場合には、当該注目点Peiの属性s(xi,yi)は「−1」となる。注目点Peiの輝度値と参照点Priの輝度値とがそれ以外の関係である場合には、注目点Peiの属性s(xi,yi)は「0」となる。この第3閾値wは、予め、検出感度調整部50において補正された後、接近車両検出部72に設定された値である。その補正方法は後述する。
次にエッジ線検出部72hは、(式6)に示す2つの規則に基づいて、注目線Leに沿った属性sの連続性c(xi,yi)を算出する。
s(xi,yi)=s(xi+1,yi+1) のとき c(xi,yi)=1
上記以外のとき c(xi,yi)=0 (式6)
注目点Peiの属性s(xi,yi)と隣接する注目点Pei+1の属性s(xi+1,yi+1)とが同じである場合には、連続性c(xi,yi)は「1」となる。注目点Peiの属性s(xi,yi)と隣接する注目点Pei+1の属性s(xi+1,yi+1)とが同じではない場合には、連続性c(xi,yi)は「0」となる。
次にエッジ線検出部72hは、注目線Le上の全ての注目点Peの連続性cの総和を求める。エッジ線検出部72hは、求めた連続性cの総和を注目点Peの総数Nで割ることにより、連続性cを正規化する。エッジ線検出部72hは、正規化した連続性cが第4閾値θを超えた場合に、注目線Leをエッジ線と判断する。なお、第4閾値θは、予め、検出感度調整部50において補正された後、接近車両検出部72に設定された値である。その補正方法は後述する。
すなわち、エッジ線検出部72hは、(式7)に基づいて注目線Leがエッジ線であるか否かを判断する。そして、エッジ線検出部72hは、検出領域X1上に描かれた注目線Leの全てについてエッジ線であるか否かを判断する。
Σc(xi,yi)/N>θ (式7)
図6に戻り、立体物検出部72iは、エッジ線検出部72hにより検出されたエッジ線の量に基づいて立体物を検出する。上述したように、接近車両検出部72は、実空間上において鉛直方向に伸びるエッジ線を検出する。鉛直方向に伸びるエッジ線が多く検出されるということは、検出領域X1,X2に立体物が存在する可能性が高いということである。このため、立体物検出部72iは、エッジ線検出部72hにより検出されたエッジの量に基づいて立体物を検出する。さらに、立体物検出部72iは、立体物を検出するのに先立って、エッジ線検出部72hにより検出されたエッジ線が正しいものであるか否かを判定する。立体物検出部72iは、エッジ線上の視点変換画像のエッジ線に沿った輝度変化が所定の閾値よりも大きいか否かを判定する。エッジ線上の視点変換画像の輝度変化が所定の閾値よりも大きい場合には、当該エッジ線が誤判定により検出されたものと判断する。一方、エッジ線上の視点変換画像の輝度変化が所定の閾値よりも大きくない場合には、当該エッジ線が正しいものと判定する。なお、この所定の閾値は、実験等により予め設定された値である。
図29は、エッジ線の輝度分布を示す図であり、図29(a)は検出領域X1に立体物としての他車両6が存在した場合のエッジ線、および輝度分布を示し、図29(b)は検出領域X1に立体物が存在しない場合のエッジ線、および輝度分布を示す。
図29(a)に示すように、視点変換画像において他車両6のタイヤゴム部分に設定された注目線Leがエッジ線であると判断されていたとする。この場合、注目線Le上の視点変換画像の輝度変化はなだらかなものとなる。これは、撮像部10により撮像された画像Iが視点変換されたことにより、他車両6のタイヤが視点変換画像内で引き延ばされたことによる。
一方、図30(b)に示すように、視点変換画像において路面に描かれた「50」という白色文字部分に設定された注目線Leがエッジ線であると誤判定されていたとする。この場合、注目線Le上の視点変換画像の輝度変化は起伏の大きいものとなる。これは、エッジ線上に、白色文字における輝度が高い部分と、路面等の輝度が低い部分とが混在しているからである。
以上のような注目線Le上の輝度分布の相違に基づいて、立体物検出部72iは、エッジ線が誤判定により検出されたものか否かを判定する。立体物検出部72iは、エッジ線に沿った輝度変化が所定の閾値よりも大きい場合には、当該エッジ線が誤判定により検出されたものであると判定する。そして、当該エッジ線は、立体物の検出には使用しない。これにより、路面上の「50」といった白色文字や路肩の雑草等がエッジ線として判定されてしまうことによる、立体物の検出精度の低下を抑制する。
具体的には、立体物検出部72iは、下記(式8),(式9)の何れかにより、エッジ線の輝度変化を算出する。このエッジ線の輝度変化は、実空間上における鉛直方向の評価値に相当する。下記(式8)は、注目線Le上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の二乗の合計値によって輝度分布を評価する。下記(式9)は、注目線Le上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の絶対値の合計値よって輝度分布を評価する。
鉛直相当方向の評価値=Σ[{I(xi,yi)−I(xi+1,yi+1)}](式8)
鉛直相当方向の評価値=Σ|I(xi,yi)−I(xi+1,yi+1)| (式9)
なお、(式8),(式9)に限らず、(式10)のように、閾値t2を用いて隣接する輝度値の属性bを2値化して、当該2値化した属性bを全ての注目点Peについて総和してもよい。
鉛直相当方向の評価値=Σb(xi,yi)
但し、|I(xi,yi)−I(xi+1,yi+1)|>t2 のとき b(xi,yi)=1
上記以外のとき b(xi,yi)=0 (式10)
注目点Peiの輝度値と参照点Priの輝度値の輝度差の絶対値が閾値t2よりも大きい場合、当該注目点Pe(xi,yi)の属性b(xi,yi)は「1」となる。それ以外の関係である場合には、注目点Peiの属性b(xi,yi)は「0」となる。この閾値t2は、注目線Leが同じ立体物上にないことを判定するために実験等によって予め設定されている。そして、立体物検出部72iは、注目線Le上の全注目点Peについての属性bを総和して、鉛直相当方向の評価値を求めて、エッジ線が正しいものかを判定する。
ここで、第3閾値wと第4閾値θの補正方法について、図30を用いて説明する。図30(a)は、レンズ12の汚れ度合に応じた第3閾値wの補正方法について説明する図であり、図30(b)は、レンズ12の汚れ度合に応じた第4閾値θの補正方法について説明する図である。
まず、図30(a)を用いて、第3閾値wの補正方法について説明する。レンズ12の汚れがないとき、第3閾値wは、検出感度調整部50において所定値wに設定される。図30(a)の横軸は、白濁度合算出部25で算出されたレンズ12の白濁度合Uを示しており、右に行くほど白濁度合Uが高いことを表している。
そして、第3閾値wは、白濁度合Uが高くなるほど小さくなるように補正される。第3閾値wを小さく補正することによって、車両の検出感度が向上する。そして、このとき、第3閾値wは、さらに、付着度合算出部26で算出されたレンズ12への泥や水滴等の付着物の付着度合Mに応じて、小さくなる度合が抑制されるように補正される。
すなわち、図30(a)に示すように、付着物があるとき(点線)は、付着物がないとき(実線)に比べて、レンズ12の白濁度合が高くなっても、第3閾値wの値の低減量を小さくしている。
こうして補正された第3閾値wの値が接近車両検出部72に設定されて、車両検出処理に用いられる。そして、車両検出処理において、レンズ12の白濁度合Uが高いときには、検出感度を上げて、視点変換画像の中に設定した注目線Leと参照線Lrの間に輝度差が検出されると、その点を立体物(他車両)の候補として検出するが、レンズ12に付着物があるときには、検出感度の向上を抑制して、注目線Leと参照線Lrの間に、先ほどよりも大きな輝度差が検出されないと、立体物の候補として検出されないようにする。
そして、第4閾値θも、第3閾値wと同じ考え方によって補正される。すなわち、レンズ12の汚れがないとき所定値θに設定された第4閾値θが、図30(b)に示すように、付着度合算出部26で算出されたレンズ12への泥や水滴等の付着物の付着度合Mに応じて補正されて、レンズ12の白濁度合Uが高いときには、検出感度を上げて、視点変換画像の中に設定した注目線Le上における、属性sがs=1である画素の連続性cが高いときに、その注目線Leをエッジ線と判断するが、レンズ12に付着物があるときには、検出感度の向上を抑制して、注目線Le上における、属性sがs=1である画素の連続性cが、先ほどよりも高い値にならないと、エッジ線として検出されないようにする。
なお、図30(a),(b)では、白濁度合Uの高さに応じて、第3閾値w,第4閾値θをそれぞれリニアに補正する例を示したが、第3閾値w,第4閾値θの補正方法は、これに限定されるものではない。すなわち、例えば、白濁度合Uの高さに応じて、第3閾値w,第4閾値θを階段状(ステップ状)に補正してもよい。
次に、本実施形態に係るエッジ情報を利用した立体物検出方法について説明する。図31は、本実施形態に係る立体物検出方法の詳細を示すフローチャートである。なお、図31においては、便宜上、検出領域X1を対象とする処理について説明するが、検出領域X2についても同様の処理が実行される。
図31に示すように、まずステップS80では、前記検出感度調整部50において、レンズ12の汚れ度合(白濁度合Uと付着度合M)に基づいて補正された第3閾値wと第4閾値θの値が、接近車両検出部72に設定される。
次に、ステップS81では、前記視点変換部72aにおいて、撮像部10によって撮像された画像Iを、上空から鉛直下向きに見下ろした視点変換画像に変換する。
さらに、ステップS82では、輝度差算出部72gが、検出領域X1の内部に、注目線Leを設定する。このとき、輝度差算出部72gは、実空間上において鉛直方向に伸びる線に相当する線を、注目線Leとして設定する。
そして、ステップS83では、輝度差算出部72gが、検出領域X1の内部に、実空間上において鉛直方向に伸びる線分に該当し、且つ、注目線Leと実空間上において所定距離離れた線を、参照線Lrとして設定する。
次に、ステップS84では、輝度差算出部72gが、注目線Le上に複数の注目点Peを設定する。このとき、輝度差算出部72gは、エッジ線検出部72hによるエッジ検出時に問題とならない程度の数の注目点Peを設定する。また、輝度差算出部72gは、ステップS85において、実空間上で、注目点Peと参照点Prとが略同じ高さとなるように、参照点Prを設定する。これにより、注目点Peと参照点Prとが略水平方向に並ぶこととなり、実空間上において鉛直方向に伸びるエッジ線を検出しやすくなる。
そして、ステップS86では、輝度差算出部72gが、実空間上において同じ高さとなる注目点Peと参照点Prとの輝度差を算出する。そして、エッジ線検出部72hは、前記(式5)に従って、各注目点Peの属性sを算出する。
さらに、ステップS87では、エッジ線検出部72hが、前記(式6)に従って、各注目点Peの属性sの連続性cを算出する。
次に、ステップS88では、エッジ線検出部72hが、前記(式7)に従って、連続性cの総和を正規化した値が第4閾値θより大きいか否かを判定する。正規化した値が第4閾値θよりも大きいと判断したとき(ステップS88がYESのとき)は、エッジ線検出部72hは、ステップS89において、当該注目線Leをエッジ線として検出する。そして、処理はステップS90に移行する。一方、ステップS88において、正規化した値が第4閾値θより大きくないと判断したとき(ステップS88がNOのとき)は、エッジ線検出部72hは、当該注目線Leをエッジ線として検出せず、処理はステップS90に移行する。
そして、ステップS90では、接近車両検出部72が、検出領域X1上に設定可能な注目線Leの全てについて上記のステップS82〜ステップS89の処理を実行したか否かを判断する。全ての注目線Leについて上記処理をしていないと判断したとき(ステップS90がNOのとき)は、ステップS82に戻り、新たに注目線Leを設定して、ステップS89までの処理を繰り返す。一方、全ての注目線Leについて上記処理をしたと判断したとき(ステップS90がYESのとき)は、ステップS91に移行する。
次に、ステップS91では、立体物検出部72iが、ステップS89において検出された各エッジ線について、当該エッジ線に沿った輝度変化を算出する。立体物検出部72iは、前記(式8),(式9),(式10)の何れかの式に従って、エッジ線の輝度変化を算出する。次に立体物検出部72iは、ステップS92において、エッジ線のうち、輝度変化が所定の閾値よりも大きいエッジ線を除外する。すなわち、輝度変化の大きいエッジ線は正しいエッジ線ではないと判定し、エッジ線を立体物の検出には使用しない。これは、上述したように、検出領域X1に含まれる路面上の文字や路肩の雑草等がエッジ線として検出されてしまうことを抑制するためである。したがって、所定の閾値とは、予め実験等によって求められた、路面上の文字や路肩の雑草等によって発生する輝度変化に基づいて設定された値となる。
次に立体物検出部72iは、ステップS93において、エッジ線の量が第5閾値β以上であるか否かを判断する。なお、この第5閾値βは、予め実験等によって求めておいて設定される。例えば、検出対象として四輪車を設定した場合、当該第5閾値βは、予め実験等によって検出領域X1内に出現した四輪車のエッジ線の数に基づいて設定される。エッジ線の量が第5閾値β以上であると判定したとき(ステップS93がYESのとき)は、立体物検出部72iは、ステップS94において、検出領域X1内に立体物が存在すると判断する。
一方、エッジ線の量が第5閾値β以上ではないと判定した場合(ステップS93がNOのとき)、立体物検出部72iは、検出領域X1内に立体物が存在しないと判断する。その後、図31に示す処理を終了して、メインルーチン(図7)へ戻る。
なお、検出された立体物は、自車両5が走行する車線の隣の隣接車線を走行する他車両6であると判断してもよいし、検出した立体物の自車両5に対する相対速度を考慮して隣接車線を走行する他車両6であるか否かを判断してもよい。
なお、実施例1においては、差分波形情報を用いて立体物(接近車両)を検出する方法と、エッジ情報を用いて立体物(接近車両)を検出する方法を説明したが、接近車両を検出する方法は、それに限定されるものではない。すなわち、例えば、実施例1で説明した視点変換を行わずに、撮像部10で撮像された画像Iに対して、オプティカルフローを算出する等の画像処理を行うことによって立体物(接近車両)を検出することもできる。そして、そのときも、検出感度調整部50において、時系列画像の中から特徴点を検出するための閾値や、特徴点同士を対応付けたときに対応付いたと判定する閾値を、レンズ12の白濁度合Uや付着物の付着度合Mに応じて、補正することによって、他車両6を確実に検出することができる。
以上説明したように、このように構成された本発明の一実施形態の車載用画像認識装置8によれば、自車両5に設置されて、レンズ12を通して自車両5の周囲を観測し、観測された自車両5の周囲の光信号を画像信号に変換する撮像部10によって撮像された画像の中から、所定の検出感度で自車両5の周囲に存在する移動物体、例えば他車両6の検出を行う画像認識アプリケーション実行部、例えば車両検出部70の検出感度を、白濁度合Uの高さに応じて検出感度を向上させる方向に調整する検出感度調整部50において、付着度合算出部26によって算出された、レンズ12への泥や水滴等の付着物の付着度合Mに基づいて補正するようにしたため、レンズ12に泥や水滴等の付着物が付着している場合であっても、必要以上の検出感度の向上が抑制されるため、レンズ12の白濁度合Uや付着物の付着度合Mに関わらず、他車両6の位置を確実に検出することができる。
また、本発明の一実施形態の車載用画像認識装置8によれば、白濁度合算出部22が、撮像部10で撮像された画像Iの輝度勾配とエッジ強度分布の少なくとも一方によってレンズ12の白濁度合Uを算出したため、自車両5の外部の明るさによらずに、レンズ12の白濁度合Uを安定して確実に算出することができる。
そして、本発明の一実施形態の車載用画像認識装置8によれば、付着度合算出部26によって算出されたレンズ12への泥や水滴等の付着度合Mが高いときほど、検出感度調整部50において他車両6の検出感度の向上を抑制するため、付着度合Mが高いことに伴って白濁度合Uが高いと判定されたときであっても、他車両6の検出感度の向上を抑制することができ、これによって、画像認識アプリケーション実行部、例えば車両検出部70において、他車両6を確実に検出することができる。
さらに、本発明の一実施形態の車載用画像認識装置8によれば、検出感度調整部50が、撮像部10で撮像された1枚の画像Iの中から輝度差を有する画素を検出する第1閾値p、撮像部10で異なる時刻に撮像された時系列画像の中から輝度変化を有する画素を検出する第2閾値α、もしくは、撮像部10で異なる時刻に撮像された時系列画像の中から検出した輝度変化を有する画素同士を対応付けるときに、対応付いたと判断する閾値、のうち少なくとも1つの閾値を補正するため、レンズ12が汚れているときであっても、画像認識アプリケーション実行部、例えば車両検出部70において、他車両6をより一層確実に検出することができる。
また、本発明の一実施形態の車載用画像認識装置8によれば、検出感度調整部50が、レンズ12の白濁度合Uとレンズ12への泥や水滴等の付着物の付着度合Mが高いときほど、前記閾値のうち少なくとも1つの閾値を補正して、夜間は昼間よりも検出感度の向上を抑制するため、夜間は昼間に対して、レンズ12の白濁度合Uに応じた車両検出感度(例えば、第1閾値pと第2閾値α)の抑制量を低減して、他車両6をより一層確実に検出することができる。
そして、本発明の一実施形態の車載用画像認識装置8によれば、画像認識アプリケーション実行部、例えば車両検出部70が、自車両5の後方にあって、自車両5に接近している他車両6を検出するため、自車両5が車線変更を行う際に、後方の安全確認を確実に行うことができる。
さらに、本発明の一実施形態の車載用画像認識装置8によれば、検出感度調整部50が、レンズ12の白濁度合Uとレンズ12への泥や水滴等の付着物の付着度合Mが高いときには、他車両6が、所定の正の相対速度をもって自車両5に接近しているときほど、検出感度の向上を抑制するため、例えば、相対速度が所定値以上の正の値を有しているとき、すなわち、自車両5が接近車両に後方から追い抜かれるときには、レンズ12の白濁度合Uに応じた車両検出感度(例えば、第1閾値pと第2閾値α)の抑制量を低減して、接近車両をより一層確実に検出することができる。
なお、車載用画像認識装置8と同時に作動する画像認識アプリケーションは、BSWシステム9に限定されるものではない。すなわち、撮像部10で撮像された画像Iの中から、自車両5の走行位置に応じて移動する白線等のレーンマーカの位置を検出して、こうして検出されたレーンマーカの位置に基づいて、車線の逸脱を事前に検出してこれを報知する、LDW(Lane Departure Warning)システムや、その他のシステムに適用することも可能である。
以上、本発明の実施例を図面により詳述したが、実施例は本発明の例示にしか過ぎないものであるため、本発明は実施例の構成にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても、本発明に含まれることは勿論である。
関連出願への相互参照
本出願は、2012年7月27日に日本国特許庁に出願された特願2012−167702に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。
8 車載用画像認識装置
9 BSWシステム
10 撮像部
12 レンズ
14 光電変換部
16 ゲイン調整部
20 レンズ汚れ検出部
22 第1白濁度合算出部
24 第2白濁度合算出部
25 白濁度合算出部
26 付着度合算出部
30 レンズ汚れ度合算出部
50 検出感度調整部
60 車両情報取得部
70 車両検出部
72 接近車両検出部
74 警報出力部

Claims (7)

  1. 自車両に設置されて、レンズを通して前記自車両の周囲を観測して、観測された前記自車両の周囲の光信号を画像信号に変換する撮像部と、
    前記撮像部で撮像された画像の中から、所定の検出感度をもって前記自車両の周囲に存在する移動物体の検出を行う画像認識アプリケーション実行部と、
    前記画像信号の中から、前記レンズの白濁度合を算出する白濁度合算出部と、
    前記レンズへの泥や水滴等の付着物の付着度合を算出する付着度合算出部と、
    前記白濁度合の高さに応じて、前記検出感度を向上させる方向に調整する検出感度調整部と、
    を有し、前記検出感度調整部は、前記レンズへの泥や水滴等の付着物の付着度合に基づいて、前記検出感度を補正することを特徴とする車載用画像認識装置。
  2. 前記白濁度合算出部は、前記撮像部で撮像された画像の輝度勾配とエッジ強度分布の少なくとも一方によって前記レンズの白濁度合を算出するものであることを特徴とする請求項1に記載の車載用画像認識装置。
  3. 前記検出感度調整部は、前記付着度合算出部によって算出された前記レンズへの泥や水滴等の付着度合が高いときほど、前記検出感度の向上を抑制することを特徴とする請求項1または請求項2に記載の車載用画像認識装置。
  4. 前記検出感度調整部は、前記撮像部で撮像された1枚の画像の中から輝度差を有する画素を検出する閾値、前記撮像部で異なる時刻に撮像された時系列画像の中から輝度変化を有する画素を検出する閾値、もしくは、前記撮像部で異なる時刻に撮像された時系列画像の中から検出した輝度変化を有する画素同士を対応付けるときに、対応付いたと判断する閾値、のうち少なくとも1つの閾値を補正することを特徴とする請求項1から請求項3のいずれか1項に記載の車載用画像認識装置。
  5. 前記検出感度調整部は、前記レンズの白濁度合と前記レンズへの泥や水滴等の付着物の付着度合が高いときほど、前記閾値のうち少なくとも1つを補正して、夜間は昼間よりも前記検出感度の向上を抑制することを特徴とする請求項に記載の車載用画像認識装置。
  6. 前記画像認識アプリケーション実行部は、前記自車両の後方にあって、前記自車両に接近している他車両を検出するものであることを特徴とする請求項1から請求項5のいずれか1項に記載の車載用画像認識装置。
  7. 前記検出感度調整部は、前記レンズの白濁度合と前記レンズへの泥や水滴等の付着物の付着度合が高いときには、前記他車両が、所定の正の相対速度をもって前記自車両に接近しているときほど、前記検出感度の向上を抑制することを特徴とする請求項6に記載の車載用画像認識装置。
JP2014526897A 2012-07-27 2013-07-19 車載用画像認識装置 Active JP6126094B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012167702 2012-07-27
JP2012167702 2012-07-27
PCT/JP2013/069667 WO2014017403A1 (ja) 2012-07-27 2013-07-19 車載用画像認識装置

Publications (2)

Publication Number Publication Date
JPWO2014017403A1 JPWO2014017403A1 (ja) 2016-07-11
JP6126094B2 true JP6126094B2 (ja) 2017-05-10

Family

ID=49997216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014526897A Active JP6126094B2 (ja) 2012-07-27 2013-07-19 車載用画像認識装置

Country Status (10)

Country Link
US (1) US9288381B2 (ja)
EP (1) EP2879370B1 (ja)
JP (1) JP6126094B2 (ja)
CN (1) CN104509090B (ja)
BR (1) BR112015001872B1 (ja)
IN (1) IN2015KN00489A (ja)
MX (1) MX341857B (ja)
MY (1) MY184347A (ja)
RU (1) RU2573110C1 (ja)
WO (1) WO2014017403A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007175A1 (ja) * 2012-07-03 2014-01-09 クラリオン株式会社 車載環境認識装置
US9445057B2 (en) * 2013-02-20 2016-09-13 Magna Electronics Inc. Vehicle vision system with dirt detection
CN105393293B (zh) 2013-07-18 2017-05-03 歌乐株式会社 车载装置
JP6380843B2 (ja) * 2013-12-19 2018-08-29 株式会社リコー 物体検出装置及びこれを備えた移動体機器制御システム並びに物体検出用プログラム
EP3149656B1 (en) * 2014-05-27 2020-01-15 Robert Bosch GmbH Detection, identification, and mitigation of lens contamination for vehicle mounted camera systems
CN104299244B (zh) * 2014-09-26 2017-07-25 东软集团股份有限公司 基于单目相机的障碍物检测方法及装置
KR102263731B1 (ko) * 2014-11-11 2021-06-11 현대모비스 주식회사 주변차량의 위치정보 보정 시스템 및 방법
JP6476921B2 (ja) * 2015-01-29 2019-03-06 住友電気工業株式会社 危険車両検知システム及び車載情報処理装置
KR101757263B1 (ko) * 2015-07-08 2017-07-12 현대자동차주식회사 근거리 물체 감지 장치 및 방법과 이를 이용한 차량
JP6644509B2 (ja) * 2015-10-01 2020-02-12 アルパイン株式会社 車両検知警報装置および車両検知警報方法
SE541846C2 (en) 2016-02-10 2019-12-27 Scania Cv Ab Method and control unit for rear view
JP6217888B1 (ja) * 2016-03-30 2017-10-25 日本電気株式会社 解析装置、解析方法及びプログラム
US10904409B2 (en) * 2016-07-27 2021-01-26 Kyocera Corporation Detection apparatus, imaging apparatus, moveable body, and detection method
EP3306522A1 (en) * 2016-10-06 2018-04-11 Continental Automotive GmbH Device for determining a region of interest on and/or within a vehicle windscreen
EP3306523A1 (en) * 2016-10-06 2018-04-11 Continental Automotive GmbH Device for determining a glare situation caused by a transparent screen of a vehicle
JP6755161B2 (ja) * 2016-10-24 2020-09-16 株式会社デンソーテン 付着物検出装置および付着物検出方法
US11034295B2 (en) * 2017-02-02 2021-06-15 Magna Electronics Inc. Vehicle vision system using at least two cameras
JP7112181B2 (ja) * 2017-03-24 2022-08-03 株式会社Screenホールディングス 画像処理方法および画像処理装置
JP6832224B2 (ja) * 2017-04-28 2021-02-24 株式会社デンソーテン 付着物検出装置および付着物検出方法
CN107317700B (zh) * 2017-06-09 2020-06-30 湖北理工学院 车载边缘计算节点选择系统及方法
JP6772113B2 (ja) * 2017-08-02 2020-10-21 クラリオン株式会社 付着物検出装置、および、それを備えた車両システム
JP6996200B2 (ja) * 2017-09-29 2022-01-17 富士通株式会社 画像処理方法、画像処理装置、および画像処理プログラム
EP3483781B1 (en) * 2017-11-13 2021-10-06 Continental Automotive GmbH Device for detecting windshield blockage
JP7210882B2 (ja) * 2018-01-30 2023-01-24 株式会社デンソーテン 付着物検出装置および付着物検出方法
US10691957B2 (en) * 2018-02-12 2020-06-23 ITS Plus, Inc. Method for increasing the accuracy of traffic cameras using optical masking technology
JP2020109541A (ja) * 2018-12-28 2020-07-16 株式会社デンソーテン 付着物検出装置および付着物検出方法
JP7234630B2 (ja) * 2018-12-28 2023-03-08 株式会社デンソーテン 付着物検出装置
JP7163766B2 (ja) * 2018-12-28 2022-11-01 株式会社デンソーテン 付着物検出装置および付着物検出方法
US11257375B2 (en) * 2018-12-31 2022-02-22 Ficosa Adas, S.L.U. Method and system for detecting objects in a vehicle blind spot
US10943129B2 (en) 2019-01-04 2021-03-09 Ford Global Technologies, Llc Low-light sensor cleaning
CN111583169A (zh) * 2019-01-30 2020-08-25 杭州海康威视数字技术股份有限公司 一种车载相机镜头的污染处理方法及系统
JP7426987B2 (ja) * 2019-03-26 2024-02-02 株式会社小糸製作所 撮影システムおよび画像処理装置
WO2020230237A1 (ja) * 2019-05-13 2020-11-19 日本電信電話株式会社 交通流推定装置、交通流推定方法、交通流推定プログラムおよび交通流推定プログラムを記憶した記憶媒体
JP7151675B2 (ja) * 2019-09-20 2022-10-12 株式会社デンソーテン 付着物検出装置および付着物検出方法
JP7200894B2 (ja) * 2019-09-20 2023-01-10 株式会社デンソーテン 付着物検出装置および付着物検出方法
GB2588655B (en) * 2019-10-31 2022-08-17 Jaguar Land Rover Ltd Control system and method for a vehicle
CN111405177B (zh) * 2020-03-09 2021-09-24 Oppo广东移动通信有限公司 图像处理方法、终端及计算机可读存储介质
CN111443490B (zh) * 2020-04-15 2022-11-18 杭州赶梦科技有限公司 一种ar hud的虚像显示区域调节方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369650U (ja) * 1986-10-27 1988-05-11
JP3734512B2 (ja) * 1993-12-27 2006-01-11 株式会社メニコン コンタクトレンズ外観検査方法および外観検査装置
JP2001052185A (ja) 1999-08-13 2001-02-23 Mitsubishi Precision Co Ltd 車両検出方法および車両検出装置
JP3651387B2 (ja) * 2000-11-22 2005-05-25 日産自動車株式会社 白線検出装置
JP2003044863A (ja) * 2001-07-30 2003-02-14 Nissan Motor Co Ltd 仕切線認識装置
JP3756452B2 (ja) * 2002-01-18 2006-03-15 本田技研工業株式会社 赤外線画像処理装置
JP2004153422A (ja) * 2002-10-29 2004-05-27 Toshiba Corp 撮影装置、顔照合装置、撮影装置の汚れ検知方法、及び顔照合方法
JP3987048B2 (ja) * 2003-03-20 2007-10-03 本田技研工業株式会社 車両周辺監視装置
US7340767B2 (en) * 2003-06-26 2008-03-04 Matsushita Electric Industrial Co, Ltd. Camera apparatus, image server and image server system
RU2286267C2 (ru) * 2004-11-09 2006-10-27 Аркадий Вениаминович Дубровский Система зеркал транспортного средства
JP2007318355A (ja) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd 撮像装置およびレンズ汚れ検出方法
JP2008064630A (ja) * 2006-09-07 2008-03-21 Hitachi Ltd 付着物検知機能付き車載用撮像装置
WO2010038223A1 (en) * 2008-10-01 2010-04-08 Hi-Key Limited A method and a system for detecting the presence of an impediment on a lens of an image capture device to light passing through the lens of an image capture device
JP2012038048A (ja) 2010-08-06 2012-02-23 Alpine Electronics Inc 車両用障害物検出装置
KR101042302B1 (ko) * 2010-12-27 2011-06-17 위재영 차량 외부 영상 장치용 하우징
JP6120395B2 (ja) * 2012-07-03 2017-04-26 クラリオン株式会社 車載装置
JP5925314B2 (ja) * 2012-07-03 2016-05-25 クラリオン株式会社 車両周囲監視装置

Also Published As

Publication number Publication date
CN104509090A (zh) 2015-04-08
BR112015001872A2 (pt) 2017-08-08
EP2879370A1 (en) 2015-06-03
WO2014017403A1 (ja) 2014-01-30
CN104509090B (zh) 2016-08-24
MX2015001004A (es) 2015-11-23
EP2879370A4 (en) 2016-05-11
EP2879370B1 (en) 2020-09-02
US9288381B2 (en) 2016-03-15
BR112015001872B1 (pt) 2021-11-03
IN2015KN00489A (ja) 2015-07-17
JPWO2014017403A1 (ja) 2016-07-11
US20150201120A1 (en) 2015-07-16
MY184347A (en) 2021-04-01
MX341857B (es) 2016-09-05
RU2573110C1 (ru) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6126094B2 (ja) 車載用画像認識装置
JP6174975B2 (ja) 周囲環境認識装置
JP5997276B2 (ja) 立体物検出装置及び異物検出装置
JP6117634B2 (ja) レンズ付着物検知装置、レンズ付着物検知方法、および、車両システム
JP5787024B2 (ja) 立体物検出装置
JP5896027B2 (ja) 立体物検出装置及び立体物検出方法
JP5776795B2 (ja) 立体物検出装置
US20130286205A1 (en) Approaching object detection device and method for detecting approaching objects
JP5804180B2 (ja) 立体物検出装置
EP2879385B1 (en) Three-dimensional object detection device and three-dimensional object detection method
JP5902049B2 (ja) レンズ白濁状態診断装置
JP5743020B2 (ja) 立体物検出装置
CN102156977A (zh) 一种基于视觉的道路检测方法
JPWO2013129354A1 (ja) 立体物検出装置
JP6003986B2 (ja) 立体物検出装置、立体物検出方法及び異物検出装置
JP2014016981A (ja) 移動面認識装置、移動面認識方法及び移動面認識用プログラム
JP5835459B2 (ja) 立体物検出装置
JP6011110B2 (ja) 立体物検出装置および立体物検出方法
JP6020568B2 (ja) 立体物検出装置および立体物検出方法
Basu et al. Night Time Vehicle Detection for Adaptive Beam and Collision Avoidance Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6126094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350