JP6120727B2 - 電力制御装置、電力制御方法、および電力制御システム - Google Patents

電力制御装置、電力制御方法、および電力制御システム Download PDF

Info

Publication number
JP6120727B2
JP6120727B2 JP2013174610A JP2013174610A JP6120727B2 JP 6120727 B2 JP6120727 B2 JP 6120727B2 JP 2013174610 A JP2013174610 A JP 2013174610A JP 2013174610 A JP2013174610 A JP 2013174610A JP 6120727 B2 JP6120727 B2 JP 6120727B2
Authority
JP
Japan
Prior art keywords
temperature
output
temperature detection
power
distributed power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013174610A
Other languages
English (en)
Other versions
JP2015043665A (ja
Inventor
優一 森山
優一 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013174610A priority Critical patent/JP6120727B2/ja
Publication of JP2015043665A publication Critical patent/JP2015043665A/ja
Application granted granted Critical
Publication of JP6120727B2 publication Critical patent/JP6120727B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力制御装置、電力制御方法、および電力制御システムに関するものである。より詳細には、本発明は、複数の分散電源の出力を交流に変換する電力制御装置、このような装置における電力制御方法、および当該装置を含む電力制御システムに関するものである。
近年、例えば太陽電池などの発電装置および蓄電池の双方に対応する電力制御装置が知られている。このような電力制御装置は、発電装置および蓄電池の出力を、系統および/または負荷に供給することにより、連系運転または自立運転を行う。また、このような電力制御装置は、発電装置の出力をDC電力のまま蓄電池に供給することにより、蓄電池を充電することができる(例えば、特許文献1)。
特開2012−228043号公報
しかしながら、このように複数の分散電源に対応する電力制御装置において、安全性を確保しつつ発電効率を高めるための対策は、充分に検討されていない。
したがって、本発明の目的は、安全性を確保しつつ、より発電効率を高める電力制御装置、電力制御方法、および電力制御システムを提供することにある。
上記目的を達成する第1の観点に係る発明は、
複数の分散電源の出力を交流に変換する電力制御装置であって、
複数の温度検出部と、
前記複数の温度検出部が検出する温度に応じて、前記複数の分散電源の出力を選択的に制御する制御部と、
を備え
前記制御部は、前記複数の温度検出部のうち1つに対応する分散電源が複数ある場合、当該1つの温度検出部が検出する温度に応じて、当該対応する分散電源のうち出力が最も大きいものの出力を制御することを特徴とする。
また、前記複数の温度検出部は、前記複数の分散電源の出力がそれぞれ入力される複数のスロットの近傍に配置され、
前記制御部は、前記複数の温度検出部が検出する温度に応じて、前記複数の分散電源のうち対応するものの出力を制御してもよい。
また、前記複数の温度検出部の個数を、前記複数の分散電源の出力がそれぞれ入力される複数のスロットの個数よりも少なくしてもよい。
また、前記制御部は、前記1つの温度検出部が検出する温度に応じて前記対応する分散電源のうち出力が最も大きいものの出力を制御しても、当該1つの温度検出部が検出する温度が閾値を下回らないとき、当該対応する分散電源のうち出力が次に大きいものの出力を制御してもよい。
また、前記複数の温度検出部のうち少なくとも1つは、前記複数の分散電源の出力を交流に変換する変換部の近傍に配置され、
前記制御部は、前記変換部の近傍に配置された温度検出部が検出する温度に応じて、前記変換部により変換される交流の出力を制御してもよい。
また、前記制御部は、前記複数の温度検出部が検出する温度に応じて、前記複数の分散電源の出力を、当該温度検出部の配置特性および当該分散電源の温度特性のうち少なくとも一方に基づいて選択的に制御してもよい。
前記制御部は、前記複数の温度検出部のいずれかが検出する温度が閾値を超えたら、前記複数の分散電源の出力を選択的に低下または停止させるように制御してもよい。
また、前記制御部は、前記複数の分散電源の出力を選択的に低下または停止させている際に、前記複数の温度検出部のいずれかが検出する温度が閾値を下回ったら、当該出力を選択的に低下または停止させている分散電源の出力を復帰させるように制御してもよい。
上記目的を達成する第2の観点に係る発明は、
複数の分散電源の出力を交流に変換する電力制御方法であって、
複数の温度検出部が検出する温度に応じて、前記複数の分散電源の出力を選択的に制御し、前記複数の温度検出部のうち1つに対応する分散電源が複数ある場合、当該1つの温度検出部が検出する温度に応じて、当該対応する分散電源のうち出力が最も大きいものの出力を制御することを特徴とする。
上記目的を達成する第3の観点に係る発明は、
複数の分散電源と、
前記複数の分散電源の出力を交流に変換する電力制御装置と、
を含む電力制御システムであって、
前記電力制御装置は、複数の温度検出部を備え、当該複数の温度検出部が検出する温度に応じて前記複数の分散電源の出力を選択的に制御し、前記複数の温度検出部のうち1つに対応する分散電源が複数ある場合、当該1つの温度検出部が検出する温度に応じて、当該対応する分散電源のうち出力が最も大きいものの出力を制御することを特徴とする。
本発明によれば、複数の分散電源に対応する電力制御装置、電力制御方法、および電力制御システムであって、安全性を確保しつつ、より発電効率を高めたものを提供することができる。
温度の検出に基づく電力制御の例を説明するグラフである。 本発明の実施形態に係る電力制御システムを概略的に示す機能ブロック図である。 本発明の実施形態に係る電力制御装置の動作の例を説明するフローチャートである。
以下、本発明の実施形態について、図面を参照して説明する。
本発明の実施形態に係る電力制御装置は、例えば太陽光発電システム、燃料電池発電システム、および蓄電池などの複数の分散電源の出力をまとめて系統連系することができるように構成する。このような各種の電源は、従来、それぞれが個別にパワーコンディショナのような電力制御装置を有するのが主流であった。しかしながら、本発明の実施形態においては、複数の分散電源の出力を1つの電力制御装置にまとめて系統連系する。以下、本発明の実施形態として、上述のような複数の分散電源をDCリンクさせたシステムを想定して説明するが、本発明は実施形態に記載した構成に限定されるものではない。
一般に、太陽光発電システムが出力する直流の電力を交流に変換する電力制御装置は、周囲の環境温度および装置の運転時の内部温度などに基づいて、電力の出力を制御している。これは、装置の温度が高くなりすぎると、装置を構成する部品が故障などの不具合を生ずるのみならず、ひいては装置全体に不具合をきたすおそれがあるためである。したがって、装置の内部温度がある閾値を超えて高くなるような場合には、発電電力の出力を抑制したり停止したり等の制御を行うことで、装置の安全性を確保する必要がある。
図1は、パワーコンディショナのような電力制御装置において、装置内部の温度に基づいて行う電力制御の例を説明する図である。図1に示すように、所定箇所の温度をモニタリングすることにより、当該温度がある閾値を超える場合は発電電力の出力を低減し、その後当該温度がある閾値を下回る場合は発電電力の出力を復旧することができる。
例えば、図1においては、モニタリングする箇所の温度が80℃を超える場合(点α)、電力制御装置は、発電システムの出力を定格出力の4.0kWから半分の2.0kWに低減させている。また、図1において、当該モニタリング箇所の温度がその後低下して70℃を下回った場合(点β)、電力制御装置は、発電システムの出力を定格の4.0kWに戻している。図1においては、電力制御装置から出力される電力[kW]を実線で表し、電力制御装置の内部温度[℃]を破線で表してある。
上述したように、本発明の実施形態に係る電力制御装置は、複数の分散電源に対応するように構成する。したがって、以下、このように複数の分散電源に対応する電力制御装置であって、安全性を確保しつつ発電効率を高めるものとして、本発明の実施形態に係る電力制御装置について説明する。
図2は、本発明の実施形態に係る電力制御システムを概略的に示す機能ブロック図である。
図2に示すように、本実施形態に係る電力制御システム1は、電力制御装置10と、蓄電池20と、太陽光発電部31,32,33と、燃料電池発電部40と、を含んで構成される。
図2に示すように、電力制御装置10は、少なくとも1つの、好適には複数の分散電源をまとめて系統連系する。このように、電力制御装置10が複数の分散電源をまとめて系統連系する際には、ユーザが使用する家電製品などの負荷に電力を供給するために、電力制御装置10と電力系統との間に分電盤を設ける。しかしながら、図2において、そのような分電盤は省略してある。
以下、電力制御システム1は、図2に示すように、1つの蓄電池20、3つの太陽光発電部31,32,33、および1つの燃料電池発電部40を含むものとして説明する。しかしながら、本実施形態において、分散電源の種類は、太陽光発電部、燃料電池発電部、および蓄電池に限定されるものではなく、各種の分散電源とすることができる。また、これら分散電源の個数についても、それぞれ任意とすることができる。本実施形態に係る電力制御システム1において、分散電源の総数は、少なくとも1つ、好適には複数の任意の数とすることができる。本実施形態に係る電力制御装置10は、各家庭に設置された種々の分散電源に対応することができる。
蓄電池20は、充電された電力を放電することにより、電力を供給することができる。また、蓄電池20は、電力系統、太陽光発電部31〜33または燃料電池発電部40等から供給される電力を充電することもできる。また、蓄電池20から放電される電力も、電力制御装置10から、電力を消費する各種の負荷に供給することができる。一方、太陽光発電部31〜33および燃料電池発電部40が発電する電力、ならびに蓄電池20が放電する電力では、各種の負荷に供給する電力として不足する場合には、当該不足ぶんを電力系統から買電することができる。
図2において、蓄電池20は、電力制御装置10の外部に設置されるように示してあるが、本実施形態において、電力制御装置10は、蓄電池20を含めて構成される、蓄電池内蔵型の電力制御装置としてもよい。
太陽光発電部31〜33は、太陽光を利用して発電することができる。このため、太陽光発電部31〜33は、太陽電池を備えており、太陽光のエネルギーを直接的に電力に変換する。本実施形態において、太陽光発電部31〜33は、例えば家の屋根などにソーラパネルを設置して、太陽光を利用して発電するような態様を想定している。しかしながら、本発明において、太陽光発電部31〜33は、太陽光のエネルギーを電力に変換できるものであれば、任意のものを採用することができる。
図2においては、太陽光発電部31〜33の3つの太陽光発電部を示したが、上述したように、本実施形態において、太陽光発電部を含む分散電源は、少なくとも1つの任意の数とすることができる。このように、本実施形態に係る電力制御システム1は、複数の太陽光発電部に対応することで、太陽光発電部を例えばストリング単位で構成することができる。このため、電力制御システム1においては、例えば家屋の屋根の各方角ごとに太陽光発電部を設置することができる。
燃料電池発電部40は、外部から供給された水素および酸素などのガスを電気化学反応させる燃料電池によって発電を行い、発電した電力を供給することができる。本実施形態において、燃料電池発電部40は、燃料電池が起動した後は、電力系統からの電力を受けずに稼動する、すなわち自立運転することが可能であってもよい。本実施形態において、燃料電池発電部40は、自立運転することができるように、改質部など他の機能部も必要に応じて適宜含むものとする。この燃料電池発電部40は、例えばSOFC等とすることができるが、逆潮流不可能な分散電源であって発電可能なものであれば、SOFCに限定されない。
次に、電力制御装置10について、さらに説明する。
図2に示すように、電力制御装置10は、制御部11、変圧部12A〜12E、電力変換部13、フィルタ部14、および温度検出部15A〜15Dを備えている。
制御部11は、電力制御装置10全体を制御および管理するものであり、例えばプロセッサにより構成することができる。本実施形態において、制御部11が行う制御についてはさらに後述する。
変圧部12A〜12Eは、各分散電源から入力される直流電力の電圧を昇圧または降圧する昇降圧回路である。図2に示すように、変圧部12A〜12Cは、それぞれ、太陽光発電部31〜33と電力変換部13との間を中継するように接続される。この変圧部12A〜12Cは、それぞれ、太陽光発電部31〜33の発電電力を適切な電圧に変圧し、適宜変圧した電力を電力変換部13に出力する。変圧部12Dは、燃料電池発電部40に接続され、燃料電池発電部40の発電電力を適切な電圧に変圧して出力する。変圧部12Eは、蓄電池20に接続され、蓄電池20に充電される電力を適切な電圧に変圧するとともに、蓄電池20が放電する電力を適切な電圧に変圧する。また、図2に示すように、変圧部12Dと変圧部12Eとは接続され、燃料電池発電部40が発電する電力を蓄電池20に充電することができる。
図2に示すように、電力変換部13は、変圧部12A〜12Eに接続され複数の分散電源をまとめて系統連系することができるように、変圧部12A〜12Eの出力をまとめた接続点に、電力変換部13の一端を接続する。電力変換部13は、複数の分散電源の直流電力をまとめて系統連系するために、交流に変換する回路である。すなわち、電力変換部13は、少なくとも1つの、好適には複数の分散電源をまとめて交流に変換してから系統連系する。また、電力変換部13は、電力系統から供給される交流電力を、例えば蓄電池20に充電する等のために直流に変換することもできる。このように、本実施形態に係る電力制御装置10は、例えば蓄電池20、太陽光発電部31〜33、燃料電池発電部40などの、複数の分散電源の出力を交流に変換する。
フィルタ部14は、系統から供給される電力を順潮流として負荷に供給するのに適切な電力となるように調整する。また、フィルタ部14は、例えば太陽光発電部31〜33が発電した電力を逆潮流として電力系統に売電するのに適切な電力となるように調整する。
温度検出部15A〜15Dは、設置された箇所の温度を検出するものであり、例えばサーミスタなどの任意の温度検出素子などで構成することができる。図2に示すように、本実施形態に係る電力制御装置10においては、複数の温度検出部15A〜15Cを、変圧部12A〜12Eの近傍に配置する。
本実施形態に係る電力制御装置10においては、変圧部12A〜12Eが配置される箇所にそれぞれスロットを設け、各分散電源を接続した変圧部12A〜12Eの基板を含むユニットが前記スロットに挿入される構成を想定している。このような場合、電力制御装置10に設けられる複数のスロットは、複数の分散電源の出力がそれぞれ入力される箇所となる。したがって、複数の温度検出部15A〜Cは、複数の分散電源(20,31〜33,40)の出力がそれぞれ入力される複数のスロットの近傍に配置される。
また、本実施形態に係る電力制御装置10は、変圧部12A〜12Eの基板を含むユニットがそれぞれのスロットに挿入される構成に限定されるものではない。例えば、電力制御装置10は、それぞれの変圧部12A〜12Eを内蔵し、各分散電源を接続するためのそれぞれの端子が電力制御装置10に接続可能であるように構成にしてもよい。
いずれの場合も、温度検出部15A〜15Cは、電力制御装置10において各分散電源の発電電力が入力される位置近傍であって、例えば変圧部12A〜12Eのような、入力された電力を発熱とともに出力する部材の近傍に設置するのが好適である。すなわち、本実施形態におけるスロットとは、電力制御装置10において各分散電源の発電電力が入力される部材であって、例えば変圧部12A〜12Eのような、動作に応じて発熱する部材が配置される箇所とするのが好適である。
本実施形態において、温度検出部15を設置する個数は、電力制御装置10の内部構成などの各仕様に応じて、複数の任意の数とすることができる。例えば、本実施形態において、複数の変圧部12のそれぞれに対応させて、変圧部12と同数の温度検出部15を設置してもよい。しかしながら、本実施形態においては、後述するように、複数の温度検出部15A〜Cの個数を、複数の分散電源(20,31〜33,40)の出力がそれぞれ入力される複数のスロットの個数よりも少なくすることができる。このようにすれば、例えばサーミスタなどで構成する温度検出部15の設置個数を少なくすることができるため、コストを低減させることができる。
図2においては、5つの変圧部12A〜12Eの近傍に3つの温度検出部15A〜15Dを設置する場合について示した。すなわち、図2に示す例において、温度検出部15Aは、変圧部12Aおよび12Bそれぞれの近傍、すなわち変圧部12Aおよび12Bの中間地点近傍に配置されている。また、温度検出部15Bは、変圧部12Cおよび12Dそれぞれの近傍、すなわち変圧部12Cおよび12Dの中間地点近傍に配置されている。また、温度検出部15Cは、変圧部12Eの近傍に配置されている。
また、図2に示すように、本実施形態に係る電力制御装置10において、電力変換部13の近傍にも、温度検出部15を少なくとも1つ設置するのが好適である。すなわち、本実施形態において、複数の温度検出部15A〜Dのうち少なくとも1つは、複数の分散電源(20,31〜33,40)の出力を交流に変換する変換部13の近傍に配置されるようにする。電力変換部13は、複数の分散電源の出力を交流に変換し、電力の出力とともに発熱し易いため、電力変換部13に不具合が発生すると、温度の上昇が顕著になる傾向にある。
このようにして、温度検出部15A〜15Dが検出した温度情報は、制御部11に通知される。したがって、制御部11は、温度検出部15A〜15Dが検出した温度を認識することができる。
その他、本実施形態に係る電力制御装置10は、操作者が操作入力を行うための操作部を備えてもよい。さらに、本実施形態に係る電力制御装置10は、当該装置による制御内容および各種の通知を表示するための表示部を備えてもよい。これらの操作部および/または表示部は、電力制御装置10の筐体表面に配置されるようにしてもよいし、電力制御装置10の外部にリモートコントローラのような端末として配置されるようにしてもよい。
以下、制御部11の制御について、さらに説明する。
本実施形態においては、上述したように、電力制御装置10内部に温度検出部15を複数設ける。このような構成において、電力制御装置10の制御部11は、複数の温度検出部15が検出する温度に応じて、複数の分散電源(20,31〜33,40)の出力を選択的に制御する。
以下、本実施形態に係る電力制御装置10による動作の例を説明する。図2は、本実施形態に係る電力制御装置10の動作の例を説明するフローチャートである。図2に示す動作が開始する時点は、例えば電力制御装置10または電力制御システム1の起動時、または定格運転の開始時などとすることができる。
図2に示す動作が開始すると、制御部11は、電力制御システム1内の温度、典型的には電力制御装置10内の温度が基準温度に達したか否かを判定する(ステップS11)。
ここで、電力制御システム1内の温度または電力制御装置10内の温度は、温度検出部15A〜15Dのいずれかによって検出してもよいし、これらの温度検出部15A〜15Dのうち一部または全部の平均などを算出することにより検出してもよい。また、電力制御システム1内の温度または電力制御装置10内の温度は、温度検出部15A〜15Dとは別に電力制御装置10内などに設けた温度検出部によって検出してもよい。また、「基準温度」とは、例えば、電力制御システム1または電力制御装置10が正常に動作している際に変位する温度として想定される上限の温度を規定する。すなわち、電力制御装置10の動作中に、この基準温度を超えるような場合、電力制御システム1または電力制御装置10のいずれかの箇所に不具合が発生していると考えられるような温度を、基準温度として規定する。
ステップS11において、電力制御システム1内の温度が基準温度に達しない場合、電力制御システム1および電力制御装置10は、温度の観点からは正常に動作しているものと考えられる。
ステップS11において、電力制御システム1内の温度が基準温度に達した場合、制御部11は、電力変換部13近傍の温度が閾値を超えたか否かを判定する(ステップS12)。ステップS12においては、図2に示した温度検出部15Dが電力変換部13近傍の温度を検出し、制御部11は、当該検出結果が温度の閾値を超えているか否かを判定する。ここで、「温度の閾値」とは、例えば、電力変換部13が正常に動作している際に変位する温度として想定される上限の温度を規定する。すなわち、電力制御装置10の動作中に、この基準温度を超えるような場合、電力変換部13に不具合が発生していると考えられるような温度を、閾値として規定する。
ステップS12において、電力変換部13近傍の温度が閾値を超えたと判定されたら、制御部11は、電力変換部13の出力を抑制または停止するように制御する(ステップS13)。ここで、電力変換部13の出力を抑制または停止する際には、種々の方法を用いることができる。例えば、制御部11が、電力変換部13に入力される電力を抑制または停止するように制御することができる。その他、例えば、制御部11が、電力変換部13の変換効率を制御することより、電力変換部13の出力を抑制することもできる。
また、制御部11は、上述した温度の閾値を多段階に設定することにより、ある程度の段階までは電力変換部13の出力を低減するように制御し、ある程度の段階を超えたら電力変換部13の出力を停止するように制御してもよい。また、制御部11は、上述した温度の閾値を微細または無段階に設定することにより、検出された温度に応じて、電力変換部13の出力を低減する度合いを変化させてもよい。
このように、本実施形態において、制御部11は、変換部13の近傍に配置された温度検出部が検出する温度に応じて、変換部13により変換される交流の出力を制御するのが好適である。
一方、ステップS12において、電力変換部13近傍の温度が閾値を超えていないと判定されたら、制御部11は、温度検出部15A〜15Cのうち温度が最も高いものを特定する(ステップS14)。
ステップS14において複数の温度検出部15のうち最も温度が高いものが特定されたら、制御部11は、特定された温度検出部15の近傍のスロットが複数であるか否かを判定する(ステップS15)。
例えば、温度検出部15Aの温度が最も高いと特定された場合、温度検出部15A近傍には変圧部12Aおよび12Bにそれぞれ対応するスロットが存在するため、特定される温度検出部15の近傍のスロットは複数である。また、温度検出部15Bの温度が最も高いと特定された場合、温度検出部15B近傍には変圧部12Cおよび12Dにそれぞれ対応するスロットが存在するため、特定される温度検出部15の近傍のスロットは複数である。一方、温度検出部15Cの温度が最も高いと特定された場合、温度検出部15C近傍には変圧部12Eに対応するスロットのみが存在するため、特定される温度検出部15の近傍のスロットは1つである。
ステップS15において、特定された温度検出部15の近傍のスロットが複数である場合、制御部11は、当該複数のスロットのうち出力の大きい分散電源に対応するスロットを特定する(ステップS16)。
ステップS16においては、例えば、温度検出部15Aの温度が最も高いと特定された場合、制御部11は、変圧部12Aおよび12Bにそれぞれ対応する分散電源のうちいずれの出力が大きいかを特定する。この時、例えば、制御部11は、変圧部12Aおよび12Bにそれぞれ対応する分散電源のうち、出力容量の大きな分散電源および当該分散電源のスロットを特定する。このように、出力容量の大きな分散電源の方が、温度検出部15Aが検出する温度の上昇に寄与する度合いが高いと考えられる。例えば変圧部12Aの近傍に配置される太陽光発電部31が定格出力4.0kWで動作中であり、太陽光発電部32が定格出力2.5kWで動作中であると仮定すると、制御部11は、出力容量の大きな分散電源として、太陽光発電部31および当該スロットを特定する。このような、各分散電源の出力容量は、例えば分散電源の接続時に制御部11が判別してもよいし、電力制御装置10の利用者が入力するようにもできる。
ステップS16において、出力の大きな分散電源に対応するスロットが特定されたら、制御部11は、当該特定されたスロットの分散電源の出力を抑制または停止するように制御する(ステップS17)。ここで、特定されたスロットの分散電源の出力を抑制または停止する際には、種々の方法を用いることができる。例えば、制御部11が、特定されたスロットの分散電源の変圧部12に入力される電力を抑制または停止するように制御することができる。その他、例えば、制御部11が、変圧部12が変圧する効率を制御することより、変圧部12の出力を抑制することもできる。
一方、ステップS15において、特定された温度検出部15の近傍のスロットが1つである場合、制御部11は、当該スロットの分散電源の出力を抑制または停止するように制御する(ステップS17)。
ステップS17において、特定されたスロットの分散電源の出力を抑制または停止したら、制御部11は、電力制御システム1内の温度、典型的には電力制御装置10内の温度がまだ基準温度以上であるか否かを判定する(ステップS18)。
ステップS18において、電力制御システム1内または電力制御装置10内の温度が既に基準温度以上でない場合、すなわち温度が基準温度以下に低下した場合、制御部11は、ステップS11に戻って通常の動作を継続する。
一方、ステップS17までの処理を行っても、ステップS18において電力制御システム1内または電力制御装置10内の温度が基準温度以上である場合、制御部11は、電力制御システム1の出力、典型的には電力制御装置10の出力を停止する(ステップS19)。
また、このように、1つの温度検出部が検出する温度に応じて対応する分散電源のうち出力が最も大きいものの出力を制御しても、当該1つの温度検出部が検出する温度が閾値(基準温度)を下回らない場合もある。そのような場合、制御部11は、当該対応する分散電源のうち出力が次に大きいものの出力を制御してもよい。すなわち、ステップS11からステップS12を経てステップS14〜ステップS18までの動作は、所定回数ループするように制御してもよい。
このように、本実施形態において、制御部11は、複数の温度検出部15A〜Dが検出する温度に応じて、複数の分散電源(20,31〜33,40)のうち対応するものの出力を制御するのが好適である。また、制御部11は、複数の温度検出部15A〜Dのうち1つに対応する分散電源が複数ある場合、その1つの温度検出部が検出する温度に応じて、当該対応する分散電源のうち出力が最も大きいものの出力を制御するのが好適である。
ここで、制御部11は、複数の温度検出部15A〜Dのいずれかが検出する温度が閾値を超えたら、複数の分散電源(20,31〜33,40)の出力を選択的に低下または停止させるように制御してもよい。この場合も、制御部11は、複数の温度検出部15A〜Dが検出する温度に応じて、複数の分散電源(20,31〜33,40)のうち対応するものの出力を選択的に低下または停止させるように制御するのが好適である。
そして、このように制御を行う際は、制御部11は、複数の温度検出部15A〜Dのいずれかが検出する温度が閾値を下回ったら、出力を選択的に低下または停止させている分散電源の出力を復帰させるように制御してもよい。
このように、本実施形態によれば、複数の分散電源に対応する電力制御装置において、分散電源のいずれかに障害が発生したような場合に、電力制御装置10または電力制御システム1全体の動作を抑制または停止することなく運転を継続することが期待できる。したがって、本実施形態によれば、複数の分散電源に対応する電力制御装置において、安全性を確保しつつ、より発電効率を高めることができる。
以上、本実施形態に係る電力制御装置、および当該電力制御装置を含む電力制御システムについて説明したが、本発明は、上述したような電力制御装置における電力制御方法として実施することもできる。
本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。したがって、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各機能部、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の機能部やステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本発明の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせて実施することもできる。
上述した実施形態においては、分散電源の一部が太陽光発電部31〜33である場合について説明した。しかしながら、本発明において、分散電源の一部は太陽光発電部31〜33に限定されるものではなく、例えば風力発電など、太陽光発電以外の発電を行う分散電源を採用することもできる。
上述した実施形態においては、分散電源の出力を直流の電源としてまとめて系統連系する電力制御装置について説明した。しかしながら、本発明は分散電源の出力を直流の電源とするもののみに限定されるものではなく、交流の電源を採用することもできる。
図2においては、燃料電池発電部40が直流電力を出力するものとして説明した。しかしながら、現在、燃料電池発電システムは、負荷に対して交流の電力を直接供給できるように、発電システムの内部にインバータを備えているものがある。このような燃料電池発電システムは、発電された直流電力がシステム内部で交流に変換されて出力される。したがって、このような燃料電池発電部を本発明の電力制御システムに採用する場合、当該燃料電池発電部の交流の出力に対応する必要がある。
そのような場合、分散電源として燃料電池発電部40が供給する交流の電力を受け入れ可能にするために、変圧部12Dを電力変換部に変更する。このようにすれば、すでに従来の燃料電池発電システムを導入している家庭においても、そのような発電システムを流用しつつ、本発明に係る電力制御システムを導入することができる。このようにすれば、より汎用性の高い電力制御システムを実現できる。
一方、図2において説明した電力制御システム1によれば、インバータ付の燃料電池発電システムを導入していない家庭が、本発明の電力制御システムを導入する場合に、インバータなしの燃料電池発電部を採用することができる。この場合、電力の変換を行う回数を低減することができるため、発電の効率を高めることが期待できる。
また、本実施形態において、電力制御装置10内に複数の温度検出部15をいかなる箇所にいくつ設置するのかは、種々の条件に応じて決定することができる。例えば、電力制御装置10内において、複数の温度検出部15が配置される位置または態様などの特性、および、温度検出部15に対応する分散電源の温度特性などの条件に応じて、複数の温度検出部15の設置条件を決めることができる。したがって、制御部11は、複数の温度検出部が検出する温度に応じて、複数の分散電源の出力を、当該温度検出部の配置特性および当該分散電源の温度特性のうち少なくとも一方に基づいて選択的に制御してもよい。このような制御により、例えば変圧部12などにおける不具合をより正確に検出することが期待できる。
さらに、本実施形態において、複数の温度検出部15は、電力制御装置10の内部の温度を検出するのみならず、電力制御装置10の外部の温度、すなわち周囲環境温度も検出するようにしてもよい。このように、電力制御装置10の内部の温度のみならず、周囲環境温度をも加味した上で複数の分散電源の出力の制御を行えば、例えば変圧部12などにおける不具合をより正確に検出することが期待できる。
1 電力制御システム
10 電力制御装置
11 制御部
12A〜12E 変圧部
13 電力変換部
14 フィルタ部
15A〜15D 温度検出部
20 蓄電池
31,32,33 太陽光発電部
40 燃料電池発電部

Claims (10)

  1. 複数の分散電源の出力を交流に変換する電力制御装置であって、
    複数の温度検出部と、
    前記複数の温度検出部が検出する温度に応じて、前記複数の分散電源の出力を選択的に制御する制御部と、
    を備え
    前記制御部は、前記複数の温度検出部のうち1つに対応する分散電源が複数ある場合、当該1つの温度検出部が検出する温度に応じて、当該対応する分散電源のうち出力が最も大きいものの出力を制御する、電力制御装置。
  2. 前記制御部は、前記1つの温度検出部が検出する温度に応じて前記対応する分散電源のうち出力が最も大きいものの出力を制御しても、当該1つの温度検出部が検出する温度が閾値を下回らないとき、当該対応する分散電源のうち出力が次に大きいものの出力を制御する、請求項に記載の電力制御装置。
  3. 前記複数の温度検出部は、前記複数の分散電源の出力がそれぞれ入力される複数のスロットの近傍に配置され、
    前記制御部は、前記複数の温度検出部が検出する温度に応じて、前記複数の分散電源のうち対応するものの出力を制御する、請求項1または2に記載の電力制御装置。
  4. 前記複数の温度検出部の個数を、前記複数の分散電源の出力がそれぞれ入力される複数のスロットの個数よりも少なくした、請求項1から3のいずれか1項に記載の電力制御装置。
  5. 前記複数の温度検出部のうち少なくとも1つは、前記複数の分散電源の出力を交流に変換する変換部の近傍に配置され、
    前記制御部は、前記変換部の近傍に配置された温度検出部が検出する温度に応じて、前記変換部により変換される交流の出力を制御する、請求項1からのいずれか1項に記載の電力制御装置。
  6. 前記制御部は、前記複数の温度検出部が検出する温度に応じて、前記複数の分散電源の出力を、当該温度検出部の配置特性および当該分散電源の温度特性のうち少なくとも一方に基づいて選択的に制御する、請求項1からにいずれか1項に記載の電力制御装置。
  7. 前記制御部は、前記複数の温度検出部のいずれかが検出する温度が閾値を超えたら、前記複数の分散電源の出力を選択的に低下または停止させるように制御する、請求項1からのいずれか1項に記載の電力制御装置。
  8. 前記制御部は、前記複数の分散電源の出力を選択的に低下または停止させている際に、前記複数の温度検出部のいずれかが検出する温度が閾値を下回ったら、当該出力を選択的に低下または停止させている分散電源の出力を復帰させるように制御する、請求項に記載の電力制御装置。
  9. 複数の分散電源の出力を交流に変換する電力制御方法であって、
    複数の温度検出部が検出する温度に応じて、前記複数の分散電源の出力を選択的に制御し、前記複数の温度検出部のうち1つに対応する分散電源が複数ある場合、当該1つの温度検出部が検出する温度に応じて、当該対応する分散電源のうち出力が最も大きいものの出力を制御する、電力制御方法。
  10. 複数の分散電源と、
    前記複数の分散電源の出力を交流に変換する電力制御装置と、
    を含む電力制御システムであって、
    前記電力制御装置は、複数の温度検出部を備え、当該複数の温度検出部が検出する温度に応じて前記複数の分散電源の出力を選択的に制御し、前記複数の温度検出部のうち1つに対応する分散電源が複数ある場合、当該1つの温度検出部が検出する温度に応じて、当該対応する分散電源のうち出力が最も大きいものの出力を制御する、電力制御システム。
JP2013174610A 2013-08-26 2013-08-26 電力制御装置、電力制御方法、および電力制御システム Active JP6120727B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013174610A JP6120727B2 (ja) 2013-08-26 2013-08-26 電力制御装置、電力制御方法、および電力制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013174610A JP6120727B2 (ja) 2013-08-26 2013-08-26 電力制御装置、電力制御方法、および電力制御システム

Publications (2)

Publication Number Publication Date
JP2015043665A JP2015043665A (ja) 2015-03-05
JP6120727B2 true JP6120727B2 (ja) 2017-04-26

Family

ID=52696934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013174610A Active JP6120727B2 (ja) 2013-08-26 2013-08-26 電力制御装置、電力制御方法、および電力制御システム

Country Status (1)

Country Link
JP (1) JP6120727B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238466A (ja) * 2000-02-28 2001-08-31 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
JP3796460B2 (ja) * 2002-03-28 2006-07-12 シャープ株式会社 太陽光発電システム用パワーコンディショナ
JP4724834B2 (ja) * 2006-04-12 2011-07-13 農工大ティー・エル・オー株式会社 電力変換装置、系統連係分散発電システム、および複数の電力変換装置による系統連係運転の停止方法

Also Published As

Publication number Publication date
JP2015043665A (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
JP6289661B2 (ja) 電力供給機器、電力供給システム及び電力供給機器の制御方法
JP5028517B2 (ja) 直流給電システム
JP5866494B2 (ja) 分電盤および蓄電池パック
JP6174410B2 (ja) 電力制御装置、電力制御方法、および電力制御システム
JP5344759B2 (ja) 配電システム
JP2007066724A (ja) 燃料電池発電システム
JP5944269B2 (ja) 電力供給システム
JP2011250650A (ja) 電力システム
JP2019198223A (ja) 電力変換システム
JP2024009124A (ja) 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム
JP2013165624A (ja) 蓄電装置用パワーコンディショナ、蓄電装置
JP2017135888A (ja) 電力変換システム
JP2017077092A (ja) 系統連系システム
JP6120727B2 (ja) 電力制御装置、電力制御方法、および電力制御システム
JP6507294B2 (ja) 電力制御装置、電力制御方法、および電力制御システム
JP6188742B2 (ja) 電力供給システム
JP6144616B2 (ja) 電力制御装置、電力制御システム、および電力制御方法
JP5939938B2 (ja) 電力供給システム
JP6652903B2 (ja) 分散型電源システム
JP6629694B2 (ja) 電力制御装置及びその制御方法
JP6247142B2 (ja) 電力制御装置および電力制御方法
JP2017208353A (ja) 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
JP2016163371A (ja) 電力制御システムおよび電力制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R150 Certificate of patent or registration of utility model

Ref document number: 6120727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150