JP6115929B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP6115929B2
JP6115929B2 JP2011508407A JP2011508407A JP6115929B2 JP 6115929 B2 JP6115929 B2 JP 6115929B2 JP 2011508407 A JP2011508407 A JP 2011508407A JP 2011508407 A JP2011508407 A JP 2011508407A JP 6115929 B2 JP6115929 B2 JP 6115929B2
Authority
JP
Japan
Prior art keywords
component
atmosphere
epoxy resin
minutes
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011508407A
Other languages
Japanese (ja)
Other versions
JPWO2010117081A1 (en
Inventor
俊史 久保山
俊史 久保山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Three Bond Co Ltd
Original Assignee
Three Bond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Three Bond Co Ltd filed Critical Three Bond Co Ltd
Publication of JPWO2010117081A1 publication Critical patent/JPWO2010117081A1/en
Application granted granted Critical
Publication of JP6115929B2 publication Critical patent/JP6115929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Description

本発明は、チップサイズパッケージ(CSP)、ボールグリッドアレイ(BGA)、ウェハーレベル(WL−CSP)などのハンダボールと基板電極を接続した後に行う樹脂組成物による封止に適した後浸透封止用のエポキシ樹脂組成物に関するものである。   The present invention is a post-osmotic sealing suitable for sealing with a resin composition performed after a solder ball such as a chip size package (CSP), a ball grid array (BGA), or a wafer level (WL-CSP) is connected to a substrate electrode. The present invention relates to an epoxy resin composition.

基板実装では半田のセルフアライメント効果により半田ボールと基板電極を接続し、洗浄工程を経て硬化型樹脂組成物をクリアランスに流し込んだ後に硬化する封止手法が行われている。この封止剤を一般的にはアンダーフィル剤と呼ばれているが、その組成はエポキシ樹脂で実績がある。一方、特表2003−504893号公報に開示されているようなウレタン樹脂のアンダーフィル剤も知られている。ウレタン樹脂の場合、リペアー性を特徴とすることから、信頼性が低い場合がある。   In substrate mounting, a sealing method is used in which a solder ball and a substrate electrode are connected by a self-alignment effect of solder, a curable resin composition is poured into a clearance through a cleaning process, and then cured. This sealant is generally called an underfill agent, but its composition has been proven with epoxy resins. On the other hand, a urethane resin underfill agent as disclosed in JP-T-2003-504893 is also known. In the case of a urethane resin, since it is characterized by repairability, reliability may be low.

一方、ゴム成分を添加して信頼性を向上させる手法がある。ゴム骨格を有する硬化性樹脂やゴム粉体を添加した硬化性樹脂が使用されている。特開2001−270976号公報にはゴム粉と無機充填剤を添加した封止用エポキシ樹脂が、また特開平9−153570号公報には特殊なブタジエン共重合体の粉体と無機充填剤を添加した封止用エポキシ樹脂が開示されている。従来のアンダーフィル剤ではアルミナやシリカなどの無機充填剤を必須としている。無機充填剤を添加することにより線膨張率を低くし有機材料の欠点である熱時の膨張を下げる試みが行われている。しかしながら、無機充填剤の添加量が多くなるため、粘度が高くなり浸透性が低下する。   On the other hand, there is a technique for improving reliability by adding a rubber component. A curable resin having a rubber skeleton or a curable resin added with rubber powder is used. JP 2001-270976 discloses a sealing epoxy resin to which rubber powder and an inorganic filler are added, and JP 9-153570 A adds a special butadiene copolymer powder and an inorganic filler. An epoxy resin for sealing is disclosed. Conventional underfill agents require inorganic fillers such as alumina and silica. Attempts have been made to lower the coefficient of linear expansion by adding an inorganic filler to reduce the expansion during heating, which is a drawback of organic materials. However, since the amount of the inorganic filler added increases, the viscosity increases and the permeability decreases.

特開2008−208182号公報にはアクリルゴム粉とシリコーンゴム粉を同時に添加することなどが記載されている。無機充填材を添加することで特性が向上することも記載されており、実質的に上記の2種類のゴム粉と無機充填材とを併用添加することが好ましいことが記載されている。   Japanese Patent Application Laid-Open No. 2008-208182 describes that acrylic rubber powder and silicone rubber powder are added simultaneously. It is also described that the characteristics are improved by adding an inorganic filler, and it is described that it is preferable to substantially add the two kinds of rubber powder and the inorganic filler together.

特開2007−246713号公報には多官能のグリシジルアミン型エポキシ樹脂を使用したリレー(継電器)用の封止用エポキシ樹脂開示されている。隙間に流し込むという点ではアンダーフィル剤と用途が近似しているが、接続された電極を保持するという実装用途よりは信頼性が要求されない。   Japanese Unexamined Patent Application Publication No. 2007-246713 discloses a sealing epoxy resin for relays (relays) using a polyfunctional glycidylamine type epoxy resin. Although the use is similar to the underfill agent in terms of pouring into the gap, reliability is not required more than the mounting use of holding the connected electrode.

今日まで、信頼性試験に対する耐性を有ると共に、常温(25℃)雰囲気および120℃雰囲気の浸透性が高い後浸透型のアンダーフィル剤は見いだされていず、本発明の目的は、上記した要求特性を満足する後浸透封止用のエポキシ樹脂組成物を提供することにある。
[発明の要約]
To date, no post-penetration type underfill agent having a resistance to a reliability test and having a high permeability in a normal temperature (25 ° C.) atmosphere and a 120 ° C. atmosphere has not been found. Is to provide an epoxy resin composition for post-penetration sealing that satisfies the above.
[Summary of Invention]

本発明者は、上記目的を達成するべく鋭意検討した結果、硬化物の線膨張率(α1):120℃雰囲気下で15分硬化したときに10ppm/℃以上60ppm/℃以下、ガラス転移点:120℃雰囲気下で15分硬化したときに120℃以上200℃以下、貯蔵弾性率(25℃):120℃雰囲気下で15分硬化したときに0.1GPa以上3.0GPa以下であり、硬化前の浸透性(120℃):クリアランス100μmのガラス板において120℃雰囲気下で15分放置後に30mm以上60mm以下のパラメーターを有するエポキシ樹脂組成物がアンダーフィル剤に適している事を見いだし本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has found that the linear expansion coefficient (α1) of the cured product: 10 ppm / ° C. or more and 60 ppm / ° C. or less when cured for 15 minutes in an atmosphere of 120 ° C., glass transition point: 120 ° C to 200 ° C when cured for 15 minutes in a 120 ° C atmosphere, storage modulus (25 ° C): 0.1 GPa to 3.0 GPa when cured for 15 minutes in a 120 ° C atmosphere, before curing Penetration (120 ° C.): An epoxy resin composition having a parameter of 30 mm or more and 60 mm or less after standing for 15 minutes in a 120 ° C. atmosphere on a glass plate having a clearance of 100 μm was found to be suitable for an underfill agent and completed the present invention. It came to do.

従って、本発明の第一は、下記の(A)〜(D)成分からなり、
(A)成分:1分子内に平均2個のエポキシ基を有する常温で液体のエポキシ樹脂
(B)成分:1分子内に3以上のエポキシ基と芳香環を有する常温で液体の化合物
(C)成分:ブタジエンゴム粉または(メタ)アクリル酸エステルから重合されるアクリルゴム粉
(D)成分:120℃以下で反応を開始するアミンアダクト型潜在性硬化剤
硬化物の線膨張率(α1)、ガラス転移温度、貯蔵弾性率(25℃)、硬化前の浸透性(120℃)が以下の全ての要件を満たし、
線膨張率(α1):120℃雰囲気下で15分硬化したときに10ppm/℃以上60ppm/℃以下
ガラス転移点:120℃雰囲気下で15分硬化したときに120℃以上200℃以下
貯蔵弾性率(25℃):120℃雰囲気下で15分硬化したときに0.1GPa以上3.0GPa以下
浸透性(120℃):クリアランス100μmのガラス板において120℃雰囲気下で15分放置後に30mm以上60mm以下
(A)成分と(B)成分の合計のうち(B)成分の割合は20〜90重量%であり、
(A)成分と(B)成分の合計100質量部に対して(C)成分が3〜10質量部添加され、
(A)成分と(B)成分の合計100質量部に対して(D)成分が8.6〜40質量部添加されると共に、
(C)成分以外の充填剤を実質的に含まず、
芳香環を有しない3官能以上のエポキシ樹脂を含まず、
室温で液状の硬化剤を実質的に含まない
後浸透封止用のエポキシ樹脂組成物である。
Accordingly, the first of the present invention comprises the following components (A) to (D):
Component (A): Epoxy resin that is liquid at room temperature having an average of two epoxy groups in the molecule (B) Component: Compound that is liquid at room temperature having three or more epoxy groups and an aromatic ring in the molecule (C) Ingredient: Acrylic rubber powder polymerized from butadiene rubber powder or (meth) acrylic acid ester (D) Ingredient: Amine adduct type latent curing agent that starts reaction at 120 ° C. or lower Curing coefficient expansion coefficient (α1), glass transition temperature, storage modulus (25 ° C.), before curing permeability (120 ° C.) is less than all of the following requirements,
Linear expansion coefficient (α1): 10 ppm / ° C. or more and 60 ppm / ° C. or less when cured for 15 minutes in a 120 ° C. atmosphere Glass transition point: 120 ° C. or more and 200 ° C. or less for 15 minutes when cured in a 120 ° C. atmosphere Storage modulus (25 ° C.): 0.1 GPa or more and 3.0 GPa or less when cured for 15 minutes in a 120 ° C. atmosphere Penetration (120 ° C.): 30 mm or more and 60 mm or less after standing for 15 minutes in a 120 ° C. atmosphere on a 100 μm clearance glass plate
The ratio of the component (B) in the total of the component (A) and the component (B) is 20 to 90% by weight,
3 to 10 parts by mass of component (C) is added to 100 parts by mass of component (A) and component (B).
While (8.6) -40 parts by mass of component (D) is added to 100 parts by mass of the total of component (A) and component (B),
(C) contains substantially no filler other than the component,
Does not contain trifunctional or higher functional epoxy resin without aromatic ring,
Contains virtually no liquid curing agent at room temperature
It is an epoxy resin composition for post-osmosis sealing.

本発明の第二は、前記線膨張率(α1)が120℃雰囲気下で15分硬化したときに55ppm/℃以上60ppm/℃以下、前記ガラス転移点が120℃雰囲気下で15分硬化したときに120℃以上148℃以下、前記貯蔵弾性率(25℃)が120℃雰囲気下で15分硬化したときに1.7GPa以上2.8GPa以下、前記浸透性(120℃)がクリアランス100μmのガラス板において120℃雰囲気下で15分放置後に30mm以上43mm以下である上記第一に記載の後浸透封止用のエポキシ樹脂組成物である In the second aspect of the present invention, the linear expansion coefficient (α1) is 55 ppm / ° C. or more and 60 ppm / ° C. or less when cured for 15 minutes in a 120 ° C. atmosphere, and the glass transition point is cured for 15 minutes in a 120 ° C. atmosphere. A glass plate having a storage modulus (25 ° C.) of not less than 120 ° C. and not more than 148 ° C. and a storage modulus (25 ° C.) of 1.7 GPa to 2.8 GPa when cured for 15 minutes in an atmosphere of 120 ° C., and a permeability of 120 μm. in an epoxy resin composition for penetration sealing after according to the first Ru der least 43mm below 30mm after standing 15 minutes under 120 ° C. atmosphere.

本発明によれば、信頼性試験に対する耐性を有ると共に、常温(25℃)雰囲気および120℃雰囲気の浸透性が高い後浸透型のアンダーフィル剤を提供することが可能となる。   According to the present invention, it is possible to provide a post-penetration type underfill agent having resistance to a reliability test and having high permeability in a normal temperature (25 ° C.) atmosphere and a 120 ° C. atmosphere.

図1は本発明のアンダーフィル剤を用いたTEGをヒートサイクル試験にかけた時の導通試験結果を示すグラフである。   FIG. 1 is a graph showing a continuity test result when a TEG using the underfill agent of the present invention is subjected to a heat cycle test.

本発明の詳細を次に説明する。実装用のアンダーフィル剤の主な硬化物特性は、ガラス転移点(Tg)、線膨張率(ガラス転移点より低温側のα1、高温側のα2)を確認する熱機械分析装置(TMA)や貯蔵弾性率(E’)、損失弾性率(E”)、ガラス転移点、tanδを確認する動的粘弾性測定装置(DMA)により測定する。本発明では、ガラス転移点(TMAによる)、線膨張率(α1)および25℃の貯蔵弾性率(E’)において特定の硬化物特性を有する樹脂組成物が後浸透型アンダーフィル剤に適していることを見いだした。(以下、ガラス転移点とはTMAによるものとし、α1とはTMAによるガラス転移点より低温側の線膨張率とし、E’(25℃)とはDMAによる25℃における貯蔵弾性率とする。)本発明に適しているパラメーターとしては、Tgが120℃以上、α1が60ppm/℃以下、E’が3.0GPa以下であることが好ましい。E’において特に好ましいのは、E’(25℃)が2.5GPa以下である。最も好ましい要件は、Tgが120〜200℃、α1が10〜60ppm/℃、E’が0.1〜3.0GPaである。アンダーフィル剤はガラス転移点を高く、線膨張率を低くする手法がとられる傾向がある。これは高温放置試験、ヒートショック試験、高温高湿試験などの信頼性試験に於ける温度領域で、電子回路が寸断しないようにするためである。また、熱履歴によりアンダーフィル剤の硬化物が膨張しない様に線膨張率を低くしていると考えられる。しかしながら、高ガラス転移点、低線膨張率にすると硬化物が脆くなるため、信頼性試験における被着体の膨張収縮の変化に追従することができない。この点を克服するため本発明では、E’(25℃)を低くし弾力があり追従性がある硬化物を得ることに一つの特徴がある。さらに、E’(25℃)を1.0GPa以下にすることは軟質エポキシ樹脂やウレタン樹脂で可能となるが、必然的にTgが低くなり、α1が高くなる傾向がでるため、Tg、α1、E’(25℃)の3種類のパラメーターを満たすことが必要である。さらには、CSPやBGAと基板に挟まれた100〜300μmのクリアランスに樹脂組成物を浸透させる時に、フィレット形成に有効なパラメーターとして120℃雰囲気における浸透性が挙げられる。フィレット形成により信頼性試験の結果が変化するため、本発明においては120℃雰囲気の浸透性を満たす必要がある。アンダーフィル剤の硬化性が高い場合、クリアランスに十分浸透しない段階で流動性が無くなる。一方、硬化性が低い場合、硬化時間が長くなり過ぎてしまい作業性に支障が出る。そのため、特に好ましい浸透性としては30〜60mmである。上記は例示的説明であり、それによって本発明が制限されるものではない。   Details of the present invention will be described below. The main cured product characteristics of the underfill agent for mounting are a thermomechanical analyzer (TMA) for confirming the glass transition point (Tg) and the linear expansion coefficient (α1 on the low temperature side and α2 on the high temperature side from the glass transition point) The storage elastic modulus (E ′), loss elastic modulus (E ″), glass transition point, and tan δ are measured by a dynamic viscoelasticity measuring device (DMA). In the present invention, glass transition point (by TMA), line It has been found that a resin composition having specific cured product characteristics in terms of expansion coefficient (α1) and storage elastic modulus (E ′) at 25 ° C. is suitable for a post-penetration type underfill agent (hereinafter referred to as a glass transition point). Is a linear expansion coefficient at a lower temperature side than the glass transition point by TMA, and E ′ (25 ° C.) is a storage elastic modulus at 25 ° C. by DMA.) Parameters suitable for the present invention As T It is preferable that g is 120 ° C. or more, α1 is 60 ppm / ° C. or less, and E ′ is 3.0 GPa or less, particularly preferably E ′ (25 ° C.) is 2.5 GPa or less. The requirements are Tg of 120 to 200 ° C., α1 of 10 to 60 ppm / ° C., and E ′ of 0.1 to 3.0 GPa, and the underfill agent has a high glass transition point and low linear expansion. This is to prevent the electronic circuit from being broken in the temperature range in the reliability test such as a high temperature storage test, a heat shock test, a high temperature and high humidity test, etc. Also, underfill due to thermal history. It is thought that the linear expansion coefficient is lowered so that the cured product of the agent does not expand, but the cured product becomes brittle when a high glass transition point and a low linear expansion coefficient are used. In order to overcome this problem, the present invention has a characteristic in that E ′ (25 ° C.) is lowered to obtain a cured product having elasticity and followability. , E ′ (25 ° C.) can be set to 1.0 GPa or less with a soft epoxy resin or a urethane resin, but inevitably Tg decreases and α1 tends to increase. Therefore, Tg, α1, E It is necessary to satisfy the three parameters of '(25 ° C). Furthermore, when the resin composition is infiltrated into the clearance of 100 to 300 μm sandwiched between CSP and BGA and the substrate, this parameter is effective for fillet formation. In the present invention, it is necessary to satisfy the permeability of the 120 ° C. atmosphere because the reliability test results change due to the fillet formation.When the underfill agent has high curability, the fluidity is lost when it does not sufficiently penetrate into the clearance. On the other hand, when the curability is low, the curing time becomes too long and the workability is hindered. Therefore, the particularly preferable permeability is 30 to 60 mm. The above is an exemplary description, and the present invention is not limited thereby.

本発明に使用することができる(A)成分は、1分子内に2個以上のエポキシ基を有する化合物であり、一般的にエポキシ樹脂と呼ばれている化合物である。1種類だけ使用しても2種類以上を混合して使用してもよい。エポキシ樹脂の具体例としては、エピクロルヒドリンとビスフェノール類などの多価フェノール類や多価アルコールとの縮合によって得られるもので、例えばビスフェノールA型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオレン型、ノボラック型、フェノールノボラック型、オルソクレゾールノボラック型、トリス(ヒドロキシフェニル)メタン型、テトラフェニロールエタン型などのグリシジルエーテル型エポキシ樹脂を例示することができる。その他エピクロルヒドリンとフタル酸誘導体や脂肪酸などのカルボン酸との縮合によって得られるグリシジルエステル型エポキシ樹脂、エピクロルヒドリンとアミン類、シアヌル酸類、ヒダントイン類との反応によって得られるグリシジルアミン型エポキシ樹脂、さらには様々な方法で変性したエポキシ樹脂を挙げられるが、これらに限定されるものではない。価格面や安定供給を考慮すると、(A)成分としては分子内に平均約2個のエポキシ基を有する化合物が好ましい。   The component (A) that can be used in the present invention is a compound having two or more epoxy groups in one molecule, and is a compound generally called an epoxy resin. Only one type may be used, or two or more types may be mixed and used. Specific examples of epoxy resins are those obtained by condensation of epichlorohydrin with polyhydric phenols such as bisphenols and polyhydric alcohols. For example, bisphenol A type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol F Type, bisphenol S type, bisphenol AF type, biphenyl type, naphthalene type, fluorene type, novolak type, phenol novolak type, orthocresol novolak type, tris (hydroxyphenyl) methane type, tetraphenylolethane type epoxy, etc. Resins can be exemplified. Other glycidyl ester type epoxy resins obtained by condensation of epichlorohydrin with carboxylic acids such as phthalic acid derivatives and fatty acids, glycidyl amine type epoxy resins obtained by reaction of epichlorohydrin with amines, cyanuric acids, hydantoins, and various Examples thereof include, but are not limited to, epoxy resins modified by the method. Considering price and stable supply, the component (A) is preferably a compound having an average of about 2 epoxy groups in the molecule.

市販されている(A)成分としては、ジャパンエポキシレジンレジン株式会社製827、828EL等、大日本インキ工業株式会社製のEPICLON830、EXA−835LV等が挙げられる。東都化成株式会社製エポトートYD−128、YDF−170等が挙げられるが、これらに限定されるものではない。価格面を考慮すると、分子内に平均2個のエポキシ基を有するビスフェノールA骨格またはビスフェノールF骨格を有するエポキシ樹脂が好ましい。   Examples of the commercially available component (A) include 827 and 828EL manufactured by Japan Epoxy Resin Co., Ltd., EPICLON 830 and EXA-835LV manufactured by Dainippon Ink Industries, Ltd., and the like. Examples include Etoto YD-128 and YDF-170 manufactured by Toto Kasei Co., Ltd., but are not limited thereto. Considering the price, an epoxy resin having a bisphenol A skeleton or a bisphenol F skeleton having an average of two epoxy groups in the molecule is preferable.

本発明に使用することができる(B)成分は、1分子中にエポキシ基を3個以上と芳香環とを有する化合物である。芳香環の具体例としては、ベンゼン環、ナフタレン環、アニリン環などが挙げられる。具体的な3官能の(B)成分としては、N,N−ビス(2,3−エポキシプロピル)−4−(2,3−エポキシプロポキシ)アニリンやN,N−ビス(2,3−エポキシプロピル)−4−(2,3−エポキシプロポキシ)−2−メチルアニリンなどが挙げられる。また、具体的な4官能の(B)成分としては、ジアミノジフェニルメタンテトラグリシジルエーテルが挙げられる。市販されている該化合物としてはジャパンエポキシレジン株式会社製jER630、jER604、荒川化学工業株式会社製のコンポセランE201、E202などが挙げられるが、これらに限定されるものではない。(B)成分は常温にて液状であること好ましいが、粘度および浸透性に支障が出ない範囲でエポキシ樹脂に固形の化合物を溶かして使用することもできる。(B)成分は、エポキシ樹脂全体の20〜90重量%含まれることが好ましく、(B)成分を添加することでTgを高くする傾向がある。一方、芳香環を有しない3官能以上のエポキシ樹脂はTgを高くすることができず、本発明には適さない。   The component (B) that can be used in the present invention is a compound having 3 or more epoxy groups and an aromatic ring in one molecule. Specific examples of the aromatic ring include a benzene ring, a naphthalene ring, and an aniline ring. Specific examples of the trifunctional component (B) include N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy) aniline and N, N-bis (2,3-epoxy). Propyl) -4- (2,3-epoxypropoxy) -2-methylaniline and the like. Specific examples of the tetrafunctional component (B) include diaminodiphenylmethane tetraglycidyl ether. Examples of the commercially available compounds include, but are not limited to, jER630 and jER604 manufactured by Japan Epoxy Resin Co., Ltd. and composeran E201 and E202 manufactured by Arakawa Chemical Industries, Ltd. The component (B) is preferably liquid at room temperature, but it can also be used by dissolving a solid compound in an epoxy resin as long as the viscosity and permeability are not hindered. (B) It is preferable that 20 to 90 weight% of the whole epoxy resin is contained, and there exists a tendency for Tg to become high by adding (B) component. On the other hand, a trifunctional or higher functional epoxy resin having no aromatic ring cannot increase Tg and is not suitable for the present invention.

本発明で使用することができる(C)成分は、ブタジエンゴム粉またはアクリルゴム粉である。モノマーとして(メタ)アクリル酸エステルから重合されるゴム、またはモノマーとしてブタジエンから重合されるゴムの粉体である。重合または共重合に際して、(メタ)アクリル酸エステルまたはブタジエン以外のモノマーであるスチレン、イソプレンなどが含まれてもよい。(メタ)アクリル酸エステルの具体例としてはMMAなどが挙げられるがこれらに限定されるものではない。上記において(メタ)アクリル酸エステルとはアクリル酸エステルまたは/およびアクリル酸エステルをいう。粉体の平均粒径としては0.05〜0.5μmが好ましく、膨潤による粘度変化を考慮するとコアシェル型の(C)成分が好ましい。(C)成分を添加することによりE’が低くなり、E’を下げる効果として(C)成分はブタジエンから重合されるゴム粉であることが最も好ましい。   The component (C) that can be used in the present invention is butadiene rubber powder or acrylic rubber powder. A rubber polymerized from (meth) acrylic acid ester as a monomer, or a rubber powder polymerized from butadiene as a monomer. In polymerization or copolymerization, monomers other than (meth) acrylic acid ester or butadiene may include styrene, isoprene, and the like. Specific examples of (meth) acrylic acid esters include MMA, but are not limited thereto. In the above, (meth) acrylic acid ester means acrylic acid ester or / and acrylic acid ester. The average particle diameter of the powder is preferably 0.05 to 0.5 μm, and the core-shell type (C) component is preferable in consideration of the viscosity change due to swelling. By adding the component (C), E ′ is lowered. As an effect of lowering E ′, the component (C) is most preferably rubber powder polymerized from butadiene.

事前にエポキシ樹脂内に分散された(C)成分を使用してもよい。具体的には、エポキシ樹脂内にハイパーやホモジナイザーなどの混合撹拌装置により分散されたゴム粒子や、エポキシ樹脂内で乳化重合により合成されたゴム粒子がこれに相当する。乳化重合による手法で最終的に形成されたゴム粒子の平均粒径は、0.05〜0.5μmのものが好ましい。エポキシ樹脂に事前に分散されたゴム粒子を使用することにより、樹脂組成物の製造時に成分の取扱いが簡単になるという利点がある。また、エポキシ樹脂が充分にゴム粒子になじむため、時間が経過した時の粘度変化がすくなる傾向がある。   The component (C) dispersed in the epoxy resin in advance may be used. Specifically, rubber particles dispersed in an epoxy resin by a mixing and stirring device such as hyper or homogenizer, and rubber particles synthesized by emulsion polymerization in an epoxy resin correspond to this. The average particle size of the rubber particles finally formed by the emulsion polymerization method is preferably 0.05 to 0.5 μm. By using the rubber particles dispersed in advance in the epoxy resin, there is an advantage that the handling of the components becomes easy during the production of the resin composition. In addition, since the epoxy resin is sufficiently adapted to the rubber particles, there is a tendency that the viscosity changes with time.

上記アクリルゴム粒子の具体例としては、綜研化学株式会社製 MXシリーズ、三菱レイヨン株式会社製 メタブレンWシリーズ、ゼオン化成株式会社製 ゼフィアックシリーズなどが挙げられる。事前にゴム粒子を分散したエポキシ樹脂の具体例としては、レジナス化成株式会社製 RKBシリーズなどが挙げられる。乳化重合を用いたエポキシ樹脂の具体例としては、株式会社日本触媒製 アクリセットBPシリーズなどが挙げられるが、これらに限定されるものではない。上記ブタジエンゴム粒子の具体例としては、三菱レイヨン株式会社製 メタブレンEシリーズとメタブレンCシリーズなどが挙げられる。また、ブタジエンゴムをコアにしたコアシェル粉を分散したものとしては、株式会社カネカ製 カネエースMX136が挙げられるが、これに限定されるものではない。   Specific examples of the acrylic rubber particles include MX series manufactured by Soken Chemical Co., Ltd., METABLEN W series manufactured by Mitsubishi Rayon Co., Ltd., and Zefiac series manufactured by ZEON Kasei Co., Ltd. Specific examples of the epoxy resin in which rubber particles are dispersed in advance include RKB series manufactured by Resinas Kasei Co., Ltd. Specific examples of the epoxy resin using emulsion polymerization include, but are not limited to, Acrylic BP series manufactured by Nippon Shokubai Co., Ltd. Specific examples of the butadiene rubber particles include METABLEN E series and METABLEN C series manufactured by Mitsubishi Rayon Co., Ltd. Moreover, Kaneace MX136 manufactured by Kaneka Corporation is exemplified as a dispersion of core-shell powder having butadiene rubber as a core, but is not limited thereto.

(A)成分と(B)成分の合計100質量部に対して、(C)成分の添加量は10質量部以下が好ましい。さらに好ましくは(A)成分と(B)成分の合計100質量部に対して、(C)成分の添加量が3〜10質量部である。(C)成分の添加量が、10質量部より多いとα1が大きくなる傾向があり、3質量部より少ないとE’(25℃)が高くなる傾向がある。   As for the addition amount of (C) component, 10 mass parts or less are preferable with respect to a total of 100 mass parts of (A) component and (B) component. More preferably, the addition amount of (C) component is 3-10 mass parts with respect to a total of 100 mass parts of (A) component and (B) component. When the amount of component (C) added is more than 10 parts by mass, α1 tends to increase, and when it is less than 3 parts by mass, E ′ (25 ° C.) tends to increase.

アルミナ、シリカ、炭酸カルシウムなどの無機充填剤を添加することを当業者は汎用するが、本発明では無機充填剤を添加するとE’を高くするため実質的に含まないことが最も好ましい。前記の「実質的に含まない」とは、原料の製造工程中に残留している不純物を含む場合や、E’(25℃)が3.0GPa以下に入る範囲で無機充填剤を意図的に極微量添加している場合などはその要件外であることを意味する。   Those skilled in the art commonly use inorganic fillers such as alumina, silica, and calcium carbonate. However, in the present invention, when an inorganic filler is added, it is most preferable that the inorganic filler is not substantially contained in order to increase E '. The term “substantially free” means that an inorganic filler is intentionally included in the case where impurities remaining in the raw material manufacturing process are included or E ′ (25 ° C.) falls within 3.0 GPa or less. When a very small amount is added, it means that the requirement is not met.

本発明で使用することができる(D)成分としては、エポキシ樹脂に対して硬化剤として使用できると共に、粉末状に粉砕された化合物が挙げられる。つまり、室温で液状のエポキシ樹脂に室温で固体の前記硬化剤が分散された一液型エポキシ樹脂において、経時による粘度変化や物性変化が少ないなどの保存安定性が確保できる硬化剤を潜在性硬化剤と言う。具体的には、室温で粉体のイミダゾール誘導体、粉体のジシアンジアミド、エポキシ樹脂に三級アミンを付加させて反応を途中で止めているエポキシアダクト化合物を粉砕した粉末などが挙げられるが、これらに限定されるものではない。特に好ましくは、前記エポキシアダクト化合物で、市販されているものとしては味の素ファインテクノ株式会社製のアミキュアシリーズや、富士化成工業株式会社製のフジキュアシリーズや旭化成ケミカルズ株式会社製のノバキュアシリーズなどが挙げられる。120℃以下で反応を開始することが好ましい。   (D) component which can be used by this invention can be used as a hardening | curing agent with respect to an epoxy resin, and the compound grind | pulverized to the powder form is mentioned. In other words, in a one-pack type epoxy resin in which the curing agent that is solid at room temperature is dispersed in an epoxy resin that is liquid at room temperature, a curing agent that can ensure storage stability such as little change in viscosity and physical properties over time is latently cured. Say the agent. Specific examples include powdered imidazole derivatives, powdered dicyandiamide, and powders obtained by pulverizing an epoxy adduct compound in which a tertiary amine is added to an epoxy resin to stop the reaction. It is not limited. Particularly preferably, the epoxy adduct compound is commercially available from Ajinomoto Fine Techno Co., Ltd., Amifure Series from Fuji Kasei Kogyo Co., Ltd., Nocure Series from Asahi Kasei Chemicals Co., Ltd., etc. Is mentioned. It is preferable to start the reaction at 120 ° C. or lower.

酸無水物、フェノール化合物、チオール化合物などの室温で液状の硬化剤も、エポキシ樹脂の硬化剤として知られている。通常、前記液状硬化剤を単独で使用しても硬化が遅いため、(D)成分を硬化促進剤として前記液状硬化剤と合わせて使用することが知られている。しかしながら、本発明においては、前記液状硬化剤と(D)成分を組み合わせると120℃雰囲気における浸透性が低下することから、は粉体の硬化剤以外を実質的に含まないことが好ましい。前記の「室温で液状の硬化剤を実質的に含まない」とは、原料の製造工程中に残留している不純物を含む場合や、液状の硬化剤を意図的に極微量添加しても実質的に反応性を決定しているのが粉体の硬化剤である場合などはその要件外であることを意味する。   Curing agents that are liquid at room temperature, such as acid anhydrides, phenolic compounds, and thiol compounds, are also known as curing agents for epoxy resins. Usually, even if it uses the said liquid hardening | curing agent independently, since hardening is slow, using (D) component together with the said liquid hardening | curing agent as a hardening accelerator is known. However, in the present invention, when the liquid curing agent and the component (D) are combined, the permeability in an atmosphere at 120 ° C. is reduced. The above-mentioned “substantially free of liquid curing agent at room temperature” means that it contains impurities remaining in the raw material production process, or even if a very small amount of liquid curing agent is intentionally added. In other words, it is out of the requirement that the reactivity is determined by a powder curing agent.

(A)成分と(B)成分の合計100質量部に対して、(D)成分の添加量は10〜40質量部が好ましい。10質量部より少ない場合では硬化性が低下し、40質量部より多い場合では浸透性が低下するおそれがある。   As for the addition amount of (D) component with respect to a total of 100 mass parts of (A) component and (B) component, 10-40 mass parts is preferable. When the amount is less than 10 parts by mass, the curability is lowered, and when the amount is more than 40 parts by mass, the permeability may be lowered.

本発明のエポキシ樹脂組成物には、本発明の所期の効果を損なわない範囲において、顔料、染料などの着色剤、可塑剤、酸化防止剤、消泡剤、シラン系カップリング剤、レベリング剤、レオロジーコントロール剤等の添加剤を適量配合しても良い。これらの添加により、樹脂強度・接着強さ・作業性・保存性等に優れた組成物およびその硬化物が得られる。   The epoxy resin composition of the present invention includes colorants such as pigments and dyes, plasticizers, antioxidants, antifoaming agents, silane coupling agents, and leveling agents, as long as the intended effects of the present invention are not impaired. An appropriate amount of additives such as a rheology control agent may be blended. By these additions, a composition excellent in resin strength, adhesive strength, workability, storage stability and the like and a cured product thereof can be obtained.

次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
[実施例1〜12]
実施例1〜12を調製するために下記成分を準備した。
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited only to these Examples.
[Examples 1 to 12]
The following ingredients were prepared to prepare Examples 1-12.

(A)成分:エポキシ樹脂組成物
・ビスフェノールF型エポキシ樹脂(jER806 ジャパンエポキシレジン株式会社製)
(B)成分:1分子内に3以上のエポキシ基と芳香環を有する化合物
・1分子内に3以上のエポキシ基と芳香環を有する化合物(jER630 ジャパンエポキシレジン株式会社製)
・1分子内に3以上のエポキシ基と芳香環を有する化合物(ELM−100 住友化学株式会社製)
(C)成分:ブタジエンゴム粉またはアクリルゴム粉
・エポキシ樹脂に分散されたブタジエンゴム粉(ゴム含有率:25質量%)(カネエースMX136 カネカ株式会社製)
・アクリルゴム粉(ゼフィアック F351 日本ゼオン株式会社製)
・アクリルゴム粉(GENIOPERL P−52 WackerChemie製)
(D)成分:潜在性硬化剤
・アミンアダクト型硬化剤(フジキュアFXR−1030 富士化成工業株式会社製)
・アミンアダクト型硬化剤(フジキュアFXR−1081 富士化成工業株式会社製)
・アミンアダクト型硬化剤を分散したエポキシ樹脂(ノバキュアHX−3921HP 旭化成エポキシ株式会社製)
その他の成分
・シラン系カップリング剤(KBM−403 信越化学工業株式会社製)
・分散剤(BYK−352 ビックケミー・ジャパン株式会社製)
(A) component: epoxy resin composition-bisphenol F type epoxy resin (made by jER806 Japan Epoxy Resin Co., Ltd.)
Component (B): Compound having 3 or more epoxy groups and aromatic rings in one molecule ・ Compound having 3 or more epoxy groups and aromatic rings in one molecule (manufactured by jER630 Japan Epoxy Resin Co., Ltd.)
・ Compound having 3 or more epoxy groups and aromatic rings in one molecule (ELM-100, manufactured by Sumitomo Chemical Co., Ltd.)
(C) component: butadiene rubber powder or acrylic rubber powder ・ Butadiene rubber powder dispersed in an epoxy resin (rubber content: 25 mass%) (manufactured by Kaneace MX136 Kaneka Corporation)
・ Acrylic rubber powder (Zefiac F351 manufactured by Nippon Zeon Co., Ltd.)
・ Acrylic rubber powder (GENIOPERL P-52 Wacker Chemie)
Component (D): Latent curing agent Amine adduct type curing agent (Fujicure FXR-1030, manufactured by Fuji Chemical Industry Co., Ltd.)
・ Amine adduct type curing agent (Fujicure FXR-1081 manufactured by Fuji Chemical Industry Co., Ltd.)
-Epoxy resin in which amine adduct type curing agent is dispersed (Novacure HX-3922HP, manufactured by Asahi Kasei Epoxy Co., Ltd.)
Other components ・ Silane coupling agent (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.)
・ Dispersant (BYK-352 manufactured by Big Chemie Japan Co., Ltd.)

(A)成分、(B)成分、(C)成分およびその他成分を撹拌機にて真空脱泡30分撹拌した。ただし、実施例8および9では、該混合物を事前に三本ロールミルに2回通した後に撹拌機に投入する。その後、(D)成分を添加してさらに30分真空脱泡撹拌した。詳細な調製量は表1に従い、数値は全て質量部で表記する。   The components (A), (B), (C) and other components were stirred with a stirrer for 30 minutes by vacuum defoaming. However, in Examples 8 and 9, the mixture is passed through a three-roll mill twice in advance and then charged into a stirrer. Then, (D) component was added and it vacuum-deaerated and stirred for 30 minutes. Detailed preparation amounts follow Table 1, and all numerical values are expressed in parts by mass.

[比較例1〜8]
比較例1〜8を調整するため、実施例1〜12で使用する成分に加えて下記成分を準備した。
(B’):芳香環を有せず1分子内に3のエポキシ基を有する化合物
・1分子内に3のエポキシ基を有する脂肪族化合物(デナコールEX−321 ナガセケムテックス株式会社製)
その他の成分
・4−メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30(リカシッド MH−700 新日本理化株式会社)
・シリカ粉(QS−6 MRCユニテック株式会社製)
[Comparative Examples 1-8]
In order to adjust Comparative Examples 1 to 8, in addition to the components used in Examples 1 to 12, the following components were prepared.
(B ′): Compound having no aromatic ring and having 3 epoxy groups in one molecule • Aliphatic compound having 3 epoxy groups in one molecule (Denacol EX-321 manufactured by Nagase ChemteX Corporation)
Other ingredients ・ 4-Methylhexahydrophthalic anhydride / hexahydrophthalic anhydride = 70/30 (Ricacid MH-700 Shin Nippon Rika Co., Ltd.)
・ Silica powder (QS-6 MRC Unitech Co., Ltd.)

(A)成分、(B)成分、(C)成分およびその他成分を撹拌機にて30分撹拌した。ただし、比較例1では、該混合物を事前に三本ロールミルに2回通した後に撹拌機に投入する。その後、(D)成分を添加してさらに30分真空脱泡撹拌した。詳細な調製量は表1に従い、数値は全て質量部で表記する。   The component (A), the component (B), the component (C) and other components were stirred with a stirrer for 30 minutes. However, in Comparative Example 1, the mixture is passed through a three-roll mill twice in advance and then charged into a stirrer. Then, (D) component was added and it vacuum-deaerated and stirred for 30 minutes. Detailed preparation amounts follow Table 1, and all numerical values are expressed in parts by mass.

Figure 0006115929
Figure 0006115929

実施例1〜12、比較例1〜8について、粘度測定、浸透性測定、TMA測定、DMA測定、引張せん断接着力測定を実施した。
<粘度測定>
各エポキシ樹脂組成物の温度が室温になってから粘度計により「粘度(Pa・s)」を測定した。詳細な測定方法は以下の通り。その結果を表2にまとめた。本発明では4.0Pa・s以下が適している。
メーカー:東機産業株式会社 TV−33型粘度計(EHD型)
測定条件
コーンローター:3°×R14
回転速度:5.0rpm
測定温度:25℃(温調装置使用)
About Examples 1-12 and Comparative Examples 1-8, the viscosity measurement, the permeability measurement, the TMA measurement, the DMA measurement, and the tensile shear adhesive force measurement were carried out.
<Viscosity measurement>
After the temperature of each epoxy resin composition reached room temperature, “viscosity (Pa · s)” was measured with a viscometer. The detailed measurement method is as follows. The results are summarized in Table 2. In the present invention, 4.0 Pa · s or less is suitable.
Manufacturer: Toki Sangyo Co., Ltd. TV-33 type viscometer (EHD type)
Measurement conditions Cone rotor: 3 ° × R14
Rotation speed: 5.0rpm
Measurement temperature: 25 ° C (use of temperature controller)

<浸透性測定>
厚さ100μmの短冊状シックネスゲージを100mm×50mmのガラス板の短辺に平行して配置して、もう一枚のガラス板を若干ずらしてシックネスゲージを挟み込み、クリップでシックネスゲージがずれない様に固定する。ガラス板がずれた位置にエポキシ樹脂組成物を塗布した後、120℃雰囲気で15分放置してガラス板の端部から浸透した距離を確認して「浸透性(mm)」とした。その結果を表2にまとめた。浸透性が悪いと、フィレット(浸透後の組成物の形状)の形成が悪く、信頼性試験において応力が偏り封止剤に対する破壊や被着体との界面におけるはく離をもたらす恐れがある。本発明では、浸透性が30mm以上が適している。
<Measurement of permeability>
A strip-shaped thickness gauge with a thickness of 100 μm is placed in parallel with the short side of a 100 mm x 50 mm glass plate, the other glass plate is slightly shifted and the thickness gauge is sandwiched, so that the thickness gauge does not shift with a clip. Fix it. After the epoxy resin composition was applied to the position where the glass plate was displaced, it was allowed to stand in an atmosphere of 120 ° C. for 15 minutes, and the distance permeated from the edge of the glass plate was confirmed to be “permeability (mm)”. The results are summarized in Table 2. If the permeability is poor, the formation of fillets (the shape of the composition after the penetration) is poor, and stress may be biased in the reliability test, leading to destruction of the sealant or peeling at the interface with the adherend. In the present invention, a permeability of 30 mm or more is suitable.

Figure 0006115929
Figure 0006115929

<TMA測定(Tg、α1測定)>
120℃雰囲気で15分の硬化により直径5mmの円筒形硬化物を作成し、長さ10mmに切断する。TMAにより昇温速度10℃/minで昇温して測定を行った。「線膨張率(α1)(ppm/℃)」を測定し、α1とα2の接線の交点により「ガラス転移点(℃)」を測定した。本発明では、Tgが120℃以上、α1が60ppm/℃以下が適している。
<TMA measurement (Tg, α1 measurement)>
A cylindrical cured product having a diameter of 5 mm is prepared by curing for 15 minutes in an atmosphere of 120 ° C., and cut into a length of 10 mm. The temperature was increased by TMA at a temperature increase rate of 10 ° C./min. “Linear expansion coefficient (α1) (ppm / ° C.)” was measured, and “glass transition point (° C.)” was measured by the intersection of tangent lines of α1 and α2. In the present invention, Tg of 120 ° C. or higher and α1 of 60 ppm / ° C. or lower are suitable.

<DMA測定(E’(25℃)測定)>
120℃雰囲気で15分の硬化により直径5mmの円筒形硬化物を作成し、長さ30mmに切断する。曲げモードで測定を行い、昇温速度3℃/minで昇温する。周波数1Hzで25℃に於ける「貯蔵弾性率(GPa)」を確認した。本発明では、E’(25℃)は3.0GPa以下が適している。
<DMA measurement (E ′ (25 ° C.) measurement)>
A cylindrical cured product having a diameter of 5 mm is prepared by curing for 15 minutes in an atmosphere of 120 ° C., and cut into a length of 30 mm. Measurement is performed in a bending mode, and the temperature is increased at a rate of temperature increase of 3 ° C./min. “Storage elastic modulus (GPa)” at 25 ° C. at a frequency of 1 Hz was confirmed. In the present invention, E ′ (25 ° C.) is suitably 3.0 GPa or less.

<引張せん断接着力測定>
ガラス繊維強化エポキシ樹脂製(FR−4)で10mm×25mm×100mmのテストピースを用いて、一枚目のテストピースに樹脂組成物を均一に広げて、二枚目のテストピースと25mm×10mmの「接着面積」で貼り合わせる。テストピースが動かない様に固定した状態で、熱風乾燥炉により120℃にて15分で硬化させる。テストピースの温度が室温に戻った後、引張速度10mm/minにて二枚のテストピースを逆方向に引っ張って「最大荷重」を測定する。「最大荷重」を「接着面積」で割ることで「引張せん断接着力(MPa)」を計算する。試験の詳細はJISK8681に従う。本発明では、目安として接着力が15MPa以上有れば使用することができる。
<Measurement of tensile shear adhesive strength>
Using a test piece of 10 mm x 25 mm x 100 mm made of glass fiber reinforced epoxy resin (FR-4), spread the resin composition uniformly on the first test piece, and the second test piece and 25 mm x 10 mm Paste together with the "bonding area". With the test piece fixed so as not to move, it is cured in a hot air drying oven at 120 ° C. for 15 minutes. After the temperature of the test piece returns to room temperature, the “maximum load” is measured by pulling the two test pieces in the opposite direction at a pulling speed of 10 mm / min. “Tensile shear adhesive force (MPa)” is calculated by dividing “maximum load” by “bonding area”. Details of the test conform to JISK8681. In the present invention, it can be used as long as the adhesive strength is 15 MPa or more.

Figure 0006115929
Figure 0006115929

表2から比較例1および比較例3〜5では粘度が高く、それに伴って120℃雰囲気における浸透性が悪くなっているが、実施例では浸透性が全て30mm以上に含まれる。実施例4と比較例8を比較すると、酸無水物を使用している比較例8の方が粘度が低いにもかかわらず、120℃雰囲気での浸透性が低下していることがわかる。また、表3から比較例1〜7ではTg、α1、E’(25℃)のいずれかが本発明には適さないが、実施例では全てのパラメーターが本発明に適している。(C)成分が多く含まれる比較例3〜5はE’(25℃)が3.0GPa以下ではあるが、α1が高くなる傾向が見られる。また、比較例6と7から1分子中に3以上のエポキシ基を有する脂肪族化合物はTgを下げるために本発明には適さない。   From Table 2, Comparative Example 1 and Comparative Examples 3 to 5 have high viscosities, and as a result, the permeability in an atmosphere at 120 ° C. is poor, but in the Examples, all the permeability is included in 30 mm or more. When Example 4 and Comparative Example 8 are compared, it can be seen that Comparative Example 8 using an acid anhydride has lower permeability in a 120 ° C. atmosphere, although the viscosity is lower. Also, from Table 3, in Comparative Examples 1 to 7, any of Tg, α1, E ′ (25 ° C.) is not suitable for the present invention, but in the examples, all parameters are suitable for the present invention. In Comparative Examples 3 to 5 containing a large amount of component (C), E ′ (25 ° C.) is 3.0 GPa or less, but α1 tends to increase. Further, from Comparative Examples 6 and 7, an aliphatic compound having 3 or more epoxy groups in one molecule is not suitable for the present invention because Tg is lowered.

<TEG導通試験>
半導体と基板が電気的接続をされた状態を擬似的に形成しているTest Element Group(以下、TEGと言う。)により、アンダーフィル剤としての性能を確認することができる。疑似半導体のバンプと疑似基板のパットは電気的に接続されており、TEG内部の配線がすべてデイジーチェーン状に連結している。疑似基板に有る外部電極にテスターの電極を当てて導通性確認をする。TEGの端部にアンダーフィル剤を塗布して、所定方法でアンダーフィル剤を疑似半導体と疑似基板のクリアランスに浸透させて硬化させる。アンダーフィル剤により封止されたTEGをヒートショック試験、ヒートサイクル試験、高温放置試験、低温放置試験、恒温恒湿試験などの信頼性試験に投入した後、電気的接続が確保されていない場合は抵抗値がオーバーロードになる。これにより、アンダーフィル剤の信頼性を擬似的に試験することができる。TEGの仕様、アンダーフィル剤の硬化条件、信頼性試験として行ったヒートサイクル試験の条件は以下の通りである。
TEG仕様
チップ仕様
チップサイズ:9.6mm×9.6mm
チップ厚:725μm
バンプ材質:Sn/3.0Ag/0.5Cu
バンプ高さ:245μm
バンプ形成方法:ボール搭載
パターン仕様
メタルパットピッチ:500μm
メタルパットサイズ:300μm×300μm
パット数:324
アンダーフィル剤硬化条件(浸透工程を含む)
120℃×15分
ヒートサイクル試験
1サイクル:−40×30分+85℃×30分として全2000サイクル実施
テストピース数:5(以下、テストピースをTEGと呼ぶ。)
<TEG continuity test>
The performance as an underfill agent can be confirmed by a test element group (hereinafter referred to as TEG) in which a semiconductor and a substrate are electrically connected to each other. The bumps of the pseudo semiconductor and the pads of the pseudo substrate are electrically connected, and all the wiring inside the TEG is connected in a daisy chain shape. Conductivity is confirmed by applying the electrode of the tester to the external electrode on the pseudo substrate. An underfill agent is applied to the end portion of the TEG, and the underfill agent is penetrated into the clearance between the pseudo semiconductor and the pseudo substrate by a predetermined method to be cured. If the electrical connection is not secured after the TEG sealed with the underfill agent is put into reliability tests such as heat shock test, heat cycle test, high temperature storage test, low temperature storage test, constant temperature and humidity test Resistance value is overloaded. Thereby, the reliability of an underfill agent can be tested in a pseudo manner. The TEG specifications, the curing conditions of the underfill agent, and the conditions of the heat cycle test conducted as a reliability test are as follows.
TEG specification Chip specification Chip size: 9.6mm x 9.6mm
Chip thickness: 725 μm
Bump material: Sn / 3.0Ag / 0.5Cu
Bump height: 245μm
Bump formation method: Ball mounting Pattern specification Metal pad pitch: 500μm
Metal pad size: 300μm × 300μm
Number of pads: 324
Underfill agent curing conditions (including penetration process)
120 ° C. × 15 minutes Heat cycle test 1 cycle: −40 × 30 minutes + 85 ° C. × 30 minutes Total 2000 cycles Test piece number: 5 (hereinafter, test piece is referred to as TEG)

TEG導通試験に用いたアンダーフィル剤は表4に示す特性を有するものである。本発明としては実施例1を用いた。また、商品A〜Cは本発明では比較例に相当するアンダーフィル剤である。   The underfill agent used in the TEG continuity test has the characteristics shown in Table 4. Example 1 was used as the present invention. Further, the products A to C are underfill agents corresponding to comparative examples in the present invention.

Figure 0006115929
Figure 0006115929

前記の条件でヒートサイクル試験を行った結果を図1に示す。25、100、200、500、750、1000、1500、2000サイクルでヒートサイクル試験器から取り出し、テストピースが室温に戻ってからテスターにより導通性を確認した。導通性が確保されていないテストピースは「不良」と判断した。   The result of the heat cycle test performed under the above conditions is shown in FIG. It was taken out from the heat cycle tester at 25, 100, 200, 500, 750, 1000, 1500, and 2000 cycles, and the conductivity was confirmed by a tester after the test piece returned to room temperature. A test piece for which continuity was not ensured was judged to be “bad”.

図1の通り、実施例1においては2000サイクル終了時も導通性を確保しており、商品A〜Cでは急激にまたは徐々に導通性が確保されていないTEGが発生している。TEGを用いて擬似的な試験を行っているものの、アンダーフィル剤によりTEGに対する信頼性に大きな影響を与えていることがわかる。   As shown in FIG. 1, in Example 1, the continuity is secured even at the end of 2000 cycles, and in the products A to C, TEGs in which the continuity is not ensured suddenly or gradually are generated. Although a pseudo test is performed using TEG, it can be seen that the underfill agent greatly affects the reliability of TEG.

本発明のエポキシ樹脂組成物は、封止剤を塗布した後に室温にて放置する必要が無く、120℃雰囲気にすぐに投入できると共に、最適なフィレットが形成されるアンダーフィル剤である。これによりラインタクトの短縮が計られ生産効率の向上に寄与するものと考えられる。さらに、硬化物の特性を一定の範囲内にすることで、信頼性試験の耐性が向上することが可能である。将来、パッケージの小型化が進んでアンダーフィル剤に対する信頼性向上の要求がさらに強くなる。無機充填剤を高充填する様な従来の手法だけでは信頼性を向上させることが困難であり、エポキシ樹脂のパラメーターを制御することで小型化に対応できる。   The epoxy resin composition of the present invention is an underfill agent that does not need to be left at room temperature after the sealing agent is applied, and can be immediately put into an atmosphere of 120 ° C., and an optimum fillet is formed. As a result, the line tact time is shortened and it is thought that it contributes to the improvement of production efficiency. Furthermore, the tolerance of the reliability test can be improved by setting the properties of the cured product within a certain range. In the future, downsizing of packages will progress and the demand for improved reliability of underfill agents will become even stronger. It is difficult to improve the reliability only by the conventional method of highly filling the inorganic filler, and it is possible to cope with downsizing by controlling the parameters of the epoxy resin.

Claims (2)

以下の(A)〜(D)成分からなり、
(A)成分:1分子内に平均2個のエポキシ基を有する常温で液体のエポキシ樹脂
(B)成分:1分子内に3以上のエポキシ基と芳香環を有する常温で液体の化合物
(C)成分:ブタジエンゴム粉または(メタ)アクリル酸エステルから重合されるアクリルゴム粉
(D)成分:120℃以下で反応を開始するアミンアダクト型潜在性硬化剤
硬化物の線膨張率(α1)、ガラス転移温度、貯蔵弾性率(25℃)、硬化前の浸透性(120℃)が以下の全ての要件を満たし、
線膨張率(α1):120℃雰囲気下で15分硬化したときに10ppm/℃以上60ppm/℃以下
ガラス転移点:120℃雰囲気下で15分硬化したときに120℃以上200℃以下
貯蔵弾性率(25℃):120℃雰囲気下で15分硬化したときに0.1GPa以上3.0GPa以下
浸透性(120℃):クリアランス100μmのガラス板において120℃雰囲気下で15分放置後に30mm以上60mm以下
(A)成分と(B)成分の合計のうち(B)成分の割合は20〜90重量%であり、
(A)成分と(B)成分の合計100質量部に対して(C)成分が3〜10質量部添加され、
(A)成分と(B)成分の合計100質量部に対して(D)成分が8.6〜40質量部添加されると共に、
(C)成分以外の充填剤を実質的に含まず、
芳香環を有しない3官能以上のエポキシ樹脂を含まず、
室温で液状の硬化剤を実質的に含まない
後浸透封止用のエポキシ樹脂組成物。
It consists of the following components (A) to (D),
Component (A): Epoxy resin that is liquid at room temperature having an average of two epoxy groups in the molecule (B) Component: Compound that is liquid at room temperature having three or more epoxy groups and an aromatic ring in the molecule (C) Ingredient: Acrylic rubber powder polymerized from butadiene rubber powder or (meth) acrylic acid ester (D) Ingredient: Amine adduct type latent curing agent that starts reaction at 120 ° C. or lower Curing coefficient expansion coefficient (α1), glass transition temperature, storage modulus (25 ° C.), before curing permeability (120 ° C.) is less than all of the following requirements,
Linear expansion coefficient (α1): 10 ppm / ° C. or more and 60 ppm / ° C. or less when cured for 15 minutes in a 120 ° C. atmosphere Glass transition point: 120 ° C. or more and 200 ° C. or less for 15 minutes when cured in a 120 ° C. atmosphere Storage modulus (25 ° C.): 0.1 GPa or more and 3.0 GPa or less when cured for 15 minutes in a 120 ° C. atmosphere Penetration (120 ° C.): 30 mm or more and 60 mm or less after standing for 15 minutes in a 120 ° C. atmosphere on a 100 μm clearance glass plate
The ratio of the component (B) in the total of the component (A) and the component (B) is 20 to 90% by weight,
3 to 10 parts by mass of component (C) is added to 100 parts by mass of component (A) and component (B).
While (8.6) -40 parts by mass of component (D) is added to 100 parts by mass of the total of component (A) and component (B),
(C) contains substantially no filler other than the component,
Does not contain trifunctional or higher functional epoxy resin without aromatic ring,
Contains virtually no liquid curing agent at room temperature
Epoxy resin composition for post-penetration sealing.
前記線膨張率(α1)が120℃雰囲気下で15分硬化したときに55ppm/℃以上60ppm/℃以下、前記ガラス転移点が120℃雰囲気下で15分硬化したときに120℃以上148℃以下、前記貯蔵弾性率(25℃)が120℃雰囲気下で15分硬化したときに1.7GPa以上2.8GPa以下、前記浸透性(120℃)がクリアランス100μmのガラス板において120℃雰囲気下で15分放置後に30mm以上43mm以下である請求項1に記載の後浸透封止用のエポキシ樹脂組成物。   The linear expansion coefficient (α1) is 55 ppm / ° C. to 60 ppm / ° C. when cured for 15 minutes in a 120 ° C. atmosphere, and 120 ° C. to 148 ° C. for when the glass transition point is cured for 15 minutes in a 120 ° C. atmosphere. When the storage elastic modulus (25 ° C.) is cured in a 120 ° C. atmosphere for 15 minutes, the glass plate has a permeability of not less than 1.7 GPa and not more than 2.8 GPa and the permeability (120 ° C.) is 100 μm clearance in a 120 ° C. atmosphere. The epoxy resin composition for post-osmotic sealing according to claim 1, wherein the epoxy resin composition is 30 mm or more and 43 mm or less after being left standing.
JP2011508407A 2009-04-07 2010-04-07 Epoxy resin composition Active JP6115929B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009092817 2009-04-07
JP2009092817 2009-04-07
PCT/JP2010/056628 WO2010117081A1 (en) 2009-04-07 2010-04-07 Epoxy resin composite

Publications (2)

Publication Number Publication Date
JPWO2010117081A1 JPWO2010117081A1 (en) 2012-10-18
JP6115929B2 true JP6115929B2 (en) 2017-04-19

Family

ID=42936364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011508407A Active JP6115929B2 (en) 2009-04-07 2010-04-07 Epoxy resin composition

Country Status (5)

Country Link
JP (1) JP6115929B2 (en)
KR (1) KR20120027191A (en)
CN (1) CN102378790B (en)
TW (1) TWI466938B (en)
WO (1) WO2010117081A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818079B2 (en) 1999-09-19 2004-11-16 Nkk Corporation Method for manufacturing a steel sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290515B2 (en) * 2006-12-25 2013-09-18 パナソニック株式会社 Epoxy resin composition for sealing electronic parts and resin-sealed electronic parts using the same
TWI609917B (en) * 2011-05-31 2018-01-01 Ajinomoto Co., Inc. Resin composition
CN102801115B (en) * 2012-08-03 2016-04-27 天津合纵电力设备有限公司 Static seal structure between SMC1 gas-insulated switch two kinds of unlike materials
JP2019199511A (en) * 2018-05-15 2019-11-21 旭化成株式会社 Method for producing epoxy resin composition
KR102704455B1 (en) * 2022-12-23 2024-09-09 (주)에버텍엔터프라이즈 Liquid resin composition for sealing semiconductor device, semiconductor device sealing material and semiconductor device including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770406A (en) * 1993-08-31 1995-03-14 Tonen Corp Low temperature curing epoxy resin for prepreg and prepreg using the same
JP2008285592A (en) * 2007-05-17 2008-11-27 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device made by using the same
JP2010221526A (en) * 2009-03-24 2010-10-07 Sumitomo Bakelite Co Ltd Metal clad laminated plate, printed circuit board, and semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196769A (en) * 1993-12-28 1995-08-01 Tonen Corp Epoxy resin composition for low-temperature curing type prepreg and prepreg using the same
KR100414698B1 (en) * 1999-04-01 2004-01-13 미쯔이카가쿠 가부시기가이샤 Sealing material composition for liquid crystal
JP2003055434A (en) * 2001-08-15 2003-02-26 Toto Kasei Co Ltd Flame retardant for synthetic resin, and flame- retardant resin composition containing the flame retardant
JP3722427B2 (en) * 2001-12-20 2005-11-30 ジャパンエポキシレジン株式会社 Epoxy resin composition
JP2006241252A (en) * 2005-03-01 2006-09-14 Sekisui Chem Co Ltd Epoxy resin cured product, sheet made thereof and manufacturing method of the epoxy resin cured product
JP4826728B2 (en) * 2005-09-28 2011-11-30 株式会社スリーボンド Thermosetting resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770406A (en) * 1993-08-31 1995-03-14 Tonen Corp Low temperature curing epoxy resin for prepreg and prepreg using the same
JP2008285592A (en) * 2007-05-17 2008-11-27 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device made by using the same
JP2010221526A (en) * 2009-03-24 2010-10-07 Sumitomo Bakelite Co Ltd Metal clad laminated plate, printed circuit board, and semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014029874; 十時 稔: '高分子のDSCとTMA' Netsu Sokutei 31 , 244 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818079B2 (en) 1999-09-19 2004-11-16 Nkk Corporation Method for manufacturing a steel sheet

Also Published As

Publication number Publication date
KR20120027191A (en) 2012-03-21
CN102378790B (en) 2013-05-08
WO2010117081A1 (en) 2010-10-14
JPWO2010117081A1 (en) 2012-10-18
TW201107405A (en) 2011-03-01
TWI466938B (en) 2015-01-01
CN102378790A (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5228426B2 (en) Liquid resin composition for electronic component sealing and electronic component device using the same
JP5163912B2 (en) Epoxy resin composition and semiconductor device
JP5270833B2 (en) Liquid resin composition, semiconductor device and manufacturing method thereof
JP6115929B2 (en) Epoxy resin composition
KR20080030581A (en) Encapsulating resin composition for preapplication, semiconductor device made with the same, and process for producing the same
JP2006232950A (en) Sealing liquid epoxy resin composition, semiconductor device, and method for producing the same
JP2011176278A (en) Epoxy resin formulation for underfill application
JP2009091510A (en) Liquid epoxy resin composition and semiconductor device using the composition
JP2007023191A (en) One-pack type epoxy resin composition
WO2011162055A1 (en) Epoxy resin composition and semiconductor device
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2009256466A (en) Adhesive for electronic part
JP5862176B2 (en) Selection method and manufacturing method of liquid epoxy resin composition, and manufacturing method of electronic component device
JP2019083225A (en) Liquid resin composition for underfill, electronic component device, and method of manufacturing electronic component device
JP2011192818A (en) Adhesive film for semiconductor chip bonding
JP2010239106A (en) Adhesive for bonding semiconductor chip
JP5105099B2 (en) Liquid epoxy resin composition for semiconductor encapsulation, and flip chip type semiconductor device encapsulated using it as an underfill material
JP5614022B2 (en) Epoxy resin composition, semiconductor sealing resin composition, and semiconductor device
JP4737364B2 (en) Liquid epoxy resin composition and semiconductor device
JP4525079B2 (en) Thermosetting liquid encapsulating resin composition and semiconductor device using the same
JP2007231146A (en) Liquid epoxy resin composition and semiconductor device
JP6015912B2 (en) Liquid epoxy resin composition and semiconductor electronic component
JP6332488B2 (en) Selection method and manufacturing method of liquid epoxy resin composition, electronic component device and manufacturing method thereof
JP2013107993A (en) Liquid resin composition for semiconductor sealing and semiconductor device using the same
JP2005350618A (en) Liquefied epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150331

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170315

R150 Certificate of patent or registration of utility model

Ref document number: 6115929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250