JP2005350618A - Liquefied epoxy resin composition and semiconductor device - Google Patents

Liquefied epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2005350618A
JP2005350618A JP2004175293A JP2004175293A JP2005350618A JP 2005350618 A JP2005350618 A JP 2005350618A JP 2004175293 A JP2004175293 A JP 2004175293A JP 2004175293 A JP2004175293 A JP 2004175293A JP 2005350618 A JP2005350618 A JP 2005350618A
Authority
JP
Japan
Prior art keywords
epoxy resin
liquid epoxy
resin composition
mass
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004175293A
Other languages
Japanese (ja)
Inventor
Kazumasa Sumida
和昌 隅田
Hiroyuki Takenaka
博之 竹中
Takeshi Honda
剛 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004175293A priority Critical patent/JP2005350618A/en
Publication of JP2005350618A publication Critical patent/JP2005350618A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid epoxy resin composition that is curable in shorter time than that in the conventional case, is excellent in adhesiveness to a silicon chip surface and in particular to a light sensitive polyimide resin and a nitride film, can provide a cured product having good toughness, causes no defects even when a reflow temperature rises from around a conventional temperature of 240&deg;C to a temperature range between 260 to 270&deg;C, is not deteriorated even under high temperature and humidity conditions such as PCT (pressure cooker test) (120&deg;C/2.1 atm), causes no peeling and cracks even with more than several hundred temperature cycles each consisting of -65/150&deg;C, and can be used as a sealing material for a semiconductor device, and to provide a semiconductor device sealed with a cured product of the composition. <P>SOLUTION: The liquid epoxy resin composition comprises, as an essential component, a compound having (A) a liquid epoxy resin, (B) an aromatic amine curing agent, and (C) an amino group as a curing catalyst or a microcapsule curing accelerator produced by microencapsulating an imidazole compound. The semiconductor device is sealed with a cured product of the composition. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、半導体封止用として好適で、シリコンチップの素子表面(特に感光性ポリイミド、窒化膜、酸化膜)との密着性が非常に良好であり、耐湿性の高い硬化物を与え、特にリフロー温度260℃以上の高温熱衝撃に対して優れた封止材となり得る液状エポキシ樹脂組成物、及びこの組成物にて封止された半導体装置に関する。   The present invention is suitable for semiconductor sealing, has very good adhesion to the element surface (especially photosensitive polyimide, nitride film, oxide film) of the silicon chip, and gives a cured product with high moisture resistance. The present invention relates to a liquid epoxy resin composition that can be an excellent sealing material against a high temperature thermal shock at a reflow temperature of 260 ° C. or higher, and a semiconductor device sealed with this composition.

電気機器の小型化、軽量化、高機能化に伴い、半導体の実装方法もピン挿入タイプから表面実装が主流になっている。また、半導体素子の高集積化に伴い、ダイサイズの一辺が10mmを超えるものもあり、ダイサイズの大型化が進んできている。このような大型ダイを用いた半導体装置では、半田リフロー時にダイと封止材にかかる応力が増大し、封止材とダイ及び基板の界面での剥離、基板実装時にパッケージにクラックが入るといった問題がクローズアップされてきている。   Along with the downsizing, weight reduction, and higher functionality of electrical equipment, semiconductor mounting methods have become mainstream from pin insertion type to surface mounting. In addition, along with the high integration of semiconductor elements, there are cases in which one side of the die size exceeds 10 mm, and the die size is increasing. In a semiconductor device using such a large die, the stress applied to the die and the sealing material during solder reflow increases, peeling at the interface between the sealing material and the die and the substrate, and cracks in the package when mounted on the substrate. Has been close up.

更に、近い将来に鉛含有半田が使用できなくなることから、鉛代替半田が多数開発されている。この種の半田は、溶融温度が鉛含有の半田より高くなることから、リフローの温度も260〜270℃で検討されており、従来の液状エポキシ樹脂組成物の封止材では、より一層の不良が予想される。このようにリフローの温度が高くなると、従来においては何ら問題のなかったフリップチップ型のパッケージもリフロー時にクラック発生、チップ界面、基板界面との剥離が発生するという重大な問題が起こるようになった。   Furthermore, since lead-containing solder cannot be used in the near future, a number of lead substitute solders have been developed. Since this type of solder has a melting temperature higher than that of lead-containing solder, the reflow temperature has been studied at 260 to 270 ° C., and the conventional liquid epoxy resin composition sealing material is even more defective. Is expected. Thus, when the reflow temperature becomes high, the flip chip type package, which has no problem in the past, also has a serious problem in that cracking occurs during reflow and separation from the chip interface and the substrate interface occurs. .

これらの要求を満たす材料として、液状エポキシ樹脂/アルキル置換芳香族ジアミン系の液状封止樹脂が提案されている(特開平09−176294号公報:特許文献1、特開平09−176287号公報:特許文献2)。この材料は、基板、金属、ソルダーレジスト等との接着性に優れ、さらに耐リフロー性、耐温度サイクルクラック性に優れ、高信頼性パッケージを可能としている。   As a material satisfying these requirements, a liquid epoxy resin / alkyl-substituted aromatic diamine-based liquid sealing resin has been proposed (JP 09-176294 A: Patent Document 1 and JP 09-176287 A: Patent). Reference 2). This material is excellent in adhesion to a substrate, metal, solder resist, etc., and further excellent in reflow resistance and temperature cycle crack resistance, and enables a highly reliable package.

しかし、上記の樹脂系は硬化時間が長く(150℃/3時間)、パッケージ生産性という観点からは問題であった。また、ゲル化時間が長い為にフィラーの沈降、それに伴う表面クラックの発生、可使時間が短い等の欠点があった。また、硬化時間を短くする為に硬化促進剤の検討が考えられ、その例としてはフェノール類、サリチル酸のようなフェノール酸が挙げられるが、可使時間が短く、作業性が著しく低下する等の欠点があった。   However, the above resin system has a long curing time (150 ° C./3 hours), which is a problem from the viewpoint of package productivity. In addition, since the gelation time is long, there are disadvantages such as sedimentation of the filler, generation of surface cracks associated therewith, and short pot life. Further, in order to shorten the curing time, a study of a curing accelerator can be considered. Examples thereof include phenols and phenolic acids such as salicylic acid, but the pot life is short and workability is remarkably reduced. There were drawbacks.

特開平09−176294号公報JP 09-176294 A 特開平09−176287号公報JP 09-176287 A

本発明は、上記事情に鑑みなされたもので、従来に比べて短時間に硬化が可能であり、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れ、かつ強靭性に優れた硬化物を与え、リフローの温度が従来温度240℃付近から260〜270℃に上昇しても不良が発生せず、更にPCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、−65℃/150℃の温度サイクルにおいて数百サイクルを超えても剥離、クラックが発生しない半導体装置の封止材となり得る液状エポキシ樹脂組成物、及びこの組成物の硬化物で封止された半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, can be cured in a shorter time than conventional, has excellent adhesion to the surface of a silicon chip, in particular, a photosensitive polyimide resin or a nitride film, and toughness. Gives an excellent cured product, no defects occur even when the reflow temperature rises from about 240 ° C. to about 260 to 270 ° C., and even under high temperature and high humidity conditions such as PCT (120 ° C./2.1 atm) Sealed with a liquid epoxy resin composition that can be a sealing material for a semiconductor device that does not deteriorate and does not peel or crack even if it exceeds several hundred cycles in a temperature cycle of -65 ° C / 150 ° C, and a cured product of this composition. An object of the present invention is to provide a stopped semiconductor device.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、(A)液状エポキシ樹脂、(B)芳香族アミン系硬化剤、(C)硬化触媒としてアミノ基を有する化合物又はイミダゾール化合物をマイクロカプセル化したマイクロカプセル型硬化促進剤、及び好ましくは(D)無機質充填剤を含有する液状エポキシ樹脂組成物を用いることにより、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れ、PCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、熱衝撃に対して優れており、特に大型ダイサイズの半導体装置の封止材として有効となり得ることを見出し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventor has (A) a liquid epoxy resin, (B) an aromatic amine-based curing agent, (C) a compound having an amino group as a curing catalyst, or an imidazole compound. By using a liquid-type epoxy resin composition containing a microcapsule-type curing accelerator and preferably (D) an inorganic filler, adhesion to the surface of a silicon chip, particularly a photosensitive polyimide resin or a nitride film It is excellent in heat resistance, does not deteriorate even under high-temperature and high-humidity conditions such as PCT (120 ° C / 2.1 atm), is excellent against thermal shock, and can be particularly effective as a sealing material for large die size semiconductor devices. And have led to the present invention.

従って、本発明は、(A)液状エポキシ樹脂、(B)芳香族アミン系硬化剤、(C)硬化触媒としてアミノ基を有する化合物又はイミダゾール化合物をマイクロカプセル化したマイクロカプセル型硬化促進剤を必須成分とすることを特徴とする液状エポキシ樹脂組成物、及び上記液状エポキシ樹脂組成物の硬化物で封止した半導体装置を提供する。更に、上記液状エポキシ樹脂組成物の硬化物をアンダーフィル材として封止したフリップチップ型半導体装置を提供する。   Therefore, the present invention requires (A) a liquid epoxy resin, (B) an aromatic amine-based curing agent, and (C) a microcapsule type curing accelerator obtained by microencapsulating a compound having an amino group or an imidazole compound as a curing catalyst. Provided are a liquid epoxy resin composition characterized in that it is a component, and a semiconductor device sealed with a cured product of the liquid epoxy resin composition. Furthermore, a flip chip type semiconductor device in which a cured product of the liquid epoxy resin composition is sealed as an underfill material is provided.

本発明の液状エポキシ樹脂組成物は、保存性を維持しつつ、硬化時間を短縮することができる。また、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れた硬化物を与え、吸湿後のリフローの温度が従来温度240℃付近から260〜270℃に上昇しても不良が発生せず、更にPCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、−65℃/150℃の温度サイクルにおいて数百サイクルを超えても剥離、クラックが起こらない半導体装置を提供することができる。   The liquid epoxy resin composition of the present invention can shorten the curing time while maintaining storability. In addition, it gives a cured product with excellent adhesion to the surface of the silicon chip, particularly photosensitive polyimide resin and nitride film, and even if the reflow temperature after moisture absorption rises from around 240 ° C. to 260 to 270 ° C. Does not occur, and does not deteriorate even under high temperature and high humidity conditions such as PCT (120 ° C / 2.1 atm), and peeling and cracking do not occur even if the temperature cycle of -65 ° C / 150 ° C exceeds several hundred cycles. A semiconductor device can be provided.

本発明の液状エポキシ樹脂組成物において、液状エポキシ樹脂(A)は、1分子内に3官能基以下のエポキシ基を含有する常温で液状のエポキシ樹脂であればいかなるものでも使用可能であるが、25℃における粘度が800Pa・s以下、特に500Pa・s以下のものが好ましく、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニルグリシジルエーテルなどが挙げられ、これらの中でも室温(25℃)で液状のエポキシ樹脂を使用することが好ましい。また、本発明の液状エポキシ樹脂は、1種を単独で又は2種以上を混合して使用することができる。なお、本発明において、粘度は回転粘度計により25℃における値を測定したものである。   In the liquid epoxy resin composition of the present invention, any liquid epoxy resin (A) can be used as long as it is a liquid epoxy resin at room temperature containing an epoxy group having three or less functional groups in one molecule, Those having a viscosity at 25 ° C. of 800 Pa · s or less, particularly 500 Pa · s or less are preferred. Specifically, bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, naphthalene type epoxy resins, phenylglycidyl An ether etc. are mentioned, Among these, it is preferable to use a liquid epoxy resin at room temperature (25 degreeC). Moreover, the liquid epoxy resin of this invention can be used individually by 1 type or in mixture of 2 or more types. In the present invention, the viscosity is a value measured at 25 ° C. by a rotational viscometer.

また、本発明のエポキシ樹脂は、下記構造式(2),(3)で示されるエポキシ樹脂を侵入性に影響を及ぼさない範囲で含有していてもよい。

Figure 2005350618
Moreover, the epoxy resin of this invention may contain the epoxy resin shown by following Structural formula (2), (3) in the range which does not affect intrusion property.
Figure 2005350618

ここで、R1は水素原子、又は炭素数1〜20、好ましくは1〜10、更に好ましくは1〜3の一価炭化水素基であり、一価炭化水素基としては、メチル基、エチル基、プロピル基等のアルキル基、ビニル基、アリル基等のアルケニル基などが挙げられる。また、xは1〜4の整数、好ましくは1又は2である。 Here, R 1 is a hydrogen atom, or a monovalent hydrocarbon group having 1 to 20, preferably 1 to 10, and more preferably 1 to 3 carbon atoms, and examples of the monovalent hydrocarbon group include a methyl group and an ethyl group. And alkyl groups such as propyl group, alkenyl groups such as vinyl group and allyl group. X is an integer of 1 to 4, preferably 1 or 2.

なお、上記式(3)で示されるエポキシ樹脂を配合する場合、その配合量は、全エポキシ樹脂中25質量%以上、より好ましくは50質量%以上、更に好ましくは75質量%以上であることが推奨される。25質量%未満であると組成物の粘度が上昇したり、硬化物の耐熱性が低下したりするおそれがある。なお、その上限は100質量%でもよい。
上記一般式(3)で示されるエポキシ樹脂の例としては、日本化薬社製のRE600NM等が挙げられる。
In addition, when mix | blending the epoxy resin shown by said Formula (3), the compounding quantity is 25 mass% or more in all the epoxy resins, More preferably, it is 50 mass% or more, More preferably, it is 75 mass% or more. Recommended. If it is less than 25% by mass, the viscosity of the composition may increase or the heat resistance of the cured product may decrease. The upper limit may be 100% by mass.
Examples of the epoxy resin represented by the general formula (3) include RE600NM manufactured by Nippon Kayaku Co., Ltd.

上記液状エポキシ樹脂中の全塩素含有量は、1,500ppm以下、望ましくは1,000ppm以下であることが好ましい。また、100℃で50%エポキシ樹脂濃度における20時間での抽出水塩素が10ppm以下であることが好ましい。全塩素含有量が1,500ppmを超え、又は抽出水塩素が10ppmを超えると半導体素子の信頼性、特に耐湿性に悪影響を与えるおそれがある。   The total chlorine content in the liquid epoxy resin is preferably 1,500 ppm or less, more preferably 1,000 ppm or less. Moreover, it is preferable that the extraction water chlorine in 20 hours in the 50% epoxy resin density | concentration at 100 degreeC is 10 ppm or less. If the total chlorine content exceeds 1,500 ppm or the extracted water chlorine exceeds 10 ppm, the reliability of the semiconductor element, particularly the moisture resistance, may be adversely affected.

次に、本発明に使用する芳香族アミン系硬化剤(B)としては、芳香族ジアミノジフェニルメタン化合物、例えば、3,3’−ジエチル−4,4’−ジアミノフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノフェニルメタン、2,4−ジアミノトルエン、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン等の芳香族アミンであることが好ましい。これらは1種を単独で又は2種以上を混合して用いても差し支えない。   Next, as the aromatic amine curing agent (B) used in the present invention, an aromatic diaminodiphenylmethane compound such as 3,3′-diethyl-4,4′-diaminophenylmethane, 3,3 ′, 5 is used. , 5'-tetramethyl-4,4'-diaminophenylmethane, 3,3 ', 5,5'-tetraethyl-4,4'-diaminophenylmethane, 2,4-diaminotoluene, 1,4-diaminobenzene An aromatic amine such as 1,3-diaminobenzene is preferable. These may be used alone or in combination of two or more.

上記芳香族アミン系硬化剤において、常温で固体である場合はそのまま配合すると樹脂粘度が上昇し、作業性が著しく悪くなるため、あらかじめエポキシ樹脂と溶融混合することが好ましく、後述する指定の配合量で、70〜150℃の温度範囲で1時間〜2時間溶融混合することが望ましい。混合温度が70℃未満であると芳香族アミン系硬化剤が十分に相溶しにくくなるおそれがあり、150℃を超える温度であるとエポキシ樹脂と反応して粘度上昇するおそれがある。また、混合時間が1時間未満であると芳香族アミン系硬化剤が十分に相溶せず、粘度上昇を招くおそれがあり、2時間を超えるとエポキシ樹脂と反応し、粘度上昇するおそれがある。   In the above aromatic amine-based curing agent, when it is solid at room temperature, the resin viscosity increases and workability is significantly deteriorated, so it is preferable to melt and mix with the epoxy resin in advance, and the specified blending amount described later Therefore, it is desirable to melt and mix in a temperature range of 70 to 150 ° C. for 1 to 2 hours. If the mixing temperature is less than 70 ° C, the aromatic amine curing agent may not be sufficiently compatible, and if the temperature exceeds 150 ° C, it may react with the epoxy resin and increase the viscosity. Also, if the mixing time is less than 1 hour, the aromatic amine curing agent is not sufficiently compatible and may increase the viscosity, and if it exceeds 2 hours, it may react with the epoxy resin and increase the viscosity. .

なお、本発明に用いられる芳香族アミン系硬化剤の総配合量は、液状エポキシ樹脂と芳香族アミン系硬化剤との当量比〔(A)液状エポキシ樹脂のエポキシ当量/(B)芳香族アミン系硬化剤のアミン当量〕を0.7以上1.2以下、好ましくは0.7以上1.1以下にすることが好ましい。当量比が0.7未満では未反応のアミノ基が残存し、ガラス転移温度の低下となり、また密着性が低下するおそれがある。逆に1.2を超えると硬化物が硬く脆くなり、リフロー時にクラックが発生するおそれがある。   The total amount of the aromatic amine curing agent used in the present invention is the equivalent ratio of the liquid epoxy resin to the aromatic amine curing agent [(A) epoxy equivalent of the liquid epoxy resin / (B) aromatic amine. The amine equivalent of the system curing agent] is 0.7 to 1.2, preferably 0.7 to 1.1. If the equivalence ratio is less than 0.7, unreacted amino groups remain, resulting in a decrease in the glass transition temperature and a decrease in adhesion. On the other hand, if it exceeds 1.2, the cured product becomes hard and brittle, and cracks may occur during reflow.

本発明に使用するマイクロカプセル型硬化促進剤(C)は、硬化触媒としてアミノ基を有する化合物又はイミダゾール化合物がマイクロカプセル中に閉じ込められたもので、この場合、本発明で使用するマイクロカプセルは、(メタ)アクリル系単量体、例えばアクリル酸エステル、イタコン酸エステル、クロトン酸エステル等の炭素数1〜8のアルキルエステル、このアルキルエステルのアルキル基がアリル基等の置換基を有するもの、スチレン、α−メチルスチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル等の単官能性単量体及びエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、ビスフェノールAジ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド等の多官能単量体から選ばれる1種又は2種以上の単量体を(共)重合することにより得られたポリマー中に上記硬化触媒が閉じ込められたものである。なお、上記ポリマーの中では、(メタ)アクリレート系単量体の重合物が好ましい。   The microcapsule type curing accelerator (C) used in the present invention is a compound having an amino group or an imidazole compound trapped in a microcapsule as a curing catalyst. In this case, the microcapsule used in the present invention is: (Meth) acrylic monomers, for example, alkyl esters having 1 to 8 carbon atoms such as acrylic acid ester, itaconic acid ester, crotonic acid ester, etc., wherein the alkyl group of this alkyl ester has a substituent such as an allyl group, styrene , Α-methylstyrene, acrylonitrile, methacrylonitrile, vinyl acetate and other monofunctional monomers and ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, divinylbenzene, bisphenol A di (meth) acrylate, Methylenebis (meth) acryl One or more monomers selected from polyfunctional monomers amides (co) in polymer obtained by polymerizing one in which the curing catalyst is confined. In addition, in the said polymer, the polymer of a (meth) acrylate type monomer is preferable.

一方、このマイクロカプセルに入れられる硬化触媒であるアミノ基含有化合物としては、例えば、トリエチルテトラアミン、N−アミノエチルピペラジン、2,4,6−トリス(ジメチルアミノメチル)フェノールなどのアミン化合物、有機酸ヒドラジド化合物等が挙げられる。   On the other hand, examples of the amino group-containing compound which is a curing catalyst put in the microcapsule include amine compounds such as triethyltetraamine, N-aminoethylpiperazine, 2,4,6-tris (dimethylaminomethyl) phenol, and organic compounds. And acid hydrazide compounds.

ここで、有機酸ヒドラジド化合物としては、下記一般式(1)で表されるものが好ましい。

Figure 2005350618
(式中、Xは単結合又は2価の有機基である。) Here, as an organic acid hydrazide compound, what is represented by following General formula (1) is preferable.
Figure 2005350618
(In the formula, X is a single bond or a divalent organic group.)

式中、Xは単結合又は2価の有機基であり、2価の有機基としては、炭素数1〜20の2価の有機基であることが好ましく、特に好ましくはジカルボン酸残基である。ジカルボン酸残基としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ブラシル酸、マレイン酸、フマル酸、イソフマル酸、酒石酸、リンゴ酸、フタル酸、イソフタル酸、テレフタル酸、イミノジ酢酸、ジグリコール酸、ナフトエ酸等のジカルボン酸残基が挙げられる。   In the formula, X is a single bond or a divalent organic group, and the divalent organic group is preferably a divalent organic group having 1 to 20 carbon atoms, particularly preferably a dicarboxylic acid residue. . Examples of dicarboxylic acid residues include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, brassic acid, maleic acid, fumaric acid, isofumaric acid, tartaric acid, Examples thereof include dicarboxylic acid residues such as malic acid, phthalic acid, isophthalic acid, terephthalic acid, iminodiacetic acid, diglycolic acid and naphthoic acid.

このような上記式(1)で表される有機酸ヒドラジド化合物としては、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、イミノジ酢酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカンジオヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、ジグリコール酸ジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、2,6−ナフトエ酸ジヒドラジド、4,4'−ビスベンゼンジヒドラジド、1,4−ナフトエ酸ジヒドラジド、アミキュアVDH(商品名、味の素(株)製)、アミキュアUDH(同)、クエン酸トリヒドラジドなどが挙げられる。これらは1種単独であるいは2種以上組み合わせても使用することができる。これらの中でも、下記式で示されるアミキュアVDH、アミキュアUDHが比較的低融点であり、硬化性のバランスに優れているという点から好ましく用いることができる。   Examples of the organic acid hydrazide compound represented by the above formula (1) include oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, iminodiacetic acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, suberic acid dihydrazide, and azelaic acid dihydrazide. , Sebacic acid dihydrazide, dodecanediohydrazide, maleic acid dihydrazide, fumaric acid dihydrazide, diglycolic acid dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, 4,4'-naphthoic acid dihydrazide, 4,4'- Examples include bisbenzene dihydrazide, 1,4-naphthoic acid dihydrazide, Amicure VDH (trade name, manufactured by Ajinomoto Co., Inc.), Amicure UDH (same), and citric acid trihydrazide. I can get lost. These can be used alone or in combination of two or more. Among these, Amicure VDH and Amicure UDH represented by the following formula can be preferably used because they have a relatively low melting point and an excellent balance of curability.

アミキュアVDH
(1,3−ビス(ヒドラジノカルボノエチル)−5−イソプロピルヒダントイン)

Figure 2005350618
Amicure VDH
(1,3-bis (hydrazinocarbonoethyl) -5-isopropylhydantoin)
Figure 2005350618

アミキュアUDH
(7,11−オクタデカジエン−1,18−ジカルボヒドラジド)

Figure 2005350618
Amicure UDH
(7,11-octadecadien-1,18-dicarbohydrazide)
Figure 2005350618

また、イミダゾール化合物としては、下記一般式(4)で示されるものを使用することができる。

Figure 2005350618
(式中、R2、R3は水素原子、メチル基、エチル基、ヒドロキシメチル基、フェニル基から選ばれるいずれかであり、R4はメチル基、エチル基、ペンタデシル基、ウンデシル基、フェニル基、アリル基から選ばれるいずれかであり、R5は水素原子、メチル基、エチル基、シアノエチル基、ベンジル基又は下記式(5)
Figure 2005350618
で示される基から選ばれるいずれかである。) Moreover, as an imidazole compound, what is shown by following General formula (4) can be used.
Figure 2005350618
(In the formula, R 2 and R 3 are any one selected from a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group, and a phenyl group, and R 4 is a methyl group, an ethyl group, a pentadecyl group, an undecyl group, and a phenyl group. And R 5 is a hydrogen atom, a methyl group, an ethyl group, a cyanoethyl group, a benzyl group, or the following formula (5):
Figure 2005350618
Any one selected from the group represented by: )

具体的には、2−メチルイミダゾール、2−エチルイミダゾール、1,2−ジメチルイミダゾール、2,4−ジメチルイミダゾール、1,2−ジエチルイミダゾール、2−エチル−4−メチルイミダゾール、2−へプタデシルイミダゾール、2−ウンデシルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1)’]−エチル−S−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1)’]−エチル−S−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル]−エチル−S−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1)’]−エチル−S−トリアジンイソシアヌール酸付加物、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−アリール−4,5−ジフェニルイミダゾール等のイミダゾール化合物が挙げられる。   Specifically, 2-methylimidazole, 2-ethylimidazole, 1,2-dimethylimidazole, 2,4-dimethylimidazole, 1,2-diethylimidazole, 2-ethyl-4-methylimidazole, 2-heptadecyl Imidazole, 2-undecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6- [2'-methylimidazolyl- (1) ']-ethyl-S-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1) '] -Ethyl-S-triazine, 2,4-diamino-6- [2'-undecylimi Zolyl] -ethyl-S-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1) ′]-ethyl-S-triazine isocyanuric acid adduct, 2-phenyl-4-methyl-5 Examples include imidazole compounds such as -hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, and 2-aryl-4,5-diphenylimidazole.

上記で例示した硬化触媒の中でも、アミノ基を有する化合物が好ましく、トリエチルテトラアミン、N−アミノエチルピペラジン、2,4,6−トリス(ジメチルアミノメチル)フェノール、一般式(1)で表される有機酸ヒドラジド化合物を用いることが特に好ましい。   Among the curing catalysts exemplified above, compounds having an amino group are preferable, and are represented by triethyltetraamine, N-aminoethylpiperazine, 2,4,6-tris (dimethylaminomethyl) phenol, and general formula (1). It is particularly preferable to use an organic acid hydrazide compound.

本発明の上記硬化触媒を含有するマイクロカプセル型硬化促進剤の製造方法としては様々な方法が挙げられるが、生産性及び球状度が高いマイクロカプセルを製造するためには、通常、懸濁重合法及び乳化重合法などの従来から公知の方法で製造することができる。   There are various methods for producing the microcapsule-type curing accelerator containing the curing catalyst of the present invention. In order to produce microcapsules with high productivity and high sphericity, the suspension polymerization method is usually used. And can be produced by a conventionally known method such as an emulsion polymerization method.

この場合、一般的に使用されている触媒の分子構造から高濃度マイクロカプセル触媒を得るためには、硬化触媒10質量部に対して使用する上記単量体の総量は10〜200質量部程度が好ましく、より好ましくは10〜100質量部、更に好ましくは20〜50質量部である。10質量部未満では潜在性を十分に寄与することが困難となる場合があり、200質量部を超えると、触媒の比率が低くなり、十分な硬化性を得るためには多量に使用しなければならなくなるため、経済的に不利となる場合がある。   In this case, in order to obtain a high-concentration microcapsule catalyst from the molecular structure of a commonly used catalyst, the total amount of the monomer used with respect to 10 parts by mass of the curing catalyst is about 10 to 200 parts by mass. More preferably, it is 10-100 mass parts, More preferably, it is 20-50 mass parts. If the amount is less than 10 parts by mass, it may be difficult to sufficiently contribute the potential. If the amount exceeds 200 parts by mass, the ratio of the catalyst is lowered, and in order to obtain sufficient curability, a large amount must be used. This may be economically disadvantageous.

このような方法で得られるマイクロカプセルとしては、平均粒径が0.5〜10μm、最大粒径が50μm以下のものを使用することが好ましい。より好ましくは平均粒径が2〜5μm、かつ最大粒径が20μm以下のものが望ましい。硬化促進剤の平均粒径が小さすぎると、比表面積が大きくなり、混合した時の粘度が高くなるおそれがある。また平均粒径が10μmを超えると、樹脂への分散が不均一になり、信頼性の低下を引き起こすおそれがある。
なお、本発明において、平均粒径及び最大粒径は、例えばレーザー光回折法等による粒度分布測定により得ることができ、平均粒径は、重量平均値(又はメジアン径)等として求めることができる。
As the microcapsules obtained by such a method, those having an average particle diameter of 0.5 to 10 μm and a maximum particle diameter of 50 μm or less are preferably used. More preferably, the average particle diameter is 2 to 5 μm and the maximum particle diameter is 20 μm or less. If the average particle size of the curing accelerator is too small, the specific surface area increases and the viscosity when mixed may increase. On the other hand, if the average particle size exceeds 10 μm, the dispersion in the resin becomes non-uniform, which may cause a decrease in reliability.
In the present invention, the average particle size and the maximum particle size can be obtained by, for example, particle size distribution measurement by a laser light diffraction method or the like, and the average particle size can be obtained as a weight average value (or median diameter) or the like. .

また、上記マイクロカプセルとしては、下記性能を有するものを使用することが好ましい。即ち、硬化触媒を含有するマイクロカプセルを1g秤量し、これをクレゾール、水又は有機溶剤30gに混合した後、30℃で放置し、溶出する触媒をガスクロマトグラフィーで定量した場合、マイクロカプセルから溶出する触媒が30℃、15分でマイクロカプセル中に含まれる全触媒量の70質量%以上であるものを用いることが好ましい。70質量%未満では、硬化時間が長くかかるおそれがあり、生産性が低下する場合がある。より望ましくは、溶出量が75質量%以上である。   Moreover, it is preferable to use what has the following performance as said microcapsule. That is, 1 g of microcapsules containing a curing catalyst are weighed, mixed with 30 g of cresol, water or an organic solvent, and then left at 30 ° C. When the eluted catalyst is quantified by gas chromatography, it is eluted from the microcapsules. It is preferable to use a catalyst that is 70% by mass or more of the total amount of catalyst contained in the microcapsule in 30 minutes at 30 ° C. If it is less than 70% by mass, the curing time may take a long time, and the productivity may decrease. More desirably, the elution amount is 75% by mass or more.

上記本発明のマイクロカプセル型硬化促進剤の配合量は、(A)液状エポキシ樹脂と、(B)芳香族アミン系硬化剤との総量100質量部に対して0.1〜50質量部、特に0.5〜25質量部、とりわけ1〜18質量部であることが好ましい。0.1質量部未満では硬化性が低下するおそれがあり、50質量部を超える量では硬化性に優れるが保存性が低下するおそれがある。   The blending amount of the microcapsule type curing accelerator of the present invention is 0.1 to 50 parts by mass, particularly 100 parts by mass of (A) liquid epoxy resin and (B) aromatic amine curing agent, It is preferable that it is 0.5-25 mass parts, especially 1-18 mass parts. If the amount is less than 0.1 parts by mass, the curability may be lowered. If the amount exceeds 50 parts by mass, the curability is excellent, but the storability may be lowered.

また、硬化促進剤として、マイクロカプセル化しない上述の触媒を上記マイクロカプセル触媒と併用添加してもよい。その場合の配合量は、マイクロカプセル触媒とマイクロカプセル化していない触媒の合計が(A)液状エポキシ樹脂と、(B)芳香族アミン系硬化剤との総量100質量部に対して0.1〜50質量部、特に0.5〜30質量部、望ましくは0.5〜20質量部であることが好ましい。0.1質量部未満では硬化性が低下するおそれがあり、50質量部を超える量では硬化性に優れるが、保存性が低下するおそれがある。なお、マイクロカプセル化していない触媒の添加量は、全触媒添加量の1/10以下であることが好ましく、1/10を超える量では硬化性に優れるが、保存性が低下するおそれがある。   Further, as the curing accelerator, the above-mentioned catalyst that is not microencapsulated may be added in combination with the microcapsule catalyst. In this case, the blending amount is 0.1 to 0.1 parts by mass with respect to 100 parts by mass of the total amount of the microcapsule catalyst and the non-microencapsulated catalyst (A) liquid epoxy resin and (B) aromatic amine curing agent. It is preferably 50 parts by mass, particularly 0.5 to 30 parts by mass, and preferably 0.5 to 20 parts by mass. If the amount is less than 0.1 parts by mass, the curability may be lowered. If the amount exceeds 50 parts by mass, the curability is excellent, but the storage stability may be lowered. In addition, it is preferable that the addition amount of the catalyst which is not microencapsulated is 1/10 or less of the total addition amount of the catalyst. If the amount exceeds 1/10, the curability is excellent, but the storability may be lowered.

本発明においては、膨張係数を小さくする目的から、公知の各種無機質充填剤(D)を添加することができる。無機質充填剤として、具体的には、溶融シリカ、結晶シリカ、アルミナ、ボロンナイトライド、窒化アルミニウム、窒化珪素、マグネシア、マグネシウムシリケート、アルミニウムなどが挙げられる。中でも真球状の溶融シリカが低粘度化のため望ましい。   In the present invention, various known inorganic fillers (D) can be added for the purpose of reducing the expansion coefficient. Specific examples of the inorganic filler include fused silica, crystalline silica, alumina, boron nitride, aluminum nitride, silicon nitride, magnesia, magnesium silicate, and aluminum. Among them, spherical fused silica is desirable for reducing the viscosity.

無機質充填剤は、樹脂と無機質充填剤との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤などのカップリング剤で予め表面処理したものを配合することが好ましい。このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−メルカプトシラン等のメルカプトシランなどのシランカップリング剤を用いることが好ましい。ここで表面処理に用いるカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。   In order to increase the bond strength between the resin and the inorganic filler, the inorganic filler is preferably blended in advance with a surface treatment with a coupling agent such as a silane coupling agent or a titanate coupling agent. As such a coupling agent, epoxy silane such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N Silane cups such as amino silanes such as -β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and mercaptosilane such as γ-mercaptosilane It is preferable to use a ring agent. Here, the blending amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

本発明の組成物をポッティング材として使用する場合、無機質充填剤は、平均粒径が2〜20μm、特に3〜18μmで、最大粒径が75μm以下、特に50μm以下のものが望ましい。平均粒径が2μm未満では粘度が高くなり、多量に充填できない場合があり、一方20μmを超えると粗い粒子が多くなり、リード線につまり、ボイドとなるおそれがある。   When the composition of the present invention is used as a potting material, the inorganic filler preferably has an average particle size of 2 to 20 μm, particularly 3 to 18 μm, and a maximum particle size of 75 μm or less, particularly 50 μm or less. If the average particle size is less than 2 μm, the viscosity is high and a large amount may not be filled. On the other hand, if the average particle size is more than 20 μm, coarse particles increase, which may lead to a lead wire, that is, a void.

この場合、無機質充填剤の充填量は、(A)液状エポキシ樹脂と、(B)芳香族アミン系硬化剤との総量100質量部に対して50〜1,200質量部、特に100〜1,200質量部の範囲が好ましい。50質量部未満では、膨張係数が大きく、冷熱試験においてクラックの発生を誘発させるおそれがある。1,200質量部を超えると、粘度が高くなり、流動性の低下をもたらすおそれがある。   In this case, the filling amount of the inorganic filler is 50 to 1,200 parts by weight, particularly 100 to 1, with respect to 100 parts by weight of the total amount of (A) liquid epoxy resin and (B) aromatic amine curing agent. A range of 200 parts by weight is preferred. If it is less than 50 parts by mass, the expansion coefficient is large, and there is a risk of inducing cracks in the cold test. If it exceeds 1,200 parts by mass, the viscosity becomes high and the fluidity may be lowered.

なお、アンダーフィル材として使用する場合には、無機質充填剤は、侵入性の向上と低線膨張化の両立を図るためフリップチップギャップ幅(基板と半導体チップとの隙間)に対して平均粒径が約1/10以下、最大粒径が1/2以下とすることが好ましい。   When used as an underfill material, the inorganic filler has an average particle diameter with respect to the flip chip gap width (gap between the substrate and the semiconductor chip) in order to achieve both improved penetration and low linear expansion. Is preferably about 1/10 or less and the maximum particle size is preferably ½ or less.

この場合の無機質充填剤の配合量としては、(A)液状エポキシ樹脂と、(B)芳香族アミン系硬化剤との総量100質量部に対して50〜400質量部で配合することが好ましく、より好ましくは100〜250質量部の範囲で配合する。50質量部未満では、膨張係数が大きく、冷熱試験においてクラックの発生を誘発させるおそれがある。400質量部を超えると、粘度が高くなり、薄膜侵入性の低下をもたらすおそれがある。   As a compounding quantity of the inorganic filler in this case, it is preferable to mix | blend by 50-400 mass parts with respect to 100 mass parts of total amounts of (A) liquid epoxy resin and (B) aromatic amine type hardening | curing agents, More preferably, it mix | blends in 100-250 mass parts. If it is less than 50 parts by mass, the expansion coefficient is large, and there is a risk of inducing cracks in the cold test. If it exceeds 400 parts by mass, the viscosity will increase and the thin film penetration may be reduced.

本発明のエポキシ樹脂組成物には、応力を低下させる目的でシリコーンゴム、シリコーンオイルや液状のポリブタジエンゴム、メタクリル酸メチル−ブタジエン−スチレンよりなる熱可塑性樹脂などを配合してもよい。好ましくは、アルケニル基含有エポキシ樹脂又はフェノール樹脂のアルケニル基と下記平均組成式(6)で示される1分子中の珪素原子の数が20〜400であり、珪素原子に結合した水素原子(SiH基)の数が1〜5であるオルガノポリシロキサンのSiH基との付加反応により得られる共重合体を配合することが好ましい。   The epoxy resin composition of the present invention may be blended with silicone rubber, silicone oil, liquid polybutadiene rubber, thermoplastic resin made of methyl methacrylate-butadiene-styrene, or the like for the purpose of reducing stress. Preferably, the alkenyl group of the alkenyl group-containing epoxy resin or phenol resin and the number of silicon atoms in one molecule represented by the following average composition formula (6) are 20 to 400, and a hydrogen atom (SiH group bonded to the silicon atom) ) Is preferably blended with a copolymer obtained by addition reaction with SiH groups of organopolysiloxane having 1-5.

a6 bSiO(4-a-b)/2 ・・・(6)
(式中、R6は置換又は非置換の一価の炭化水素基、aは0.01〜0.1、bは1.8〜2.2、1.81≦a+b≦2.3である。)
H a R 6 b SiO (4-ab) / 2 (6)
(In the formula, R 6 is a substituted or unsubstituted monovalent hydrocarbon group, a is 0.01 to 0.1, b is 1.8 to 2.2, and 1.81 ≦ a + b ≦ 2.3. .)

なお、R6の一価炭化水素基としては、炭素数1〜10、特に1〜8のものが好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、オクチル基、デシル基等のアルキル基、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、キシリル基、トリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基などや、これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したフロロメチル基、ブロモエチル基、トリフルオロプロピル基等のハロゲン置換一価炭化水素基を挙げることができる。
上記共重合体としては、中でも下記構造式(7)のものが望ましい。
The monovalent hydrocarbon group for R 6 is preferably a group having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms, and preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, or a tert-butyl group. , Alkyl groups such as hexyl group, octyl group and decyl group, alkenyl groups such as vinyl group, allyl group, propenyl group, butenyl group and hexenyl group, aryl groups such as phenyl group, xylyl group and tolyl group, benzyl group and phenyl group Fluoromethyl group, bromoethyl group, trifluoropropyl group, etc. in which some or all of the hydrogen atoms of these hydrocarbon groups are substituted with halogen atoms such as chlorine, fluorine, bromine, etc. And halogen-substituted monovalent hydrocarbon groups.
Among the above copolymers, those of the following structural formula (7) are desirable.

Figure 2005350618
Figure 2005350618

上記式中、R6は上記と同じであり、R7は−CH2CH2CH2−、−OCH2−CH(OH)−CH2−O−CH2CH2CH2−又は−O−CH2CH2CH2−であり、R8は水素原子又は炭素数1〜4のアルキル基である。nは4〜199、好ましくは19〜109の整数、pは1〜10の整数、qは1〜10の整数である。 In the above formula, R 6 is the same as above, and R 7 is —CH 2 CH 2 CH 2 —, —OCH 2 —CH (OH) —CH 2 —O—CH 2 CH 2 CH 2 — or —O—. CH 2 CH 2 CH 2 —, and R 8 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. n is an integer of 4 to 199, preferably 19 to 109, p is an integer of 1 to 10, and q is an integer of 1 to 10.

上記共重合体をジオルガノポリシロキサン単位が(A)液状エポキシ樹脂100質量部に対して0〜20質量部、特には2〜15質量部含まれるように配合することで応力をより一層低下させることができる。   The stress is further reduced by blending the above copolymer so that the diorganopolysiloxane unit is contained in an amount of 0 to 20 parts by mass, particularly 2 to 15 parts by mass with respect to 100 parts by mass of the liquid epoxy resin (A). be able to.

本発明の液状エポキシ樹脂組成物には、更に必要に応じ、接着向上用炭素官能性シラン、カーボンブラックなどの顔料、染料、酸化防止剤、その他の添加剤を本発明の目的を損なわない範囲で配合することができる。但し、本発明においては、表面処理剤として使用する以外に接着向上用炭素官能性シラン等としてアルコキシ系シランカップリング剤を添加しないことが好ましい。特に、アンダーフィル材として用いる場合、少量でもアルコキシ系シランカップリング剤を配合すると、ボイドの原因となるおそれがある。   In the liquid epoxy resin composition of the present invention, if necessary, a carbon functional silane for improving adhesion, a pigment such as carbon black, a dye, an antioxidant, and other additives within a range not impairing the object of the present invention. Can be blended. However, in the present invention, it is preferable not to add an alkoxy-based silane coupling agent as a carbon-functional silane for improving adhesion other than the use as a surface treatment agent. In particular, when used as an underfill material, if an alkoxy-based silane coupling agent is blended even in a small amount, it may cause voids.

本発明の液状エポキシ樹脂組成物は、例えば、液状エポキシ樹脂、芳香族アミン系硬化剤、マイクロカプセル型硬化促進剤、必要に応じて無機質充填剤及びその他の添加剤等を同時に又は別々に、必要により加熱処理を加えながら、撹拌、溶解、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。またこれら装置を適宜組み合わせて使用してもよい。   The liquid epoxy resin composition of the present invention requires, for example, a liquid epoxy resin, an aromatic amine-based curing agent, a microcapsule-type curing accelerator, an inorganic filler and other additives as necessary, or simultaneously. It can be obtained by stirring, dissolving, mixing and dispersing while applying heat treatment. The apparatus for mixing, stirring, dispersing and the like is not particularly limited, and a lykai machine, a three roll, a ball mill, a planetary mixer and the like equipped with a stirring and heating device can be used. Moreover, you may use combining these apparatuses suitably.

なお、本発明において、封止材として用いる液状エポキシ樹脂組成物の粘度は、25℃において1,000Pa・s以下、特に500Pa・s以下のものが好ましい。また、この組成物の成形方法、成形条件は、常法とすることができるが、好ましくは、先に100〜120℃、0.5時間以上、その後130〜180℃、0.5時間以上の条件で熱オーブンキュアを行う。100〜120℃での加熱が0.5時間未満では、硬化後にボイドが発生する場合がある。また130〜180℃での加熱が0.5時間未満では、十分な硬化物特性が得られない場合がある。この場合、キュアの時間は加熱温度に応じて適宜選定される。   In the present invention, the viscosity of the liquid epoxy resin composition used as the sealing material is preferably 1,000 Pa · s or less, particularly 500 Pa · s or less at 25 ° C. The molding method and molding conditions for this composition can be conventional methods, but preferably 100 to 120 ° C. for 0.5 hour or longer, and then 130 to 180 ° C. for 0.5 hour or longer. Heat oven cure under conditions. When heating at 100 to 120 ° C. is less than 0.5 hour, voids may occur after curing. Further, if the heating at 130 to 180 ° C. is less than 0.5 hours, sufficient cured product characteristics may not be obtained. In this case, the curing time is appropriately selected according to the heating temperature.

ここで、本発明に用いるフリップチップ型半導体装置としては、例えば図1に示したように、通常、有機基板1の配線パターン面に複数個のバンプ2を介して半導体チップ3が搭載されているものであり、上記有機基板1と半導体チップ3との隙間(バンプ2間の隙間)にアンダーフィル材4が充填され、その側部がフィレット材5で封止されたものとすることができるが、本発明の封止材は、特にこのようなアンダーフィル材として使用する場合に有効である。   Here, as a flip chip type semiconductor device used in the present invention, for example, as shown in FIG. 1, for example, a semiconductor chip 3 is usually mounted on a wiring pattern surface of an organic substrate 1 via a plurality of bumps 2. The gap between the organic substrate 1 and the semiconductor chip 3 (the gap between the bumps 2) is filled with the underfill material 4 and the side portion thereof is sealed with the fillet material 5. The sealing material of the present invention is particularly effective when used as such an underfill material.

以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not restrict | limited to the following Example.

[実施例1〜8、比較例1〜6]
表1,2で示す成分を3本ロールで均一に混練することにより、14種の樹脂組成物を得た。これらの樹脂組成物を用いて、以下に示す試験を行った。その結果を表3,4に示す。
[Examples 1-8, Comparative Examples 1-6]
14 types of resin compositions were obtained by uniformly kneading the components shown in Tables 1 and 2 with three rolls. The test shown below was done using these resin compositions. The results are shown in Tables 3 and 4.

[粘度]
BH型回転粘度計を用いて4rpmの回転数で25℃における粘度を測定した。
[viscosity]
The viscosity at 25 ° C. was measured at a rotation speed of 4 rpm using a BH type rotational viscometer.

[保存性]
25℃/60%RHにおいて樹脂組成物を保存し、上記測定条件で20%粘度上昇するのに要した時間の1/2の時間を保存性とした。
[Preservation]
The resin composition was stored at 25 ° C./60% RH, and half the time required to increase the viscosity by 20% under the above measurement conditions was defined as storage stability.

[ゲル化時間]
150℃のホットプレートに0.5ccの液状樹脂組成物を滴下し、スパチュラで攪拌して糸引きが切れるところでゲル化時間とした。
[Gelification time]
A 0.5 cc liquid resin composition was dropped on a hot plate at 150 ° C. and stirred with a spatula to determine the gelation time when the stringing was cut.

[Tg(ガラス転移温度)、CTE1(膨張係数)、CTE2(膨張係数)]
樹脂組成物を120℃/0.5時間+165℃/3時間の条件で硬化させた5mm×5mm×15mmの硬化物試験片を用いて、TMA(熱機械分析装置)により毎分5℃の速さで昇温した時のTgを測定した。また、以下の温度範囲の膨張係数を測定した。
CTE1の温度範囲は50〜80℃、CTE2の温度範囲は200〜230℃である。
[Tg (glass transition temperature), CTE1 (expansion coefficient), CTE2 (expansion coefficient)]
Using a 5 mm × 5 mm × 15 mm cured product specimen obtained by curing the resin composition at 120 ° C./0.5 hours + 165 ° C./3 hours, a TMA (thermomechanical analyzer) was used at a rate of 5 ° C. per minute. The Tg when the temperature was raised was measured. Moreover, the expansion coefficient in the following temperature range was measured.
The temperature range of CTE1 is 50 to 80 ° C, and the temperature range of CTE2 is 200 to 230 ° C.

[接着力テスト]
感光性ポリイミドをコートしたシリコンチップ上に、上面の直径2mm、下面の直径5mm、高さ3mmの円錐台形状の樹脂組成物試験片を載せ、120℃で0.5時間、次いで165℃で3時間硬化させた。硬化後、得られた試験片の剪断接着力を測定し、初期値とした。更に、硬化させた試験片をPCT(121℃/2.1atm)で336時間吸湿させた後、接着力を測定した。いずれの場合も試験片の個数は5個で行い、その平均値を接着力として表記した。
[Adhesion test]
On a silicon chip coated with photosensitive polyimide, a frustoconical resin composition test piece having an upper surface diameter of 2 mm, a lower surface diameter of 5 mm, and a height of 3 mm is placed, and 120 ° C. for 0.5 hour, and then 165 ° C. for 3 hours. Cured for hours. After curing, the shear strength of the obtained specimen was measured and used as the initial value. Further, the cured test piece was absorbed with PCT (121 ° C./2.1 atm) for 336 hours, and then the adhesive strength was measured. In any case, the number of test pieces was five, and the average value was expressed as adhesive strength.

[PCT剥離テスト]
ポリイミドコートした10mm×10mmのシリコンチップを30mm×30mmのFR−4基板に約100μmのスペーサを用いて設置し、生じた隙間に樹脂を侵入させて120℃/0.5時間+165℃/3時間の条件で硬化させ、30℃/65%RH/192時間後に最高温度265℃に設定したIRリフローにて5回処理した後の剥離、更にPCT(121℃/2.1atm)の環境下に置き、336時間後の剥離をC−SAM(SONIX社製)で確認した。
[PCT peel test]
A polyimide-coated 10 mm × 10 mm silicon chip is placed on a 30 mm × 30 mm FR-4 substrate using a spacer of about 100 μm, and a resin is intruded into the generated gap to be 120 ° C./0.5 hours + 165 ° C./3 hours. After being cured under conditions of 30 ° C./65% RH / 192 hours after IR reflow set to a maximum temperature of 265 ° C., it was peeled off five times and then placed in an environment of PCT (121 ° C./2.1 atm). Peeling after 336 hours was confirmed by C-SAM (manufactured by SONIX).

[熱衝撃テスト]
ポリイミドコートした10mm×10mmのシリコンチップを30mm×30mmのFR−4基板に約100μmのスペーサを用いて設置し、生じた隙間に樹脂を侵入させて120℃/0.5時間+165℃/3時間の条件で硬化させ、30℃/65%RH/192時間後に最高温度265℃に設定したIRリフローにて5回処理した後、−65℃/30分、150℃/30分を1サイクルとし、250,500,750,1000サイクル後の剥離、クラックを確認した。
[Thermal shock test]
A polyimide-coated 10 mm × 10 mm silicon chip is placed on a 30 mm × 30 mm FR-4 substrate using a spacer of about 100 μm, and a resin is intruded into the generated gap to be 120 ° C./0.5 hours + 165 ° C./3 hours. After being cured 5 times by IR reflow set at a maximum temperature of 265 ° C. after 30 ° C./65% RH / 192 hours, −65 ° C./30 minutes, 150 ° C./30 minutes is one cycle, Peeling and cracking after 250, 500, 750, and 1000 cycles were confirmed.

Figure 2005350618
Figure 2005350618

Figure 2005350618
Figure 2005350618

YDF8170:ビスフェノールF型エポキシ樹脂(東都化成社製)
RE303S−L:ビスフェノールF型エポキシ樹脂(日本化薬社製)
エピコート630H:下記式(8)で示される3官能型エポキシ樹脂(ジャパンエポキシレジン(株)製)

Figure 2005350618
YDF8170: Bisphenol F type epoxy resin (manufactured by Toto Kasei)
RE303S-L: Bisphenol F type epoxy resin (Nippon Kayaku Co., Ltd.)
Epicoat 630H: Trifunctional epoxy resin represented by the following formula (8) (manufactured by Japan Epoxy Resin Co., Ltd.)
Figure 2005350618

芳香族アミン系硬化剤A:ジエチルジアミノジフェニルメタン(日本化薬社製、カヤハー
ドA−A)
芳香族アミン系硬化剤B:テトラエチルジアミノフェニルメタン(日本化薬社製、C−3
00S)
Aromatic amine curing agent A: Diethyldiaminodiphenylmethane (Nippon Kayaku Co., Ltd., Kayahard AA)
Aromatic amine curing agent B: Tetraethyldiaminophenylmethane (C-3, manufactured by Nippon Kayaku Co., Ltd.)
00S)

共重合体:下記式(9)の化合物と下記式(10)の化合物との付加反応生成物

Figure 2005350618
Copolymer: addition reaction product of a compound of the following formula (9) and a compound of the following formula (10)
Figure 2005350618

アミン化合物A:TETA(トリエチルテトラアミン)
アミン化合物Aのマイクロカプセル:アミン化合物Aを30質量%含有したメタクリル酸
メチルの重合体,平均粒径が7μm,o−クレゾール中で30℃、15分間の処理で
マイクロカプセルから溶出する触媒の量は87質量%
VDH−J:アミキュアVDH−J(商品名、味の素(株)製)
VDH−Jのマイクロカプセル:アミキュアVDH−Jを20質量%含有したメタクリル
酸メチルの重合体,平均粒径が7μm,水中で30℃、15分間の処理でマイクロカ
プセルから溶出する触媒の量は87質量%
Amine compound A: TETA (triethyltetraamine)
Amine compound A microcapsule: methyl methacrylate polymer containing 30% by mass of amine compound A, average particle size of 7 μm, amount of catalyst eluted from the microcapsule by treatment in o-cresol at 30 ° C. for 15 minutes Is 87 mass%
VDH-J: Amicure VDH-J (trade name, manufactured by Ajinomoto Co., Inc.)
VDH-J microcapsules: Polymer of methyl methacrylate containing 20% by mass of Amicure VDH-J, average particle size of 7 μm, amount of catalyst eluted from the microcapsule by treatment at 30 ° C. for 15 minutes in water was 87 mass%

無機質充填剤:最大粒径53μm、平均粒径10μmの球状シリカ(龍森製、LVS−5
11H)
シランカップリング剤:γ−グリシドキシプロピルトリメトキシシラン(信越化学工業製
、KBM403)
PGMEA(プロピレングリコールモノメチルエーテルアセテート):沸点146℃の溶

カーボンブラック:デンカブラック(電気化学工業製)
Inorganic filler: spherical silica having a maximum particle size of 53 μm and an average particle size of 10 μm (manufactured by Tatsumori, LVS-5
11H)
Silane coupling agent: γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM403)
PGMEA (propylene glycol monomethyl ether acetate): Solvent with a boiling point of 146 ° C Carbon black: Denka Black (manufactured by Denki Kagaku Kogyo)

Figure 2005350618
Figure 2005350618

Figure 2005350618
Figure 2005350618

本発明の封止材を用いたフリップチップ型半導体装置の一例を示す断面図である。It is sectional drawing which shows an example of the flip chip type semiconductor device using the sealing material of this invention.

符号の説明Explanation of symbols

1 有機基板
2 バンプ
3 半導体チップ
4 アンダーフィル材
5 フィレット材
DESCRIPTION OF SYMBOLS 1 Organic substrate 2 Bump 3 Semiconductor chip 4 Underfill material 5 Fillet material

Claims (8)

(A)液状エポキシ樹脂
(B)芳香族アミン系硬化剤
(C)硬化触媒としてアミノ基を有する化合物又はイミダゾール化合物をマイクロカプセル化したマイクロカプセル型硬化促進剤
を必須成分とすることを特徴とする液状エポキシ樹脂組成物。
(A) Liquid epoxy resin (B) Aromatic amine-based curing agent (C) A microcapsule type curing accelerator obtained by microencapsulating a compound having an amino group or an imidazole compound as a curing catalyst is an essential component. Liquid epoxy resin composition.
(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対し、(C)マイクロカプセル型硬化促進剤の添加量が0.1〜50質量部であることを特徴とする請求項1記載のエポキシ樹脂組成物。   (A) The addition amount of a microcapsule type hardening accelerator is 0.1-50 mass parts with respect to 100 mass parts of total amounts of a liquid epoxy resin and (B) aromatic amine type hardening | curing agent. The epoxy resin composition according to claim 1. (C)マイクロカプセル型硬化促進剤が、平均粒径が0.5〜10μmであり、かつクレゾール、水又は有機溶剤中におけるマイクロカプセルからの触媒の溶出量が30℃、15分でマイクロカプセル中に含まれる全触媒量の70質量%以上であることを特徴とする請求項1又は2記載の液状エポキシ樹脂組成物。   (C) The microcapsule type curing accelerator has an average particle size of 0.5 to 10 μm, and the amount of catalyst elution from the microcapsule in cresol, water or an organic solvent is 30 ° C. for 15 minutes in the microcapsule. The liquid epoxy resin composition according to claim 1 or 2, which is 70% by mass or more of the total amount of catalyst contained in the catalyst. (C)成分の硬化触媒が、下記一般式(1)で表される有機酸ヒドラジド化合物であることを特徴とする請求項1乃至3のいずれか1項記載の液状エポキシ樹脂組成物。
Figure 2005350618
(式中、Xは単結合又は2価の有機基である。)
The liquid epoxy resin composition according to any one of claims 1 to 3, wherein the curing catalyst of component (C) is an organic acid hydrazide compound represented by the following general formula (1).
Figure 2005350618
(In the formula, X is a single bond or a divalent organic group.)
(C)成分の硬化触媒が、トリエチルテトラアミン、N−アミノエチルピペラジン又は2,4,6−トリス(ジメチルアミノメチル)フェノールである請求項1乃至3のいずれか1項記載の液状エポキシ樹脂組成物。   The liquid epoxy resin composition according to any one of claims 1 to 3, wherein the curing catalyst of component (C) is triethyltetraamine, N-aminoethylpiperazine or 2,4,6-tris (dimethylaminomethyl) phenol. Stuff. 更に、(D)無機質充填剤を(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対して50〜1,200質量部配合してなることを特徴とする請求項1乃至5のいずれか1項記載の液状エポキシ樹脂組成物。   Furthermore, (D) inorganic filler is blended in an amount of 50 to 1,200 parts by mass with respect to 100 parts by mass as a total of (A) liquid epoxy resin and (B) aromatic amine curing agent. The liquid epoxy resin composition according to any one of claims 1 to 5. 請求項1乃至6のいずれか1項記載の液状エポキシ樹脂組成物の硬化物で封止された半導体装置。   A semiconductor device sealed with a cured product of the liquid epoxy resin composition according to claim 1. 請求項1乃至6のいずれか1項記載の液状エポキシ樹脂組成物の硬化物をアンダーフィル材として封止したフリップチップ型半導体装置。
A flip-chip type semiconductor device in which a cured product of the liquid epoxy resin composition according to any one of claims 1 to 6 is sealed as an underfill material.
JP2004175293A 2004-06-14 2004-06-14 Liquefied epoxy resin composition and semiconductor device Pending JP2005350618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175293A JP2005350618A (en) 2004-06-14 2004-06-14 Liquefied epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175293A JP2005350618A (en) 2004-06-14 2004-06-14 Liquefied epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2005350618A true JP2005350618A (en) 2005-12-22

Family

ID=35585359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175293A Pending JP2005350618A (en) 2004-06-14 2004-06-14 Liquefied epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2005350618A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066763A1 (en) * 2005-12-08 2007-06-14 Hitachi Chemical Co., Ltd. Liquid resin composition for electronic element and electronic element device
JP2007182560A (en) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd Liquid resin composition for electronic component and electronic component device using the same
JP2008111106A (en) * 2006-10-06 2008-05-15 Hitachi Chem Co Ltd Liquid resin composition for sealing electronic parts and electronic component device using the same
US7982322B2 (en) 2006-10-06 2011-07-19 Hitachi Chemical Co., Ltd. Liquid resin composition for electronic part sealing, and electronic part apparatus utilizing the same
JP2011195767A (en) * 2010-03-23 2011-10-06 Asahi Kasei E-Materials Corp Masterbatch type curing agent for epoxy resin
JP2013064152A (en) * 2005-12-08 2013-04-11 Hitachi Chemical Co Ltd Liquid resin composition for electronic component, and electronic component device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066763A1 (en) * 2005-12-08 2007-06-14 Hitachi Chemical Co., Ltd. Liquid resin composition for electronic element and electronic element device
JP2007182560A (en) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd Liquid resin composition for electronic component and electronic component device using the same
US7981977B2 (en) 2005-12-08 2011-07-19 Hitachi Chemical Co., Ltd. Sealant for electronics of epoxy resin, aromatic amine, accelerator and inorganic filler
JP2013064152A (en) * 2005-12-08 2013-04-11 Hitachi Chemical Co Ltd Liquid resin composition for electronic component, and electronic component device using the same
JP2008111106A (en) * 2006-10-06 2008-05-15 Hitachi Chem Co Ltd Liquid resin composition for sealing electronic parts and electronic component device using the same
US7982322B2 (en) 2006-10-06 2011-07-19 Hitachi Chemical Co., Ltd. Liquid resin composition for electronic part sealing, and electronic part apparatus utilizing the same
JP2011195767A (en) * 2010-03-23 2011-10-06 Asahi Kasei E-Materials Corp Masterbatch type curing agent for epoxy resin

Similar Documents

Publication Publication Date Title
JP3736611B2 (en) Flip chip type semiconductor device sealing material and flip chip type semiconductor device
KR100781040B1 (en) Liquid Epoxy Resin Compositions and Semiconductor Devices
CN101321799B (en) Liquid resin composition for electronic element and electronic element device
JP4656269B2 (en) Liquid epoxy resin composition and semiconductor device
JP5116152B2 (en) Resin composition for manufacturing semiconductor devices
JP3952143B2 (en) Liquid epoxy resin composition and semiconductor device
JP5273745B2 (en) Overcoat material and semiconductor device using the same
JP3695521B2 (en) Liquid epoxy resin composition and semiconductor device
JP3985148B2 (en) Liquid epoxy resin composition and semiconductor device
JP4176619B2 (en) Flip chip mounting side fill material and semiconductor device
JP2004292725A (en) Liquid epoxy resin composition and semiconductor device
JP3925803B2 (en) Flip chip mounting side fill material and semiconductor device
JP5278385B2 (en) Mounting sealing material and semiconductor device sealed using the same
JP5278386B2 (en) Mounting sealing material and semiconductor device sealed using the same
JP2010077234A (en) Liquid epoxy resin composition and semiconductor device
JP2005350618A (en) Liquefied epoxy resin composition and semiconductor device
JP4737364B2 (en) Liquid epoxy resin composition and semiconductor device
JP3871032B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device
JP2007231146A (en) Liquid epoxy resin composition and semiconductor device
JP2006028250A (en) Liquid epoxy resin composition and semiconductor apparatus
JP2006316250A (en) Liquid epoxy resin composition and semiconductor device
JP2006299247A (en) Liquid epoxy resin composition and semiconductor device
JP2006002138A (en) Liquid epoxy resin composition and semiconductor device
JP2012201696A (en) Liquid epoxy resin composition for electronic component and electronic device using the same
JP2007224124A (en) Liquid epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090603