JP2006316250A - Liquid epoxy resin composition and semiconductor device - Google Patents

Liquid epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2006316250A
JP2006316250A JP2006067239A JP2006067239A JP2006316250A JP 2006316250 A JP2006316250 A JP 2006316250A JP 2006067239 A JP2006067239 A JP 2006067239A JP 2006067239 A JP2006067239 A JP 2006067239A JP 2006316250 A JP2006316250 A JP 2006316250A
Authority
JP
Japan
Prior art keywords
epoxy resin
liquid epoxy
mass
resin composition
aromatic amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006067239A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takenaka
博之 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006067239A priority Critical patent/JP2006316250A/en
Publication of JP2006316250A publication Critical patent/JP2006316250A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid epoxy resin composition suitable for sealing a semiconductor, having excellent adhesiveness to an element surface of a silicon chip (especially a photosensitive polyimide, a nitride film or an oxide film), affording a cured product having high moisture resistance and providing an excellent sealing material for high-temperature thermal shocks especially at ≥260°C reflow temperature and to provide a semiconductor device sealed with the composition. <P>SOLUTION: The liquid epoxy resin composition is characterized as follows. The composition consists essentially of a microcapsule type curing catalyst comprising (A) a liquid epoxy resin, (B) an aromatic amine curing agent containing ≥5 mass% of an aromatic amine compound represented by general formula (1) (wherein, R<SP>1</SP>to R<SP>3</SP>are each independently a group selected from a 1-6C monofunctional hydrocarbon group, a CH<SB>3</SB>S- and a C<SB>2</SB>H<SB>5</SB>S-) and (C) an acid anhydride. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体封止用として好適で、シリコンチップの素子表面(特に感光性ポリイミド、窒化膜、酸化膜)との密着性が非常に良好であり、耐湿性の高い硬化物を与え、特にリフロー温度260℃以上の高温熱衝撃に対して優れた封止材となり得る液状エポキシ樹脂組成物、及びこの組成物にて封止された半導体装置に関する。   The present invention is suitable for semiconductor sealing, has very good adhesion to the element surface (especially photosensitive polyimide, nitride film, oxide film) of the silicon chip, and gives a cured product with high moisture resistance. The present invention relates to a liquid epoxy resin composition that can be an excellent sealing material against a high-temperature thermal shock having a reflow temperature of 260 ° C. or higher, and a semiconductor device sealed with this composition.

電気機器の小型化、軽量化、高機能化に伴い、半導体の実装方法もピン挿入タイプから表面実装が主流になっている。また、半導体素子の高集積化に伴い、ダイサイズの一辺が10mmを超えるものもあり、ダイサイズの大型化が進んできている。このような大型ダイを用いた半導体装置では、半田リフロー時にダイと封止材にかかる応力が増大し、封止材とダイ及び基板の界面での剥離、基板実装時にパッケージにクラックが入るといった問題がクローズアップされてきている。   Along with the downsizing, weight reduction, and higher functionality of electrical equipment, semiconductor mounting methods have become mainstream from pin insertion type to surface mounting. In addition, along with the high integration of semiconductor elements, there are cases in which one side of the die size exceeds 10 mm, and the die size is increasing. In a semiconductor device using such a large die, the stress applied to the die and the sealing material increases during solder reflow, peeling at the interface between the sealing material and the die and the substrate, and cracks in the package when mounted on the substrate Has been close up.

更に、近い将来に鉛含有半田が使用できなくなることから、鉛代替半田が多数開発されている。この種の半田は、溶融温度が鉛含有の半田より高くなることから、リフローの温度も260〜270℃で検討されており、従来の液状エポキシ樹脂組成物の封止材では、より一層の不良が予想される。このようにリフローの温度が高くなると、従来においては何ら問題のなかったフリップチップ型のパッケージもリフロー時にクラック発生、チップ界面、基板界面との剥離が発生するという重大な問題が起こるようになった。   Furthermore, since lead-containing solder cannot be used in the near future, a number of lead substitute solders have been developed. Since this type of solder has a melting temperature higher than that of lead-containing solder, the reflow temperature is also examined at 260 to 270 ° C., and the conventional liquid epoxy resin composition sealing material is even more defective. Is expected. Thus, when the reflow temperature becomes high, the flip chip type package, which has no problem in the past, also has a serious problem in that cracking occurs during reflow and separation from the chip interface and the substrate interface occurs. .

これらの要求を満たす材料として、液状エポキシ樹脂/アルキル置換芳香族ジアミン系の液状封止樹脂が提案されている(特許文献1:特開平9−176287号公報、特許文献2:特開平9−176294号公報参照)。この材料は、基板、金属、ソルダーレジスト等との接着性に優れ、更に耐リフロー性、耐温度サイクルクラック性に優れ、高信頼性パッケージを可能としている。   As materials satisfying these requirements, liquid epoxy resins / alkyl-substituted aromatic diamine-based liquid sealing resins have been proposed (Patent Document 1: JP-A-9-176287, Patent Document 2: JP-A-9-176294). No. publication). This material is excellent in adhesion to a substrate, metal, solder resist, etc., and further excellent in reflow resistance and temperature cycle crack resistance, enabling a highly reliable package.

しかし、上記の樹脂系は硬化時間が長く(150℃/3時間)、パッケージ生産性という観点からは問題であった。また、ゲル化時間が長いためにフィラーの沈降、それに伴う表面クラックの発生、可使時間が短い等の欠点があった。また、硬化時間を短くするために硬化促進剤の検討が考えられ、その例としてはフェノール類、サリチル酸のようなフェノール酸が挙げられるが、可使時間が短く、作業性が著しく低下する等の欠点があった。   However, the above resin system has a long curing time (150 ° C./3 hours), which is a problem from the viewpoint of package productivity. In addition, since the gelation time is long, there are disadvantages such as sedimentation of the filler, generation of surface cracks associated therewith, and short pot life. Further, in order to shorten the curing time, a study of a curing accelerator can be considered, and examples thereof include phenols and phenolic acids such as salicylic acid, but the pot life is short and workability is remarkably reduced. There were drawbacks.

特開平9−176287号公報JP-A-9-176287 特開平9−176294号公報JP-A-9-176294 特開平5−247179号公報JP-A-5-247179

本発明は、上記事情に鑑みなされたもので、従来に比べて短時間に硬化が可能であり、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れ、かつ強靭性に優れた硬化物を与え、リフローの温度が従来温度240℃付近から260〜270℃に上昇しても不良が発生せず、更にプレッシャークッカーテスト(以下PCTという)において、120℃/2.1atmなどの高温多湿の条件下でも劣化せず、−65℃/150℃の温度サイクルにおいて数百サイクルを超えても剥離、クラックが発生しない半導体装置の封止材となり得る液状エポキシ樹脂組成物、及びこの組成物の硬化物で封止された半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, can be cured in a shorter time than conventional, has excellent adhesion to the surface of a silicon chip, in particular, a photosensitive polyimide resin or a nitride film, and toughness. Gives an excellent cured product, and even if the reflow temperature is increased from about 240 ° C. to about 260 to 270 ° C., no defect occurs, and in a pressure cooker test (hereinafter referred to as PCT), 120 ° C./2.1 atm etc. A liquid epoxy resin composition that does not deteriorate even under high temperature and high humidity conditions, and can be used as a sealing material for a semiconductor device in which peeling and cracking do not occur even when the temperature cycle of −65 ° C./150° C. exceeds several hundred cycles, and this An object is to provide a semiconductor device sealed with a cured product of the composition.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、(A)液状エポキシ樹脂、(B)下記一般式(1)で表される芳香族アミン化合物を5質量%以上含有する芳香族アミン系硬化剤、   As a result of intensive studies to achieve the above object, the present inventor contains (A) a liquid epoxy resin, (B) 5% by mass or more of an aromatic amine compound represented by the following general formula (1). Aromatic amine curing agent,

Figure 2006316250

(式中、R1〜R3は独立に炭素数1〜6の一価炭化水素基、CH3S−及びC25S−から選ばれる基である。)
(C)酸無水物を含有したマイクロカプセル型硬化触媒、及び好ましくは(D)無機質充填剤を含有する液状エポキシ樹脂組成物を用いること、この場合、特に、(A)液状エポキシ樹脂のエポキシ当量と(B)芳香族アミン系硬化剤のアミン当量との当量比〔(A)/(B)〕を0.7以上1.2以下とすることにより、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れ、PCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、熱衝撃に対して優れており、特に大型ダイサイズの半導体装置の封止材として有効となり得ることを見出し、本発明をなすに至ったものである。
Figure 2006316250

(Wherein, R 1 to R 3 is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms, a CH 3 S-, and C 2 H 5 S- from group selected.)
(C) Using a microcapsule-type curing catalyst containing an acid anhydride, and preferably (D) a liquid epoxy resin composition containing an inorganic filler, in this case, in particular, (A) the epoxy equivalent of the liquid epoxy resin And (B) the equivalent ratio of the amine equivalent of the aromatic amine curing agent [(A) / (B)] is 0.7 or more and 1.2 or less, so that the surface of the silicon chip, particularly the photosensitive polyimide resin Excellent adhesion to silicon and nitride films, does not deteriorate under high temperature and high humidity conditions such as PCT (120 ° C / 2.1 atm), and is excellent against thermal shock, especially for sealing large die size semiconductor devices It has been found that it can be effective as a material, and has led to the present invention.

更に、(B)芳香族アミン系硬化剤として、上記一般式(1)で表される芳香族アミン化合物を硬化剤全体の5質量%以上用いたものとすることにより、この液状エポキシ樹脂組成物が、低粘度で作業性に優れており、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜、とりわけ窒化膜との密着性に優れ、PCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、熱衝撃に対して優れており、特に大型ダイサイズの半導体装置の封止材として有効であることを知見した。   Furthermore, this liquid epoxy resin composition is obtained by using 5% by mass or more of the aromatic amine compound represented by the above general formula (1) as the aromatic amine curing agent (B). However, it has low viscosity and excellent workability, has excellent adhesion to the surface of the silicon chip, particularly photosensitive polyimide resin and nitride film, especially nitride film, and high temperature and high humidity such as PCT (120 ° C / 2.1 atm). It has been found that it does not deteriorate even under conditions and is excellent against thermal shock, and is particularly effective as a sealing material for a semiconductor device having a large die size.

即ち、上記一般式(1)で表される芳香族アミン系硬化剤は、従来の芳香族アミン系硬化剤に比べ、特定な置換基を持つことにより、比較的早く熱硬化するにもかかわらず、ポットライフが長く、硬化物の機械特性、電気特性、耐熱特性、耐薬品特性に優れるものであり、この硬化剤を用いることによって、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れ、かつ熱衝撃性が著しく向上し、高温多湿下でも優れた特性を得ることが可能となるものである。また、本発明の芳香族アミン系硬化剤は、従来の芳香族アミン系硬化剤に比べ、粘度が低いために組成物の低粘度化が可能となり、作業性及び成形性が非常に優れるものとなることを知見したものである。   That is, the aromatic amine-based curing agent represented by the general formula (1) has a specific substituent compared to the conventional aromatic amine-based curing agent, so that it is cured relatively quickly. It has a long pot life and is excellent in mechanical properties, electrical properties, heat resistance properties and chemical resistance properties of the cured product. By using this curing agent, the surface of the silicon chip, particularly with the photosensitive polyimide resin or nitride film, The adhesiveness is excellent, the thermal shock resistance is remarkably improved, and excellent characteristics can be obtained even under high temperature and high humidity. Further, the aromatic amine curing agent of the present invention has a lower viscosity than conventional aromatic amine curing agents, so that the viscosity of the composition can be reduced, and workability and moldability are extremely excellent. It has been found that.

本発明の液状エポキシ樹脂組成物は、保存性を維持しつつ硬化時間を短縮することができる。また、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れた硬化物を与え、吸湿後のリフローの温度が従来温度240℃付近から260〜270℃に上昇しても不良が発生せず、更にPCT(120℃/2.1atm)等の高温多湿の条件下でも劣化せず、−65℃/150℃の温度サイクルにおいて数百サイクルを超えても剥離、クラックが起こらない半導体装置を提供することができる。   The liquid epoxy resin composition of the present invention can shorten the curing time while maintaining storability. In addition, it gives a cured product with excellent adhesion to the surface of the silicon chip, particularly photosensitive polyimide resin and nitride film, and even if the reflow temperature after moisture absorption rises from around 240 ° C. to 260 to 270 ° C. Does not occur and does not deteriorate even under high-temperature and high-humidity conditions such as PCT (120 ° C / 2.1 atm), and peeling and cracking do not occur even if the temperature cycle of -65 ° C / 150 ° C exceeds several hundred cycles. A semiconductor device can be provided.

以下、本発明について更に詳しく説明する。
[(A)液状エポキシ樹脂]
本発明の液状エポキシ樹脂組成物において、(A)液状エポキシ樹脂は、一分子内に3官能基以下のエポキシ基を含有する常温で液状のエポキシ樹脂であればいかなるものでも使用可能であるが、25℃における粘度が800Pa・s以下、特に500Pa・s以下のものが好ましく、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニルグリシジルエーテルなどが挙げられ、これらの中でも室温(25℃)で液状のエポキシ樹脂を使用することが好ましい。また、本発明の液状エポキシ樹脂は、1種を単独で又は2種以上を併用することができる。
Hereinafter, the present invention will be described in more detail.
[(A) Liquid epoxy resin]
In the liquid epoxy resin composition of the present invention, (A) the liquid epoxy resin may be any epoxy resin that is liquid at room temperature and contains an epoxy group having three or less functional groups in one molecule. Those having a viscosity at 25 ° C. of 800 Pa · s or less, particularly 500 Pa · s or less are preferred. Specifically, bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, naphthalene type epoxy resins, phenylglycidyl An ether etc. are mentioned, Among these, it is preferable to use a liquid epoxy resin at room temperature (25 degreeC). Moreover, the liquid epoxy resin of this invention can be used individually by 1 type or in combination of 2 or more types.

また、本発明のエポキシ樹脂は、下記構造式(2),(3)で示されるエポキシ樹脂を侵入性に影響を及ぼさない範囲で含有していてもよい。   Moreover, the epoxy resin of this invention may contain the epoxy resin shown by following Structural formula (2), (3) in the range which does not affect intrusion property.

Figure 2006316250
Figure 2006316250

ここで、R4は水素原子又は炭素数1〜20、好ましくは炭素数1〜10、更に好ましくは炭素数1〜3の一価炭化水素基であり、一価炭化水素基としては、メチル基、エチル基、プロピル基等のアルキル基、ビニル基、アリル基等のアルケニル基等が挙げられる。また、xは1〜4の整数、特に1又は2である。 Here, R 4 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 3 carbon atoms, and the monovalent hydrocarbon group is a methyl group. And alkyl groups such as ethyl group and propyl group, and alkenyl groups such as vinyl group and allyl group. X is an integer of 1 to 4, particularly 1 or 2.

なお、上記式(2)で示されるエポキシ樹脂を配合する場合、その配合量は、全エポキシ樹脂中25質量%以上、より好ましくは50質量%以上、更に好ましくは75質量%以上であることが推奨される。25質量%未満であると組成物の粘度が上昇したり、硬化物の耐熱性が低下したりするおそれがある。なお、その上限は100質量%でもよい。   In addition, when mix | blending the epoxy resin shown by said Formula (2), the compounding quantity is 25 mass% or more in all the epoxy resins, More preferably, it is 50 mass% or more, More preferably, it is 75 mass% or more. Recommended. If it is less than 25% by mass, the viscosity of the composition may increase or the heat resistance of the cured product may decrease. The upper limit may be 100% by mass.

上記一般式(3)で示されるエポキシ樹脂の例としては、RE600NM(日本化薬(株)製)等が挙げられる。   Examples of the epoxy resin represented by the general formula (3) include RE600NM (manufactured by Nippon Kayaku Co., Ltd.).

上記液状エポキシ樹脂中の全塩素含有量は、1,500ppm以下、望ましくは1,000ppm以下であることが好ましい。また、100℃で50%エポキシ樹脂濃度における20時間での抽出水塩素が10ppm以下であることが好ましい。全塩素含有量が1,500ppmを超え、又は抽出水塩素が10ppmを超えると半導体素子の信頼性、特に耐湿性に悪影響を与えるおそれがある。   The total chlorine content in the liquid epoxy resin is preferably 1,500 ppm or less, more preferably 1,000 ppm or less. Moreover, it is preferable that the extraction water chlorine in 20 hours in the 50% epoxy resin density | concentration at 100 degreeC is 10 ppm or less. If the total chlorine content exceeds 1,500 ppm or the extracted water chlorine exceeds 10 ppm, the reliability of the semiconductor element, particularly the moisture resistance, may be adversely affected.

[(B)芳香族アミン系硬化剤]
次に、本発明に使用する芳香族アミン系硬化剤(B)は、下記一般式(1)で表される芳香族アミン化合物を全芳香族アミン系硬化剤中に5質量%以上含有するものであることが好ましい。
[(B) Aromatic amine curing agent]
Next, the aromatic amine curing agent (B) used in the present invention contains an aromatic amine compound represented by the following general formula (1) in an amount of 5% by mass or more in the wholly aromatic amine curing agent. It is preferable that

Figure 2006316250

(式中、R1〜R3は独立に炭素数1〜6の一価炭化水素基、CH3S−及びC25S−から選ばれる基である。)
Figure 2006316250

(Wherein, R 1 to R 3 is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms, a CH 3 S-, and C 2 H 5 S- from group selected.)

ここで、R1〜R3の一価炭化水素基としては、炭素数1〜6、特に1〜3のものが好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基等のアルキル基、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基などや、これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したフロロメチル基、ブロモエチル基、トリフルオロプロピル基等のハロゲン置換一価炭化水素基などを挙げることができる。 Here, the monovalent hydrocarbon group of R 1 to R 3 is preferably a group having 1 to 6 carbon atoms, particularly 1 to 3 carbon atoms, and preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, Alkyl groups such as tert-butyl group and hexyl group, vinyl groups, allyl groups, propenyl groups, butenyl groups, alkenyl groups such as hexenyl groups, phenyl groups, etc., and some or all of hydrogen atoms of these hydrocarbon groups And halogen-substituted monovalent hydrocarbon groups such as a fluoromethyl group, a bromoethyl group, and a trifluoropropyl group substituted with a halogen atom such as chlorine, fluorine, and bromine.

一般式(1)で表される芳香族アミン化合物として、具体的には、ジエチルトルエンジアミン、ジメチルチオトルエンジアミン、ジメチルトルエンジアミンなどが挙げられる。   Specific examples of the aromatic amine compound represented by the general formula (1) include diethyltoluenediamine, dimethylthiotoluenediamine, and dimethyltoluenediamine.

上記一般式(1)で表される芳香族アミン化合物の配合量は、芳香族アミン系硬化剤全体の5質量%以上、好ましくは10〜100質量%、より好ましくは20〜100質量%である。一般式(1)で表される芳香族アミン化合物が、硬化剤全体の5質量%未満であると、粘度が上昇したり、接着力が低下したり、クラックが発生したりする場合がある。   The compounding amount of the aromatic amine compound represented by the general formula (1) is 5% by mass or more, preferably 10 to 100% by mass, more preferably 20 to 100% by mass, based on the entire aromatic amine curing agent. . When the aromatic amine compound represented by the general formula (1) is less than 5% by mass of the entire curing agent, the viscosity may increase, the adhesive force may decrease, or cracks may occur.

また、上記一般式(1)で表される芳香族アミン化合物以外の芳香族アミン系硬化剤としては、芳香族ジアミノジフェニルメタン化合物、例えば、3,3’−ジエチル−4,4’−ジアミノフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノフェニルメタン、2,4−ジアミノトルエン、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン等の芳香族アミン化合物であることが好ましい。   Examples of aromatic amine curing agents other than the aromatic amine compound represented by the general formula (1) include aromatic diaminodiphenylmethane compounds such as 3,3′-diethyl-4,4′-diaminophenylmethane. 3,3 ′, 5,5′-tetramethyl-4,4′-diaminophenylmethane, 3,3 ′, 5,5′-tetraethyl-4,4′-diaminophenylmethane, 2,4-diaminotoluene An aromatic amine compound such as 1,4-diaminobenzene and 1,3-diaminobenzene is preferable.

上記芳香族アミン系硬化剤において、常温で固体である場合はそのまま配合すると樹脂粘度が上昇し、作業性が著しく悪くなるため、予めエポキシ樹脂と溶融混合することが好ましく、後述する指定の配合量で、70〜150℃の温度範囲で1時間〜2時間溶融混合することが望ましい。混合温度が70℃未満であると芳香族アミン系硬化剤が十分に相溶しにくくなるおそれがあり、150℃を超える温度であるとエポキシ樹脂と反応して粘度上昇するおそれがある。また、混合時間が1時間未満であると芳香族アミン系硬化剤が十分に相溶せず、粘度上昇を招くおそれがあり、2時間を超えるとエポキシ樹脂と反応し、粘度上昇するおそれがある。   In the above aromatic amine-based curing agent, when it is solid at room temperature, the resin viscosity increases and workability is significantly deteriorated. Therefore, it is preferably melt-mixed with an epoxy resin in advance, and the specified blending amount described later Therefore, it is desirable to melt and mix in a temperature range of 70 to 150 ° C. for 1 to 2 hours. If the mixing temperature is less than 70 ° C, the aromatic amine curing agent may not be sufficiently compatible, and if the temperature exceeds 150 ° C, it may react with the epoxy resin and increase the viscosity. Also, if the mixing time is less than 1 hour, the aromatic amine curing agent is not sufficiently compatible and may increase the viscosity, and if it exceeds 2 hours, it may react with the epoxy resin and increase the viscosity. .

なお、本発明に用いられる芳香族アミン系硬化剤の総配合量は、液状エポキシ樹脂と芳香族アミン系硬化剤との当量比〔(A)液状エポキシ樹脂のエポキシ当量/(B)芳香族アミン系硬化剤のアミン当量〕を0.7以上1.2以下、好ましくは0.7以上1.1以下にすることが好ましい。更に好ましくは0.85以上1.05以下の範囲であることが推奨される。当量比が0.7未満では、未反応のアミン基が残存し、ガラス転移温度の低下となり、また密着性が低下するおそれがある。逆に1.2を超えると硬化物が硬く脆くなり、リフロー時にクラックが発生するおそれがある。   The total amount of the aromatic amine curing agent used in the present invention is the equivalent ratio of the liquid epoxy resin to the aromatic amine curing agent [(A) epoxy equivalent of the liquid epoxy resin / (B) aromatic amine. The amine equivalent of the system curing agent] is 0.7 to 1.2, preferably 0.7 to 1.1. More preferably, it is recommended to be in the range of 0.85 to 1.05. If the equivalent ratio is less than 0.7, unreacted amine groups remain, resulting in a decrease in the glass transition temperature, and the adhesion may be decreased. On the other hand, if it exceeds 1.2, the cured product becomes hard and brittle, and cracks may occur during reflow.

[(C)マイクロカプセル型硬化触媒]
本発明においては、(C)成分としてマイクロカプセル型硬化触媒を配合する。これは(A)及び(B)成分の硬化促進剤として作用するもので、マイクロカプセル型硬化触媒としては、酸無水物を含有したマイクロカプセル触媒であって、平均粒径が0.5〜10μm、最大粒径が50μm以下のもの、より好ましくは平均粒径が2〜5μm、かつ最大粒径が20μm以下のもので、かつo−クレゾール中におけるマイクロカプセルからの触媒の溶出量が30℃、15分でマイクロカプセル中に含まれる全触媒量の70重量%以上(即ち、70〜100重量%)であるマイクロカプセル型硬化触媒を配合することが好ましい。
[(C) Microcapsule type curing catalyst]
In the present invention, a microcapsule type curing catalyst is blended as the component (C). This acts as a curing accelerator for the components (A) and (B), and the microcapsule type curing catalyst is a microcapsule catalyst containing an acid anhydride and has an average particle size of 0.5 to 10 μm. A maximum particle size of 50 μm or less, more preferably an average particle size of 2 to 5 μm and a maximum particle size of 20 μm or less, and the elution amount of the catalyst from the microcapsules in o-cresol is 30 ° C. It is preferable to blend a microcapsule type curing catalyst that is 70% by weight or more (that is, 70 to 100% by weight) of the total amount of catalyst contained in the microcapsules in 15 minutes.

この硬化触媒のマイクロカプセルにおいて、硬化触媒としては酸無水物があげられ、具体的にはメチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、へキサヒドロ無水フタル酸、無水メチルハイミック酸、ピロメリット酸二無水物、マレイン化アロオシメン、ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラビスベンゾフェノンテトラカルボン酸二無水物、(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物等が挙げられる。   In this curing catalyst microcapsule, an acid anhydride is exemplified as the curing catalyst, specifically, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methyl hymic anhydride, pyromellitic. Acid dianhydride, maleated alloocimene, benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetrabisbenzophenone tetracarboxylic dianhydride, (3,4-dicarboxyphenyl) ether dianhydride Products, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, and the like.

本発明において用いられるマイクロカプセルは、(メタ)アクリル系単量体、例えばアクリル酸エステル、イタコン酸エステル、クロトン酸エステル等の炭素数1〜8のアルキルエステル、このアルキルエステルのアルキル基がアリル基等の置換基を有するもの、スチレン、α−メチルスチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル等の単官能性単量体及びエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、ビスフェノールAジ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド等の多官能単量体から選ばれる1種を単独で又は2種以上の単量体を(共)重合することにより得られたポリマーを殻材として、該ポリマー中に触媒として酸無水物がマイクロカプセル中に閉じ込められたものである。なお、上記ポリマーの中では、(メタ)アクリレート系単量体の重合物が好ましい。   The microcapsule used in the present invention is a (meth) acrylic monomer, for example, an alkyl ester having 1 to 8 carbon atoms such as an acrylate ester, an itaconic acid ester or a crotonic acid ester, and the alkyl group of the alkyl ester is an allyl group. Monofunctional monomers such as styrene, α-methylstyrene, acrylonitrile, methacrylonitrile, vinyl acetate, and ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, divinylbenzene A polymer obtained by (co) polymerizing one kind selected from polyfunctional monomers such as bisphenol A di (meth) acrylate and methylenebis (meth) acrylamide alone or two or more kinds of monomers As a shell material, an acid anhydride is used as a catalyst in the polymer. Lee black those trapped in the capsule. In addition, in the said polymer, the polymer of a (meth) acrylate type monomer is preferable.

本発明の上記酸無水物を含有するマイクロカプセル型硬化触媒の製造方法としては様々な方法が挙げられるが、生産性及び球状度が高いマイクロカプセルを製造するためには、通常、懸濁重合法及び乳化重合法などの従来から公知の方法で製造することができる。例えばエポキシ樹脂硬化剤用アミン類を主成分とする固体状芯物質を重合性二重結合を有する有機酸を含有するラジカル重合性モノマーでマイクロカプセル化する方法が特開平5−247179号公報に開示されている。   There are various methods for producing the microcapsule-type curing catalyst containing the acid anhydride of the present invention. In order to produce microcapsules with high productivity and high sphericity, the suspension polymerization method is usually used. And can be produced by a conventionally known method such as an emulsion polymerization method. For example, JP-A-5-247179 discloses a method of microencapsulating a solid core material mainly composed of amines for epoxy resin curing agent with a radical polymerizable monomer containing an organic acid having a polymerizable double bond. Has been.

この場合、一般的に使用されている触媒の分子構造から高濃度マイクロカプセルを得るためには、硬化触媒10質量部に対して使用する上記単量体の総量は10〜200質量部程度が好ましく、より好ましくは10〜100質量部、更に好ましくは20〜50質量部である。10質量部未満では潜在性を十分に寄与することが困難となる場合があり、200質量部を超えると、触媒の比率が低くなり、十分な硬化性を得るためには多量に使用しなければならなくなるため、経済的に不利となる場合がある。即ち、マイクロカプセル中に含有される硬化触媒の濃度としては、約5〜50質量%、好ましくは約10〜50質量%程度のものを使用することができる。   In this case, in order to obtain high-concentration microcapsules from the molecular structure of a commonly used catalyst, the total amount of the monomers used with respect to 10 parts by mass of the curing catalyst is preferably about 10 to 200 parts by mass. More preferably, it is 10-100 mass parts, More preferably, it is 20-50 mass parts. If the amount is less than 10 parts by mass, it may be difficult to sufficiently contribute the potential. If the amount exceeds 200 parts by mass, the ratio of the catalyst is lowered, and in order to obtain sufficient curability, a large amount must be used. This may be economically disadvantageous. That is, the concentration of the curing catalyst contained in the microcapsule can be about 5 to 50% by mass, preferably about 10 to 50% by mass.

このような方法で得られるマイクロカプセルとしては、平均粒径が0.5〜10μm、最大粒径が50μm以下のものを使用することが好ましい。より好ましくは平均粒径が2〜5μm、かつ最大粒径が20μm以下のものが望ましい。マイクロカプセルの粒径が小さすぎると、比表面積が大きくなり、混合した時の粘度が高くなるおそれがある。また平均粒径が10μmを超えると、樹脂への分散が不均一になり、信頼性の低下を引き起こすおそれがある。   As the microcapsules obtained by such a method, those having an average particle diameter of 0.5 to 10 μm and a maximum particle diameter of 50 μm or less are preferably used. More preferably, the average particle diameter is 2 to 5 μm and the maximum particle diameter is 20 μm or less. If the particle size of the microcapsules is too small, the specific surface area increases and the viscosity when mixed may increase. On the other hand, if the average particle size exceeds 10 μm, the dispersion in the resin becomes non-uniform, which may cause a decrease in reliability.

なお、この平均粒径は、例えばレーザー光回折法による粒度分布測定における重量平均値D50(又は、メジアン径)等として求めることができる(以下、同様)。 Incidentally, the average particle size, for example, a weight average value D 50 (or median diameter) in particle size distribution measurement by laser diffraction method can be determined as such (hereinafter, the same).

また、上記マイクロカプセルとしては、下記性能を有するものを使用することが好ましい。即ち、酸無水物を含有するマイクロカプセルを1g秤量し、これをo−クレゾール30gに混合した後、30℃で放置し、溶出する触媒をガスクロマトグラフィーで定量した場合、マイクロカプセルから溶出する酸無水物が30℃、15分でマイクロカプセル中に含まれる全酸無水物量の70質量%以上であるものを用いる。70質量%未満では、硬化時間が長くかかるおそれがあり、生産性が低下する場合がある。望ましくは、溶出量が75質量%以上である。   Moreover, it is preferable to use what has the following performance as said microcapsule. That is, 1 g of microcapsules containing acid anhydride are weighed, mixed with 30 g of o-cresol, and then left at 30 ° C. When the eluted catalyst is quantified by gas chromatography, the acid eluted from the microcapsule An anhydride having a content of 70% by mass or more of the total amount of acid anhydride contained in the microcapsule at 30 ° C. for 15 minutes is used. If it is less than 70% by mass, the curing time may take a long time, and the productivity may decrease. Desirably, the amount of elution is 75 mass% or more.

上記本発明のマイクロカプセルの配合量は、(A)液状エポキシ樹脂と、(B)芳香族アミン系硬化剤との総量100質量部に対して0.5〜20質量部、特に1〜15質量部であることが好ましい。0.5質量部未満では硬化性が低下するおそれがあり、20質量部を超える量では硬化性に優れるが保存性が低下するおそれがある。   The compounding amount of the microcapsules of the present invention is 0.5 to 20 parts by mass, particularly 1 to 15 parts by mass with respect to 100 parts by mass as a total of (A) liquid epoxy resin and (B) aromatic amine curing agent. Part. If the amount is less than 0.5 parts by mass, the curability may be lowered. If the amount exceeds 20 parts by mass, the curability is excellent, but the storability may be lowered.

また、マイクロカプセル化しない酸無水物を触媒として、上記マイクロカプセル化した触媒と併用添加してもよい。その場合の配合量は、マイクロカプセル中に含まれる酸無水物とマイクロカプセル化していない酸無水物の合計が、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対して0.5〜20質量部、望ましくは0.5〜15質量部であることが好ましい。0.5質量部未満では硬化性が低下するおそれがあり、20質量部を超える量では硬化性に優れるが保存性が低下するおそれがある。なお、マイクロカプセル化していない酸無水物の添加量は全触媒添加量の1/10以下であることが好ましく、1/10を超える量では硬化性に優れるが保存性が低下するおそれがある。   Further, an acid anhydride that is not microencapsulated may be added as a catalyst in combination with the above microencapsulated catalyst. In this case, the total amount of the acid anhydride contained in the microcapsule and the acid anhydride not microencapsulated is 100 mass of the total amount of (A) the liquid epoxy resin and (B) the aromatic amine curing agent. 0.5 to 20 parts by mass, preferably 0.5 to 15 parts by mass with respect to parts. If the amount is less than 0.5 parts by mass, the curability may be lowered. If the amount exceeds 20 parts by mass, the curability is excellent, but the storability may be lowered. In addition, it is preferable that the addition amount of the acid anhydride which is not microencapsulated is 1/10 or less of the total catalyst addition amount. If it exceeds 1/10, the curability is excellent, but the storage stability may be lowered.

[(D)無機質充填剤]
本発明においては、膨張係数を小さくする目的から、公知の各種無機質充填剤(D)を添加することができる。無機質充填剤として具体的には、溶融シリカ、結晶シリカ、アルミナ、ボロンナイトライド、窒化アルミニウム、窒化珪素、マグネシア、マグネシウムシリケートなどが挙げられる。中でも真球状の溶融シリカが低粘度化のため望ましい。
[(D) Inorganic filler]
In the present invention, various known inorganic fillers (D) can be added for the purpose of reducing the expansion coefficient. Specific examples of the inorganic filler include fused silica, crystalline silica, alumina, boron nitride, aluminum nitride, silicon nitride, magnesia, magnesium silicate, and the like. Among them, spherical fused silica is desirable for reducing the viscosity.

無機質充填剤は、樹脂と無機質充填剤との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤などのカップリング剤で予め表面処理したものを配合することが好ましい。このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−メルカプトシラン等のメルカプトシランなどのシランカップリング剤を用いることが好ましい。ここで表面処理に用いるカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。   In order to increase the bond strength between the resin and the inorganic filler, the inorganic filler is preferably blended in advance with a surface treatment with a coupling agent such as a silane coupling agent or a titanate coupling agent. As such a coupling agent, epoxy silane such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N Silane cups such as amino silanes such as -β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and mercaptosilane such as γ-mercaptosilane It is preferable to use a ring agent. Here, the blending amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

本発明の組成物をポッティング材として使用する場合、無機質充填剤は、平均粒径が2〜20μmで、最大粒径が75μm以下、特に50μm以下のものが望ましい。平均粒径が2μm未満では粘度が高くなり、多量に充填できない場合があり、一方、20μmを超えると粗い粒子が多くなり、リード線につまり、ボイドとなるおそれがある。   When the composition of the present invention is used as a potting material, the inorganic filler preferably has an average particle diameter of 2 to 20 μm and a maximum particle diameter of 75 μm or less, particularly 50 μm or less. If the average particle size is less than 2 μm, the viscosity increases, and a large amount may not be filled. On the other hand, if the average particle size exceeds 20 μm, coarse particles increase, which may lead to a lead wire, that is, a void.

この場合、無機質充填剤の充填量は、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対して50〜1,200質量部、特に100〜1,200質量部の範囲が好ましい。100質量部未満では、膨張係数が大きく冷熱試験においてクラックの発生を誘発させるおそれがある。1,200質量部を超えると、粘度が高くなり、流動性の低下をもたらすおそれがある。この場合の好ましい粘度としては、25℃で700Pa・s以下、好ましくは500Pa・s以下である。   In this case, the filling amount of the inorganic filler is 50 to 1,200 parts by weight, particularly 100 to 1,200, based on 100 parts by weight of the total amount of (A) liquid epoxy resin and (B) aromatic amine curing agent. A range of parts by mass is preferred. If the amount is less than 100 parts by mass, the coefficient of expansion is large and there is a risk of inducing cracks in the cooling test. If it exceeds 1,200 parts by mass, the viscosity becomes high and the fluidity may be lowered. A preferable viscosity in this case is 700 Pa · s or less, preferably 500 Pa · s or less at 25 ° C.

なお、アンダーフィル材として使用する場合には、無機質充填剤は、侵入性の向上と低線膨張化の両立を図るためフリップチップギャップ幅(基板と半導体チップとの隙間)に対して平均粒径が約1/10以下、最大粒径が1/2以下とすることが好ましい。   When used as an underfill material, the inorganic filler has an average particle diameter with respect to the flip chip gap width (gap between the substrate and the semiconductor chip) in order to achieve both improved penetration and low linear expansion. Is preferably about 1/10 or less, and the maximum particle size is preferably ½ or less.

この場合の無機質充填剤の配合量としては、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対して50〜400質量部で配合することが好ましく、より好ましくは100〜250質量部の範囲で配合する。50質量部未満では、膨張係数が大きく、冷熱試験においてクラックの発生を誘発させるおそれがある。400質量部を超えると、粘度が高くなり、薄膜侵入性の低下をもたらすおそれがある。この場合の好ましい粘度としては、25℃で250Pa・s以下、好ましくは100Pa・s以下である。   As a compounding quantity of the inorganic filler in this case, it is preferable to mix | blend by 50-400 mass parts with respect to 100 mass parts of total amounts of (A) liquid epoxy resin and (B) aromatic amine type hardening | curing agent, More Preferably it mix | blends in 100-250 mass parts. If it is less than 50 parts by mass, the expansion coefficient is large, and there is a risk of inducing cracks in the cold test. If it exceeds 400 parts by mass, the viscosity will increase and the thin film penetration may be reduced. A preferable viscosity in this case is 250 Pa · s or less, preferably 100 Pa · s or less at 25 ° C.

[その他添加剤]
本発明のエポキシ樹脂組成物には、応力を低下させる目的でシリコーンゴム、シリコーンオイルや液状のポリブタジエンゴム、メタクリル酸メチル−ブタジエン−スチレンよりなる熱可塑性樹脂などを配合してもよい。好ましくは、アルケニル基含有エポキシ樹脂又はフェノール樹脂のアルケニル基と下記平均組成式(4)で示される1分子中の珪素原子の数が20〜400であり、珪素原子に結合する水素原子(SiH基)の数が1〜5であるオルガノポリシロキサンのSiH基との付加反応により得られる共重合体を配合することが好ましい。
a5 bSiO(4-a-b) (4)
(但し、式中R5は置換又は非置換の一価の炭化水素基、aは0.01〜0.1、bは1.8〜2.2、1.81≦a+b≦2.3である。)
[Other additives]
The epoxy resin composition of the present invention may be blended with silicone rubber, silicone oil, liquid polybutadiene rubber, thermoplastic resin made of methyl methacrylate-butadiene-styrene, or the like for the purpose of reducing stress. Preferably, the alkenyl group of the alkenyl group-containing epoxy resin or phenol resin and the number of silicon atoms in one molecule represented by the following average composition formula (4) are 20 to 400, and the hydrogen atom (SiH group bonded to the silicon atom) ) Is preferably blended with a copolymer obtained by addition reaction with SiH groups of organopolysiloxane having 1-5.
H a R 5 b SiO (4-ab) (4)
(Wherein R 5 is a substituted or unsubstituted monovalent hydrocarbon group, a is 0.01 to 0.1, b is 1.8 to 2.2, and 1.81 ≦ a + b ≦ 2.3. is there.)

なお、R5の一価炭化水素基としては、炭素数1〜10、特に炭素数1〜8のものが好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、へキシル基、オクチル基、デシル基等のアルキル基、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、キシリル基、トリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基などや、これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したフロロメチル基、ブロモエチル基、トリフルオロプロピル基等のハロゲン置換一価炭化水素基を挙げることができる。 The monovalent hydrocarbon group for R 5 is preferably a group having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms, and is preferably a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert- Alkyl groups such as butyl group, hexyl group, octyl group and decyl group, alkenyl groups such as vinyl group, allyl group, propenyl group, butenyl group and hexenyl group, aryl groups such as phenyl group, xylyl group and tolyl group, benzyl Groups, phenylethyl groups, aralkyl groups such as phenylpropyl groups, etc., and fluorocarbon groups, bromoethyl groups, trifluoro, etc. in which some or all of the hydrogen atoms of these hydrocarbon groups are replaced by halogen atoms such as chlorine, fluorine, bromine, etc. Mention may be made of halogen-substituted monovalent hydrocarbon groups such as propyl groups.

上記共重合体としては、中でも下記構造式(5)のものが望ましい.   As the copolymer, the following structural formula (5) is preferable.

Figure 2006316250
Figure 2006316250

上記式(4)中、R5は上記と同じであり、R6は−CH2CH2CH2−、−OCH2−CH(OH)−CH2−O−CH2CH2CH2−又は−O−CH2CH2CH2−であり、R7は水素原子又は炭素数1〜4のアルキル基である。nは4〜199、好ましくは19〜109の整数、pは1〜10の整数、qは1〜10の整数である。 In the above formula (4), R 5 is the same as above, and R 6 is —CH 2 CH 2 CH 2 —, —OCH 2 —CH (OH) —CH 2 —O—CH 2 CH 2 CH 2 — or —O—CH 2 CH 2 CH 2 —, wherein R 7 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. n is an integer of 4 to 199, preferably 19 to 109, p is an integer of 1 to 10, and q is an integer of 1 to 10.

上記共重合体をジオルガノポリシロキサン量が、(A)、(B)成分の合計100質量部に対して0〜20質量部、特には2〜15質量部含まれるように配合することで応力をより一層低下させることができる。ここで、ジオルガノポリシロキサン量は、下記式で示される。
ポリシロキサン量=(ポリシロキサン部分の分子量/(E)成分の分子量)×添加量
Stress is obtained by blending the above copolymer so that the amount of diorganopolysiloxane is 0 to 20 parts by mass, particularly 2 to 15 parts by mass with respect to the total of 100 parts by mass of the components (A) and (B). Can be further reduced. Here, the amount of diorganopolysiloxane is represented by the following formula.
Polysiloxane amount = (molecular weight of polysiloxane portion / molecular weight of component (E)) × added amount

本発明の液状エポキシ樹脂組成物には、更に必要に応じ、接着向上用炭素官能性シラン、カーボンブラックなどの顔料、染料、酸化防止剤、その他の添加剤を本発明の目的を損なわない範囲で配合することができる。但し、本発明においては、表面処理剤として使用する以外に接着向上用炭素官能性シラン等としてアルコキシ系シランカップリング剤を添加しないことが好ましい。特に、アンダーフィル材として用いる場合、少量でもアルコキシ系シランカップリング剤を配合すると、ボイドの原因となるおそれがある。   In the liquid epoxy resin composition of the present invention, if necessary, a carbon functional silane for improving adhesion, a pigment such as carbon black, a dye, an antioxidant, and other additives within a range not impairing the object of the present invention. Can be blended. However, in the present invention, it is preferable not to add an alkoxy-based silane coupling agent as a carbon-functional silane for improving adhesion other than the use as a surface treatment agent. In particular, when used as an underfill material, if an alkoxy-based silane coupling agent is blended even in a small amount, it may cause voids.

[液状エポキシ樹脂組成物の調整等]
本発明の液状エポキシ樹脂組成物は、例えば、液状エポキシ樹脂、芳香族アミン系硬化剤、マイクロカプセル、必要に応じて無機質充填剤及びその他の添加剤等を同時に又は別々に、必要により加熱処理を加えながら、撹拌、溶解、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。またこれら装置を適宜組み合わせて使用してもよい。
[Adjustment of liquid epoxy resin composition]
The liquid epoxy resin composition of the present invention is, for example, a liquid epoxy resin, an aromatic amine curing agent, a microcapsule, and if necessary, an inorganic filler and other additives at the same time or separately, and if necessary, heat treatment. While adding, it can be obtained by stirring, dissolving, mixing and dispersing. The apparatus for mixing, stirring, dispersing and the like is not particularly limited, and a lykai machine, a three roll, a ball mill, a planetary mixer and the like equipped with a stirring and heating device can be used. Moreover, you may use combining these apparatuses suitably.

なお、本発明において、封止材として用いる液状エポキシ樹脂組成物の粘度は、25℃において1,000Pa・s以下、特に500Pa・s以下のものが好ましい。また、この組成物の成形方法、成形条件は、常法とすることができるが、好ましくは、先に100〜120℃、0.5時間以上、その後150〜175℃、0.5時間以上の条件で熱オーブンキュアを行う。100〜120℃での加熱が0.5時間未満では、硬化後にボイドが発生する場合がある。また150〜175℃での加熱が0.5時間未満では、十分な硬化物特性が得られない場合がある。この場合、キュアの時間は加熱温度に応じて適宜選定される。   In the present invention, the viscosity of the liquid epoxy resin composition used as the sealing material is preferably 1,000 Pa · s or less, particularly 500 Pa · s or less at 25 ° C. The molding method and molding conditions for this composition can be conventional methods, but preferably 100 to 120 ° C. for 0.5 hour or longer, and then 150 to 175 ° C. for 0.5 hour or longer. Heat oven cure under conditions. When heating at 100 to 120 ° C. is less than 0.5 hour, voids may occur after curing. Further, if the heating at 150 to 175 ° C. is less than 0.5 hours, sufficient cured product characteristics may not be obtained. In this case, the curing time is appropriately selected according to the heating temperature.

ここで、本発明に用いるフリップチップ型半導体装置としては、例えば図1に示したように、通常、有機基板1の配線パターン面に複数個のバンプ2を介して半導体チップ3が搭載されているものであり、上記有機基板1と半導体チップ3との隙間(バンプ2間の隙間)にアンダーフィル材4が充填され、その側部がフィレット材5で封止されたものとすることができるが、本発明の封止材は、特にこのようなアンダーフィル材として使用する場合に有効である。   Here, as a flip chip type semiconductor device used in the present invention, for example, as shown in FIG. 1, for example, a semiconductor chip 3 is usually mounted on a wiring pattern surface of an organic substrate 1 via a plurality of bumps 2. The gap between the organic substrate 1 and the semiconductor chip 3 (the gap between the bumps 2) is filled with the underfill material 4 and the side portion thereof is sealed with the fillet material 5. The sealing material of the present invention is particularly effective when used as such an underfill material.

以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not restrict | limited to the following Example.

[実施例1〜3、比較例1、2]
表1に示す成分を3本ロールで均一に混練することにより、7種の樹脂組成物を得た。これらの樹脂組成物を用いて、以下に示す試験を行った。その結果を表2に示す。
[粘度]
BH型回転粘度計を用いて4rpmの回転数で25℃における粘度を測定した。
[保存性]
25℃/60%RHにおいて樹脂組成物を保存し、上記測定条件で20%粘度上昇するのに要した時間の1/2の時間を保存性とした。
[ゲル化時間]
150℃のホットプレートに0.5ccの液状樹脂組成物を滴下し、スパチュラで撹拌して糸引きが切れるところでゲル化時間とした。
[Tg(ガラス転移温度)、CTE1(膨張係数)、CTE2(膨張係数)]
樹脂組成物を120℃/0.5時間+165℃/3時間で硬化させた5mm×5mm×15mmの硬化物試験片を用いて、TMA(熱機械分析装置)により毎分5℃の速さで昇温した時のTgを測定した。また、以下の温度範囲の膨張係数を測定した。
CTE1の温度範囲は50〜80℃、CTE2の温度範囲は200〜230℃である。
[Examples 1 to 3, Comparative Examples 1 and 2]
Seven types of resin compositions were obtained by uniformly kneading the components shown in Table 1 with three rolls. The test shown below was done using these resin compositions. The results are shown in Table 2.
[viscosity]
The viscosity at 25 ° C. was measured at a rotation speed of 4 rpm using a BH type rotational viscometer.
[Preservation]
The resin composition was stored at 25 ° C./60% RH, and half the time required to increase the viscosity by 20% under the above measurement conditions was defined as storage stability.
[Gelification time]
A 0.5 cc liquid resin composition was dropped onto a 150 ° C. hot plate and stirred with a spatula to determine the gelation time when the stringing was broken.
[Tg (glass transition temperature), CTE1 (expansion coefficient), CTE2 (expansion coefficient)]
Using a cured product test piece of 5 mm × 5 mm × 15 mm in which the resin composition was cured at 120 ° C./0.5 hours + 165 ° C./3 hours, TMA (thermomechanical analyzer) was used at a rate of 5 ° C. per minute. Tg when the temperature was raised was measured. Moreover, the expansion coefficient in the following temperature range was measured.
The temperature range of CTE1 is 50 to 80 ° C, and the temperature range of CTE2 is 200 to 230 ° C.

[PCT剥離テスト]
ポリイミドコートした10mm×10mmのシリコンチップを30mm×30mmのFR−4基板に約100μmのスペーサを用いて設置し、生じた隙間に組成物を侵入させて120℃/0.5時間+165℃/3時間の条件で硬化させ、30℃/65%RH/192時間後に最高温度265℃に設定したIRリフローにて5回処理した後の剥離、更にPCT(121℃/2.1atm)の環境下に置き、336時間後の剥離をC−SAM(SONIX社製)で確認した。
[熱衝撃テスト]
ポリイミドコートした10mm×10mmのシリコンチップを30mm×30mmのFR−4基板に約100μmのスペーサを用いて設置し、生じた隙間に組成物を侵入させて120℃/0.5時間+165℃/3時間の条件で硬化させ、30℃/65%RH/192時間後に最高温度265℃に設定したIRリフローにて5回処理した後、−65℃/30分、150℃/30分を1サイクルとし、250サイクル、500サイクル、750サイクル、1,000サイクル後の剥離、クラックを確認した。
[PCT peel test]
A polyimide-coated 10 mm × 10 mm silicon chip was placed on a 30 mm × 30 mm FR-4 substrate with a spacer of about 100 μm, and the composition was intruded into the resulting gap, resulting in 120 ° C./0.5 hours + 165 ° C./3. It is cured under the conditions of time, peeled after being treated 5 times by IR reflow set at a maximum temperature of 265 ° C. after 30 ° C./65% RH / 192 hours, and further in an environment of PCT (121 ° C./2.1 atm) The peeling after 336 hours was confirmed by C-SAM (manufactured by SONIX).
[Thermal shock test]
A polyimide-coated 10 mm × 10 mm silicon chip was placed on a 30 mm × 30 mm FR-4 substrate with a spacer of about 100 μm, and the composition was intruded into the resulting gap, resulting in 120 ° C./0.5 hours + 165 ° C./3. It is cured under the conditions of time, and after 30 treatments with IR reflow set to a maximum temperature of 265 ° C after 30 ° C / 65% RH / 192 hours, -65 ° C / 30 minutes, 150 ° C / 30 minutes is one cycle. , 250 cycles, 500 cycles, 750 cycles, peeling after 1,000 cycles, cracks were confirmed.

Figure 2006316250
Figure 2006316250

(A)液状エポキシ樹脂
エポキシ樹脂a:ビスフェノールF型エポキシ樹脂(RE303S−L:日本化薬株式会社製)
エポキシ樹脂b:下記式(6)で示される3官能型エポキシ樹脂(エピコート630H:ジャパンエポキシレジン株式会社製)
(A) Liquid epoxy resin Epoxy resin a: Bisphenol F type epoxy resin (RE303S-L: Nippon Kayaku Co., Ltd.)
Epoxy resin b: trifunctional epoxy resin represented by the following formula (6) (Epicoat 630H: manufactured by Japan Epoxy Resin Co., Ltd.)

Figure 2006316250
Figure 2006316250

(B)硬化剤
硬化剤a:ジエチルトルエンジアミン(分子量=178)
硬化剤b:ジメチルチオトルエンジアミン(分子量=214.4)
硬化剤c:ジメチルトルエンジアミン(分子量=150)
硬化剤d:テトラエチルジアミノフェニルメタン(C−300S:日本化薬株式会社製)
(B) Curing agent Curing agent a: diethyltoluenediamine (molecular weight = 178)
Curing agent b: dimethylthiotoluenediamine (molecular weight = 214.4)
Curing agent c: dimethyltoluenediamine (molecular weight = 150)
Curing agent d: Tetraethyldiaminophenylmethane (C-300S: manufactured by Nippon Kayaku Co., Ltd.)

(C)硬化触媒
硬化触媒a:ベンゾフェノンテトラカルボン酸無水物(BTDA:Gulf Oil株式会社製)のマイクロカプセル、BTDAを20質量%含有したメタクリル酸メチルの重合体、平均粒径が7μm、o−クレゾール中で30℃、15分間の処理でマイクロカプセルから溶出する触媒の量は87質量%である。
硬化触媒b:ベンゾフェノンテトラカルボン酸無水物(BTDA:Gulf Oil株式会社製)
(D)無機充填剤
球状シリカ:最大粒径24μm、平均粒径6μmの球状シリカ(株式会社龍森製)
(C) Curing catalyst Curing catalyst a: Microcapsules of benzophenone tetracarboxylic acid anhydride (BTDA: manufactured by Gulf Oil Co.), a polymer of methyl methacrylate containing 20% by mass of BTDA, and an average particle size The amount of the catalyst eluted from the microcapsule by treatment at 7 ° C. in o-cresol at 30 ° C. for 15 minutes is 87% by mass.
Curing catalyst b: benzophenone tetracarboxylic anhydride (BTDA: manufactured by Gulf Oil Co., Ltd.)
(D) Inorganic filler Spherical silica: Spherical silica having a maximum particle size of 24 μm and an average particle size of 6 μm (manufactured by Tatsumori Co., Ltd.)

その他添加剤
シランカップリング剤:γ−グリシドキシプロピルトリメトキシシラン(KBM403:信越化学工業株式会社製)
カーボンブラック:デンカブラック(電気化学工業株式会社製)
共重合体:下記式(8)で示されるアルケニル基含有エポキシ樹脂のアルケニル基と、下記式(7)で示されるSiH基含有オルガノポリシロキサンのSiH基との付加反応により得られる共重合体(オルガノポリシロキサン部分の含有率=81.5質量%)
Other additives Silane coupling agent: γ-glycidoxypropyltrimethoxysilane (KBM403: manufactured by Shin-Etsu Chemical Co., Ltd.)
Carbon black: Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.)
Copolymer: a copolymer obtained by an addition reaction between the alkenyl group of the alkenyl group-containing epoxy resin represented by the following formula (8) and the SiH group of the SiH group-containing organopolysiloxane represented by the following formula (7) ( Content of organopolysiloxane part = 81.5% by mass)

Figure 2006316250
Figure 2006316250

フリップチップ型半導体装置の概略図である。It is a schematic diagram of a flip chip type semiconductor device.

符号の説明Explanation of symbols

1 有機基板
2 バンプ
3 半導体チップ
4 アンダーフィル材
5 フィレット材
1 Organic substrate 2 Bump 3 Semiconductor chip 4 Underfill material 5 Fillet material

Claims (7)

(A)液状エポキシ樹脂
(B)下記一般式(1)で表される芳香族アミン化合物を5質量%以上含有する芳香族アミン系硬化剤
Figure 2006316250

(式中、R1〜R3は独立に炭素数1〜6の一価炭化水素基、CH3S−及びC25S−から選ばれる基である。)
(C)酸無水物を含有したマイクロカプセル型硬化触媒
を必須成分とすることを特徴とする液状エポキシ樹脂組成物。
(A) Liquid epoxy resin (B) Aromatic amine curing agent containing 5% by mass or more of an aromatic amine compound represented by the following general formula (1)
Figure 2006316250

(Wherein, R 1 to R 3 is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms, a CH 3 S-, and C 2 H 5 S- from group selected.)
(C) A liquid epoxy resin composition comprising a microcapsule-type curing catalyst containing an acid anhydride as an essential component.
(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対し、(C)酸無水物を含有したマイクロカプセル型硬化触媒の添加量が0.1〜50質量部であることを特徴とする請求項1記載の液状エポキシ樹脂組成物。   (A) The addition amount of the microcapsule type curing catalyst containing an acid anhydride is 0.1 to 50 parts by mass with respect to 100 parts by mass of the total amount of the liquid epoxy resin and (B) the aromatic amine curing agent. The liquid epoxy resin composition according to claim 1, wherein (C)成分のマイクロカプセル型硬化触媒が、平均粒径が0.5〜10μmであり、かつo−クレゾール中におけるマイクロカプセルからの触媒の溶出量が、30℃、15分でマイクロカプセル中に含まれる全触媒量の70質量%以上であることを特徴とする請求項1乃至2のいずれか1項に記載の液状エポキシ樹脂組成物。   The (C) component microcapsule type curing catalyst has an average particle size of 0.5 to 10 μm, and the amount of catalyst elution from the microcapsules in o-cresol is 30 ° C. in 15 minutes. 3. The liquid epoxy resin composition according to claim 1, wherein the liquid epoxy resin composition is 70% by mass or more of the total amount of the catalyst contained. (C)成分のマイクロカプセルに含まれる酸無水物が、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ピロメリット酸二無水物、マレイン化アロオシメン、ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラビスベンゾフェノンテトラカルボン酸二無水物、(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物から選ばれる酸無水物である請求項1乃至3のいずれか1項記載の液状エポキシ樹脂組成物。   The acid anhydride contained in the (C) component microcapsule is methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methyl hymic anhydride, pyromellitic dianhydride, maleated alloocimene, Benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetrabisbenzophenone tetracarboxylic dianhydride, (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-di The liquid epoxy resin composition according to any one of claims 1 to 3, which is an acid anhydride selected from carboxyphenyl) methane dianhydride and 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride. object. (D)成分として無機質充填剤を(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対して50〜1,200質量部配合してなることを特徴とする請求項1乃至4のいずれか1項記載の液状エポキシ樹脂組成物。   (D) 50 to 1,200 parts by mass of inorganic filler as component (A) with respect to 100 parts by mass of the total amount of (A) liquid epoxy resin and (B) aromatic amine curing agent, The liquid epoxy resin composition of any one of Claims 1 thru | or 4. 請求項1乃至5のいずれか1項記載の液状エポキシ樹脂組成物の硬化物で封止された半導体装置。   A semiconductor device sealed with a cured product of the liquid epoxy resin composition according to claim 1. 請求項1乃至5のいずれか1項記載の液状エポキシ樹脂組成物の硬化物をアンダーフィル材として封止したフリップチップ型半導体装置。   A flip chip type semiconductor device in which a cured product of the liquid epoxy resin composition according to claim 1 is sealed as an underfill material.
JP2006067239A 2005-04-12 2006-03-13 Liquid epoxy resin composition and semiconductor device Pending JP2006316250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067239A JP2006316250A (en) 2005-04-12 2006-03-13 Liquid epoxy resin composition and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005114204 2005-04-12
JP2006067239A JP2006316250A (en) 2005-04-12 2006-03-13 Liquid epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2006316250A true JP2006316250A (en) 2006-11-24

Family

ID=37537197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067239A Pending JP2006316250A (en) 2005-04-12 2006-03-13 Liquid epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2006316250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156474A (en) * 2006-12-25 2008-07-10 Dow Corning Toray Co Ltd Curable silicone composition and electronic part
WO2008123414A1 (en) * 2007-03-30 2008-10-16 Sumitomo Bakelite Co., Ltd. Connection structure for flip-chip semiconductor package, buildup layer material, sealing resin composition and circuit board
JP2010150310A (en) * 2008-12-24 2010-07-08 Toray Ind Inc Epoxy resin composition, fiber-reinforced composite material and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156474A (en) * 2006-12-25 2008-07-10 Dow Corning Toray Co Ltd Curable silicone composition and electronic part
WO2008123414A1 (en) * 2007-03-30 2008-10-16 Sumitomo Bakelite Co., Ltd. Connection structure for flip-chip semiconductor package, buildup layer material, sealing resin composition and circuit board
US7893542B2 (en) 2007-03-30 2011-02-22 Sumitomo Bakelite Company, Ltd. Connecting structure for flip-chip semiconductor package, build-up layer material, sealing resin composition, and circuit board
TWI416673B (en) * 2007-03-30 2013-11-21 Sumitomo Bakelite Co Connection structure for flip-chip semiconductor package, build-up layer material, sealing resin composition, and circuit substrate
JP5660272B2 (en) * 2007-03-30 2015-01-28 住友ベークライト株式会社 Flip chip semiconductor package connection structure, build-up layer material, sealing resin composition, and circuit board
JP2010150310A (en) * 2008-12-24 2010-07-08 Toray Ind Inc Epoxy resin composition, fiber-reinforced composite material and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3876965B2 (en) Liquid epoxy resin composition and semiconductor device
JP3736611B2 (en) Flip chip type semiconductor device sealing material and flip chip type semiconductor device
US7692318B2 (en) Liquid epoxy resin composition and semiconductor device
JP5116152B2 (en) Resin composition for manufacturing semiconductor devices
JP4656269B2 (en) Liquid epoxy resin composition and semiconductor device
JP2008098620A (en) Resin composition set for system-in-package type semiconductor device
JP3952143B2 (en) Liquid epoxy resin composition and semiconductor device
JP4066174B2 (en) Liquid epoxy resin composition, flip chip type semiconductor device and sealing method thereof
JP3695521B2 (en) Liquid epoxy resin composition and semiconductor device
JP3912515B2 (en) Liquid epoxy resin composition and semiconductor device
JP3997422B2 (en) Liquid epoxy resin composition and semiconductor device
JP3985148B2 (en) Liquid epoxy resin composition and semiconductor device
JP2009173744A (en) Underfill agent composition
JP2010077234A (en) Liquid epoxy resin composition and semiconductor device
JP4176619B2 (en) Flip chip mounting side fill material and semiconductor device
JP3925803B2 (en) Flip chip mounting side fill material and semiconductor device
JP4697476B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device
JP2007231146A (en) Liquid epoxy resin composition and semiconductor device
JP4737364B2 (en) Liquid epoxy resin composition and semiconductor device
JP3871032B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device
JP2006316250A (en) Liquid epoxy resin composition and semiconductor device
JP4221585B2 (en) Liquid epoxy resin composition and semiconductor device
JP2005194502A (en) Liquid epoxy resin composition and semiconductor device
JP5354721B2 (en) Underfill agent composition
JP3867784B2 (en) Liquid epoxy resin composition and semiconductor device