TW201107405A - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
TW201107405A
TW201107405A TW099110747A TW99110747A TW201107405A TW 201107405 A TW201107405 A TW 201107405A TW 099110747 A TW099110747 A TW 099110747A TW 99110747 A TW99110747 A TW 99110747A TW 201107405 A TW201107405 A TW 201107405A
Authority
TW
Taiwan
Prior art keywords
epoxy resin
component
resin composition
permeability
test
Prior art date
Application number
TW099110747A
Other languages
Chinese (zh)
Other versions
TWI466938B (en
Inventor
Toshifumi Kuboyama
Original Assignee
Three Bond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Three Bond Co Ltd filed Critical Three Bond Co Ltd
Publication of TW201107405A publication Critical patent/TW201107405A/en
Application granted granted Critical
Publication of TWI466938B publication Critical patent/TWI466938B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

Provided is a capillary flow underfill sealing material that holds up well in reliability tests, is highly permeable both in room-temperature air (25 DEG C) and 120 DEG C air, and is an epoxy resin composite that fulfills each of the following conditions: linear expansion coefficient when cured (a1) of 60 ppm/ DEG C or less; glass transition point at least 120 DEG C; storage elastic modulus at 25 DEG C of 3.0 GPa or less; and permeability at 120 DEG C of at least 30 mm.

Description

201107405 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種後滲透密封用的環氧樹脂組成物, 其係適用於使晶粒大小封裝(CSP)、球閘陣列(BGA)、晶圓 級(WL-CSP)等之錫球與基板電極連接後進行之樹脂組成物 所產生的密封。 【先前技術】 在基板封裝中係藉焊接之自我排列效果連接錫球與基 板電極,經過洗淨步驟而使硬化型樹脂組成物流入於間隙 後進行硬化之密封方法。此密封劑一般稱爲底部塡充劑, 但其組成係以環氧樹脂有實績。另外,亦已知於特表 2003 -5 04893號公報所揭示之胺基甲酸酯樹脂的底部塡充 劑。胺基甲酸酯樹脂之時,因特徵在於修復性,有時信賴 性低。 另外,有添加橡膠成分而提昇信賴性之方法。可使用 具有橡膠骨架之硬化性樹脂或添加橡膠粉體之硬化性樹脂 。於特開2001 -27〇976號公報中係已揭示已添加橡膠粉與 無機塡充劑之密封用環氧樹脂,又,於特開平9-i 53 570 號公報中已揭示一種已添加特殊的丁二烯共聚物之粉體與 無機塡充劑之密封用環氧樹脂。在以往之底部塡充劑中係 必須有氧化鋁或氧化矽等之無機塡充劑。藉由添加無機塡 充劑,進行降低線膨脹率,且降低有機材料之缺點的熱時 之膨脹試驗。然而,因無機塡充劑之添加量變多,故黏度 t S] -5- 201107405 變高,滲透性降低。 在特開2008-208 1 82號公報中係記載同時添加丙烯酸 橡膠粉與聚矽氧橡膠粉等》藉添加無機塡充材,以提高特 性亦己被記載,宜實質上倂用添加上述2種類的橡膠粉與 無機塡充劑已被記載。 於特開2007-2467 1 3號公報中係揭示已使用多官能之 縮水甘油基胺型環氧樹脂的繼電器用之密封用環氧樹脂。 就流入間隙之點來看,雖與底部塡充劑用途近似,但較保 持所接續之電極的封裝用途,並未被要求信賴性。 【發明內容】 [發明欲解決之課題] 至今日,具有對信賴性試驗之耐性,同時在常溫(25 °C)環境及120°C環境的滲透性高之後滲透型的底部塡充劑 尙未被發現,本發明之目的在於提供一種滿足上述之要求 特性的後滲透密封用之環氧樹脂組成物。 [發明之槪要] 本發明係爲達成上述目的,經專心硏究之結果,發現 一種環氧樹脂組成物適於底部塡充劑,該環氧樹脂組成物 係具有硬化物之線膨脹率(α 1) : 60ppm/°C以下、玻璃轉 移點:120t:以上、貯藏彈性率(25°C ) : 3.0GPa以下、硬 化前之滲透性(l2〇°C ) : 30mm以上之參數,終完成本發 明。 -6 - 201107405 因此’本發明之第一係一種後滲透型密封用之環氧樹 脂組成物’其係硬化物之線膨脹率(α 1 )、玻璃轉移點、貯 藏彈性率(25 °c)、硬化前之滲透性(120 °c)滿足以下之全部 的要件; 線膨脹率(α 1 ) : 60ppm/°C以下 玻璃轉移點:1 2 0 °C以上 貯藏彈性率(25°C): 3.0GPa以下 滲透性(120 °C ) : 30mm以上。 本發明之第二係上述第一記載之後滲透型密封用之環 氧樹脂組成物,其係由以下之(A)〜(D)成分所構成; (A) 成分:環氧樹脂 (B) 成分:於1分子內具有3個以上之環氧基與芳香 環的化合物 (C) 成分:丁二烯橡膠粉或丙烯酸橡膠粉 (D) 成分:潛在性硬化劑。 本發明之第三係上述第二記載之後滲透型密封用之環 氧樹脂組成物,其中相對於(A)成分與(B)成分之合計100 質量份而言,係添加(C)成分3〜10質量份,同時實質上 不含有(C)成分以外之塡充劑。 本發明之第四係上述第--第三記載中任一項之後滲 透型密封用之環氧樹脂組成物,其中在室溫下實質上不含 有液狀之硬化劑。 [發明之效果] 201107405 若依本發明,係可提供一種具有對信賴性試驗之耐性 ,同時常溫(25°C)環境及120°C環境的滲透性高之後滲透 型的底部塡充劑。 [用以實施發明之形態] 其次說明本發明之內容。封裝用之底部塡充劑的主要 硬化物特性係藉由玻璃轉移點(Tg)、確認線膨脹率(較玻璃 轉移點更低溫側之α 1、高溫側之α 2)之熱機械分析裝置 (ΤΜΑ)或貯藏彈性率(Ε')、損失彈性率(Ε")、玻璃轉移點、 確認tan ό之動態黏彈性測定裝置(DMA)進行測定。在本 發明中係發現在玻璃轉移點(以TMA測定)、線膨脹率(α 1)及25°C之貯藏彈性率(Ε’)中具有特定之硬化物特性的樹 脂組成物適於後滲透型底部塡充劑。(以下,所謂玻璃轉 移點係以TMA所測得者,所謂α 1係較以TMA所測得之 玻璃轉移點更低溫側的線膨脹率,所謂E’(25°C )係以DMA 所測得之在2 5 °C中的貯藏彈性率)適於本發明之參數係以 Tg 爲 120°C 以上、αΐ 爲 60ppm/°C 以下、E’爲 3.0GPa 以 下爲佳。E’中尤佳者係E'(25°C )爲2.5GPa以下。最佳之要 件係 Tg 爲 120〜200°C、α 1 爲 1 〇〜60ppm/°C,E1 爲 0,1 〜3.0GPa。底部塡充劑有採取玻璃轉移點高且降低線膨脹 率之方法的傾向。此係在高溫放置試驗、熱衝擊試驗 '高 溫高濕試驗等之信賴性試驗中的溫度區域,以免電子電路 中斷。又’認爲依熱履歷降低線膨脹率以免底部塡充劑之 硬化物膨脹。但,若爲高玻璃轉移點、低線膨脹率,硬化 -8 - 201107405 物會變脆,故無法追蹤在信賴性試驗中之被黏體的膨脹收 縮之變化。爲克服此點,在本發明中係降低E,( 2 5。(:),具 彈力,得到具有追蹤性之硬化物上具有一個特徵。進一步 ’使E’(25°C)爲l.OGPa以下係可爲軟質環氧樹脂或胺基 甲酸酯樹脂,但必然出現Tg降低,且α 1變高之傾向, 故必須滿足丁8'〇:1、£’(25。(:)之3種類的參數。進一步 ,於被CSP或BGA基板挾住之1〇〇〜300μιη的間隙滲透 樹脂組成物時,就形成塡料(fillet)上有效之參數而言可舉 例在1 2〇°C環境之滲透性。信賴性試驗之結果依形成塡料 (fillet)變化,故在本發明中,必須滿足120°C環境的滲透 性。底部塡充劑之硬化性高時,在未充分滲透於間隙之階 段流動性會消失。另外,硬化性低時,硬化時間太長,於 作業性造成障礙,因此,尤佳之滲透性爲3 0〜6 0 m m。上 述係例示性說明,本發明不受其限制。 可使用於本發明之(A)成分係於1分子內具有2個以 上之環氧基的化合物,一般稱爲環氧樹脂之化合物。可使 僅使用1種類’亦可混合2種類以上而使用。環氧樹脂之 具體例係藉表氯醇與雙酚類等之多價酚類或多元醇之縮合 而得到’可例示如雙酚A型、溴化雙酚A型、氫化雙酚A 型、雙酚F型、雙酚S型、雙酚AF型、聯苯基、萘型、 芴型、酚醛清漆型、酚酚醛清漆型、鄰甲酚酚醛清漆型、 三(羥苯基)甲烷型、四苯基醇乙烷型等之縮水甘油基醚型 環氧樹脂。其他,藉由表氯醇與酞酸衍生物或脂肪酸等之 羧酸的縮合所得到之縮水甘油基酯型環氧樹脂、表氯醇與 -9- 201107405 胺類、三聚氰酸類、乙內醯脲(Hydantoin)類之反應所得到 之縮水甘油基胺型環氧樹脂、進一步係以各種的方法改性 之環氧樹脂’但不限定於此等。若考慮價格面或安定供給 ’(A)成分宜於分子內具有平均約2個環氧基之化合物。 所市售之(A)成分係可舉例如japan Epoxy Resin股份 公司製827、82 8EL等,大日本油墨工業股份公司製之 EPICLON 8 3 0、EXA- 8 3 5 LV等。東都化成股份公司製Epi Tohto YD-128、YDF-170等,但不限定於此等。若考量價 格面’宜於分子內具有平均2個環氧基之雙酚A骨架或具 有雙酚F骨架之環氧樹脂。 於本發明可使用之(B)成分係於1分子中具有環氧基3 個以上與芳香環之化合物。芳香環之具體例可舉例如苯環 、萘環、苯胺環等。具體之3官能的(B)成分可舉例如 N,N-雙(2,3-環氧基丙基)-4-(2,3-環氧基丙氧基)苯胺或 N,N-雙(2,3-環氧基丙基)-4-(2,3-環氧基丙氧基)-2 -甲基苯 胺等β又’具體之4官能的(B)成分係可舉例如二胺基二 苯基甲烷四縮水甘油基醚。所市售之該化合物係可舉例如 Japan Epoxy Resin 股份公司製 jER630、jER604、荒川化 學工業股份公司製之Comp〇ceran E201、E202等,但不限 定於此等。(B)成分宜於常溫下爲液狀,但在黏度及滲透 性不造成障礙的範圍,亦可於環氧樹脂溶解固形之化合物 而使用。(B)成分係宜爲含有環氧樹脂全體之20〜90重量 %,添加(B)成分,有提高Tg之傾向。另外,不具有芳香 環之3官能以上的環氧樹脂係無法提高Tg,而不適於本 -10- 201107405 發明。 於本發明可使用之(C)成分係丁二烯橡膠粉或丙烯酸 橡膠粉。單體爲從(甲基)丙烯酸酯所聚合之橡膠、或單體 爲從丁二烯所聚合的橡膠之粉體。聚合或共聚合時,亦可 含有(甲基)丙烯酸酯或丁二烯以外之單體的苯乙烯、異戊 二烯等。(甲基)丙烯酸酯之具體例可舉例如MMA等,但 不限定於此等。在上述中所謂(甲基)丙烯酸酯係丙烯酸酯 或/及丙烯酸酯。粉體之平均粒徑爲〇.〇5〜0.5 μηι,若考量 膨潤所產生的黏度變化,宜爲核殼型之(C)成分。藉添加 (C)成分,Ε'變低,就降低Ε'之效果,(C)成分最宜爲由 丁二烯所聚合之橡膠粉。 亦可使用事前被分散於環氧樹脂內之(C)成分。具體 上,於環氧樹脂內被Hyper或均質機等混合攪拌裝置分散 之橡膠粒子、或於環氧樹脂內藉乳化聚合所合成之橡膠粒 子爲相當於此。以乳化聚合之方法最終所形成之橡膠粒子 的平均粒徑宜爲0.〇5〜0·5μιη者。藉由使用事前分散於環 氧樹脂之橡膠粒子,有樹脂組成物之製造時成分之處理很 簡單的優點。又,環氧樹脂充分浸潤於橡膠粒子,故有時 間經過時之黏度變化變少之傾向。 上述丙烯酸橡膠粒子的具體例可舉例如綜硏化學股份 公司製MX系列、三菱Rayon股份公司製、Metaprene W 系列、Zeon化成股份公司製Zefiac系列等。事前分散橡 膠粒子之環氧樹脂的具體例可舉例如Resinous化成股份公 司製、RKB系列等。使用乳化聚合之環氧樹脂的具體例可 -11 - 201107405 舉例如股份公司日本觸媒製、Acryset BP系列等,但不限 定於此等。上述丁二烯橡膠粒子之具體例三菱Rayon股份 公司製、Metaprene E系列、Metaprene C系列等。又,使 以丁二烯橡膠作爲核之核殼粉經分散者,可舉例如股份公 司Kane Ace MX136,但不限定於此等。 相對於(A)成分與(B)成分之合計100質量份,(C)成分 之添加量宜爲1〇質量份以下。更宜相對於(A)成分與(B) 成分之合計100質量份而言,(C)成分之添加量爲3〜10 質量份。若(C)成分之添加量多於10質量份,αΐ有變大 之傾向,若少於3質量份,E’(2 5°C )有變高之傾向。 添加氧化鋁、氧化矽、碳酸鈣等無機塡充劑係熟悉此 技藝者泛用,但在本發明中若添加無機塡充劑,爲提高E’ ,最宜實質上不含有。前述之「實質上不含有」意指含有 殘留於原料之製造步驟中的雜質時,或 E'(2 5 °C )落於 3 .OGPa以下之範圍,刻意極微量添力口無機塡充劑之時等爲 其要件外。 可在本發明使用之(D)成分係可舉例如可對於環氧樹 脂使用來作爲硬化劑,同時粉碎成粉末狀之化合物。亦即 ,在室溫下固體之前述硬化劑被分散於液狀之環氧樹脂的 一液型環氧樹脂中,隨時間造成之黏度變化或物性變化很 少等之保存安定性可確保的硬化劑謂潛在性硬化劑。具體 上,可舉例如在室溫下粉體之咪唑衍生物、粉體二氰二醯 胺、對環氧樹脂加成三級胺而使反應中途停止之環氧基加 成物化合物經粉碎之粉末等,但不限定於此等。尤佳係前 -12- 201107405 述環氧基加成物化合物,所市售者可舉例如味之素 Techno股份公司製之Aminecure系列或富士化成工業 公司製之 Fujicure系列或旭化成化學股份公司 Novacure系列等。宜在120°C以下開始反應。 酸酐、酚化合物、硫醇化合物等在室溫下液狀的 劑亦已知作爲環氧樹脂之硬化劑。一般,即使單獨使 述液狀硬化劑,因硬化慢,故以(D)成分作爲硬化促 而與前述液狀硬化劑搭配而使用已爲人知。但在本發 若組合前述液狀硬化劑與(D)成分,在120 °C環境之滲 降低,故宜實質上不含有粉體之硬化劑以外。前述之 室溫下實質上不含有液狀之硬化劑」意指含有殘留於 之製造步驟中的雜質時,或,即使刻意極微量添加液 硬化劑,實質上決定反應性爲粉體之硬化劑時等係其 外。 相對於(A)成分與(B)成分之合計1〇〇質量份而言 成分之添加量宜爲10〜40質量份。少於1〇質量份時 性會降低,多於40質量份時,恐滲透性降低。 本發明之環氧樹脂組成物係在無損本發明之所期 效果之範圍,亦可適量調配顏料、染料等之著色劑、 劑、抗氧化劑、消泡劑、矽烷系偶合劑、流平劑、流 制劑等之添加劑。藉此等之添加,可得到樹脂強度、 強度、作業性、保存性等優異之組成物及其硬化物。 【實施方式】201107405 VI. Description of the Invention: [Technical Field] The present invention relates to an epoxy resin composition for post-osmosis sealing which is suitable for grain size encapsulation (CSP), ball gate array (BGA), crystal The sealing of the resin composition after the solder balls such as the circular grade (WL-CSP) are connected to the substrate electrode. [Prior Art] In the substrate package, a solder ball self-aligning effect is used to connect the solder ball and the substrate electrode, and the hardening type resin composition is flowed into the gap and hardened by a cleaning step. This sealant is generally referred to as a bottom sizing agent, but its composition is based on epoxy resin. Further, a bottom hydrating agent of a urethane resin disclosed in Japanese Laid-Open Patent Publication No. 2003-5 04893 is also known. In the case of a urethane resin, it is characterized by repairability and sometimes low reliability. In addition, there is a method of adding a rubber component to improve reliability. A curable resin having a rubber skeleton or a curable resin to which a rubber powder is added can be used. A sealing epoxy resin to which a rubber powder and an inorganic chelating agent have been added has been disclosed in Japanese Laid-Open Patent Publication No. 2001-27-976, and a special addition has been disclosed in Japanese Laid-Open Patent Publication No. Hei 9-i 53 570. An epoxy resin for sealing a powder of a butadiene copolymer and an inorganic chelating agent. In the conventional bottom sizing agent, an inorganic chelating agent such as alumina or cerium oxide is required. By adding an inorganic ruthenium, a heat-expansion test for lowering the coefficient of linear expansion and reducing the disadvantages of the organic material is carried out. However, since the amount of the inorganic chelating agent added is increased, the viscosity t S] -5 - 201107405 becomes high, and the permeability is lowered. In JP-A-2008-208 1 82, it is described that the addition of an acrylic rubber powder, a polyoxymethylene rubber powder, etc., by adding an inorganic cerium filler, has been described to improve the properties, and it is preferable to add the above two types substantially. The rubber powder and inorganic sputum have been recorded. Japanese Laid-Open Patent Publication No. 2007-24671-3 discloses a sealing epoxy resin for relays using a polyfunctional glycidylamine type epoxy resin. As far as the flow into the gap is concerned, although it is similar to the use of the bottom sizing agent, it is not required to be more reliable than the sealing application of the spliced electrode. SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] Today, there is a resistance to the reliability test, and at the same time, the permeability of the bottom of the osmotic type after the high temperature at room temperature (25 ° C) and the environment of 120 ° C is high. It has been found that an object of the present invention is to provide an epoxy resin composition for post-osmosis sealing which satisfies the above-mentioned required characteristics. [Summary of the Invention] The present invention has been made in an effort to achieve the above object, and it has been found that an epoxy resin composition is suitable for a bottom sizing agent having a linear expansion ratio of a cured product. α 1) : 60ppm/°C or less, glass transition point: 120t: above, storage elastic modulus (25°C): 3.0GPa or less, permeability before hardening (l2〇°C): 30mm or more, the final completion this invention. -6 - 201107405 Therefore, the first aspect of the present invention is an epoxy resin composition for post-penetration sealing, which has a linear expansion ratio (α 1 ) of a cured product, a glass transition point, and a storage modulus (25 ° C). The permeability before hardening (120 °c) meets all of the following requirements; Linear expansion ratio (α 1 ): Below 60 ppm/°C Glass transfer point: Storage elastic modulus above 1 20 °C (25 ° C): Permeability below 3.0 GPa (120 °C): 30 mm or more. The second aspect of the present invention is the epoxy resin composition for osmosis sealing according to the first aspect described above, which is composed of the following components (A) to (D); (A) component: epoxy resin (B) component : Compound (C) having three or more epoxy groups and aromatic rings in one molecule: butadiene rubber powder or acrylic rubber powder (D) Component: latent curing agent. In the third aspect of the present invention, the epoxy resin composition for the osmotic sealing according to the second aspect, wherein the component (C) is added to the total of 100 parts by mass of the component (A) and the component (B). 10 parts by mass, while substantially containing no chelating agent other than the component (C). According to a fourth aspect of the invention, the epoxy resin composition for osmosis-type sealing after any one of the above-mentioned third-third invention, wherein the liquid-like hardener is substantially not contained at room temperature. [Effects of the Invention] 201107405 According to the present invention, it is possible to provide a permeable type bottom entangled agent which has resistance to a reliability test and has a high permeability in a normal temperature (25 ° C) environment and a 120 ° C environment. [Formation for Carrying Out the Invention] Next, the contents of the present invention will be described. The main hardening property of the bottom sizing agent for encapsulation is a thermomechanical analysis device by means of a glass transition point (Tg), a linear expansion ratio (α 1 on the lower temperature side of the glass transition point, and α 2 on the high temperature side). ΤΜΑ) or storage elastic modulus (Ε'), loss elastic modulus (Ε quot "), glass transfer point, confirm the tan ό dynamic viscoelasticity measuring device (DMA) for measurement. In the present invention, it has been found that a resin composition having a specific hardening property in a glass transition point (measured by TMA), a linear expansion ratio (α 1), and a storage elastic modulus (Ε') of 25 ° C is suitable for post-infiltration. Type bottom sputum. (Hereinafter, the glass transition point is measured by TMA, and the α 1 system is the linear expansion ratio on the lower temperature side of the glass transition point measured by TMA. The so-called E' (25 ° C) is measured by DMA. The storage modulus at 25 ° C is preferably a parameter suitable for the present invention, and preferably has a Tg of 120 ° C or more, α ΐ of 60 ppm / ° C or less, and E' of 3.0 GPa or less. Particularly preferred in E' is E' (25 ° C) of 2.5 GPa or less. The optimum requirement is Tg 120~200°C, α 1 is 1 〇~60ppm/°C, and E1 is 0,1~3.0GPa. The bottom sizing agent has a tendency to take a method in which the glass transition point is high and the linear expansion ratio is lowered. This is the temperature range in the reliability test of the high temperature placement test, thermal shock test, high temperature and high humidity test, etc., in order to avoid interruption of the electronic circuit. Further, it is considered that the thermal expansion rate is lowered by the heat history to prevent the hardened material of the bottom sputum from expanding. However, in the case of a high glass transition point and a low linear expansion ratio, the hardened -8 - 201107405 material becomes brittle, so the change in the expansion and contraction of the adherend in the reliability test cannot be traced. In order to overcome this, in the present invention, E is lowered, (25: (:), elastic, and has a characteristic on a hardened property having traceability. Further 'E' (25 ° C) is 1.0 GGPa The following may be a soft epoxy resin or a urethane resin, but the Tg is inevitably lowered, and the α 1 tends to be high, so it is necessary to satisfy Ding 8'〇: 1, £' (25. (:) 3 Further, in the case where the resin composition is penetrated by a gap of 1 〇〇 to 300 μm by the CSP or the BGA substrate, the effective parameters on the fillet can be exemplified in the environment of 12 ° C. Permeability. The result of the reliability test varies depending on the formation of a fillet. Therefore, in the present invention, it is necessary to satisfy the permeability of the environment at 120 ° C. When the hardening property of the bottom sputum is high, the penetration is not sufficiently penetrated into the gap. At the stage, the fluidity disappears. In addition, when the hardenability is low, the hardening time is too long, which causes an obstacle to workability, and therefore, the permeability is preferably from 30 to 60 mm. The above-described examples exemplify that the present invention is not The limitation thereof is that the component (A) used in the present invention has 2 in one molecule. The above epoxy group-containing compound is generally referred to as a compound of an epoxy resin. It can be used in a single type or in a mixture of two or more types. Specific examples of the epoxy resin include epichlorohydrin and bisphenol. Condensation of polyvalent phenols or polyols can be exemplified as bisphenol A type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol F type, bisphenol S type, bisphenol AF type, biphenyl Glycidyl ether type epoxy resin such as base, naphthalene type, hydrazine type, novolac type, phenol novolac type, o-cresol novolac type, tris(hydroxyphenyl)methane type, tetraphenylolethane type Other, glycidyl ester type epoxy resin obtained by condensation of epichlorohydrin with a citric acid derivative or a carboxylic acid such as a fatty acid, epichlorohydrin and -9-201107405 amine, cyanuric acid, and B A glycidylamine type epoxy resin obtained by a reaction of a hydantoin type, and an epoxy resin modified by various methods, but is not limited thereto. If a price plane or a stable supply is considered' ( The component A) is preferably a compound having an average of about 2 epoxy groups in the molecule. A) The components are, for example, 827, 82 8EL, manufactured by japan Epoxy Resin Co., Ltd., EPICLON 8 3 0, EXA-8 3 5 LV manufactured by Dainippon Ink Co., Ltd., etc. Epi Tohto YD-128 manufactured by Dongdu Chemical Co., Ltd. YDF-170, etc., but is not limited to this. If the price side is considered to be an epoxy resin having an average of two epoxy groups in the molecule, or an epoxy resin having a bisphenol F skeleton, it can be used in the present invention. The component (B) is a compound having three or more epoxy groups and an aromatic ring in one molecule. Specific examples of the aromatic ring include a benzene ring, a naphthalene ring, an aniline ring, etc. Specific three-functional (B) component For example, N,N-bis(2,3-epoxypropyl)-4-(2,3-epoxypropoxy)aniline or N,N-bis(2,3-epoxypropane) The β-specific tetrafunctional (B) component such as 4-(2,3-epoxypropoxy)-2-methylaniline may, for example, be diaminodiphenylmethanetetraglycidyl Ether. The compound which is commercially available, for example, jER630, jER604, manufactured by Japan Epoxy Resin Co., Ltd., Comp〇ceran E201, E202, manufactured by Arakawa Chemical Industries Co., Ltd., and the like, are not limited thereto. The component (B) is preferably liquid at normal temperature, but it can also be used in the case where the epoxy resin dissolves the solid compound in the range where the viscosity and the permeability do not cause an obstacle. The component (B) is preferably contained in an amount of 20 to 90% by weight based on the total amount of the epoxy resin, and the component (B) is added, which tends to increase the Tg. Further, an epoxy resin having a trifunctional or higher functional group having no aromatic ring cannot increase the Tg, and is not suitable for the invention of the present invention. The component (C) which can be used in the present invention is a butadiene rubber powder or an acrylic rubber powder. The monomer is a rubber polymerized from (meth) acrylate or a powder of a rubber polymerized from butadiene. In the case of polymerization or copolymerization, styrene, isoprene or the like of a monomer other than (meth) acrylate or butadiene may be contained. Specific examples of the (meth) acrylate include, for example, MMA, but are not limited thereto. In the above, (meth)acrylate-based acrylate or/and acrylate. The average particle size of the powder is 〇.〇5~0.5 μηι. If the viscosity change caused by swelling is considered, it should be the core-shell type (C) component. By adding the component (C), the effect of Ε' is lowered to lower the Ε', and the component (C) is most preferably a rubber powder polymerized from butadiene. It is also possible to use the component (C) which is dispersed in the epoxy resin beforehand. Specifically, the rubber particles dispersed in the epoxy resin by a mixing device such as a Hyper or a homogenizer or the rubber particles synthesized by emulsion polymerization in the epoxy resin correspond to this. The rubber particles finally formed by the emulsion polymerization method preferably have an average particle diameter of from 0.5 to 0.5 μm. By using the rubber particles dispersed in advance in the epoxy resin, there is an advantage that the handling of the components of the resin composition at the time of manufacture is simple. Further, since the epoxy resin is sufficiently wetted to the rubber particles, the viscosity change during the passage tends to decrease. Specific examples of the acryl rubber particles include, for example, the MX series manufactured by the Kyoritsu Chemical Co., Ltd., the Mitsub Rayon Co., Ltd., the Metaprene W series, and the Zefiac series manufactured by Zeon Chemical Co., Ltd. Specific examples of the epoxy resin in which the rubber particles are dispersed in advance include, for example, Resinous Chemical Co., Ltd., and RKB series. Specific examples of the epoxy resin used for the emulsion polymerization may be exemplified by the Japanese company, the Japanese catalyst system, the Acryset BP series, etc., but are not limited thereto. Specific examples of the above butadiene rubber particles are manufactured by Mitsubishi Rayon Co., Ltd., Metaprene E series, Metaprene C series, and the like. Further, the disperser of the core-shell powder having the butadiene rubber as the core may be, for example, the company Kane Ace MX136, but is not limited thereto. The amount of the component (C) to be added is preferably 1 part by mass or less based on 100 parts by mass of the total of the component (A) and the component (B). More preferably, the amount of the component (C) added is from 3 to 10 parts by mass based on 100 parts by mass of the total of the components (A) and (B). When the amount of the component (C) added is more than 10 parts by mass, αΐ tends to become large, and if it is less than 3 parts by mass, E' (25 ° C) tends to become high. The addition of an inorganic chelating agent such as alumina, cerium oxide or calcium carbonate is widely used by those skilled in the art. However, in the present invention, if an inorganic chelating agent is added, it is most preferable to substantially not contain E'. The above-mentioned "substantially not contained" means that when the impurities remaining in the manufacturing steps of the raw material are contained, or E' (25 ° C) falls within the range of 3. OGPa or less, the deliberately extremely small amount of the inorganic filler is added. At the time, it is waiting for its requirements. The component (D) which can be used in the present invention may, for example, be a compound which can be used as a curing agent for an epoxy resin and pulverized into a powder. That is, the solid hardening agent at room temperature is dispersed in a liquid epoxy resin of a liquid epoxy resin, and the viscosity change or physical property change with time is small, and the preservation stability can be ensured. The agent is a latent hardener. Specifically, for example, an imidazole derivative of a powder at room temperature, a powder of dicyanodiamide, and an epoxy group compound compound in which a tertiary amine is added to an epoxy resin to stop the reaction in the middle of the reaction may be pulverized. Powder or the like, but is not limited thereto. For example, the Aminecure series manufactured by Ajinomoto Techno Co., Ltd. or the Fujicure series manufactured by Fuji Chemical Industry Co., Ltd. or the Novartis Chemical Co., Ltd. Novacure series may be mentioned. Wait. It is preferred to start the reaction below 120 °C. An acid anhydride, a phenol compound, a thiol compound or the like which is liquid at room temperature is also known as a hardener for an epoxy resin. In general, even if the liquid hardener is separately described, since the hardening is slow, it is known to use the component (D) as a curing agent in combination with the liquid hardener. However, in the case where the liquid hardener and the component (D) are combined in the present invention, the permeability at 120 °C is lowered, so that it is preferable to substantially not contain the hardener of the powder. The above-mentioned hardening agent which does not substantially contain a liquid at room temperature means that the impurity remaining in the manufacturing step is contained, or even if the liquid hardener is added in a minute amount, the reactivity is determined to be a hardener of the powder. When it is outside. The amount of the component added is preferably 10 to 40 parts by mass based on 1 part by mass of the total of the component (A) and the component (B). When the amount is less than 1 part by mass, the properties are lowered, and when it is more than 40 parts by mass, the permeability is lowered. The epoxy resin composition of the present invention can also blend coloring agents, agents, antioxidants, antifoaming agents, decane coupling agents, leveling agents, etc. of pigments and dyes in an appropriate amount within the scope of the effects of the present invention. Additives such as flow preparations. By adding this, it is possible to obtain a composition excellent in resin strength, strength, workability, storage stability, and the like, and a cured product thereof. [Embodiment]

Fine 股份 製之 硬化 用則 進劑 明中 透性 「在 原料 狀之 要件 ,(D) 硬化 望的 可塑 變控 接著 -13- 201107405 實施例 其次,舉出實施例而更詳細地說明本發明,但本發明 係並非只限定於此等之實施例。 [實施例1〜1 2 ] 爲調製實施例〗〜I2,準備下述成分。 (A) 成分:環氧樹脂組成物 •雙酣F型環氧樹脂(jER806 Japan Epoxy Resin股份 公司製) (B) 成分:於1分子內具有3個以上之環氧基與芳香環的化合 物 •於1分子內具有3個以上之環氧基與芳香環的化合 物(jER630 Japan Epoxy Resin 股份公司製) •於1分子內具有3個以上之環氧基與芳香環的化合 物(ELM-100住友化學股份公司製) (C) 成分:丁二烯橡膠粉或丙烯酸橡膠粉 •被分散於環氧樹脂之丁二烯橡膠粉(橡膠含有率: 25 質量 %)(Kane Ace MX136 Kaneka 股份公司製) .丙烯酸橡膠粉(ZefiacF351日本Zeon股份公司製) •丙烯酸橡膠粉(GENIOPERL P-52 Wacker Chemie 製 -14- 201107405 (D)成分:潛在性硬化劑 •胺加成物型硬化劑(Fujicure FXR- 1 03 0富士化成工 業股份公司製) •胺加成物型硬化劑(Fujicure FXR-108 1富士化成工 業股份公司製) •已分散胺加成物型硬化劑之環氧樹脂(Novacure HX-392 1 HP旭化成Epoxy股份公司製) 其他之成分 •矽烷系偶合劑(KBM-403信越化學股份公司製) •分散劑(BYK-352 BYK Chemic Japan股份公司製) 使(A)成分、(B)成分、(C)成分及其他成分以攪拌機真 空脫泡3 0分鐘並攪拌。但,在實施例8及9中係使該混 合物事前通過三輥硏磨機2次後投入於攪拌機。其後,添 加(D)成分而進一步真空脫泡30分鐘並攪拌。詳細之調製 量依表1,數値係全部以質量份表記。 [比較例1〜8 ] 爲調整比較例1〜8,加入於實施例1〜1 2使用的成分 而準備下述成分。 (B’):不具有芳香環而於1分子內具有3個環氧基的 化合物 •於1分子內具有3個環氧基的脂肪族化合物 (Denacol EX-3 2 1 Nagase Chemtex 股份公司製) -15- 201107405 其他之成分 • 4-甲基六氫酞酸酐/六氫酞酸酐=70/30(Rikacid MH-700新日本理化股份公司) •氧化矽粉(QS-6 MRC Unitech股份公司製) 使(A)成分、(B)成分、(C)成分及其他成分以攪拌機攪 拌3 0分鐘。但,在比較例1中係使該混合物事前通過三 輕硏磨機2次後投入於攪拌機。其後,添加(1))成分而進 —步真空脫泡30分鐘並攪拌。詳細之調製量依表1,數値 係全部以質量份表記。 -16- 201107405 i |實施例12| 〇 § Ιβ CO CM 1 〇i 1 127.1 | 實施例11 〇 寸 〇 (N o CM rH d 1 132.1 實施例10 〇 寸 o 寸 l〇 (M 0.1 127.1 實施例9 LO 1〇 ΙΛ o 寸 in CO 0.1 127.1 實施例8 ΙΟ in in o 吋 in Ol iH 6 127.1 | 實施例7 另 o 卜 l〇 &lt;N OJ »—&lt; d 127.1 | 實施例6 o 00 ID 03 CN3 1 Q-^l 127.1 實施例5 〇 寸 〇 (N o 寸 2 03 d 117.1 實施例4 〇 寸 〇 o 寸 lO w CSJ rH d 127.1 實施例3 〇 CQ 〇 o W o eg (M t-H d 122.1 1 實施例2 ΙΟ CO 〇 in 寸 8 W rH d 122.1 實施例1 〇 〇 Οί o o 03 N rH d 122.1 成分 jER806 Kaneace ΜΧ136 Zefiac F351 GENIOPERLP-52 1 jER630 I Sumiepoxy ELM—100 Denacol EX—321 Fujicure FXR-1030 Fujicure FXR—1081 Novacure HX — 3921HP Rikacid MH-700 KBM-403 BYK-352 | QS-6 合計 比較例8 〇 ο CM ο IO CQ CNJ d 157.1 比較例7 8 o ΙΛ CSJ 03 r-H d 127.1 比較例6 〇 寸 8 o in (M rH 0 127.1 比較例5 〇 I-H Ο 寸 g in &lt;N rH d 127.1 比較例4 〇 00 Ο 寸 ΙΛ N CSJ rH d ! 127.1 比較例3 ο 寸 § lO W N rH d 127.1 :比較例2 〇 CO in CsJ (N d 127.1 :比較例1 〇 ο &lt;Ν in M &lt;N rH d 152.1 | CO 〇 00 Ρί ω 1 Kaneace ΜΧ136 1 1 Zefiac F351 | GENlOPERLP-52 g ο S Sumiepoxy ELM —100 Denacol EX—321 Fujicure FXR-1030 Fujicure FXR—*1081 | NovacureHX-3921HP | I Rikacid MH-700 _I I KBM-403 _I BYK-352 QS-6 ste &lt;l〇 s -17- 201107405 對於實施例1〜1 2、比較例1〜8,實施黏度測定、滲 透性測定、TMA測定、DMA測定、抗拉剪切接著力測定。 &lt;黏度測定&gt; 各環氧樹脂組成物之溫度成爲室溫後藉黏度計測定「 黏度(Pa · s)」。詳細之測定方法係如以下般。其結果歸納 於表2中❶在本發明中適用4.OPa· s以下。 製造商:東機產業股份公司TV-33型黏度計(EHD型) 測定條件 圓錐型旋轉子:3°xR14 旋轉速度:5 . Orpm 測定溫度:25°C (使用調溫裝置) &lt;滲透性測定&gt; 使厚ΙΟΟμπι之短冊狀厚度量測計平行於100mmx50mm 之玻璃板之短邊而配置,使再一片之玻璃板些許偏移而挾 住厚度量測計,以挾具固定以免厚度量測計偏移。於玻璃 板偏移之位置塗佈環氧樹脂組成物後,確認於1 20 °C環境 放置15分鐘而從玻璃板之端部滲透的距離而作爲「滲透 性(mm)」。將其結果歸納於表 2。若滲透性差,塡料 (Fillet)(滲透後之組成物的形狀)之形成差,恐產生在信賴 性試驗中應力局部,對於密封劑之破壞或與被黏體之界面 的剝離。在本發明中係適宜滲透性爲30mm以上。 -18- 201107405 實麵12 4.0 實施例11 CQ 03 CO 寸 實施例 10 ¢0 CO o CO 實施例9 卜 CO &lt;N CO 實施例8 〇 — 實施例7 卜 οα 實施例6 CO CQ 05 CO 實施例5 \〇 CnJ o 寸 實施例4 00 CO in CO 實施例3 00 N O) CO 實施例2 ① 05 CO 實施例1 in CO 00 CO 單位 Pa-s mm 試驗項目 黏度 滲透性 比較例8 C0 ιΗ 比較例7 Cs3 rH 寸 寸 比較例6 CD i—l CM 寸 比較例5 4.7 寸 比較例4 ΙΟ οα 03 比較例3 4.3 00 (Μ 比較例2 σ&gt; oi 05 CO 比較例1 4.5 CD (N 單位 Pa*s j mm 試驗項目 黏度 滲透性 201107405 &lt; TMA測定(Tg、α 1測定)&gt; 在12〇°c環境藉15分之硬化製作直徑5mm之圓筒形 硬化物’切割成長度10mm。藉TMA以昇溫速度1〇。〇/分 昇溫而進行測定。測定「線膨脹率(a 1)( ppm/〇c )」,藉 ο: 1與α 2之接線的父點,測定「玻璃轉移點(π )」。在本 發明中係適宜Tg爲120°C以上’ αΐ爲60ppm/°c以下。 &lt; DMA 測定(E'(25°C )測定)&gt; 在120°C環境藉15分鐘之硬化製作直徑5mm之圓筒 形硬化物,切割成長度3 Omm。以彎曲模式進行測定,以 昇溫速度3°C /分進行昇溫。確認頻率1HZ在25〇C之「貯 藏彈性率(GPa)」。在本發明中適宜Ε·(25Χ:)爲3.0GPa以 下0 &lt;抗拉剪切接著力測定&gt; 使用玻璃纖維強化環氧樹脂製(FR-4)且l〇mmx25mm&gt; I 0 0 m m之測試片,於第1片之測試片均—地展開樹脂組成 物,而與第二片之測試片以25mmxl〇mm之「接著面積」 貼合。固定成測試片不動之狀態,藉熱風乾燥爐以120 °C 、1 5分鐘硬化。測試片之溫度返回室溫後,以抗拉速度 1 0mm/分使二片之測試片朝逆方向拉張而測定「最大荷重 」。使「最大荷重」除以「接著面積」,計算「抗拉剪切 接著力(MPa)」。試驗之內容依據JIS Κ8681 »在本發明中 若作爲標準之接著力具有15MPa以上,即可使用。 -20- .201107405 .實施例12 120 CO m 2.7 CO 實細11 134 00 in 00 oi 'w 實施例10 120 00 ΙΟ oo CO Oi 實施例9 122 ΙΟ ΙΟ 卜 cj § 實施例8 122 00 oi 寸 03 實施例7 1 147 g 1 2.7 實施例6 148 c〇 in 2.4 CSJ ca 實施例5 1 122 00 CO oi 2 實施例4 124 00 i〇 0 01 實施例3 128 2.6 M 實施例2 130 00 in 2.6 Csj (M 實施例1 131 CO LO 1.7 CO 單位 | ppm/*C GPa MPa 試驗項目 玻璃轉移點 線膨脹率(ct 1) 貯藏彈性率(E,) |抗拉剪切接著強度 比較例8 126 Ο oi 比較例7 〇 (〇 CO d CD 比較例6 rH 吋 寸· d 卜 比較例5 131 03 ① CO CSJ (N CM 比較例4 118 CO CD LO oi &lt;N Oi 比較例3 138 CQ 寸 CO 比較例2 121 CO 寸 (N 比較例1 124 S (O c6 CO C&gt;3 單位 Ρ ppm/0C GPa MPa 試驗項目 玻璃轉移點 _________ _! 線膨脹率Ui) 貯藏彈性率(ΕΊ 抗拉剪切接著強度 -21 - 201107405 從表2可知,在比較例1及比較例3〜5中黏度高’ 伴隨其而在120 °C環境之滲透性變差,但在實施例中滲透 性全部包含於3 0mm以上。若比較實施例4與比較例8, 可知使用酸酐之比較例8者儘管黏度低,在1 20°C環境之 滲透性會降低。又,從表3,在比較例1〜7中,Tg、αΐ 、E’(2 5°C )之任一者均不適於本發明,但在實施例中全部 之參數適於本發明。含有許多(C)成分之比較例3〜5係 E’(2 5°C )爲3.0GPa以下,但可看到α 1變高之傾向。又, 從比較例6與7,於1分子中具有3以上之環氧基的脂肪 族化合物係降低Tg,故不適於本發明。 &lt; TEG導通試驗&gt; 藉由模擬形成半導體與基板被電性接續之狀態的Test Element Group(以下稱爲TEG),可確認出作爲底部塡充劑 之性能。模擬半導體之凸塊與模擬基板之凸塊係電性連接 ,TEG內部之配線全部連接成菊花鏈狀。於模擬基板具有 之外部電極抵住測試器之電極而確認導通性。於TEG端 部塗佈底部塡充劑,以特定方法使底部塡充劑滲透於模擬 半導體與模擬基板之間隙而硬化。使被底部塡充劑密封之 TEG投入於熱衝擊試驗、熱循環試驗、高溫放置試驗、低 溫放置試驗 '恆溫恆濕試驗等之信賴性試驗後,未確保電 性接續時係電阻値過負荷。藉此,可模擬性試驗底部塡充 劑之信賴性。TEG之規格、底部塡充劑之硬化條件、信賴 性試驗進行之熱循環試驗的條件係如以下般》 -22- .201107405 T E G規格 晶片規格 晶片大小:9.6mmx9.6mm 晶片厚:725μιη 凸塊材質:Sn/3.0Ag/0.5 Cu 凸塊高度:245μιη 凸塊形成方法:球體搭載 圖型規格 金屬墊節距:500μηι 金屬墊大小:300μιηχ300μπι 墊數:3 24 底部塡充劑硬化條件(含有滲透步驟) 1 2 0 °C X 1 5 分 熱循環試驗 1循環:-401x30分+ 85 °Cx30分,全部實施2000循 rm 環 測試片數:5(以下,使測試片稱爲TEG) 使用於TEG導通試驗之底部塡充劑係具有表4所示 之特性者。本發明係使用實施例1。又,商品A〜C在本 發明中相當於比較例之底部塡充劑。 -23- 201107405 表4 試驗項目 單位 實施例1 商品A 商品B 商品c 黏度 Pa-s 3.5 4.0 3.0 2.5 滲透性 mm 38 20 19 12 玻璃轉移點 °c 131 70 89 127 線膨脹率U1) ppm/t 58 57 54 53 貯藏彈性率(ΕΊ GPa 1.7 3.2 3.0 1.9 抗拉剪切接著強度 MPa 21 16 19 21 以前述之條件進行熱循環試驗的結果表示於圖1。以 25、 100、 200、 500、 750、 1000' 1500' 2000 循環從熱循 環試驗器取出,測試片返回室溫後藉測試器確認導通性。 未確保導通性之測試片判斷爲「不良」。 如圖〗般’在實施例1中2000循環結束時亦確保導 通性’在商品名A〜C中急速或徐緩地產生未確保導通性 之TEG。可知使用TEG而進行模擬性試驗,但藉底部塡 充劑對TEG之信賴造成很大的影響。 [產業上之利用可能性] 本發明之環氧樹脂組成物係塗佈密封劑後,不須在室 溫下放置,可立即投入於l2〇°C環境,同時形成最適的塡 料之底部塡充劑。認爲藉此,可謀求生產線之縮短,有助 於生產效率之提昇者。進一步,使硬化物之特性於一定的 範圍內,可提昇信賴性試驗的耐性。將來,封裝體之小型 化持續進展,對於底部塡充劑之信賴性提昇的要求會進一 步加強。只以高塡充無機塡充劑之各種習知方法很難提昇 -24- 201107405 信賴性,而以控制環氧樹脂之參數俾可因應小型化° 【圖式簡單說明】 圖1係表示將使用本發明之底部塡充劑的TEG施以 熱循環試驗時之導通試驗結果的圖。 -25 -In the case of the hardening of the Fine Co., Ltd., the medium is transparent, "in the form of the raw material, (D) the plastic deformation control of the hardening. Next - 13 to 201107405. Next, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the examples thereof. [Examples 1 to 1 2] The following components were prepared for Preparation Examples to I2. (A) Component: Epoxy resin composition • Double 酣 F type Epoxy resin (manufactured by JER806 Japan Epoxy Resin Co., Ltd.) (B) Component: a compound having three or more epoxy groups and an aromatic ring in one molecule. • Three or more epoxy groups and aromatic rings in one molecule. Compound (manufactured by jER630 Japan Epoxy Resin Co., Ltd.) • A compound having three or more epoxy groups and an aromatic ring in one molecule (ELM-100, manufactured by Sumitomo Chemical Co., Ltd.) (C) Ingredients: Butadiene rubber powder or Acrylic rubber powder • Butadiene rubber powder dispersed in epoxy resin (rubber content: 25% by mass) (Kane Ace MX136 Kaneka Co., Ltd.) Acrylic rubber powder (made by Zefiac F351 Japan Zeon Co., Ltd.) • Acrylic Rubber powder (GENIOPERL P-52 Wacker Chemie -14-201107405 (D) Component: latent hardener / amine addition type hardener (Fujicure FXR- 1 03 0 manufactured by Fuji Chemical Industry Co., Ltd.) • Amine adduct Type hardener (Fujicure FXR-108 1 manufactured by Fuji Chemical Co., Ltd.) • Epoxy resin with a disperse amine addition type hardener (Novacure HX-392 1 HP Asahi Kasei Epoxy Co., Ltd.) Other components • Decane system Mixture (KBM-403 Shin-Etsu Chemical Co., Ltd.) • Dispersant (BYK-352 BYK Chemic Japan Co., Ltd.) Vacuum-deaerate (A) component, (B) component, (C) component, and other components with a blender. In the examples 8 and 9, the mixture was passed through a three-roll honing machine twice before being introduced into the mixer. Thereafter, the component (D) was added and further defoamed by vacuum for 30 minutes and stirred. The amount of the modulation is in accordance with Table 1. All the numbers are expressed in parts by mass. [Comparative Examples 1 to 8] In order to adjust Comparative Examples 1 to 8, the components used in Examples 1 to 12 were added to prepare the following components. '): does not have an aromatic ring but 1 molecule A compound having three epoxy groups in the group • an aliphatic compound having three epoxy groups in one molecule (Denacol EX-3 2 1 Nagase Chemtex Co., Ltd.) -15- 201107405 Other components • 4-methyl six Hydroquinone anhydride/hexahydrophthalic anhydride=70/30 (Rikacid MH-700 New Japan Physical and Chemical Co., Ltd.) • Oxide powder (manufactured by QS-6 MRC Unitech Co., Ltd.) (A) component, (B) component, (C The ingredients and other ingredients were stirred in a blender for 30 minutes. However, in Comparative Example 1, the mixture was passed through a three-light honing machine twice before being introduced into a mixer. Thereafter, the component (1)) was added, and vacuum defoaming was carried out for 30 minutes and stirred. The detailed modulation amount is shown in Table 1, and the number is expressed in parts by mass. -16- 201107405 i |Example 12| 〇§ Ιβ CO CM 1 〇i 1 127.1 | Example 11 〇 〇 (N o CM rH d 1 132.1 Example 10 o inch 〇 l 〇 (M 0.1 127.1 Example 9 LO 1〇ΙΛ o inch in CO 0.1 127.1 Example 8 ΙΟ in in o 吋in Ol iH 6 127.1 | Example 7 oo 〇 l〇&lt;N OJ »-&lt; d 127.1 | Example 6 o 00 ID 03 CN3 1 Q-^l 127.1 Example 5 〇 inch 〇 (N o inch 2 03 d 117.1 Example 4 〇 inch 〇 o inch lO w CSJ rH d 127.1 Example 3 〇CQ 〇o W o eg (M tH d 122.1 1 Example 2 ΙΟ CO 〇in inch 8 W rH d 122.1 Example 1 〇〇Οί oo 03 N rH d 122.1 Component jER806 Kaneace ΜΧ136 Zefiac F351 GENIOPERLP-52 1 jER630 I Sumiepoxy ELM—100 Denacol EX-321 Fujicure FXR- 1030 Fujicure FXR—1081 Novacure HX — 3921HP Rikacid MH-700 KBM-403 BYK-352 | QS-6 Total Comparative Example 8 〇ο CM ο IO CQ CNJ d 157.1 Comparative Example 7 8 o ΙΛ CSJ 03 rH d 127.1 Comparative Example 6 8 8 o in (M rH 0 127.1 Comparative Example 5 〇IH 寸 g g in &lt; N rH d 127.1 Comparative Example 4 〇00 Ο Inch ΙΛ N CSJ rH d ! 127.1 Comparative Example 3 ο § § lO WN rH d 127.1 : Comparative Example 2 〇CO in CsJ (N d 127.1 : Comparative Example 1 〇ο &lt;Ν in M &lt;N rH d 152.1 | CO 〇00 Ρί ω 1 Kaneace ΜΧ136 1 1 Zefiac F351 | GENlOPERLP-52 g ο S Sumiepoxy ELM —100 Denacol EX—321 Fujicure FXR-1030 Fujicure FXR—*1081 | NovacureHX-3921HP | I Rikacid MH-700 _I I KBM-403 _I BYK-352 QS-6 ste &lt;l〇s -17- 201107405 For Examples 1 to 1 2 and Comparative Examples 1 to 8, viscosity measurement, permeability measurement, TMA measurement, DMA measurement, and tensile shear adhesion measurement were performed. &lt;Viscosity measurement&gt; After the temperature of each epoxy resin composition was changed to room temperature, "viscosity (Pa · s)" was measured by a viscosity meter. The detailed measurement method is as follows. The results are summarized in Table 2, which is applied to 4.OPa·s or less in the present invention. Manufacturer: Dongji Industry Co., Ltd. TV-33 viscometer (EHD type) Measurement conditions Conical rotor: 3°xR14 Rotation speed: 5. Orpm Measurement temperature: 25°C (using thermostat) &lt;Permeability Measurement&gt; The thick ΙΟΟμπι short book thickness gauge is placed parallel to the short side of the 100 mm x 50 mm glass plate, so that the remaining glass plate is slightly offset to hold the thickness gauge, and the cookware is fixed to avoid thickness measurement. Offset. After the epoxy resin composition was applied to the position where the glass plate was offset, it was confirmed that the distance permeated from the end portion of the glass plate at a temperature of 1 20 ° C for 15 minutes was regarded as "permeability (mm)". The results are summarized in Table 2. If the permeability is poor, the formation of the Fillet (the shape of the composition after the infiltration) is poor, and there is a fear that the stress is localized in the reliability test, and the sealant is broken or peeled off from the interface with the adherend. In the present invention, the suitable permeability is 30 mm or more. -18- 201107405 Real surface 12 4.0 Example 11 CQ 03 CO inch Example 10 ¢0 CO o CO Example 9 卜CO &lt;N CO Example 8 〇 - Example 7 卜 α Example 6 CO CQ 05 CO Implementation Example 5 \〇CnJ o inch Example 4 00 CO in CO Example 3 00 NO) CO Example 2 1 05 CO Example 1 in CO 00 CO Unit Pa-s mm Test item Viscosity permeability comparison Example 8 C0 ιΗ Comparison Example 7 Cs3 rH inch Comparative Example 6 CD i-1 CM inch Comparative Example 5 4.7 inch Comparative Example 4 ΙΟ οα 03 Comparative Example 3 4.3 00 (Μ Comparative Example 2 σ&gt; oi 05 CO Comparative Example 1 4.5 CD (N unit Pa* Sj mm test item viscosity permeability 201107405 &lt;TMA measurement (Tg, α 1 measurement)&gt; A cylindrical hardened body having a diameter of 5 mm was cut by a hardening of 15 minutes in a 12 ° ° C environment to cut into a length of 10 mm. The temperature rise rate was 1 〇. The temperature was measured by 〇/min. The "linear expansion rate (a 1) (ppm/〇c)" was measured, and the "glass transition point (π) was measured by the parent point of the connection of ο: 1 and α 2 In the present invention, it is preferred that the Tg is 120 ° C or more and the α ΐ is 60 ppm / ° c or less. E' (25 ° C) measurement) &gt; A cylindrical hardened material having a diameter of 5 mm was formed by hardening for 15 minutes in an environment of 120 ° C, and cut into a length of 3 mm. The measurement was performed in a bending mode at a temperature rising rate of 3 ° C / The temperature is increased, and the storage modulus (GPa) of the frequency 1HZ at 25 ° C is confirmed. In the present invention, it is preferable that Ε·(25Χ:) is 3.0 GPa or less 0 &lt; tensile shear adhesion measurement&gt; A test piece made of fiber-reinforced epoxy resin (FR-4) and l〇mmx25 mm&gt; I 0 0 mm, the test piece of the first piece was developed to the resin composition, and the test piece of the second piece was 25 mmxl. The "adjacent area" of mm is fitted. It is fixed in a state where the test piece is not moved, and is hardened by a hot air drying oven at 120 ° C for 15 minutes. After the temperature of the test piece returns to room temperature, the tensile speed is 10 mm / min. The test piece of the film is pulled in the reverse direction to measure the "maximum load". The "maximum load" is divided by the "adjacent area", and the "tensile shear adhesion force (MPa)" is calculated. The content of the test is based on JIS Κ8681 » in this In the invention, if the adhesive force as a standard has 15 MPa or more, it can be used. -20-.201107405. Example 12 120 CO m 2.7 CO Solid 11 134 00 in 00 oi 'w Example 10 120 00 ΙΟ oo CO Oi Example 9 122 ΙΟ ΙΟ 卜 cj § Example 8 122 00 oi inch 03 Example 7 1 147 g 1 2.7 Example 6 148 c〇in 2.4 CSJ ca Example 5 1 122 00 CO oi 2 Example 4 124 00 i 〇 0 01 Example 3 128 2.6 M Example 2 130 00 in 2.6 Csj (M Example 1 131 CO LO 1.7 CO unit | ppm/*C GPa MPa Test item Glass transition point linear expansion ratio (ct 1) Storage modulus (E,) | Tensile shear strength comparison Example 8 126 Ο oi Comparative Example 7 〇(〇CO d CD Comparative Example 6 rH 吋 inch·d b Comparative Example 5 131 03 1 CO CSJ (N CM Comparative Example 4 118 CO CD LO oi &lt; N Oi Comparative Example 3 138 CQ Inch CO Comparative Example 2 121 CO inch (N Comparative Example 1 124 S (O c6 CO C>3 unit Ρ ppm/0C GPa MPa test item glass transfer point _________ _! linear expansion rate Ui) Storage modulus (ΕΊ tensile shear strength) -21 - 201107405 It can be seen from Table 2 that in Comparative Example 1 and Comparative Examples 3 to 5, the viscosity is high, accompanied by the permeability at 120 °C. In the examples, the permeability was all included in the range of 30 mm or more. When Comparative Example 4 and Comparative Example 8 were compared, it was found that the comparative example 8 using an acid anhydride had a low permeability, and the permeability at a temperature of 120 ° C was lowered. Further, from Table 3, in Comparative Examples 1 to 7, neither Tg, αΐ, and E' (25 ° C) were suitable for the present invention, but all the parameters in the examples are suitable for the present invention. In many cases (3), Comparative Examples 3 to 5, E' (25 ° C), were 3.0 GPa or less, but it was observed that α 1 became high. Further, from Comparative Examples 6 and 7, it was one molecule. The aliphatic compound having 3 or more epoxy groups is not suitable for the present invention because it lowers the Tg. <TEG conduction test> Test Element Group (hereinafter referred to as TEG) in which the semiconductor and the substrate are electrically connected by simulation The performance as a bottom squeezing agent was confirmed. The bumps of the analog semiconductor were electrically connected to the bumps of the dummy substrate, and the wirings inside the TEG were all connected in a daisy-chain shape. The conductivity was confirmed by the external electrode of the dummy substrate being pressed against the electrode of the tester. A bottom smear is applied to the end of the TEG to infiltrate the bottom smear in a gap between the analog semiconductor and the dummy substrate in a specific manner. The TEG sealed by the bottom squeezing agent is placed in a thermal shock test, a thermal cycle test, a high temperature placement test, a low temperature placement test, and a reliability test such as a constant temperature and humidity test, and the resistance is not overloaded when electrical connection is not ensured. Thereby, the reliability of the bottom sputum can be simulated in a simulated manner. The specifications of the TEG, the hardening conditions of the bottom sizing agent, and the thermal cycling test conducted by the reliability test are as follows: -22-.201107405 TEG specification wafer size Wafer size: 9.6mmx9.6mm Wafer thickness: 725μιη Bump material :Sn/3.0Ag/0.5 Cu bump height: 245μιη Bump formation method: sphere mounting pattern specification metal pad pitch: 500μηι Metal pad size: 300μιηχ300μπι Number of pads: 3 24 Bottom 塡 agent hardening conditions (including penetration step) 1 2 0 °CX 1 5 Thermal cycle test 1 cycle: -401x30 min + 85 °C x 30 min, all implemented 2000 rm ring test number: 5 (below, the test piece is called TEG) Used in TEG conduction test The bottom sizing agent has the characteristics shown in Table 4. The present invention uses Example 1. Further, in the present invention, the products A to C correspond to the bottom sputum of the comparative example. -23- 201107405 Table 4 Test project unit Example 1 Product A Product B Product c Viscosity Pa-s 3.5 4.0 3.0 2.5 Permeability mm 38 20 19 12 Glass transfer point °c 131 70 89 127 Linear expansion ratio U1) ppm/t 58 57 54 53 Storage modulus (ΕΊ GPa 1.7 3.2 3.0 1.9 Tensile shear strength MPa 21 16 19 21 The results of the thermal cycle test under the above conditions are shown in Figure 1. At 25, 100, 200, 500, 750 , 1000' 1500' 2000 cycle is taken out from the thermal cycle tester, and the test piece is returned to room temperature and then tested by the tester to confirm the continuity. The test piece which does not ensure continuity is judged as "poor". As shown in the figure At the end of the 2000 cycle, the conductivity is also ensured. In the trade names A to C, the TEG which does not ensure the continuity is rapidly or slowly generated. It is known that the TEG is used for the simulation test, but the bottom sputum is very important for the trust of TEG. [Industrial Applicability] The epoxy resin composition of the present invention is applied to a sealant without being placed at room temperature, and can be immediately put into an environment of l2 ° C to form an optimum material. The bottom of the sputum. In order to reduce the productivity of the product, the reliability of the reliability test can be improved. In the future, the miniaturization of the package will continue to progress. The requirements for the improvement of the reliability of the bottom sizing agent will be further strengthened. It is difficult to improve the reliability of the -24-201107405 only by various conventional methods of high-filling inorganic enamel, and the parameters of the epoxy resin can be controlled. Miniaturization ° [Schematic Description of the Drawings] Fig. 1 is a view showing the results of a conduction test when a TEG using the bottom enthalpy of the present invention is subjected to a heat cycle test.

Claims (1)

201107405 七、申請專利範圍: 1. 一種後滲透型密封用之環氧樹脂組成物,其係硬化 物之線膨脹率(αΐ)、玻璃轉移點、貯藏彈性率(25 °C)、硬 化前之滲透性(120°C )滿足以下之全部的要件; 線膨脹率(α 1) : 60ppm/°C以下 玻璃轉移點:120°C以上 , 貯藏彈性率(25°C): 3.0GPa以下 滲透性(120°C ) : 30mm以上。 2. 如申請專利範圍第1項之後滲透型密封用之環氧樹 脂組成物,其係由以下之(A)〜(D)成分所構成; (A) 成分:環氧樹脂 (B) 成分:於1分子內具有3個以上之環氧基與芳香 環的化合物 (C) 成分:丁二烯橡膠粉或丙烯酸橡膠粉 (D) 成分:潛在性硬化劑。 3. 如申請專利範圍第2項之後滲透型密封用之環氧樹 脂組成物,其中相對於(A)成分與(B)成分之合計100質量 份而言,係添加(C)成分3〜10質量份,同時實質上不含 有(C)成分以外之塡充劑。 4 ·如申請專利範圍第1項之後滲透型密封用之環氧樹 脂組成物,其中在室溫下實質上不含有液狀之硬化劑。 -26-201107405 VII. Patent application scope: 1. An epoxy resin composition for post-penetration sealing, which is a linear expansion ratio (αΐ) of a hardened material, a glass transition point, a storage elastic modulus (25 ° C), and a hardening period. Permeability (120 ° C) meets all of the following requirements; Linear expansion ratio (α 1) : 60 ppm / ° C or less Glass transition point: 120 ° C or more, Storage modulus (25 ° C): 3.0 GPa or less permeability (120 ° C): 30 mm or more. 2. The epoxy resin composition for osmotic sealing after the first application of the patent scope is composed of the following components (A) to (D); (A) Component: Epoxy resin (B) Component: Compound (C) having three or more epoxy groups and aromatic rings in one molecule: butadiene rubber powder or acrylic rubber powder (D) Component: latent curing agent. 3. The epoxy resin composition for osmotic sealing after the second application of the patent scope, wherein the component (C) is added to the component (C) in an amount of 100 parts by mass based on the total of the components (A) and (B). The mass fraction does not substantially contain the chelating agent other than the component (C). 4. An epoxy resin composition for osmotic sealing after the first application of the patent scope, wherein the liquid hardening agent is substantially not contained at room temperature. -26-
TW99110747A 2009-04-07 2010-04-07 Epoxy resin composition TWI466938B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009092817 2009-04-07

Publications (2)

Publication Number Publication Date
TW201107405A true TW201107405A (en) 2011-03-01
TWI466938B TWI466938B (en) 2015-01-01

Family

ID=42936364

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99110747A TWI466938B (en) 2009-04-07 2010-04-07 Epoxy resin composition

Country Status (5)

Country Link
JP (1) JP6115929B2 (en)
KR (1) KR20120027191A (en)
CN (1) CN102378790B (en)
TW (1) TWI466938B (en)
WO (1) WO2010117081A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609917B (en) * 2011-05-31 2018-01-01 Ajinomoto Co., Inc. Resin composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149925B1 (en) 1999-09-29 2010-12-01 JFE Steel Corporation Sheet steel and method for producing sheet steel
JP5290515B2 (en) * 2006-12-25 2013-09-18 パナソニック株式会社 Epoxy resin composition for sealing electronic parts and resin-sealed electronic parts using the same
CN102801115B (en) * 2012-08-03 2016-04-27 天津合纵电力设备有限公司 Static seal structure between SMC1 gas-insulated switch two kinds of unlike materials
JP2019199511A (en) * 2018-05-15 2019-11-21 旭化成株式会社 Method for producing epoxy resin composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770406A (en) * 1993-08-31 1995-03-14 Tonen Corp Low temperature curing epoxy resin for prepreg and prepreg using the same
JPH07196769A (en) * 1993-12-28 1995-08-01 Tonen Corp Epoxy resin composition for low-temperature curing type prepreg and prepreg using the same
WO2000060005A1 (en) * 1999-04-01 2000-10-12 Mitsui Chemicals, Inc. Sealing material composition for liquid crystal
JP2003055434A (en) * 2001-08-15 2003-02-26 Toto Kasei Co Ltd Flame retardant for synthetic resin, and flame- retardant resin composition containing the flame retardant
JP3722427B2 (en) * 2001-12-20 2005-11-30 ジャパンエポキシレジン株式会社 Epoxy resin composition
JP2006241252A (en) * 2005-03-01 2006-09-14 Sekisui Chem Co Ltd Epoxy resin cured product, sheet made thereof and manufacturing method of the epoxy resin cured product
JP4826728B2 (en) * 2005-09-28 2011-11-30 株式会社スリーボンド Thermosetting resin composition
JP5340558B2 (en) * 2007-05-17 2013-11-13 日東電工株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2010221526A (en) * 2009-03-24 2010-10-07 Sumitomo Bakelite Co Ltd Metal clad laminated plate, printed circuit board, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609917B (en) * 2011-05-31 2018-01-01 Ajinomoto Co., Inc. Resin composition

Also Published As

Publication number Publication date
CN102378790B (en) 2013-05-08
KR20120027191A (en) 2012-03-21
WO2010117081A1 (en) 2010-10-14
TWI466938B (en) 2015-01-01
JPWO2010117081A1 (en) 2012-10-18
CN102378790A (en) 2012-03-14
JP6115929B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5228426B2 (en) Liquid resin composition for electronic component sealing and electronic component device using the same
TWI338019B (en)
JP6340762B2 (en) Manufacturing method of electronic component device using underfill material, underfill material, and electronic component device
JP6835076B2 (en) Liquid resin composition for sealing and electronic component equipment
JP5277537B2 (en) Liquid resin composition for electronic components and electronic component device using the same
WO2011032120A2 (en) Underfill for high density interconnect flip chips
JP5114935B2 (en) Liquid resin composition for electronic components, and electronic component device using the same
JP2006232950A (en) Sealing liquid epoxy resin composition, semiconductor device, and method for producing the same
JP4481651B2 (en) Non-flow underfill composition
JP2007182562A (en) Liquid resin composition for electronic element and electronic element device
TW201107405A (en) Epoxy resin composition
JP2005516090A5 (en)
JP2009091510A (en) Liquid epoxy resin composition and semiconductor device using the composition
JP5692212B2 (en) Liquid resin composition for electronic components and electronic component device using the same
KR20070053626A (en) Liquid epoxy resin composition
JP2009256466A (en) Adhesive for electronic part
JP6286959B2 (en) Epoxy resin composition, electronic component device, and method of manufacturing electronic component device
JP2009158712A (en) Adhesive for electronic component
JP2019083225A (en) Liquid resin composition for underfill, electronic component device, and method of manufacturing electronic component device
WO2002079294A1 (en) One-component hot-setting epoxy resin composition and semiconductor mounting underfill material
JP2015054952A (en) Epoxy resin composition, electronic part device and production method of electronic part device
JP5614022B2 (en) Epoxy resin composition, semiconductor sealing resin composition, and semiconductor device
JP4737364B2 (en) Liquid epoxy resin composition and semiconductor device
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2017028050A (en) Underfill material and electronic component device using the same