JP6108396B2 - 無線センサ端末及び無線送信方法 - Google Patents

無線センサ端末及び無線送信方法 Download PDF

Info

Publication number
JP6108396B2
JP6108396B2 JP2013194779A JP2013194779A JP6108396B2 JP 6108396 B2 JP6108396 B2 JP 6108396B2 JP 2013194779 A JP2013194779 A JP 2013194779A JP 2013194779 A JP2013194779 A JP 2013194779A JP 6108396 B2 JP6108396 B2 JP 6108396B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
current
value
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013194779A
Other languages
English (en)
Other versions
JP2015061245A (ja
Inventor
浩尚 岡田
浩尚 岡田
伊藤 寿浩
寿浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013194779A priority Critical patent/JP6108396B2/ja
Publication of JP2015061245A publication Critical patent/JP2015061245A/ja
Application granted granted Critical
Publication of JP6108396B2 publication Critical patent/JP6108396B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本発明は無線センサ端末及び無線送信方法に係り、特に被測定信号を測定するセンサ機能と測定結果を無線送信する無線送信機能とを有する無線センサ端末及び無線送信方法に関する。
近年、省エネルギーの対策のため、工場、研究所、学校、病院、商業施設、オフィス、公共施設などの大電力消費施設における消費電力を管理するシステムが注目されている。同様に、一般住宅においても各部屋毎あるいは電力消費機器毎に消費電力を管理するための無線センサネットワークシステムが注目されつつある。この無線センサネットワークシステムでは、例えば、住宅内の各部屋に電力を供給する配電盤に接続された複数の電力線に流れる電流を複数の無線センサ端末により別々に測定し、その測定結果を所定位置に設けた受信装置へ無線送信する。受信装置では、受信信号を解析し、各部屋毎の消費電力の監視や管理、電力消費機器の稼働状況の監視などを行う。
この種の無線センサネットワークシステムに使用される無線センサ端末としては、電源としてバッテリーを搭載し、その端末自身の識別情報に、測定した電流量のデジタル値や消費電力のデジタル値をそのまま含めたフォーマットの送信信号を所定の時間間隔で管理センターへ無線送信する構成のものが一般的である(例えば、特許文献1,2参照)。
特開2005−159532号公報 特開2011−259252号公報
しかしながら、特許文献1,2に記載された無線センサ端末は、電源としてバッテリーを搭載しているため、バッテリーが劣化して所要の電源電圧が得られなくなる度に、バッテリーを新しいものと交換する必要があり、コスト的及び作業的に問題である。
そこで、バッテリー交換を不要とするために、バッテリーを搭載せずに自立電源を備える所謂無給電型の無線センサ端末が望ましい。この無給電型の無線センサ端末としては、例えば、電力線に取り付けて、電力線に流れる交流電流により誘起される電磁誘導電流を検出し、その電磁誘導電流を直流電圧に整流した後蓄電し、その蓄電した直流電圧を端末各部の電源電圧とする構成が考えられる。
しかし、この場合、微小レベルである電磁誘導電流を高圧な直流電圧に変換して蓄電し、その蓄電した直流電圧を電源電圧として用いて、所定の時間間隔で確実に無線送信を実行できるようにするためには、無線送信時の消費電力が少ないことが望ましい。ところが、無線送信の際の消費電力は、送信信号の総データ量(総電文量)に比例するため、測定した電流量のデジタル値や消費電力のデジタル値をそのまま含めたフォーマットの送信信号を無線送信する従来の無線センサ端末では、送信信号の総データ量が多いために消費電力が大きいという問題がある。
このような消費電力が大きい無給電型の無線センサ端末では、所要の電源電圧を得るためには、長期間にわたって蓄電しなければならず、実用に堪えないという問題がある。あるいは、送信信号の総データ量が多いために、蓄電電圧を電源電圧としたときに、送信信号のデータ量のすべての送信を完了することができないおそれがある。したがって、電磁誘導電流を直流電圧に整流した後蓄電し、その蓄電した直流電圧を無線センサ端末の自立電源として用いることは極めて困難である。
更に、バッテリーを搭載しているか否かに関わらず、従来の無線センサ端末では、被測定電流の測定範囲が1つであり、電流測定範囲が1ケタ程度で狭いという問題もある。
本発明は以上の点に鑑みてなされたもので、自立電源を備え、しかも従来に比べて測定範囲が広い無線センサ端末及び無線送信方法を提供することを目的とする。
上記の目的を達成するため、本発明の無線センサ端末は、トランスの2次巻線に直列接続された抵抗値が異なる第1及び第2の負荷抵抗に、前記トランスの1次巻線に流れる被測定電流に応じた交流電圧をそれぞれ発生するとともに、前記第1の負荷抵抗は前記被測定電流が予め設定した低電流測定範囲内の電流値のときに所要の範囲の第1の交流電圧を発生させる第1の抵抗値に設定され、前記第2の負荷抵抗は前記被測定電流が予め設定した高電流測定範囲内の電流値のときに所要の範囲の第2の交流電圧を発生させる前記第1の抵抗値よりも小なる第2の抵抗値に設定された発電手段と、前記第1の負荷抵抗に発生した前記第1の交流電圧を整流及び蓄電して得た第1の直流電圧が所定の電圧値に達すると所定期間第1の電源電圧を発生し、前記所定期間経過後前記被測定電流の値に応じた期間後に前記第1の直流電圧が再び前記所定の電圧値に達すると前記第1の電源電圧を発生することを繰り返す低電流測定用電圧発生手段と、前記第2の負荷抵抗に発生した前記第2の交流電圧を整流及び蓄電して得た第2の直流電圧が前記所定の電圧値に達すると前記所定期間第2の電源電圧を発生し、前記所定期間経過後前記被測定電流の値に応じた期間後に前記第2の直流電圧が再び前記所定の電圧値に達すると前記第2の電源電圧を発生することを繰り返す高電流測定用電圧発生手段と、前記第1及び第2の電源電圧のうち、前記被測定電流が前記低電流測定範囲内の電流値のときは前記第1の電源電圧を選択し、前記被測定電流が前記高電流測定範囲内の電流値のときは前記第2の電源電圧を選択する電源選択手段と、前記被測定電流が前記低電流測定範囲内の電流値か前記高電流測定範囲内の電流値かを受信側に識別させるための検出信号を、前記電源選択手段で選択された電源電圧が前記第1の電源電圧か前記第2の電源電圧かに応じて生成する検出信号出力手段と、前記電源選択手段により選択された前記第1の電源電圧又は前記第2の電源電圧が動作用電源電圧として印加されて前記所定期間のみ動作し、前記第1の電源電圧及び前記第2の電源電圧が印加されない期間は動作を停止し、前記被測定電流の値に応じて可変される送信間隔で、前記検出信号を含む送信信号を無線送信する無線送信手段とを備えることを特徴とする。
また、上記の目的を達成するため、本発明の無線送信方法は、トランスの2次巻線に直列に接続された第1及び第2の負荷抵抗のうち、前記トランスの1次巻線に流れる被測定電流が予め設定した低電流測定範囲内の電流値のときに前記第1の負荷抵抗に所要の範囲の第1の交流電圧を発生させるとともに、前記被測定電流が予め設定した高電流測定範囲内の電流値のときに前記第2の負荷抵抗に所要の範囲の第2の交流電圧を発生させる発電ステップと、前記被測定電流が低電流測定範囲内のときに前記第1の負荷抵抗に発生した前記第1の交流電圧を整流及び蓄電して得た第1の直流電圧が所定の電圧値に達すると所定期間第1の電源電圧を発生し、前記所定期間経過後前記被測定電流の値に応じた期間後に前記第1の直流電圧が再び前記所定の電圧値に達すると前記第1の電源電圧を発生することを繰り返す低電流測定用電圧発生ステップと、前記被測定電流が高電流測定範囲内のときに前記第2の負荷抵抗に発生した前記第2の交流電圧を整流及び蓄電して得た第2の直流電圧が前記所定の電圧値に達すると前記所定期間第2の電源電圧を発生し、前記所定期間経過後前記被測定電流の値に応じた期間後に前記第2の直流電圧が再び前記所定の電圧値に達すると前記第2の電源電圧を発生することを繰り返す高電流測定用電圧発生ステップと、前記第1及び第2の電源電圧のうち、前記被測定電流が前記低電流測定範囲内の電流値のときは前記第1の電源電圧を選択し、前記被測定電流が前記高電流測定範囲内の電流値のときは前記第2の電源電圧を選択する電源選択ステップと、前記被測定電流が前記低電流測定範囲内の電流値か前記高電流測定範囲内の電流値かを受信側に識別させるための検出信号を、前記電源選択ステップで選択された電源電圧が前記第1の電源電圧か前記第2の電源電圧かに応じて生成する検出信号生成ステップと、前記電源選択ステップにより選択された前記第1の電源電圧又は前記第2の電源電圧が動作用電源電圧として印加されて前記所定期間のみ動作し、前記第1の電源電圧及び前記第2の電源電圧が印加されない期間は動作を停止し、前記被測定電流の値に応じて可変される送信間隔で、前記検出信号を含む送信信号を無線送信する無線送信ステップとを含むことを特徴とする。
本発明によれば、自立電源を備え、しかも従来に比べて被測定電流の測定範囲が広い無線センサ端末を実現できる。
本発明に係る無線センサ端末の一実施形態の回路図である。 被測定電流と出力電圧との関係の一例を示す図である。 低電流測定用回路の信号を高電流測定用回路で使用できるように変換するための差動増幅回路の説明図である。 本発明に係る無線送信方法の一実施形態のフローチャートである。 図1の動作説明用タイミングチャートである。 本発明における無線送信信号の一例のフォーマット及び送信間隔を説明する模式図である。 本発明における被測定電流値に応じて無線送信信号の送信間隔が変化することを示すタイミングチャートである。 受信装置の一例のブロック図である 図8の動作説明用フローチャートである。
次に、本発明の一実施形態について図面を参照して説明する。
図1は、本発明に係る無線センサ端末の一実施形態の回路図を示す。本実施形態の無線センサ端末10は、電流変換器CT(Current Transformer)、センサ・発電部11A及び11B、整流・蓄電回路部12A及び12B、電源制御部13A及び13B、電源選択部14、及び無線送信部15より構成されている。センサ・発電部11A、整流・蓄電回路部12A及び電源制御部13Aは低電流測定用回路Aを構成しており、センサ・発電部11B、整流・蓄電回路部12B及び電源制御部13Bは高電流測定用回路Bを構成している。
トランスである電流変換器CTは、1次巻線側に例えば公知の構造のクランプ機構を備え、電力線をクランプ機構でクランプすることにより、リング状コアを形成し、そのコアに巻回された2次巻線に電力線に流れる電流(被測定電流)に応じた値の電磁誘導電流を誘起する。電流変換器CTの2次巻線には負荷抵抗R0及びR9が直列接続されている。負荷抵抗R0及びR9の各抵抗値は、R0の方が大に設定されている。これは低電流測定用の抵抗R0は低電流測定時に、高電流測定用の抵抗R9と同様の所要の範囲の高電圧を得るためである。センサ・発電部11Aを構成する負荷抵抗R0には上記電力線に流れる電流である被測定電流に応じた値の電磁誘導電流により第1の交流電圧が発生する。また、これと同時に、センサ・発電部11Bを構成する負荷抵抗R9には上記電力線に流れる同じ電流である被測定電流に応じた値の電磁誘導電流により第2の交流電圧が発生する。
整流・蓄電回路部12Aは、コッククロフト・ウォルトン回路121とその出力端子に接続された蓄電用コンデンサC0とからなる。また、整流・蓄電回路部12Bは、コッククロフト・ウォルトン回路122とその出力端子に接続された蓄電用コンデンサC4とからなる。コッククロフト・ウォルトン回路121及び122は、それぞれコンデンサとダイオードとを多段に接続した回路で、入力交流電圧を高電圧の直流電圧に整流する低消費電力の公知の昇圧及び整流回路である。コッククロフト・ウォルトン回路121は、その出力電圧V0をコッククロフト・ウォルトン回路121の正側及び負側の二つの出力端子間に接続されたコンデンサC0に印加して充電し、蓄電(保持)させる。従って、コンデンサC0の端子電圧V0は、センサ・発電部11Aより入力された交流電圧の値に対応した電圧値である。同様に、コッククロフト・ウォルトン回路122は、その出力電圧V4をコッククロフト・ウォルトン回路122の正側及び負側の二つの出力端子間に接続されたコンデンサC4に印加して充電し、蓄電(保持)させる。従って、コンデンサC4の端子電圧V4は、センサ・発電部11Bより入力された交流電圧の値に対応した電圧値である。
図2は、被測定電流と出力電圧との関係の一例を示す。同図において、Iは被測定電流対第1の出力電圧特性を示し、IIは被測定電流対第2の出力電圧特性を示す。第1の出力電圧は上記端子電圧V0であり、第2の出力電圧は上記端子電圧V4である。すなわち、負荷抵抗R0によるセンサ・発電部11Aは図2の低電流測定範囲ARを測定し、負荷抵抗R9によるセンサ・発電部11Bは図2の高電流測定範囲BRを測定する。ここでは、低電流測定範囲ARと高電流測定範囲BRとは一例として3%程度重畳するように負荷抵抗R0及びR9の各抵抗値が選定されている。本実施形態では負荷抵抗が2つ設けられているため、負荷抵抗が1つの場合に比べて測定電流範囲が拡大されていることが図2から分かる。
電源制御部13Aは、コンデンサC0に並列接続されたツェナーダイオードDZ0、抵抗R1及びR2による第1の抵抗分圧回路、抵抗R3及びR4による第2の抵抗分圧回路、第1の抵抗分圧回路から供給される電圧と基準電圧Vrefとを比較する第1のコンパレータU0、第2の抵抗分圧回路から供給される電圧と基準電圧Vrefとを比較する第2のコンパレータU1、第1のコンパレータU0から出力される信号を遅延するダイオードD0、抵抗R5、R7、コンデンサC2からなる遅延回路131、第2のコンパレータU1から出力される信号を遅延する第1のタイマ回路132、遅延回路131から出力される信号と基準電圧Vrefとを電圧比較する第3のコンパレータU2、第3のコンパレータU2から出力される信号を遅延する第2のタイマ回路133、第2のタイマ回路133から出力される信号と基準電圧Vrefとを電圧比較する第4のコンパレータU3、及び第1のアナログスイッチS1とから構成されている。遅延回路131は、後述するように、端子電圧V0が第2のコンパレータU1の閾値VT2まで増加するかどうかの判断のための回路である。
電源制御部13Bは、コンデンサC4に並列接続されたツェナーダイオードDZ1、抵抗R10及びR11による第3の抵抗分圧回路、第3の抵抗分圧回路から供給される電圧と基準電圧Vrefとを比較する第5のコンパレータU4、第5のコンパレータU4から出力される信号を遅延する第3のタイマ回路134、第3のタイマ回路134から出力される信号と基準電圧Vrefとを電圧比較する第6のコンパレータU5、オペアンプU6を用いた差動増幅回路135、2入力AND回路U7、及び第2のアナログスイッチS2とから構成されている。ツェナーダイオードDZ1はツェナーダイオードDZ0と同様に素子の破壊を防ぐためのものである。
差動増幅回路135は、低電流測定用回路Aの信号を高電流測定用回路Bで使用できるように変換するための回路である。このことについて図3とともに説明する。コッククロフト・ウォルトン回路121によりコンデンサC0の端子電圧V0は、低電流測定用回路Aのグランド電圧VAGNDからは図3に示すように直流となる。しかしながら、高電流測定用回路Bのグランド電圧VBGNDは、抵抗R9が抵抗R0で接続されているため、図3に示すように、抵抗の電圧降下分だけ平均値が増加した50Hzの交流信号に見える。なお、50Hzは、被測定電流である商用交流電流の周波数である。一方、コッククロフト・ウォルトン回路122によりコンデンサC4の端子電圧V4は、高電流測定用回路Bのグランド電圧VBGNDからは図3に(V4−VBGND)で示すように直流となる。また、コッククロフト・ウォルトン回路122の正側入力端子の電圧は図3にV4で示すように50Hzの交流信号となる。従って、低電流測定用回路Aの信号を高電流測定用回路Bで使用できるようにするためには、差動増幅回路135により信号を変換する必要がある。
図1に戻って説明する。第3のアナログスイッチS3は無線送信部15に対して、無線送信部15が低電流測定用回路A及び高電流測定用回路Bのどちら側から電源電圧を得ているかを示す検出信号を出力する。第4のアナログスイッチS4及び第5のアナログスイッチS5はアナログスイッチS1から出力される低電流測定用回路Aの蓄電電圧V0と、アナログスイッチS2から出力される高電流測定用回路Bの蓄電電圧V4とのうちの一方の蓄電電圧を選択するための電源選択部14を構成している。無線送信部15は、マイクロコントロールユニット(MCU:Micro Control Unit)151及び無線IC(RFIC:Radio Frequency Integrated Circuit)152からなり、電源選択部14により選択された蓄電電圧V0又はV4が動作用電源電圧として印加されることにより動作を開始し、所定のフォーマットの送信信号を予め定められた無線周波数で送信する。
なお、後述するように、タイマ回路133、134は無線送信部15が送信動作を完了するまでアナログスイッチS1、S2を蓄電電圧V0、V4を選択出力し続けるために設けられている。また、タイマ回路132は、無線送信部15が送信動作を完了するまでアナログスイッチS4、S5から蓄電電圧を選択出力し続けるために設けられている。
図4は、本発明に係る無線送信方法の一実施形態の動作説明用フローチャートを示す。まず、負荷抵抗R0及びR9に第1及び第2の交流電圧を発生させる(ステップS101)。次に、無線センサ端末10は被測定電流が低電流測定範囲のとき第1の電源電圧を、被測定電流に応じた間隔で所定期間ずつ発生する(ステップS102)。続いて、無線センサ端末10は被測定電流が高電流測定範囲のとき第2の電源電圧を、被測定電流に応じた間隔で所定期間ずつ発生する(ステップS103)。続いて、無線センサ端末10は被測定電流に応じて第1の電源電圧か第2の電源電圧を選択する(ステップS104)。また、無線センサ端末10は被測定電流が低電流測定範囲の値か高電流測定範囲の値かを示す検出信号を作成し(ステップS105)、その検出信号を送信信号に含めて無線送信する(ステップS106)。この無線送信信号は無線送信部15が動作する所定期間出力され、被測定電流に応じた送信間隔で断続的に出力される。
次に、図1の本実施形態の動作について、図5のタイミングチャートを併せ参照して詳細に説明する。図5(a1)、(b1)及び(c1)は被測定電流値が低い場合、同図(a2)、(b2)及び(c2)は被測定電流値が高い場合の図1の動作説明用タイミングチャートを示す。例えば、配電盤に接続された電力線に、コアにコイルが巻回された構造の電流変換器CTを図5に示す時刻t1で装着したものとすると、電流変換器CTの2次巻線に電力線に流れる電流(被測定電流)に応じた値の電磁誘導電流が誘起され、その電磁誘導電流が負荷抵抗R0及びR9によりそれぞれ第1、第2の交流電圧に変換されて、コッククロフト・ウォルトン回路121、122にそれぞれ印加される。このときの被測定電流は低電流測定用回路Aで測定される低電流であるものとする。
低電流測定回路A内のコッククロフト・ウォルトン回路121は、入力交流電圧を昇圧及び整流して得た直流電圧をコンデンサC0に充電(蓄電)し始め、これと並行してコッククロフト・ウォルトン回路122は、入力交流電圧を昇圧及び整流して得た直流電圧をコンデンサC4に充電(蓄電)し始める。これにより、コンデンサC0の端子電圧V0は図5(b1)に示すように時刻t1から時間の経過とともにコンデンサC0の充電時定数に従って上昇し始める。一方、コンデンサC4の端子電圧V4も、図5(c1)に示すように時刻t1から時間の経過とともにコンデンサC4の充電時定数に従って上昇し始める。
すると、端子電圧V0を抵抗分圧する第1の抵抗分圧回路から出力される電圧V01、及び第2の抵抗分圧回路から出力される電圧V02は、図5(b1)に示すように、時刻t1から時間の経過とともに同様に上昇し始める。その後、時刻t2で電圧V01が基準電圧Vrefに達すると、コンパレータU0の出力電圧が図5(a1)に示すようにハイレベルとなる。このとき、端子電圧V0は図5(b1)に示すようにコンパレータU0の閾値VT1に達する。また、時刻t2では電圧V02は図5(b1)に、また端子電圧V4を抵抗分圧する第3の抵抗分圧回路から出力される電圧V41は図5(c1)に示すように、それぞれ上昇しているが、まだ基準電圧Vrefには到達していないため、コンパレータU1及びU4の出力電圧は図5(a1)に示すように引き続きローレベルである。
基準電圧Vrefより大であるコンパレータU0のハイレベルの出力電圧は、遅延回路131により遅延されて図5(b1)に点線で示す電圧V2とされて時刻t3でコンパレータU2にて基準電圧Vrefと電圧比較されて、コンパレータU2から図5(a1)に示すようにハイレベルの電圧が出力される。遅延回路131は、端子電圧V0がコンパレータU1の閾値VT2に達したかどうかを判断するための回路であり、端子電圧V0がコンパレータU1の閾値VT2に達しないときは被測定電流が低電流測定範囲内であり、達したときは被測定電流が高電流測定範囲内であることが分かる。基準電圧Vrefより大であるコンパレータU2のハイレベルの出力電圧は、タイマ回路133を通して図5(b1)に破線で示す電圧V3とされてコンパレータU3にて基準電圧Vrefと電圧比較され、コンパレータU3から図5(a1)に示すように時刻t3直後にハイレベルの電圧が出力される。コンパレータU3のハイレベルの出力電圧は、アナログスイッチS1を端子イ側に接続させる。これにより、図5(a1)にハイレベルで模式的に示すように、アナログスイッチS1は端子電圧V0をアナログスイッチS4の端子イに供給する。
一方、時刻t3ではコンパレータU1のローレベルの出力電圧V1がタイマ回路132を通してアナログスイッチS3、S4、S5にそれぞれスイッチング信号として印加され、アナログスイッチS3を通して接地電圧VAGNDをMCU151に低電流測定検出信号として供給させると共に、アナログスイッチS4及びS5をそれぞれ端子イ側に接続する。これにより、アナログスイッチS4及びS5をそれぞれ通して無線送信部15に低電流測定用回路Aから電圧V0及びVAGNDがそれぞれ印加される。無線送信部15を構成するMCU151及び無線IC152は、この低電流測定用回路Aからの電圧V0及びVAGNDを動作用電源電圧として動作を開始する。
時刻t3からのMCU151及び無線IC152の動作により電力が消費されるため、コンデンサC0の端子電圧V0は図5(b1)に示すように、C0の放電時定数に従って時刻t3から時間の経過とともに低下していく。すると、それに伴い電圧V01及びV02も時刻t3から低下し始め、図5(b1)に示すように時刻t4で電圧V01が基準電圧Vref未満となりコンパレータ 0 の出力電圧が図5(a1)に示すようにローレベルとなる。さらに、時刻t5で図5(b1)に示すように電圧V2が基準電圧Vref未満となりコンパレータU2の出力電圧が図5(a1)に示すようにローレベルとなる。
ここで、タイマ回路133が存在しない場合は、時刻t5でコンパレータU3の出力電圧がローレベルとなり、アナログスイッチS1が端子ロ側に切り替わり、その結果、MCU151及び無線IC152には動作用電源電圧の供給が断たれることになり、動作を停止する。この動作停止時点でMCU151及び無線IC152がまだ送信信号の無線送信動作が完了していない場合、問題である。
そこで、本実施形態では、タイマ回路133によりコンパレータ 3 の出力電圧がローレベルになるまでの時間を遅らせ、MCU151及び無線IC152が送信信号の無線送信動作が完了するのに十分な時間を確保できるようにしている。すなわち、コンパレータ
2からハイレベルが出力される時刻t3からタイマ回路133内のダイオードD2が順方向にバイアスされてダイオードD2からの順方向電流によりコンデンサC3が充電され始めるため、その端子電圧V3はC3の充電時定数に従い急激に上昇する。
ここで、コンパレータU2はハイレベルの出力電圧がその電源電圧に等しいタイプのもの(所謂レール・ツウ・レールのコンパレータ)であり、かつ、電源電圧が蓄電電圧V0であるものとする。この場合、時刻t3直後からの無線送信部15の動作の開始により図5(b1)に示すように、時刻t3の時点よりも端子電圧V0が低下し始めると、それに伴い、コンパレータU2のハイレベルの出力電圧V0及び端子電圧V3が低下し始める。その後の時刻t5で、図5(b1)に示すように電圧V2が基準電圧Vref未満となりコンパレータU2がオフとなりローレベルの電圧を出力すると、端子電圧V3がダイオードD2のアノード電位より高くなる。このため、ダイオードD2が逆バイアスされ、コンデンサC3の充電電荷が抵抗R8を介してC3の容量値とR8の抵抗値で定まる放電時定数に従い放電され始める。その結果、端子電圧V3が図5(b1)に示すように時間の経過とともに徐々に低下し始め、基準電圧VREF未満になる。その時刻をt6とすると、コンパレータU3の出力電圧が時刻t6でローレベルとなり、アナログスイッチS1が端子ロ側に切り替わる。
一方、抵抗分圧電圧V02は、図5(b1)に示すように時刻t3〜t6の期間も引き続き基準電圧Vref未満であるので、図5(a1)に示すようにコンパレータU1の出力電圧はローレベルである。そのため、アナログスイッチS4及びS5は、図5(a1)に示すように時刻t3〜t6の期間も引き続き低電流測定用回路Aの蓄電電圧V0と接地電圧VAGNDを選択する状態となっている。以上の結果、時刻t6でMCU151及び無線IC152には低電流測定用回路Aからの動作用電源電圧の供給が断たれて動作が停止する。
従って、タイマ回路133を設けることで、時刻t3から時刻t6までの期間にわたってMCU151及び無線IC152の動作を継続させることができる。ここで、タイマ回路133のC3の放電時定数は、時刻t3から時刻t6までの期間が、MCU151及び無線IC152が送信信号の無線送信動作を完了するのに十分な時間長となるように設定されている。なお、アナログスイッチS3も時刻t3〜t6の期間は引き続きVAGNDをMCU151に選択出力する状態にされている。MCU151は、アナログスイッチS3から入力されるVAGNDを低電流測定用回路Aの使用を示す低電流測定検出信号として識別する。
時刻t6でMCU151及び無線IC152の動作が停止すると、時刻t6以降は図5(b1)に示すように、再び低電流測定用回路Aの各電圧V0、V01、V02は上昇していく。一方、時刻t1〜t6及びt6以降アナログスイッチS4及びS5は、低電流測定用回路Aの蓄電電圧V0と接地電圧VAGNDを選択出力しており、高電流測定用回路Bは無線送信部15から切り離されているので、無線送信部15の動作の有無に関係なく、図5(c1)に示すように、高電流測定用回路Bの電圧V4、V41は上昇を続ける。
次に、電流変換器CTが装着される電力線に流れる被測定電流が、高電流測定用回路Bで測定される高電流測定範囲内の電流値である場合の、本実施形態の動作について図5(a2)、(b2)、(c2)とともに説明する。例えば、配電盤に接続された電力線に、コアにコイルが巻回された構造の電流変換器CTを図5に示す時刻t11で装着したものとすると、コッククロフト・ウォルトン回路121及び122は、それぞれ入力交流電圧を昇圧及び整流して得た直流電圧をコンデンサC0、C4に充電(蓄電)し始める。これにより、コンデンサC0、C4の端子電圧V0、V4は図5(b2)、(c2)に示すように時刻t11から時間の経過とともに上昇し始める。
端子電圧V0の上昇に伴い抵抗分圧電圧V01、V02が、図5(b2)に示すように、時刻t11から時間の経過とともに同様に上昇し始める。その後、時刻t12で電圧V01が基準電圧Vrefに達すると、コンパレータU0の出力電圧が図5(a2)に示すようにハイレベルとなる。このとき、端子電圧V0は図5(b2)に示すようにコンパレータU0の閾値VT1に達する。また、時刻t12では電圧V02は図5(b2)に、また端子電圧V4の抵抗分圧電圧V41は図5(c2)に示すように、それぞれ上昇しているが、まだ基準電圧Vrefには到達していないため、コンパレータU1及びU4の出力電圧は図5(a2)に示すように引き続きローレベルである。
基準電圧Vrefより大であるコンパレータU0のハイレベルの出力電圧は、遅延回路131により遅延されて図5(b2)に点線で示す電圧V2とされてコンパレータU2にて基準電圧Vrefと電圧比較される。遅延回路131は、端子電圧V0がコンパレータU1の閾値VT2に達したかどうかを判断するための回路であり、端子電圧V0がコンパレータU1の閾値VT2に達したときは被測定電流が高電流測定範囲内であることが分かる。ここでは、抵抗分圧電圧V02が時刻t13で基準電圧Vrefにまで上昇し、時刻t13で端子電圧V0がコンパレータU1の閾値VT2に達する。これにより、コンパレータU1の出力電圧は図5(a2)に示すように時刻t13でハイレベルとなり、タイマ回路132により電圧V1とされてアナログスイッチS3〜S5にスイッチング信号として印加されるとともに、差動増幅回路135を通してAND回路U7の一方の入力端子に供給されてゲート「開」とする。
タイマ回路132の出力電圧V1は時刻t13で図5(b2)に示すようにハイレベルのVT2となり、このときアナログスイッチS3〜S5はそれぞれ端子ロ側に切り替えられ、図5(a2)に示すように、アナログスイッチS3及びS4がそれぞれアナログスイッチS2の出力選択状態、アナログスイッチS5が高電流測定回路Bの接地電圧VBGND選択状態となる。続いて、図5(b2)に示すように時刻t14で遅延回路131の出力電圧V2が基準電圧Vrefにまで上昇し、コンパレータU2の出力電圧が図5(a2)に示すようにハイレベルとなると、タイマ回路133の出力電圧V3もハイレベルとなるので、コンパレータU3の出力電圧も図5(a2)に示すようにハイレベルとなる。コンパレータU3のハイレベルの出力電圧はアナログスイッチS1を端子イ側に切り替え、V0選択状態とする。
続いて、図5(c2)に示すように、時刻t15で抵抗分圧電圧V41が基準電圧Vrefに達し(すなわち、電圧V4がコンパレータU4の閾値VT1に達し)、コンパレータU4の出力電圧が図5(a2)に示すようにハイレベルとなる。これにより、図5(c2)に示すように、時刻t15直後にタイマ回路134の出力電圧V5が基準電圧Vrefに高いVT1にまで上昇するので、電圧V5と基準電圧Vrefとを電圧比較するコンパレータU5の出力電圧が図5(a2)に示すようにハイレベルとなる。時刻t15直後に出力されるコンパレータU5のハイレベルの出力電圧は、時刻t13以降ゲート「開」状態にあるAND回路U7を通してスイッチング信号としてアナログスイッチS2に印加され、これを図5(a2)に示すように端子電圧V4選択状態に切り替える。
時刻t13以降、アナログスイッチS3及びS4がそれぞれアナログスイッチS2の出力選択状態に切り替えられているので、時刻t15の直後にアナログスイッチS4及びS5をそれぞれ通して無線送信部15に高電流測定用回路Bから電圧V4及びVBGNDがそれぞれ印加される。無線送信部15を構成するMCU151及び無線IC152は、この高電流測定用回路Bからの電圧V4及びVBGNDを動作用電源電圧として動作を開始する。
時刻t15直後からのMCU151及び無線IC152の動作により電力が消費されるため、コンデンサC4の端子電圧V4は図5(c2)に示すように、C4の放電時定数に従って時刻t15直後から時間の経過とともに低下していく。すると、それに伴い電圧V41も時刻t15直後から低下し始め、図5(c2)に示すように時刻t16でタイマ回路134の出力電圧V5が基準電圧Vref未満となり、コンパレータU5の出力電圧が図5(a2)に示すようにローレベルとなる。
ここで、タイマ回路134が存在しない場合は、時刻t15の直後にV41が基準電圧Vref未満となり、コンパレータU4及びU5の各出力電圧がローレベルとなり、それによりAND回路U7の出力電圧もローレベルとなるので、アナログスイッチS2が端子イ側に切り替わる。その結果、MCU151及び無線IC152には動作用電源電圧の供給が断たれることになり、動作を停止する。この動作停止時点でMCU151及び無線IC152がまだ送信信号の無線送信動作が完了していない場合、問題である。
そこで、本実施形態では、タイマ回路134によりコンパレータU5の出力電圧がローレベルになるまでの時間を遅らせ、MCU151及び無線IC152が送信信号の無線送信動作が完了するのに十分な時間を確保できるようにしている。すなわち、コンパレータU4からハイレベルが出力される時刻t15からタイマ回路134内のダイオードD0が順方向にバイアスされてダイオードD0からの順方向電流によりコンデンサC5が充電され始めるため、その端子電圧V5はC5の充電時定数に従い急激に上昇する。その直後にコンパレータU4の出力電圧がローレベルになり、端子電圧V5がダイオードD0のアノード電位より高くなるので、今度はダイオードD0が逆バイアスされ、コンデンサC5の充電電荷が抵抗R12を介してC5の容量値とR12の抵抗値で定まる放電時定数に従い放電され始める。その結果、端子電圧V5が図5(c2)で示すように時間の経過とともに徐々に低下し始め、基準電圧VREF未満になる。その時刻をt16とすると、コンパレータU5の出力電圧及びAND回路U7の出力電圧が時刻t16でローレベルとなり、アナログスイッチS2が端子イ側に切り替わる。
一方、抵抗分圧電圧V02は、図5(b2)に示すように時刻t15〜t16の期間も引き続き基準電圧Vrefより大であるので、図5(a2)に示すようにコンパレータU1の出力電圧はハイレベルである。そのため、アナログスイッチS4及びS5は、図5(a2)に示すように時刻t15〜t16の期間も引き続き高電流測定用回路Bの蓄電電圧V4と接地電圧VBGNDを選択する状態となっている。以上の結果、時刻t16でMCU151及び無線IC152には高電流測定用回路Bからの動作用電源電圧の供給が断たれて動作が停止する。
従って、タイマ回路134を設けることで、時刻t15から時刻t16までの期間にわたってMCU151及び無線IC152の動作を継続させることができる。ここで、タイマ回路134のC5の放電時定数は、時刻t15から時刻t16までの期間が、MCU151及び無線IC152が送信信号の無線送信動作を完了するのに十分な時間長となるように設定されている。なお、アナログスイッチS3も時刻t15〜t16の期間は引き続きアナログスイッチS2からの電圧V4をMCU151に選択出力する状態にされている。MCU151は、アナログスイッチS3から入力される電圧V4を高電流測定用回路Bの使用を示す高電流測定検出信号として識別する。
時刻t16でMCU151及び無線IC152の動作が停止すると、時刻t16以降は図5(c2)に示すように、再び高電流測定用回路Bの各電圧V4、V41は上昇していく。一方、時刻t13〜t16の無線送信部15の動作期間中はアナログスイッチS4及びS5は、高電流測定用回路Bの蓄電電圧V4と接地電圧VBGNDを選択出力しており、低電流測定用回路Aは無線送信部15から切り離されているので、無線送信部15の動作の有無に関係なく、低電流測定用回路Aの各電圧V0、V01、V02は、図5(b2)に示すように、電圧V01はチェナーダイオードDZ0のツェナー電圧Vzまで上昇し、以後そのツェナー電圧Vzに制限され、電圧V01、V02もツェナー電圧Vzを抵抗分圧した電圧値まで上昇した後その値に制限される。
なお、図5(a2)、(b2)、(c2)に示す時刻t17以降、被測定電流がそれまでよりも低下した場合、コッククロフト・ウォルトン回路121及び122の出力電圧V0及びV4は図5(b2)及び(c2)に示すように、同時に低下していき、それに伴い低電流測定用回路Aの各電圧V01、V02、V1〜V3も低下し、かつ、高電流測定用回路Bの各電圧V41、V5も低下していく。そして、時刻t17の直後に電圧V02が基準電圧Vref以下となることからコンパレータU1の出力電圧が図5(a2)に示すようにローレベルとなるため、図5(a2)に示すようにアナログスイッチS3及びS5は、低電流測定用回路Aの接地電圧VAGNDを選択出力する状態に切り替わり、かつ、アナログスイッチS4は、アナログスイッチS1の出力信号を選択する状態に切り替わる。その後、電圧V4が更に低下して基準電圧Vref以下となった時刻t18でコンパレータU0の出力電圧が図5(a2)に示すようにローレベルとなり、電圧V2が更に低下して基準電圧Vref以下となった時刻t19でコンパレータU2の出力電圧が図5(a2)に示すようにローレベルとなる。
このように、本実施形態では、電流変換器CTの2次側の負荷抵抗をR0とR9の2つの抵抗を直列接続した構成とすることで被測定電流範囲を従来の1桁程度(1〜10)の範囲に比べて2桁程度(1〜102)に拡大できる。また、本実施形態では、被測定電流が予め定めた低電流測定範囲内の値か高電流測定範囲内の値かに応じて、低電流測定範囲内のときは低電流測定回路Aを動作させて低電流測定回路Aの蓄電電圧V0と接地電位VAGND間の電圧値が無線送信部15が動作可能となった時刻以降に、無線送信部15に低電流測定回路Aの蓄電電圧V0と接地電位VAGNDとを動作用電源電圧として、無線送信部15が動作完了に必要な時間以上の所定時間印加して動作させ、他方、被測定電流が高電流測定範囲内の値のときは高電流測定回路Bを動作させて高電流測定回路Bの蓄電電圧V4と接地電位VBGND間の電圧値が無線送信部15が動作可能となった時刻以降に、無線送信部15に高電流測定回路Bの蓄電電圧V4と接地電位VBGNDとを動作用電源電圧として、無線送信部15が動作完了に必要な時間以上の所定時間印加して動作させることで、自立電源を備えた無給電型無線センサ端末を実現できる。
また、本実施形態では、被測定電流の測定値に応じた送信間隔で無線送信信号を送信する。以下、このことについて、図6及び図7を併せ参照して説明する。無線送信部15のMCU151は、例えば図6(a)に模式的に示すように、固定パターンのプリアンプル31、送信内容のデータ32、及び所定ビット数の誤り検出符号33とからなるフォーマットの送信信号を生成する。RFIC152はこの送信信号を所定の変調方式で変調して無線センサ端末に割り当てられた固有の無線周波数の無線送信信号として送信する。ここで、データ32は、送信信号が低電流測定回路Aを使用して検出した電流値か高電流測定回路Bを使用して検出した電流値かを、受信装置側で識別させるための1ビットの検出信号である。なお、システムに設けられる無線センサ端末の数が多すぎて、無線センサ端末毎に割り当てられる無線周波数が足りなくなると想定される場合は、データ32を端末IDを含めた数ビットとしてもよい。
また、無線送信部15は被測定電流の測定値に応じた送信間隔で図6(b)に模式的に示すように無線送信信号を受信装置へ送信する。図6(b)において、区間T0は図6(a)に示すフォーマットの送信信号が無線送信される期間を示しており、無線送信部15の動作期間(前述した時刻t3〜時刻t6、あるいは時刻t15〜時刻t16の期間に相当)を示し例えば1ms(一定)である。また、隣り合う2つの区間T0の間の区間T1、T2が被測定電流値に応じて可変される送信間隔を示し、例えば100ms〜300msの範囲内で可変される。なお、図6(b)は、区間T0と区間T1、T2の違いを説明するための図であり、それらの区間の各長さの相対関係は図示の便宜上、実際とは異なって示している。
次に、上記送信間隔について図7と共に更に詳細に説明する。ここでは、被測定電流が5.5A未満の場合は低電流測定回路Aで測定が行われ、5.5A以上の場合は高電流測定回路Bで測定が行われるものとする。いま、図7(a)に示すように、時刻t31から測定が開始され、最初の被測定電流値が3A、続いて時刻t35の直後から被測定電流値が5Aとなり、その後の時刻t37の直後から被測定電流値が6Aに変化したものとする。
この場合、時刻t31から前述した動作により低電流測定回路Aの蓄電電圧V0が図7(d )に示すように、また、高電流測定回路Bの蓄電電圧V4が同図(e)に示すように徐々に上昇していく。そして、図7(d)に示すように蓄電電圧V0がコンパレータU0の閾値VT1を超えた後の時刻t32から時刻t33までの期間、低電流測定回路Aから電源電圧が無線送信部15に印加されて同図(c)にハイレベルで模式的に示すように無線送信部15が動作して無線送信信号が送信され、その動作期間は蓄電電圧V0が低下していく。図7(d)に示すように、無線送信部15が電源電圧遮断により動作を停止した時刻t33から蓄電電圧V0が再び上昇し始め、蓄電電圧V0がコンパレータU0の閾値VT1を超えた後の時刻t34から時刻t35までの期間、低電流測定回路Aから電源電圧が無線送信部15に印加されて同図(c)にハイレベルで模式的に示すように無線送信部15が動作して無線送信信号が送信され、その動作期間は蓄電電圧V0が低下していく。続いて、図7(d)に示すように、無線送信部15が電源電圧遮断により動作を停止した時刻 35 から蓄電電圧V0が再び上昇し始める。
ここで、時刻t35の直後に被測定電流値が3Aから5Aに変わったものとすると、入力交流電圧が高くなることから、時刻t35から低電流測定回路Aの蓄電電圧V0が図7(d)に示すように、また、高電流測定回路Bの蓄電電圧V4が同図(e)に示すように急峻に傾斜で上昇する。これにより、図7(d)に示すように蓄電電圧V0が時刻t35以前よりも短時間でコンパレータU0の閾値VT1を超え、その後の時刻t36から時刻t37までの期間、低電流測定回路Aから電源電圧が無線送信部15に印加されて同図(c)にハイレベルで模式的に示すように無線送信部15が動作し、その動作期間は蓄電電圧V0が低下していく。このため、図7(b)に示すように、被測定電流値が3Aの場合の時刻t33〜t34までの送信間隔T01に比べて、被測定電流値が5Aの場合の時刻t35〜t36までの送信間隔T02の方が短くなる。
続いて、時刻t37の直後に被測定電流値が5Aから6Aに変わったものとすると、入力交流電圧が更に高くなることから、図7(d)に示すように蓄電電圧V0が時刻t36以前よりも更に短時間の時刻t38でコンパレータU1の閾値VT2を超えるが、このときは同図(e)に示すように蓄電電圧V4がコンパレータU4の閾値VT1を超えており、時刻t38から時刻t39までの期間、高電流測定回路Bから電源電圧が無線送信部15に印加されて同図(c)にハイレベルで模式的に示すように無線送信部15が動作し、その動作期間は蓄電電圧V4が低下していく。続いて、図7(e)に示すように、無線送信部15が電源電圧遮断により動作を停止した時刻t39から蓄電電圧V4が再び上昇し始める。しかし、この時刻t39における蓄電電圧V4の値は通常よりも大なる値の時刻t38における蓄電電圧V4から一定の送信時間で低下した値であるから、高電流測定回路Bから電源電圧を印加する通常の動作時の値よりも大なる値となっている。
このため、時刻t39で上昇し始めた蓄電電圧V4が通常動作時よりも短時間の時刻t40でコンパレータU4の閾値VT1に達し、時刻t40から時刻t41までの期間、高電流測定回路Bから電源電圧が無線送信部15に印加されて同図(c)にハイレベルで模式的に示すように無線送信部15が動作し、その動作期間は蓄電電圧V4が低下し、動作停止後は再び上昇し始める。時刻t41における蓄電電圧V4の値は、高電流測定回路Bから電源電圧を印加する通常の動作時の値となっている。従って、被測定電流値が6Aのときの時刻t41以降の動作時は、図7(e)に示すように、蓄電電圧V4が所定時間経過後の時刻t42でコンパレータU4の閾値VT1に達し、時刻t42から時刻t43までの期間、高電流測定回路Bから電源電圧が無線送信部15に印加されて同図(c)にハイレベルで模式的に示すように無線送信部15が動作し、その動作期間は蓄電電圧V4が低下し、動作停止後は再び上昇し始める。
このため、図7(b)に示す、被測定電流値が高電流測定回路Bを使用する6Aに切り替わった直後の2回の送信間隔(時刻t37から時刻t38までの送信間隔と、時刻t39から時刻t40までの送信間隔)は、それ以降の通常の時刻t41から時刻t42までの送信間隔T03と、時刻t43からの送信間隔T04(=T03)とは送信間隔が異なるため、受信装置側では正常に検出できないので使用しないこととする。上記の使用しない2回の送信間隔は、受信装置側では、送信信号中の低電流測定回路Aを使用したか高電流測定回路Bを使用したかを示す検出信号1ビットの値が変化した時とその次の計2回ということで判断できる。
なお、送信間隔は、低電流測定範囲内において被測定電流値が高くなるほど短くなり、同様に、高電流測定範囲内において被測定電流値が高くなるほど短くなる。ただし、低電流測定範囲内の被測定電流値に応じた送信間隔と高電流測定範囲内の被測定電流値に応じた送信間隔とは、直接の関係はない。例えば、図7の例では、低電流測定範囲内の5Aを測定した時の送信間隔T02は、高電流測定範囲内の6Aを測定した時の送信間隔T03、T04よりも短い。
このように、本実施形態の無線センサ端末は、被測定電流の値に応じて無線送信信号の送信間隔を可変するようにしているので、受信装置側では受信信号の受信間隔から被測定電流の電流値を換算する構成が必要となるが、無線送信信号に被測定電流値を示す情報を含める必要がない。被測定電流値を示す情報量は比較的大きいので、無線送信信号に被測定電流値を示す情報を含めない本実施形態の無線センサ端末では無線送信信号のデータ量を最小限にすることができ、送信時の消費電力の低減ができる。このことは自立電源の無線センサ端末に適用して好適である。
次に、本発明の無線センサ端末に適用される受信装置について説明する。図8は、受信装置の一例のブロック図を示す。同図において、受信装置40は、受信部・復調部41、演算部42、メモリ43、低電流測定用電流値テーブル44、高電流測定用電流値テーブル45、及び表示部46を有する。演算部42は、主としてプロセッサにより構成され、受信信号のデータを解析するとともに、メモリ43を用いて受信信号の受信間隔を検出する。メモリ43は、演算部42の作業用メモリとして用いられ、また無線周波数と端末IDとを対応付けたテーブルも予め記憶している。低電流測定用電流値テーブル44は、受信信号の送信間隔と低電流測定回路Aの測定電流値とを対応付けるためのテーブルである。高電流測定用テーブル45は、受信信号の送信間隔と高電流測定回路Bの測定電流値とを対応付けるためのテーブルである。
受信装置40は無線センサ端末10との間で無線通信可能な範囲内の任意の位置に設置される。従って、無線センサ端末10が住宅内の各部屋に電力を供給する配電盤に接続された複数の電力線に流れる電流を検出するために設けられている場合は、同じ住宅内あるいは住宅外の任意の位置に設けられるが、複数の住宅に設置された無線センサ端末10からの無線送信信号をまとめて受信する住宅外の位置に設けることもでき、更には配電盤の中に設けることも可能である。
次に、図8に示した受信装置の動作について、図9のフローチャートを併せ参照して説明する。受信・復調部41は無線センサ端末10から送信された無線送信信号を受信し、デジタル復調する。演算部42は、受信・復調部41の復調信号の周波数スペクトルから受信信号の無線周波数を識別し、メモリ44に記憶されている無線周波数対端末IDのテーブルを参照して、受信無線周波数に対応した無線センサ端末10の端末IDを取得する(ステップS201)。
続いて、演算部42は、復調信号から図6(a)に示したフォーマット中の1ビットのデータ32、すなわち測定回路使用検出信号の値を判別することで、復調信号の受信間隔により示される被測定電流の値が、低電流測定用回路Aを使用したものか、高電流測定用回路Bを使用したものかを判別する(ステップS202)。続いて、演算部42は、復調信号の受信間隔を算出する(ステップS203)。ステップS203では演算部42は、時計を有しており、受信・復調部41から復調信号が入力される毎に、その復調信号の入力開始時刻を受信時刻として復調信号の端末IDと対応させて記憶するとともに、復調信号の現在の入力開始時刻と入力復調信号と同じ端末IDの復調信号の前回の受信時刻との差から復調信号の入力期間T0を減算した時間長T1を受信間隔として算出する。算出した受信間隔は無線送信信号の送信間隔T1に相当し、演算部42によりメモリ43に端末ID毎に記憶される。
続いて、演算部42は、現在入力されている復調信号のステップS202で判別した検出信号の値が低電流測定用回路Aを示しているときは、ステップS203で算出した同じ端末IDの現在入力されている復調信号の受信間隔に基づき低電流測定用電流値テーブル44を参照して無線センサ端末10で検出された低電流測定範囲内の被測定電流の値を検出し、検出信号の値が高電流測定用回路Bを示しているときは、同じ端末IDの現在入力されている復調信号の受信間隔に基づき高電流測定用電流値テーブル45を参照して無線センサ端末10で検出された高電流測定範囲内の被測定電流の値を検出する(ステップS204)。
演算部42は検出した被測定電流の値を端末ID毎にメモリ43の所定領域に記憶する(ステップS205)。表示部46は、メモリ43の所定領域に記憶された被測定電流の値を端末IDとともに表示する(ステップS206)。なお、ステップS202とS203の順序は入れ替えてもよい。
なお、本発明は以上の実施形態に限定されるものではなく、電流変換器CTの2次側の負荷抵抗の数を3以上設けて、より広範囲な電流測定範囲を得ることも可能である。
10 無線センサ端末
11A、11B センサ・発電部
12A、12B 整流・蓄電回路部
13A、13B 電源制御部
14 電源選択部
15 無線送信部
40 受信装置
121、122 コッククロフト・ウォルトン回路
131 遅延回路
132、133、134 タイマ回路
135 差動増幅回路
151 マイクロコントロールユニット(MCU)
152 無線IC(RFIC)
CT 電流変換器
0、U1、U2、U3、U4、U5 コンパレータ
6 差動増幅回路用オペアンプ
7 AND回路
1、S2、S3、S4、S5 アナログスイッチ
0、R9 負荷抵抗
0、C4 蓄電用コンデンサ
DZ0、DZ1 ツェナーダイオード

Claims (7)

  1. トランスの2次巻線に直列接続された抵抗値が異なる第1及び第2の負荷抵抗に、前記トランスの1次巻線に流れる被測定電流に応じた交流電圧をそれぞれ発生するとともに、前記第1の負荷抵抗は前記被測定電流が予め設定した低電流測定範囲内の電流値のときに所要の範囲の第1の交流電圧を発生させる第1の抵抗値に設定され、前記第2の負荷抵抗は前記被測定電流が予め設定した高電流測定範囲内の電流値のときに所要の範囲の第2の交流電圧を発生させる前記第1の抵抗値よりも小なる第2の抵抗値に設定された発電手段と、
    前記第1の負荷抵抗に発生した前記第1の交流電圧を整流及び蓄電して得た第1の直流電圧が所定の電圧値に達すると所定期間第1の電源電圧を発生し、前記所定期間経過後前記被測定電流の値に応じた期間後に前記第1の直流電圧が再び前記所定の電圧値に達すると前記第1の電源電圧を発生することを繰り返す低電流測定用電圧発生手段と、
    前記第2の負荷抵抗に発生した前記第2の交流電圧を整流及び蓄電して得た第2の直流電圧が前記所定の電圧値に達すると前記所定期間第2の電源電圧を発生し、前記所定期間経過後前記被測定電流の値に応じた期間後に前記第2の直流電圧が再び前記所定の電圧値に達すると前記第2の電源電圧を発生することを繰り返す高電流測定用電圧発生手段と、
    前記第1及び第2の電源電圧のうち、前記被測定電流が前記低電流測定範囲内の電流値のときは前記第1の電源電圧を選択し、前記被測定電流が前記高電流測定範囲内の電流値のときは前記第2の電源電圧を選択する電源選択手段と、
    前記被測定電流が前記低電流測定範囲内の電流値か前記高電流測定範囲内の電流値かを受信側に識別させるための検出信号を、前記電源選択手段で選択された電源電圧が前記第1の電源電圧か前記第2の電源電圧かに応じて生成する検出信号出力手段と、
    前記電源選択手段により選択された前記第1の電源電圧又は前記第2の電源電圧が動作用電源電圧として印加されて前記所定期間のみ動作し、前記第1の電源電圧及び前記第2の電源電圧が印加されない期間は動作を停止し、前記被測定電流の値に応じて可変される送信間隔で、前記検出信号を含む送信信号を無線送信する無線送信手段と
    を備えることを特徴とする無線センサ端末。
  2. 前記低電流測定用電圧発生手段は、
    前記第1の交流電圧を整流する第1の整流回路の正側出力端子と負側出力端子との間に出力される前記第1の直流電圧により充放電される第1の蓄電用コンデンサと、
    前記第1の蓄電用コンデンサに蓄電された前記第1の直流電圧を抵抗分圧して第1の抵抗分圧電圧を発生する第1の抵抗分圧回路と、
    前記第1の蓄電用コンデンサに蓄電された前記第1の直流電圧を抵抗分圧して前記第1の抵抗分圧電圧より小なる第2の抵抗分圧電圧を発生する第2の抵抗分圧回路と、
    前記第1の抵抗分圧電圧が基準電圧以上となったか否かを判定する第1のコンパレータと、
    前記第2の抵抗分圧電圧が前記基準電圧以上となったか否かを判定する第2のコンパレータと、
    前記第2の抵抗分圧電圧が前記基準電圧にまで増加したかを判断するために設けられた、前記第1のコンパレータの出力電圧を遅延する遅延回路と、
    前記遅延回路の出力電圧が前記基準電圧以上となったか否かを判定する第3のコンパレータと、
    前記遅延回路の出力電圧が前記基準電圧にまで増加した時に前記第3のコンパレータから出力される電圧により前記第1の整流回路の正側出力端子から出力される前記第1の直流電圧を前記所定期間選択する第1のスイッチ手段と
    を有し、
    前記電源選択手段は、前記第2のコンパレータの出力電圧により、前記第1のスイッチ手段から前記所定期間出力される前記第1の直流電圧と前記第1の整流回路の負側出力端子から出力される第1の接地電圧とを選択することを特徴とする請求項1記載の無線センサ端末。
  3. 前記高電流測定用電圧発生手段は、
    前記第2の交流電圧を整流する第2の整流回路の正側出力端子と負側出力端子との間に出力される前記第2の直流電圧により充放電される第2の蓄電用コンデンサと、
    前記第2の蓄電用コンデンサに蓄電された前記第2の直流電圧を抵抗分圧して、前記被測定電流の値が前記高電流測定範囲内の電流値のときにのみ前記基準電圧にまで増加する第3の抵抗分圧電圧を発生する第3の抵抗分圧回路と、
    前記第3の抵抗分圧電圧が前記基準電圧以上となったか否かを判定する第4のコンパレータと、
    前記第3の抵抗分圧電圧が前記基準電圧にまで増加した時に前記第4のコンパレータから出力される電圧により第2の整流回路の正側出力端子から出力される前記第2の直流電圧を前記所定期間選択する第2のスイッチ手段と
    を有し、
    前記電源選択手段は、前記第2のコンパレータの出力電圧により、前記第2のスイッチ手段から前記所定期間出力される前記第2の直流電圧と前記第2の整流回路の負側出力端子から出力される第2の接地電圧とを選択することを特徴とする請求項1記載の無線センサ端末。
  4. 前記低電流測定用電圧発生手段は、前記遅延回路の出力電圧が前記基準電圧にまで増加した時に前記第3のコンパレータが出力する電圧を遅延して、前記無線送信手段が前記第1の電源電圧の印加により送信の動作を開始してその動作が終了するまでの動作時間よりも長い期間経過してから、前記第1のスイッチ手段を前記第1の直流電圧を前記所定期間選択させるように動作させる第1のタイマ回路を更に有することを特徴とする請求項2記載の無線センサ端末。
  5. 前記高電流測定用電圧発生手段は、前記第3の抵抗分圧電圧が前記基準電圧にまで増加した時に出力する前記第4のコンパレータが出力する電圧を遅延して、前記無線送信手段が前記第2の電源電圧の印加により送信の動作を開始してその動作が終了するまでの動作時間よりも長い期間経過してから、前記第2のスイッチ手段を前記第2の直流電圧を前記所定期間選択させるように動作させる第2のタイマ回路を更に有することを特徴とする請求項3記載の無線センサ端末。
  6. 前記検出信号出力手段は、
    前記第2のコンパレータの出力電圧により、前記被測定電流が前記低電流測定範囲内の電流値のときには前記第1の整流回路の負側出力端子から出力される第1の電圧を前記検出信号として出力し、前記被測定電流が前記高電流測定範囲内の電流値のときには前記第2の整流回路の正側出力端子から出力される第2の電圧を前記検出信号として出力することを特徴とする請求項1乃至5のうちいずれか一項記載の無線センサ端末。
  7. トランスの2次巻線に直列に接続された第1及び第2の負荷抵抗のうち、前記トランスの1次巻線に流れる被測定電流が予め設定した低電流測定範囲内の電流値のときに前記第1の負荷抵抗に所要の範囲の第1の交流電圧を発生させるとともに、前記被測定電流が予め設定した高電流測定範囲内の電流値のときに前記第2の負荷抵抗に所要の範囲の第2の交流電圧を発生させる発電ステップと、
    前記被測定電流が低電流測定範囲内のときに前記第1の負荷抵抗に発生した前記第1の交流電圧を整流及び蓄電して得た第1の直流電圧が所定の電圧値に達すると所定期間第1の電源電圧を発生し、前記所定期間経過後前記被測定電流の値に応じた期間後に前記第1の直流電圧が再び前記所定の電圧値に達すると前記第1の電源電圧を発生することを繰り返す低電流測定用電圧発生ステップと、
    前記被測定電流が高電流測定範囲内のときに前記第2の負荷抵抗に発生した前記第2の交流電圧を整流及び蓄電して得た第2の直流電圧が前記所定の電圧値に達すると前記所定期間第2の電源電圧を発生し、前記所定期間経過後前記被測定電流の値に応じた期間後に前記第2の直流電圧が再び前記所定の電圧値に達すると前記第2の電源電圧を発生することを繰り返す高電流測定用電圧発生ステップと、
    前記第1及び第2の電源電圧のうち、前記被測定電流が前記低電流測定範囲内の電流値のときは前記第1の電源電圧を選択し、前記被測定電流が前記高電流測定範囲内の電流値のときは前記第2の電源電圧を選択する電源選択ステップと、
    前記被測定電流が前記低電流測定範囲内の電流値か前記高電流測定範囲内の電流値かを受信側に識別させるための検出信号を、前記電源選択ステップで選択された電源電圧が前記第1の電源電圧か前記第2の電源電圧かに応じて生成する検出信号生成ステップと、
    前記電源選択ステップにより選択された前記第1の電源電圧又は前記第2の電源電圧が動作用電源電圧として印加されて前記所定期間のみ動作し、前記第1の電源電圧及び前記第2の電源電圧が印加されない期間は動作を停止し、前記被測定電流の値に応じて可変される送信間隔で、前記検出信号を含む送信信号を無線送信する無線送信ステップと
    を含むことを特徴とする無線送信方法。
JP2013194779A 2013-09-20 2013-09-20 無線センサ端末及び無線送信方法 Expired - Fee Related JP6108396B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194779A JP6108396B2 (ja) 2013-09-20 2013-09-20 無線センサ端末及び無線送信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194779A JP6108396B2 (ja) 2013-09-20 2013-09-20 無線センサ端末及び無線送信方法

Publications (2)

Publication Number Publication Date
JP2015061245A JP2015061245A (ja) 2015-03-30
JP6108396B2 true JP6108396B2 (ja) 2017-04-05

Family

ID=52818435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194779A Expired - Fee Related JP6108396B2 (ja) 2013-09-20 2013-09-20 無線センサ端末及び無線送信方法

Country Status (1)

Country Link
JP (1) JP6108396B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849918B2 (ja) * 1975-07-04 1983-11-07 株式会社日立製作所 2 センシキヘンカンゾウフクキ
DE102008029477A1 (de) * 2008-06-20 2009-12-24 Vacuumschmelze Gmbh & Co. Kg Stromsensoranordnung zur Messung von Strömen in einem Primärleiter
JP4823295B2 (ja) * 2008-11-21 2011-11-24 日本電信電話株式会社 センサノードチップおよびセンサノードシステム
JP2011122939A (ja) * 2009-12-10 2011-06-23 Kagoshima Univ 無線センサノード及び架空電線監視システム
JP5697233B2 (ja) * 2010-09-16 2015-04-08 東日本旅客鉄道株式会社 環境情報計測装置、環境情報計測システム、及び環境情報計測方法

Also Published As

Publication number Publication date
JP2015061245A (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
US9720018B2 (en) Apparatus and methods thereof for power consumption measurement at circuit breaker points
EP3176592B1 (en) Thermal management of self-powered power sensors
WO2012164553A2 (en) Distributed electricity metering system
JP2018078754A (ja) ワイヤレス送電装置およびその制御方法、送電制御回路
JP5754750B2 (ja) 無線センサ端末
JP5979548B2 (ja) 無線送信機能付き電流センサ端末、無線送信方法及び無線送受信システム
JP6108396B2 (ja) 無線センサ端末及び無線送信方法
JP6830115B2 (ja) 結合されたインダクター装置を含むファンタム電圧検出器を具備した停電感知システム
US10459014B2 (en) Electronic device
KR100694818B1 (ko) 주상변압기용 자체전원형 센서통신모듈 및 이를 이용한부하관리 시스템
JP6382135B2 (ja) 無線センサ端末及び無線送信方法
JP2003098199A (ja) 電流監視装置
KR102170996B1 (ko) 팬텀 전압 검출기가 있는 정전 감지 시스템
US11211863B2 (en) Arrangement and method for current measurement
EP2804303B1 (en) Switching power supply circuit
KR101216677B1 (ko) Led조명용 ac-dc컨버터의 제어기
JP6334457B2 (ja) 電流測定システム
JP5335381B2 (ja) 電力線搬送通信用停電検出装置および電力線搬送通信装置
KR101969019B1 (ko) 전력 변환 장치 및 그의 동작 방법
JP2003284252A (ja) 送配電系統の計測装置用電源装置
US11921532B2 (en) Controlling pulsed operation of a power supply during a power outage
CN116848955A (zh) 用于照明装置的驱动器
CN118140148A (zh) 停电期间控制电源的脉冲操作
KR101171775B1 (ko) 디지털 조명 스위치
JP2019212725A (ja) 劣化判定装置、及び電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170301

R150 Certificate of patent or registration of utility model

Ref document number: 6108396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees