JP6103788B1 - 眼鏡レンズ加工データ作成方法 - Google Patents

眼鏡レンズ加工データ作成方法 Download PDF

Info

Publication number
JP6103788B1
JP6103788B1 JP2016082140A JP2016082140A JP6103788B1 JP 6103788 B1 JP6103788 B1 JP 6103788B1 JP 2016082140 A JP2016082140 A JP 2016082140A JP 2016082140 A JP2016082140 A JP 2016082140A JP 6103788 B1 JP6103788 B1 JP 6103788B1
Authority
JP
Japan
Prior art keywords
lens
bevel
measurement
drive motor
slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016082140A
Other languages
English (en)
Other versions
JP2017189858A (ja
Inventor
波田野 義行
義行 波田野
Original Assignee
波田野 義行
義行 波田野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波田野 義行, 義行 波田野 filed Critical 波田野 義行
Priority to JP2016082140A priority Critical patent/JP6103788B1/ja
Application granted granted Critical
Publication of JP6103788B1 publication Critical patent/JP6103788B1/ja
Publication of JP2017189858A publication Critical patent/JP2017189858A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

【課題】眼鏡フレームの球面カーブを求めこれと一致または近い値のカーブとなるようにレンズコバ幅内から外れることの無いヤゲン位置を容易に設定する手法を提供する。【解決手段】眼鏡フレーム形状の3次元データから近似する球の曲率半径を求める段階と眼鏡レンズの表面と裏面の高さデータとフレーム形状データからレンズ表面と裏面の近似する球の曲率半径を求める段階と眼鏡レンズの表面と裏面の光軸方向位置に対する眼鏡フレーム光軸方向位置を仮にヤゲン位置と定めこれに基づくヤゲン比を求める段階と眼鏡レンズ表面と裏面の高さデータから眼鏡フレーム形状に沿ったレンズ周縁のコバ厚さの総和または平均値に適したヤゲン比の適値を定める段階と定めたヤゲン比の適値に一致または出来るだけ近いヤゲン比となるようなヤゲン位置を算出する段階とからなる眼鏡レンズの周縁にヤゲンを形成する為のヤゲン位置を決定する為の算出方法を提供する。【選択図】図20

Description

この発明は、眼鏡レンズの眼鏡フレーム枠入れの為のヤゲンを形成するためのヤゲン位置データを算出する眼鏡レンズ加工データ作成方法に関するものである。
従来、眼鏡レンズの眼鏡フレーム枠入れの為のヤゲンを形成するためのヤゲン位置を算出する手法として種々の方法が提案されている。眼鏡フレームの近似球面カーブを求め、そのカーブ値と一致、または近い値のカーブとなるようにレンズコバ幅内にヤゲン位置を設定する。また、コバ厚を一定の比率に分割することを基準とする位置にヤゲン位置を設定する手法も開示されている。
特開第2014−136287号公報
従来の眼鏡フレームの球面カーブを求め、これと一致、または近い値のカーブとなるようにレンズコバ幅内にヤゲン位置を設定する方法では、フレームにレンズを枠入れするときの合わせ感を高め、作業を容易にする効果が期待できるが、コバ幅内で一部のヤゲン位置を球面カーブと一致した状態に設定することで他の部分ではコバ幅内には入らない場合が生じるなど、容易に外観上で優れたヤゲン位置を提供できない問題が合った。この発明は、容易に眼鏡フレームの球面カーブと一致、またはそれに近い値のカーブとなるヤゲン位置を設定する手法を提供することを目的とする。
この目的を達成するため、この発明は、眼鏡フレーム形状の3次元計測データとフレーム形状に沿う被加工眼鏡レンズの表面と裏面の高さデータとを用いて眼鏡レンズの周縁にヤゲンを形成するためのヤゲン位置を決定する為の算出方法で、眼鏡フレーム形状の3次元データから近似する球の方程式を求め、球の曲率半径を求める段階と、眼鏡レンズの表面と裏面の高さデータとフレーム形状データからレンズ表面と裏面の近似する球の方程式を求め、球の曲率半径を求める段階と、眼鏡レンズの表面と裏面の近似球面の光軸方向位置に対する眼鏡フレームの近似球面の光軸方向位置を仮にヤゲン位置と定め、ヤゲン位置に基づくヤゲン比を求める段階と、眼鏡レンズ表面と裏面の高さデータから眼鏡フレーム形状に沿ったレンズ周縁のコバ厚さの総和または平均値を求め、予め設定された総和または平均値に適したヤゲン比の適値を定める段階と、定めたヤゲン比の適値に仮に定めたヤゲン位置でのヤゲン比を一致、または出来るだけ近いヤゲン比となるようなヤゲン位置を算出する段階とからなる眼鏡レンズの周縁にヤゲンを形成する為のヤゲン位置を決定する為の算出方法を提供するものである。
この算出方法によれば、容易に眼鏡フレームの球面カーブと一致、またはそれに近い値のカーブとなるヤゲン位置を決定する為の算出方法を提供することができる。
この発明にかかる眼鏡レンズ加工装置とタブレット端末と給水装置との関係を示す概略斜視図である。 この発明にかかる眼鏡レンズ加工装置とタブレット端末と給水装置との関係を示す概略斜視図である。 図1に示したタブレット端末の表示内容を示す図である。通常時の第1画面と立ち上げ時の第1画面を示している。 図1に示したタブレット端末の表示内容を示す図である。第2画面と詳細指示画面を示している。 図1に示したタブレット端末の表示内容を示す図である。加工中画面と加工中、画像確認画面を示している。 図1に示したタブレット端末の表示内容を示す図である。片眼加工終了時の第1画面とメンテナンス画面を示している。 図1に示した眼鏡レンズ加工装置の外装を外した状態の上左前からの斜視図である。 図1に示した眼鏡レンズ加工装置の加工室の上左後からの斜視図である。 図1に示した眼鏡レンズ加工装置のスピンドルを含む加工室の上左前からの斜視図である。 図1に示した眼鏡レンズ加工装置のスピンドルに装着されている加工ツールの上左前からの斜視図である。 図1に示した眼鏡レンズ加工装置のレンズ測定部の上左前からの斜視図である。退避状態14THにセットされている状態を示している。 図1に示した眼鏡レンズ加工装置のレンズ測定部の上左前からの斜視図である。測定状態14SKにセットされている状態を示している。 図1に示した眼鏡レンズ加工装置のウェット・ドライ切替部の下左前からの斜視図である。ドライ状態を示している。 図1に示した眼鏡レンズ加工装置のウェット・ドライ切替部の下左前からの斜視図である。ウェット状態を示している。 図1に示した眼鏡レンズ加工装置のウェット・ドライ切替部の下右前からの斜視図である。ドライ状態を示している。 図1に示した眼鏡レンズ加工装置のキャリッジ部及びスピンドル部の上左前からの斜視図である。 図1に示した眼鏡レンズ加工装置の演算制御回路図である。 図1に示した給水装置の斜視図である。 エンドミルによる切落し加工による眼鏡レンズの斜視図である 眼鏡フレームと測定平面の関係を示している。 眼鏡フレーム形状の近似球の中心と球表面上の加工中心との関係を示している。 フレーム測定平面と加工軸に鉛直な平面を示している。 ヤゲン曲率半径がレンズ表面曲率半径より大きい場合のレンズ断面 ヤゲン曲率半径がレンズ表面曲率半径より小さい場合のレンズ断面 ボクシングサイズ関係を示している ヤゲン砥石断面形状 眼鏡フレーム形状の近似球の表面上の加工中心を原点とする座標とレンズ表面の近似球の表面上の加工中心を原点とする座標との関係を示している。
以下、本発明の実施の形態を図面を参照しつつ詳細に説明する。
[全体構成]
図1を参照すると、本発明に係るレンズ加工に関わる装置類が示してある。
図1において、1は入力された眼鏡フレーム形状データに基づいて生地眼鏡レンズMLを加工するレンズ加工装置である。2は周知のタブレット端末であり、レンズ加工装置1と有線または無線での通信接続により、予めインストールされた専用アプリケーションに基づく操作でレンズ加工装置1に対する加工指示の送信、また、レンズ加工装置1から機械状態、測定結果などの情報を受信し、測定結果に基づく加工シミュレーション結果を図表示する。また、クラウドコンピュータ上の外部サーバー4との通信でフレーム形状データなどを受信する。3はレンズ加工装置1に冷却水の供給と排水回収を行う給水装置である。図1aでは、図1と同じ構成を示しているが、ビニール袋183を省き、ビニール袋183の裏側のホース状態を図示している。
<タブレット端末2>
タブレット端末2は、タッチスイッチとして利用できる液晶画面があり、カメラが内蔵されている。無線通信機能があり、またUSB接続による通信と電源が得られるものである。レンズ加工装置1の操作指示、通信により得られるデータ表示などを実施できる専用アプリケーションが搭載されている。レンズ研削装置とはUSB接続により電源供給を受け、通信を行う。但し、この接続はUSB接続に限定されるものではなく、無線通信を利用することも可能である。その場合には他の電源供給を受ける必要がある。
[第1画面]
専用アプリケーションを示すアイコンがタブレット端末2に表示される。これをタッチ選択することで専用アプリケーションが起動し、図2に示す第1画面が表示される。第1画面には、フレーム形状を図形表示し、また、ボクシングサイズ、DBL、カーブなどを数値表示するフレーム表示エリア210がある。Rクランプ及びLクランプ212、メンテナンス213、電源214が表示されている。
[フレーム表示エリア210] 電源ON直後は、フレームデータが無いため、フレーム表示エリアには、図2に示す通りデータ呼び出し211の表示が示される。このフレーム表示エリア210またはデータ呼び出し211の表示にタッチすることでフレーム形状データを外部サーバー4から無線通信で呼び出す。フレーム形状データはフレーム形状を読み取る装置から無線通信で呼び出すこともできる。図14で示す演算制御回路図では、外部サーバー4の場合として記載してある。
[Rクランプ、Lクランプ] RクランプまたはLクランプ212は、右または左レンズのクランプ開または閉を指示するためのものでクランプ閉の動作後の第2画面への表示切替を同時に指示する。
[メンテナンス213] メンテナンス213は、メンテナンス画面への切替を指示するためのものである。
[電源214] 電源214は、専用アプリケーションの終了を指示するためのものである。
[第2画面]
図3に示す第2画面には、第1画面に有ったフレーム形状と数値データを表示するフレーム表示エリア220がある。また、Rクランプ、またはLクランプで指示した右、または左のクランプした側のフレーム形状が強調表示される。
[加工種221] 加工種の文字表示とこれに並び、予め設定されたヤゲン(溝、平に切り替わる)が表示される。加工種221の表示に触れることで切り替わる。
[PD、UP、SIZE] PD222、UP223、SIZE224の表示とこれに並び、それぞれに対応する数値表示がある。PD222,UP223,SIZE224は触れて左右に移動することで数値を変更できる。
[加工スタート225] 加工スタート225は、加工の開始を指示する
[詳細指示226] 詳細指示226は、詳細指示画面への表示切替を指示する
[戻る227] 戻る227は、第1画面に戻ることを指示する。
[詳細指示画面]
図3に示す詳細指示画面には、第1画面に有ったフレーム形状と数値データを表示するフレーム表示エリア230がある。右、または左のレンズクランプした側のみが表示され、対眼が図表示されるべき場所に第2画面で決定されたPD222,UP223,SIZE224の各表示が数値と共に表示される数値表示エリア231がある。フレーム表示エリア230、数値表示エリア231は触れても反応しない。
[ヤゲン(溝)カーブ、ヤゲン(溝)位置] ヤゲン(溝)カーブ232、ヤゲン(溝)位置233の表示とこれに並び、それぞれに対応する数値表示がある。ヤゲン(溝)カーブ232、ヤゲン(溝)位置233の表示に触れ左右に移動することで数値を変更できる。
[表面取、裏面取、特殊面取] 表面取234、裏面取235、特殊面取236の表示とこれに並び、それぞれに対応する数値表示がある。表面取234、裏面取235、特殊面取236の表示に触れて左右に移動することで数値を変更できる。
[画像確認スタート237] 画像確認スタート237は、加工の開始を指示し、レンズ計測後にデータを表示し、画面での操作指示を可能とするため途中停止を指示をする。
[加工スタート238] 加工スタート238は、加工の開始を指示する
[戻る239] 戻る239は、第1画面に戻ることを指示する。
[加工中画面]
加工を開始すると図4に示す加工中画面となる。加工中画面には、詳細指示画面と同じ内容の表示がある。但し、戻る239のアイコンはなく、代わりに緊急停止240がある。また、画像確認スタート237、及び加工スタート238の表示は無い。また、ヤゲン(溝)カーブ232から特殊面取236までの表示は詳細指示画面と同じ内容を表示しているが、タッチしてもその表示内容の変更はできない。ヤゲン(溝)の断面を表示する断面表示エリア241がある。
[緊急停止240] 緊急停止240は加工動作の停止の指示と第1画面に戻ることを指示する。
[断面表示エリア241] 断面表示エリア241には、ヤゲン(溝)の断面が表示される。左側に最も細い部分の断面が表示され、右側に最も広い部分の断面が表示される。
[画像確認画面]
画像確認スタート237で加工を開始した場合には、レンズ測定が完了した時点で詳細表示画面と同じ内容の表示があり、レンズ測定結果に基づくヤゲン(溝)の断面表示エリア241が表示され、機械動作が停止する。但し、画像確認スタート237はない。画像確認画面では、詳細表示画面と同じ作業で数値変更と共にヤゲン(溝)の断面表示エリア241の変化が確認できる。
[メンテナンス画面]
図5に示すメンテナンス画面には、ポンプ給水260、ポンプ排水261、砥石交換262、補正値データ263、戻る264が表示されている。
[ポンプ給水260] ポンプ給水260は、ポンプ始動と停止を指示する。
[ポンプ排水261] ポンプ排水261は、ポンプ排水時のバルブ34、バルブ35の切替状態を指示する画面に切替表示させる。この切替表示画面には、ポンプ排水261、戻る264が表示されている。ポンプ排水261はポンプの作動を指示する。戻る264は、第1画面の表示に戻ることを指示する。
[砥石交換262] 砥石交換262は、キャリッジを左側限界位置に移動指示する。戻る264は、第1画面の表示に戻ることを指示する。
[補正値データ263] 補正値データ263は、補正値メモリー193に記憶されている各種補正値を表示し、修正するための画面に切り替わる。なお、補正値の表示、修正に関する記載はここではしない。
<レンズ加工装置1>
レンズ加工装置1は、図6に示すとおり眼鏡レンズMLが加工される加工室11があり、加工室11内には、眼鏡レンズMLがレンズ軸120に前後方向から挟持され、かつ回転、前後左右方向に進退動可能に軸支されている。眼鏡レンズMLに対して右側にスピンドル13が前方に行くほどレンズ軸との距離が離れる傾斜をもって配置され、スピンドル軸130には、エンドミル131、溝掘砥石132、研削砥石133が固定されている。また、加工室11内にはレンズ面の位置を測定するための測定子ユニット140がある。
加工室11周辺には、眼鏡レンズMLを駆動するレンズ駆動部12がある。レンズ駆動部12には眼鏡レンズMLを挟持、回転させる機構を内蔵したキャリッジ122があり、キャリッジ122は左右に移動可能となるようにスライダー123に保持されている。スライダー123は前後に移動可能となるように固定ベース150に保持されている。加工室11周辺には更にスピンドル13が固定されている。加工室内でレンズ面の位置を測定するための測定子ユニット140に接続されたレンズ測定部14が固定ベース150に保持されている。
レンズ加工装置1の上部には、図1及び図7に示す通り左側にある旋回中心を軸に旋回開口する旋回カバー110が加工室11への眼鏡レンズMLの挿脱のため設けられている。
また、レンズ加工装置1の上面は、平面で構成され、タブレット端末2を載置することができ、また加工レンズ、フレームなどを入れる作業用トレーの載置などもできる構造となっている。
[加工室11]
加工室11は、図7及び図8に示す通り左右に長いほぼ長方形の上面を持つ箱型形状で中が空洞となっており、上下に2分割された構造となっている。前後の側壁の上下分割部には長穴11aが形成されている。その長穴を覆い隠せる大きさの扇型旋回壁113が旋回可能に前後の側壁にそれぞれ取り付けられている。扇型旋回壁113は長穴11aとの交差部に長穴11aとほぼ直行する方向の長穴を有している。扇型旋回壁113のさらに加工室内側には円形開口を有する円盤型側壁114が配置されている。また加工室11前側壁の左端には、円形開口11bが設けられている。加工室11前側壁は右側面に近づくに従って後壁に近づく方向に傾斜した部分があり、その傾斜面には円形開口11cがある。
図8に示す通り、加工室11後側壁右奥から給水パイプ115は加工室11内に入り、給水ノズル116に接続されている。給水パイプ115の加工室外側は、ウェット・ドライ部の切替ベース180に延伸し、給水装置3に接続するため給水ホース36が接続される。加工室11底壁には円形開口11dがあり、加工による切落し片MLdがここから落下排出される。また排水もこの円形開口11dから行われる。加工室11上壁の左側には矩形開口11eがある。この開口は旋回カバー110により覆われており、旋回カバー110は加工室11前後壁に旋回可能に軸支されているため、旋回動により開閉できる。
[スライダー123]
図6に示す通りレンズ加工装置1内の固定ベース150上に左右二箇所ずつの突起部分があり、この突起上に前後方向にスライダーを進退動可能とするスライド軸受け151が載置されている。スライド軸受け151にはレンズ加工装置1の左右にそれぞれスライド軸124が前後方向に軸方向を向けて勘合し、スライド軸124の両端部は概略矩形枠形状のスライダー123の前部と後部で固定されている。このため、スライダー123はスライド軸124と一体的に固定ベースに対して前後方向に進退動可能な構造となっている。
このスライダー123の右後部にはスライダー123自体を前後方向に駆動するスライダー駆動モータ125が固定され、この出力軸にねじ軸126が結合され、これに螺合するめねじ受け127は固定ベース150に固定されている。
[キャリッジ122]
さらにスライダー123には左右方向に伸びる2本のスライド軸128がそれぞれ左壁と右壁に固定されている。このスライド軸128に勘合し、スライド軸128に沿って進退動可能となるようにキャリッジ122内に図示されないスライド軸受けが内蔵されている。このため、キャリッジ122はスライダー上で左右方向に進退動可能な構造となっている。このキャリッジを駆動するキャリッジ駆動モータ121がスライダー123の左後部に固定され、この出力軸にねじ軸129が結合されている。ねじ軸に螺合する図示されていないめねじ受けがキャリッジ内に固定されている。
[レンズ軸クランプ、回転]
キャリッジの加工室を挟んで後部には、レンズ軸120が前後方向に進退動可能、かつ回転可能に軸支され、図示のない周知の駆動機構を介してレンズクランプモータ160の駆動によりキャリッジ122後部から加工室11内に伸びるレンズ軸120が進退動できる。また、レンズ軸120には図示のない周知の連動機構によりキャリッジ122前部に載置されているレンズ軸回転駆動モータ161の駆動力を得て回転駆動力が伝達される。
キャリッジ前部には、レンズ軸120が回転可能に軸支され、図示の無い周知の駆動機構を介してレンズ軸回転駆動モータ161の出力軸が連結されている。
[スピンドル13]
図8に示す通りスピンドル13はその一部が加工室11内にあり、前側壁の右側傾斜部分の円形開口11cから加工室11の外側に出て固定ベース150に固定されている。スピンドル軸130の加工室11とは離れる側の端には回転駆動を受けるプーリー135が固定されている。その下部にスピンドル駆動モータ136が配置され、その出力軸にはプーリー137が固定されている。スピンドル軸130に固定されたプーリー135に図示の無いベルトを介して駆動力を伝達できる構造となっている。
スピンドル軸130の先端部には、加工で利用されるツールである形状切落とし用のエンドミル131、溝掘り加工用の溝掘砥石132、ヤゲン133a、平仕上げ133b、レンズ表面面取133c、レンズ裏面面取133d、前面平仕上げ133e、それぞれの加工面を持つ研削砥石133がスピンドル軸130先端側から順に取付固定されている。スピンドル13は、レンズ軸120とは水平面内で18度の傾斜角を持って配置固定されている。エンドミル131は半径3mm、刃長15mm、溝掘り砥石は半径10mm、刃厚0.5mm、刃先部18度の傾斜の皿形状、研削砥石133は、ヤゲン133a部で半径18mm、平仕上げ133bはレンズ軸120に対して4度の傾斜を持ち、前面平仕上げ133eはレンズ軸120に平行な面で、レンズ表面面取133cはレンズ軸120の鉛直から55度の傾斜、レンズ裏面面取133dはレンズ軸120の鉛直から40度の傾斜で構成されている。
[レンズ測定部14]
レンズ測定部14は、図10a、図10bに示す通り測定ベース141が図示されていない固定ベース150に固定されている。測定ベース141には測定スライダー142が、測定ベース141に対して前後方向に進退動可能に保持されている。測定スライダー142には、前後方向に貫通した穴があり、この穴に測定子ユニット140が旋回可能に軸支されている。測定子ユニット140の測定スライダー142の後ろ側は、加工室11の円形開口11bから加工室11内に配置され、レンズ前測定子140a、レンズ後測定子140bが前側から順に固定されている。
[測定スライダー、スライド中央バランス、フォトセンサー]
バランス保持前レバー143、とバランス保持後レバー144が、測定ベース141の下部にそれぞれ旋回可能に軸支され、バランス保持レバー143,144の先端部は、測定スライダー142に設けられた固定ピン142a,142bに接触している。この接触と同時にバランス保持レバー143,144は測定ベース141の上部の固定ピン141a,及び図示されない141bにも接触するように構成されている。また、バランス保持前レバー143とバランス保持後レバー144のそれぞれの先端には、引張コイルバネ145が互いに内向きの力を受けるように固定されている。
測定ベース141にはフォトセンサー146が測定スライダー142の動きを検知する方向に設置され、測定スライダー142にはフォトセンサー146に対応する検知板147が固定されている。測定子ユニット140が、キャリッジ122の動作による眼鏡レンズMLの移動により移動されるとこれと共に測定スライダー142が移動することで検知板147が移動し、フォトセンサー146により検知される構造となっている。
[測定子ユニット、旋回切替]
測定子ユニット140の測定スライダー142の前側には、旋回プレート148が固定されている。旋回プレート148は測定子ユニット140と一体として測定スライダー142に対して旋回可能に軸支されている。この旋回は測定スライダー142に固定された2個の当て止めピン142c,142dに旋回プレート148の側面が当たることで移動が制限されている。2個のあて止めピン142c,142dで制限される旋回位置は測定子ユニット140に固定されたレンズ前測定子140aとレンズ後測定子140bがレンズ測定状態14SKとなる位置とその他の状態で退避状態14THとなる位置に相当する。
また、旋回プレート148には引張コイルバネ149の一端が固定され、他端は、測定スライダー142に固定されている。このコイルバネ149は旋回プレート148がいずれかのあて止めピン142c,142dに当たっている状態となる方向に引っ張るように構成されており、旋回プレート148の移動範囲の中間点でその引張方向が逆転する。
[作動プレート、キャリッジ固定]
旋回プレート148には引っ掛けピン148aが固定されている。これまでのものとは独立して作動プレート122aが、キャリッジ122に固定されている。
[脱臭装置部17]
図8に示す通り脱臭装置部17は、レンズ加工装置1の右前側に位置し、固定ベース150に固定されている。脱臭装置部17は、周知の構造で活性炭を内蔵した活性炭箱170と排気ファン171により構成される。活性炭箱170には、図11aに示す通り切替ベース180の切替プレート181の旋回中心に近い位置に配置され、切替プレート181にある小径円形開口181aの位置に符合する円形開口180aからのパイプ172が接続されている。脱臭装置部17には図示の無い排気口がある。このため、パイプ172を通して吸入される空気が活性炭箱170を通過し、排気口を通して排出されることにより脱臭性能が得られる構造となっている。
脱臭装置部17の活性炭箱170を通してドライ加工用のビニール袋183内の空気を吸い出す。この作用によって加工室11内の空気と共に加工で発生する切子、切落し片MLdがビニール袋183に吸い出される。図7で示す通り加工室11には旋回カバー110の旋回軸110aの左側部分に旋回カバー110が閉じている状態でも開口した状態となる部分11fがあり、ここから加工室11内に空気を吸い込む構造となっている。
[ウェット・ドライ切替部18]
図11aに示す通りウェット・ドライ切替部18は、固定ベース150の下に配置されている。切替ベース180は固定ベース150に固定されている。切替ベース180には加工室11の底壁の円形開口11dに対応する位置に円形開口180bがあり、加工室の円形開口11dが切替プレート181に隙間なく接触するように構成されている。切替プレート181が切替ベース180に旋回軸181c周りで旋回可能に軸支されている。切替ベース180には案内レール188a,188b,188cが固定され、切替プレート181を旋回可能に案内し、また支えている。切替ベース180には、円形開口180bと旋回軸180cとの中間位置に円形開口180bより小径の円形加工180aがある。
[切替プレート181]
切替プレート181には、加工室11の底壁の円形開口11dに対応する開口が2個あり、一方は開口の径と同径の筒状部181aが下方に伸びている、他方は円形開口から下方に直径が漸減するロート形部181bが延伸し、先端に排水ホース31が接続されている。切替プレート181上には筒状部181aと切替ベース180の円形開口180bとが合致する状態で切替ベース180の円形開口180aと合致する位置に円形開口があり、筒を軸方向に半分に切断した形状の半筒部181dとその先端には円形板181eが配置されている。また、切替プレート181上にはロート形部181bと切替ベース180の円形開口180bとが合致する状態で切替ベース180の円形開口180aと合致する位置に円形開口があり、筒状部181fが固定され、排気ホース32が接続されている。
切替プレート181上の半筒部181dと筒状部181aとを含み、他の円形開口を含まない範囲を覆う大きな筒状部材182が、切替プレート181に図示されないフックにより保持されている。この大きな筒状部材182の内側からビニール袋183を通し、上部から図示されないフックで切替プレート181にぶら下げ、固定できるようになっている。ロート型筒状部181b先端、及び小径筒状部181fに、それぞれ接続される排水ホース31、排気ホース32は、給水装置3に接続される。ロート型筒状部181b先端、及び小径筒状部181fのホース接続部は回転自在機構が内在されたものとなっており、切替プレートが旋回動する際に機能するものである。
[切替リンク機構]
図11bに示す通り切替プレート181にはリンク棒184が旋回可能に接続され、リンク棒184の他端は切替ベース180上に旋回可能に配置されているリンク連動板185と接続されている。切替プレート181とリンク連動板185には、それぞれ別の引張コイルバネ186の一端が固定され、他端はそれぞれの旋回中心を挟んで反対側の切替ベース180上に固定されている。切替プレート181とリンク連動板185はリンク棒184により連結されたまま旋回移動する。
図11b、及び図12に示す通り切替プレート181、リンク連動板185それぞれに対してその旋回移動範囲を制限する移動制限ピン187a,187b,187c,187dが切替ベース180上に配置されている。引張コイルバネ186は切替プレート181、リンク連動板185を一方の移動制限ピンに押し付ける方向に作用している。切替プレート181、リンク連動板185をバネの力に反して旋回させ、移動制限に対する中間位置を越えるとバネの力は反対側の移動制限ピンの方向に押し付けるように働く。
[リンク連動板185、作動メカニズム]
リンク連動板185にはリンク棒184と接続位置に切替ベース180に設けられたニゲ開口180fを貫通する形で作動ピン185aが図13に示す通り固定されている。これらリンク機構とは独立してキャリッジ122の後ろ側に作動バー122bが固定されている。この作動バー122bはキャリッジ122の移動によりリンク連動板185の作動ピン185aを押すことができ、これによりリンク接続されている切替プレート181を旋回動させ、2つの制限位置の一方から他方に切替、固定できる。
2つの制限位置の一つは、切替プレート181上の筒状部181aと半筒部181dが、切替ベース180の円形開口180a,180bと一致する位置であり、もう一方は、切替プレート181上のロート型部181bと筒状部181fが切替ベース180の円形開口180a,180bと一致する位置となっている。
[演算制御回路19]
CPUを有する演算制御回路19には、記憶手段としてのROM190、RAM192、データメモリ191が接続されていると共に、補正値メモリ193が接続されている。ROM190には、制御、演算などに必要なプログラムが保存されている。データメモリ191は、レンズ加工1枚単位の記憶領域で加工中のレンズに関するデータを保存する領域である。データメモリ191には、加工中のデータ以外にその直前の加工、及び、次の加工のため二つ以上の別データを保存する領域を持っている。RAM192は、演算、制御などで都度利用されるメモリである。補正値メモリ193は、装置の設定、各原点、位置センサーなどの基準値を保存するメモリである。
更に、演算制御回路19には、パルスモータドライバ194が接続されている。このパルスモータドライバ194は、演算制御回路19により作動制御されて、レンズ駆動部12の各種駆動モータ、即ち、スライダー駆動モータ125,キャリッジ駆動モータ121、レンズ回転駆動モータ161を作動制御するようになっている。また、演算制御回路19にはモータドライバ195を介してスピンドル駆動モータ136が接続され、作動制御するようになっている。
更に、演算制御回路19には、モータドライバ196を介してレンズクランプモータ160が接続され、作動制御するようになっている。また、排気ファン駆動回路198を介して脱臭装置部17の排気ファン171が接続され、作動制御するようになっている。また、ポンプ駆動回路199を介して給水装置3に内蔵されているポンプ37が接続され、作動制御するようになっている。また、演算制御回路19には、通信ポート197を介してタブレット端末2と外部接続され、通信制御するよう構成されている。
演算制御回路19には、レンズ測定部14のフォトセンサー146、レンズ測定部14の測定状態14SKを検知する測定位置センサー148b、レンズ測定部14の退避状態14THを検知する退避位置センサー148c、ウェット・ドライ切替部18のウェット位置センサー181w、ウェット・ドライ切替部18のドライ位置センサー181dなど、及び回転、駆動の各制御部の原点、移動限界点などのセンサーが接続され、作動制御時に読み取るように構成されている。
<給水装置3>
給水装置3は、上部が開放された箱形状の容器30とこの上部を覆うことで内部を閉空間にできるふた33で構成されている。容器30には、図示の無いポンプが内蔵されている。ポンプは、ふた33の右前側に装着されている切替バルブ34にふたの内側から接続されている。切替バルブ34には切替バルブ35が一方に接続されている。切替バルブ34の他方の接続口には、排水設備に接続するためのホース(図示されない)が接続される。切替バルブ35から上方へは、レンズ加工装置11に接続するための給水ホース36が接続されている。切替バルブ35の他方の接続口には水道水が接続されている。
[排水ホース31、排気ホース32]
ふた33には、レンズ加工装置11との間で接続される2本のホースが接続される。一方は、ふた33の左後方部に接続される排水ホース31であり、他方はふた33の右側で前後中間位置に接続される排気ホース32である。排水ホース31は、レンズ加工装置11からの排水が給水装置3に戻るためのホースである。排気ホース32は、給水装置3内の空気をレンズ加工装置1内に載置されている脱臭装置部17に送り込むためのものである。また、ふた33の上部前側には、レンズ加工装置1のウェット・ドライ切替部18の筒状部材182によりぶら下げられているビニール袋183を載置できる構造となっている。ビニール袋183はドライ加工による切落とし片MLd、及び切りカスをレンズ加工装置1の動作中に保管する場所となる。ビニール袋183は、切落し片MLd、及び切りカスで満たされた状態でそのまま廃棄出来るメリットがある。
[作用]
次に、上述した演算制御回路の機能を作用と共に説明する。
(0 電源入力) レンズ加工装置1の電源スイッチを入れると演算制御回路19が起動し、USB接続されているタブレット端末2の専用アプリケーションの起動を確認し、レンズ加工装置1内の各駆動原点及び移動限界点、測定子ユニット140の退避位置センサー148c、ウェット・ドライ切替部18のドライ位置センサー181dの状態を確認し、異常の有無をタブレット端末2に送信する。いずれかの原点、位置センサーからの状態情報に異常がある場合には、タブレット端末2には、それぞれの異常状態に合わせた異常を知らせる表示が画面表示され、通常の作業には入れない。
(1 データ要求) いずれの原点、位置センサーにも異常が無い、正常状態では、タブレット端末2は図2に示す第1画面を表示する。ここでは、フレームデータ無しの状態のため、図2の右側に示す状態となる。ここでデータ呼び出し211に触れるとデータサーバー4にデータ要求信号が送られ、図17に示す眼鏡フレームFLMの2次元フレーム形状(ρ、θ)、及び測定平面pl−mからの高さデータZがサーバー4から得られる。タブレット端末2の第1画面には、図2の左側に示す通り、得られたフレーム情報(両眼)が図、及び数値情報としてフレーム表示エリア210に表示される。
(2 クランプ) タブレット端末2の第1画面の右(または左)Rクランプ(またはLクランプ)212に触れるとレンズ軸に装着した加工用レンズをクランプすることを指示する信号と共に、フレーム情報をレンズ加工装置1に送信する。レンズ加工装置1からのクランプ完了、フレームデータ受信完了の信号をタブレット端末2は受信し、図3に示す第2画面を表示する。
(3 スタート) タブレット端末2の第2画面の加工スタート225に触れるとタブレット端末は、第2画面に表示されている表示情報と共に加工スタートの指示をレンズ加工装置1の演算制御回路19に伝える。
(3.1 エンドミル切落し回転位置演算) 演算制御回路19は既に受信済みのフレーム形状情報を用いて、エンドミル131での切落し加工時にフレーム形状に切り落すための切り込み回転位置を定める。フレーム形状の動径情報の極大となる回転位置を求めて記憶する。この回転位置を切り込み回転位置に定めることを基本とする。回転位置は3、または4箇所とし、それぞれの間隔が等分に近くなることが望ましい。極大点が少ない時には広い分割片を等分割する。極大点が多い場合には、間隔の小さい分割片を合体する。切り込み回転位置でのフレーム形状より動径が大きい範囲でのレンズ測定半径位置をエンドミル131の半径よりは小さい間隔をひとつのレンズ測定半径単位として定める。
(3.2 フレーム形状球面座標) 演算制御回路19は、図17で示す測定平面pl−m上の2次元フレーム形状(ρ、θ)を直交座標(X,Y)に変換し、高さデータZと共に4点を球面の方程式
(X−a)+(Y−b)+(Z−c)=d
に代入し、近似球面の中心(a,b,c)、半径dを求める。
測定平面pl−m上での眼鏡レンズの加工中心(一般的には、ボクシング中心位置、またはレンズ光学中心の処方位置、のいずれかが用いられるが、ここでは光学中心を処方位置とし、その座標を(in,up)とする。)を通り測定平面pl−mに対して鉛直な直線と近似球面とが交わる点(in,up,cc)を原点とし、近似球面の中心がZ軸を通る座標系にフレーム形状を座標変換する。近似球面上であることから
cc=±√{d−(in−a)−(up−b)}+c
である。
(3.3 レンズ表面球座標に変換) 図18に眼鏡フレームFLMの形状を新たな座標系に変換した状態を示す。新たな座標系では右眼のXY平面はpl−r、左眼をpl−lとする。フレーム形状(X,Y,Z)を新たな座標系でのフレーム形状(Xp,Yp,Zp)への変換には、まず原点を平行移動する。移動後の座標値を(X1,Y1,Z1)とすると
X1=X−in
Y1=Y−up
Z1=Z−cc
更に近似球面の中心がZ軸上とするためX軸回りに回転角α=tan−1{(−up−b)/(cc−c)}回転する。この座標値を(X2,Y2,Z2)とし、次にY軸回りに回転角β=tan−1{(in−a)/(cc−c)}回転することで、眼鏡フレーム形状(Xp,Yp,Zp)を得る。図19に回転角αと回転角βを図示する。
X2=X1
Y2=Y1・cos(α)+Z1・sin(α)
Z2=−Y1・sin(α)+Z1・cos(α)
Xp=X2・cos(β)−Z2・sin(β)
Yp=Y2
Zp=X2・sin(β)+Z2・cos(β)
フレーム形状(Xp,Yp)を極座標に変換したものを(ρp,θp)と表す。
(3.4 レンズ測定制御データ演算) 演算制御回路19はレンズ測定のためレンズ測定部14が測定状態14SKのときに測定子ユニット140のレンズ前測定子140aと眼鏡レンズML表面との接触位置が眼鏡レンズML上でフレーム形状(ρp,θp)と一致する4点以上の複数点に対応するようにレンズ駆動部12のキャリッジ駆動モータ121,レンズ回転駆動モータ161の制御データを演算し、データメモリー191に記憶する。
また、エンドミル131での切落し加工時にフレーム形状に切り落すための切り込み回転位置でのレンズ測定半径単位毎のレンズ測定が可能となるようにレンズ測定部14が測定状態14SKのときにレンズ前測定子140aと眼鏡レンズML表面との接触位置が所望のレンズ測定半径と一致するようにレンズ駆動部12のキャリッジ駆動モータ121,レンズ回転駆動モータ161の制御データを演算し、データメモリー191に記憶する。
この一連のレンズ測定に関する演算は、機械動作停止状態で実行されるのではなく、次工程である測定子ユニットの動作を継続させながら、マルチタスクとして実行する。
タブレット端末2は、レンズ加工装置1からの受信確認を受けた後、図4に示す加工中画面に切り替える。
(4 測定子ユニットのセット) レンズ加工装置1の演算制御回路19は測定子ユニット140を退避状態14THから測定状態14SKとなるように旋回動させるため、スライダー駆動モータ125を駆動させスライダー123を所定の位置に移動し、キャリッジ駆動モータ121を駆動させキャリッジ122を最左位置まで移動した後、作動プレート122aが引っ掛けピン148aを引っ掛けるように、スライダー123を僅かに後方に移動した後、キャリッジ122を右方向に初期位置まで移動する。この動作中に作動プレート122aが引っ掛けピン148aに引っ掛かり、旋回プレート148と共に測定子ユニット140を旋回動させ、ストッパーピン142dにより旋回プレート148は移動を制限され停止する。測定子ユニット140は測定状態14SKとなる。旋回プレート148が測定状態14SKに旋回動したことを検出する測定位置センサー148bで演算制御回路19は正しく測定状態14SKにセットされたことを確認する。
(5 レンズ表面測定)
(5.1 測定開始状態まで移動) 演算制御回路19はスライダー駆動モータ125を動作させスライダー123を所定のレンズ表面測定開始の位置に、またレンズ回転駆動モータ161を動作させレンズ軸120をレンズ表面測定開始の位置に、またキャリッジ駆動モータ121を動作させキャリッジ122をレンズ測定開始位置の制御データに基づき移動させ停止する。
(5.2 表面第1点目) 演算制御回路19はスライダー駆動モータ125を動作させスライダー123を前方に移動させながらスライダー駆動モータ125の動作パルスをカウントする。レンズ前測定子140aが眼鏡レンズML表面に接触し、測定スライダー142に固定されているフォトセンサーの検知板147が測定ベース141に固定されているフォトセンサー146に対して受光状態から遮光状態に変化させる時のスライダー駆動モータ125の動作パルスを第1のレンズ表面測定データZf1として記憶し、フォトセンサー146が受光の状態となるまでスライダー駆動モータ125を動作させスライダー123を後方に戻す。
(5.3 表面第2点目まで移動) 演算制御回路19は、次の測定位置までレンズ回転駆動モータ161を駆動させながら、フォトセンサー146が遮光とならないかを監視し、遮光となる時にはスライダー駆動モータ125を動作させスライダー123を更に後方に移動させ、受光状態を保ちながら次の測定位置で停止する。ここまでの間でスライダー駆動モータ125を動作させスライダー123を移動した場合にはその移動パルス数をカウンタとして記憶する。このレンズ回転動作中にレンズ測定の制御データに基づく第2の測定位置にキャリッジ駆動モータ121を動作させキャリッジ122を移動させ停止する。
(5.4 表面第2点目) 第1の測定位置と同様に、演算制御回路19はスライダー駆動モータ125を動作させスライダー123を前方に移動させながらスライダー駆動モータ125の動作パルスをカウントする。レンズ前測定子140aが眼鏡レンズML表面に接触し、フォトセンサーの検知板147がフォトセンサー146に対して受光状態から遮光状態に変化させる時のスライダー駆動モータ125の動作パルスを第2のレンズ表面測定データZf2として記憶し、フォトセンサー146が受光の状態となるまでスライダー駆動モータ125を動作させスライダー123を後方に戻す。
(5.5 表面第3点目以降) 演算制御回路19は、次のレンズ測定位置以降についても同様に制御することで必要な測定位置におけるレンズ表面測定データZfを得る。
(5.6 エンドミル切込み方向第1) 次に演算制御回路19はレンズ回転駆動モータ161を動作させレンズ軸120をエンドミル131による切落しのための切り込み線上測定の位置とし、キャリッジ駆動モータ121を動作させキャリッジ122をエンドミル131による切落しのための切り込み線上のフレーム形状の位置とし、スライダー駆動モータ125を動作させスライダー123を前方に移動させながらスライダー駆動モータ125の動作パルスをカウントする。レンズ前測定子140aが眼鏡レンズML表面に接触し、フォトセンサーの検知板147がフォトセンサー146に対して受光状態から遮光状態に変化させる時のスライダー駆動モータ125の動作パルスを切り込み線上第1のレンズ表面測定データとして記憶し、フォトセンサー146が受光の状態となるまでスライダー駆動モータ125を動作させスライダー123を後方に戻す。
(5.7 エンドミル切込み方向第2) 次に演算制御回路19は、キャリッジ駆動モータ121を動作させキャリッジ122をレンズ測定半径単位に相当するパルス数分だけ移動する。スライダー駆動モータ125を動作させスライダー123を前方に移動させながらスライダー駆動モータ125の動作パルスをカウントする。レンズ前測定子140aが眼鏡レンズML表面に接触し、フォトセンサーの検知板147がフォトセンサー146に対して受光状態から遮光状態に変化させる時のスライダー駆動モータ125の動作パルスを切り込み線上第2のレンズ表面測定データとして記憶する。
(5.8 エンドミル切込み方向比較) 工程5.5までに得られた測定データから演算で求めたレンズ表面のカーブ値を用い、ひとつ前のレンズ表面測定データ、この場合は切り込み線上の第1のレンズ表面測定データとの比較をし、その差分値が、レンズ測定半径単位差分に相当するレンズ表面測定値差となっているかを判断する。レンズ表面のカーブ値から演算したレンズ測定半径単位差分のレンズ表面測定値差に対して、切り込み線上の第2のレンズ表面測定での測定値差が十分に大きくなった時に切り込み線上の第2のレンズ表面測定ではレンズ表面とは接触せずにレンズ外径の外側にあると判断する。実際には切り込み線上の第2のレンズ表面測定でのスライダー123の移動とパルスカウントを行う際に、ひとつ前の測定データとの比較を順次実施し、カーブ値から演算したレンズ測定半径単位差分のレンズ表面測定値差よりも十分に大きなパルスカウントになった時点でレンズ前測定子140aはレンズ外形の外側にあると判断する。測定で用いたレンズ測定半径を眼鏡レンズMLの切り込み方向のレンズ半径と定め、記憶する。
(5.9 エンドミル切込み方向第3以降) 第2のレンズ表面測定でレンズ外形である判断されない場合には第3のレンズ表面測定を実施する。ここでも第2のレンズ表面測定と同様、工程5.7と工程5.8を実施し、レンズ外径であるかの判断がされる。これ以降もレンズ外形であるとの判断がされるまで繰り返し実施される。
(5.10 レンズ測定開始位置に戻る) 演算制御回路19は、3箇所または4箇所ある切り込み方向の全てについて工程5.6から工程5.9を実施することで全ての切り込み方向でのレンズ測定半径単位毎のレンズ表面測定データと、切り込み方向のレンズ半径を定めた後、レンズ回転駆動モータ161を動作させ、レンズ軸120を測定開始位置に、スライダー駆動モータ125を動作させスライダー123を測定開始位置に移動させた後、キャリッジ駆動モータ121を動作させ、キャリッジをレンズ表面測定開始位置まで移動する。
(6 レンズ裏面測定)
(6.1 裏面測定開始位置に移動) 演算制御回路19はスライダー駆動モータ125を動作させ、スライダー123をレンズ裏面測定開始位置の位置に、またレンズ回転駆動モータ161を動作させレンズ軸120をレンズ裏面測定開始の位置に、またキャリッジ駆動モータ121を動作させキャリッジ122をレンズ測定開始位置の制御データに基づき移動させ停止する。
(6.2 裏面第1点目) 演算制御回路19はスライダー駆動モータ125を動作させスライダー123を後方に移動させながらスライダー駆動モータ125の動作パルスをカウントする。レンズ後測定子140bが眼鏡レンズML裏面に接触し、測定スライダー142に固定されているフォトセンサーの検知板147が測定ベース142に固定されているフォトセンサー146に対して受光状態から遮光状態に変化させる時のスライダー駆動モータ125の動作パルスを第1のレンズ裏面測定データZr1として記憶し、フォトセンサー146が受光の状態となるまでスライダー駆動モータ125を動作させスライダー123を前方に戻す。
(6.3 裏面第2点目まで移動) 演算制御回路19は、次の測定位置までレンズ回転駆動モータ161を駆動させながら、フォトセンサー146が遮光とならないかを監視し、遮光となる時にはスライダー駆動モータ125を動作させスライダー123を更に前方に移動させ、受光状態を保ちながら次の測定位置で停止する。ここまでの間でスライダー駆動モータ125を動作させスライダー123を移動した場合にはその移動パルス数をカウンタとして記憶する。このレンズ回転動作中にレンズ測定の制御データに基づく第2の測定位置にキャリッジ駆動モータ121を動作させキャリッジ122を移動させ停止する。
(6.4 裏面第2点目) 第1の測定位置と同様に、演算制御回路19はスライダー駆動モータ125を動作させスライダー123を前方に移動させながらスライダー駆動モータ125の動作パルスをカウントする。レンズ後測定子140bが眼鏡レンズML裏面に接触し、フォトセンサーの検知板147がフォトセンサー146に対して受光状態から遮光状態に変化させる時のスライダー駆動モータ125の動作パルスを第2のレンズ裏面測定データZr2として記憶し、フォトセンサー146が受光の状態となるまでスライダー駆動モータ125を動作させスライダー123を前方に戻す。
(6.5 裏面第3点目以降) 演算制御回路19は、次のレンズ測定位置以降についても同様に制御することで必要な測定位置におけるレンズ裏面測定データZrを得る。
(6.6 エンドミル切込み方向第1) 次に演算制御回路19はレンズ回転駆動モータ161を動作させレンズ軸120をエンドミル131による切落しのための切り込み線上測定の位置とし、キャリッジ駆動モータ121を動作させキャリッジ122をエンドミル131による切落しのための切り込み線上のフレーム形状の位置とし、スライダー駆動モータ125を動作させスライダー123を後方に移動させながらスライダー駆動モータ125の動作パルスをカウントする。レンズ後測定子140bが眼鏡レンズML裏面に接触し、フォトセンサーの検知板147がフォトセンサー146に対して受光状態から遮光状態に変化させる時のスライダー駆動モータ125の動作パルスを切り込み線上第1のレンズ裏面測定データとして記憶し、フォトセンサー146が受光の状態となるまでスライダー駆動モータ125を動作させスライダー123を前方に戻す。
(6.7 エンドミル切込み方向第2) 次に演算制御回路19は、キャリッジ駆動モータ121を動作させキャリッジ122をレンズ測定半径単位に相当するパルス数分だけ移動する。スライダー駆動モータ125を動作させスライダー123を後方に移動させながらスライダー駆動モータ125の動作パルスをカウントする。レンズ後測定子140bが眼鏡レンズML裏面に接触し、フォトセンサーの検知板147がフォトセンサー146に対して受光状態から遮光状態に変化させる時のスライダー駆動モータ125の動作パルスを切り込み線上第2のレンズ表面測定データとして記憶する。
(6.8 エンドミル切込み方向第3以降) 工程5.8で得られたレンズ半径データよりも小さい範囲でレンズ測定半径単位毎の測定データを得る。
(6.9 レンズ測定開始位置に戻る) 演算制御回路19は、3箇所または4箇所ある切り込み方向の全てについて工程6.6から工程6.8を実施することで全ての切り込み方向でのレンズ測定半径単位毎のレンズ裏面測定データを定めた後、レンズ回転駆動モータ161を動作させ、レンズ軸120を測定開始位置に、スライダー駆動モータ125を動作させスライダー123を測定開始位置に移動させた後、キャリッジ駆動モータ121を動作させ、キャリッジをレンズ表面測定開始位置まで移動する。
(7 測定子ユニットの退避) 演算制御回路19は、スライダー駆動モータ125を動作させスライダー123を測定子ユニット140の退避動作の開始位置に移動させ、キャリッジ駆動モータ121を動作させキャリッジ122を左方に移動する。キャリッジ122に固定の作動プレート122aが旋回プレート148に接触し、さらに左方に押すこととなり、その結果、旋回プレート148が測定子ユニット140と共に旋回動し、旋回動が中間位置を越えると旋回プレート148に取り付けられた引張コイルバネ149の作用で退避位置方向に引かれ、ストッパーピン142cに当たることろまで移動し止まる、退避状態14THとなる。演算制御回路19は、旋回プレート148が正しく退避位置となったことを退避位置を検出する退避位置センサー148cの出力で確認し、キャリッジ駆動モータ121を停止、キャリッジ122の左方への移動を止め、逆回転することで右方に移動させ、測定開始位置まで戻し、停止する。
(8 ヤゲン(または溝)位置演算) 演算制御回路19は、加工種221で選択された加工種に従い、レンズコバ面上でのヤゲン(または溝)位置を演算にて求める。ここではヤゲンの場合を記載する。演算制御回路19は、レンズ表面、及びレンズ裏面測定から得られたレンズ表面測定位置データZf、レンズ裏面測定位置データZrからフレーム形状の各動径毎のレンズコバ厚T=Zr−Zfを求め、またレンズ表面曲率半径df及びレンズ裏面曲率半径drを球面の方程式に代入し、算出する。各動径のコバ厚さTの総和ΣT、平均値Tm=ΣT/nを求める。但し、nは動径の分割数。
(8.1 フレームカーブの仮位置) 眼鏡フレームの近似球面の曲率半径dと同じ曲率半径でその中心が加工軸上にあるヤゲンを想定し、コバ厚さ内の適当な位置にヤゲンを配置する為、ヤゲン球心を加工軸(Z軸)上で仮想移動させ、適当な位置を探す。
図21はマイナスレンズの中心から上半分を断面したものである。図21の[i]で示す眼鏡レンズ表面の球半径がヤゲン球の半径より大きい場合、つまりdf>dの場合、最も動径が小さくなる動径角θwMinρで眼鏡レンズ表面とヤゲンそれぞれのZ位置を一致させるようにヤゲン球心を仮想移動する。
図20はプラスレンズの中心から上半分を断面したものである。図20の[i]で示す眼鏡レンズ表面の球半径がヤゲン球の半径より小さい場合、つまりdf<dの場合、最も動径が大きくなる動径角θwMaxρで眼鏡レンズ表面とヤゲンそれぞれのZ軸位置を一致させるようにヤゲン球心を仮想移動する。この仮想移動量をMとする。
(8.2 df>dのとき) ここではまず、df>dの場合で動径角θwMinρでZ位置を一致させる場合、仮想移動量Mは、動径角θwMinρのZ座標Zp(θwMinρ)からレンズ表面のZ座標Zf(θwMinρ)を差し引いた値として求められる。
M=Zp(θwMinρ)−Zf(θwMinρ)
眼鏡フレーム形状の眼鏡レンズの表面からのZ方向の仮想ヤゲン位置は、
P=Zp−Zf+M
として表され、各動径の総和ΣP、平均値Pm=ΣP/nを求める。
(8.3 ヤゲン比) 仮想ヤゲン位置のコバ厚さ全体に占める割合をヤゲン比Rvと呼ぶこととする。ヤゲン比は、以下の式で表される。
Rv=ΣP/ΣT=Pm/Tm
ヤゲン比は、眼鏡が出来上がった状態での眼鏡フレームに対する眼鏡レンズの飛び出し量に相当するので一般的に好まれる値が存在する。これをヤゲン比の適値Rvfと称することにする。
ヤゲン比の適値Rvfはコバ厚さの平均値Tmから相当する値を導き出すことができる。以下にその一例を示すが、これは限定的なものではない。
コバ厚さの平均値Tm ヤゲン比の適値Rvf
1.5・Bvl< 0.33・Tm
Bvl< 0.5・Bvl(0.5〜0.33・Tm)
0.67・Bvl< 0.5・Tm
<0.67・Bvl 0.33・Bvl(0.5・Tm<)
上記表で使用しているBvlは、図23に示す眼鏡レンズ加工用砥石の先端ヤゲン幅である。
(8.4 ヤゲン比に基づくZ位置) 仮想移動量Mを移動した状態でのヤゲン比Rvmを求める。Rvm>Rvfの場合には、レンズ表面側への移動ができない。Rvm<Rvfの場合には、眼鏡レンズ裏面側への移動となるので移動ができる。
ここでは、まずRvm<Rvfの場合、ヤゲン比Rvをヤゲン比の適値Rvfと一致させるため、加工軸方向の移動量M1=Rvf−Rvmが必要となる。図21[ii]にM1を示す。しかしながらここで移動量M1は、動径角θwMinρにおけるコバ厚さT(θwMinρ)内であることは言うまでも無いが、実際には加工後の眼鏡レンズの安全上、また外観上のため、眼鏡レンズの表面側、及び裏面側に最低限の残り幅が必要となり、これを表面側残り幅Wf、裏面側残り幅Wrとすると、Wf<M1 かつ M1<T(θwMinρ)−Wrの範囲となる必要がある。
この範囲にM1が入る場合には、この移動量M1を仮想ヤゲン位置Pに加えることでヤゲン比Rv=Rvfとなる。P=Zp−Zf+M+M1
一方でこの範囲にM1が入らない場合、コバ厚さT(θwMinρ)の範囲内でRvがRvfに最も近づく位置まで移動する。つまりは、M1=Wf または M1=T(θwMinρ)−Wr のいずれかとなる。
ここでRvm>Rvfの場合ついても、同じ考え方でWf>M1となっているのでこの場合も移動量M1はM1=Wfとなる。
この移動量M1を移動した後の仮想ヤゲン位置Pは、P=Zp−Zf+M+M1となる。この状態でのヤゲン比は、Rvm1=P/T となる。
(8.5 傾斜移動) 次に加工軸に沿った移動ではヤゲン比がその適値に到達できないため、ボクシング測定による水平幅、鉛直幅のうち、df>dの場合小さい幅に沿って傾斜することでヤゲン比Rvを変化させる。一般的なフレームでは鉛直幅が小さい幅となるので、ここでは鉛直幅として以下の説明をする。
鉛直幅方向にフレーム形状を2分するとき、動径角θwMinρでのヤゲン位置を固定し、固定した動径角θwMinρが含まれない側、例えば、動径角θwMinρが下側に属している時には上側の動径鉛直長さ成分ρ・Sinθの最大となる動径角θwMaxVでZ方向の移動量が最大となるように傾斜を想定する。
最大移動量Amaxは
Amax=2・(Rvf−Rvm1)
として求めることができる。図21[iii]に断面として示す。この傾斜による各動径における移動幅Aは、ボクシング測定による鉛直幅Vに対する鉛直長さLvの比Lv/Vを最大移動幅Amaxに乗じたものとして表される。つまり
A=Amax・Lv/V
となる。図22にLv、Vの関係を示す。
ここで鉛直幅Vは各動径の鉛直長さ成分ρ・Sinθの最大値(ρ・Sinθ)maxから最小値(ρ・Sinθ)minを引いたもの
V=(ρ・Sinθ)max−(ρ・Sinθ)min
となる。また、各動径ρの鉛直長さLvは
Lv=(ρ・Sinθ)−(ρ・Sinθ)min
となる。但し、動径角θwMinρが上側に属している時には
Lv=(ρ・Sinθ)max−(ρ・Sinθ)
となる。
ここでAmaxの移動量は、ヤゲン比の適値と一致する為の条件から算出した値の為、動径角θwMaxVでのコバ厚内で取り得るかの検証が必要である。移動量Amaxは以下の式を満たす範囲となる。
Zf(θwMaxV)+Wf<P+Amax<Zr(θwMaxV)−Wr
これを外れる場合にはいずれかの限界位置にとどめるようにAmaxの値を変更する。この場合には、ヤゲン比の適値Rvfとは一致しない結果となる。
(8.6 df<dのとき) 次にdf<dの場合で動径角θwMaxρで眼鏡レンズ表面とヤゲンとを一致させる場合、仮想移動量Mは、動径角θwMaxρのZ座標Zp(θwMaxρ)から眼鏡レンズ表面の座標Zf(θwMaxρ)を差し引いた値として求められる。
M=Zp(θwMaxρ)−Zf(θwMaxρ)
眼鏡フレーム形状の眼鏡レンズ表面からのZ方向の仮想ヤゲン位置は、
P=Zp−Zf+M
として表され、各動径の総和ΣP、平均値Pm=ΣP/nを求める。
仮想ヤゲン位置のヤゲン比は、以下の式で表される。
Rv=ΣP/ΣT=Pm/Tm
(8.7 ヤゲン比に基づくZ位置) 仮想移動量Mを移動した状態でのヤゲン比Rvmを求める。Rvm>Rvfの場合には、レンズ表面側への移動ができない。Rvm<Rvfの場合には、眼鏡レンズ裏面側への移動となるので移動ができる。
ここでは、まずRvm<Rvfの場合について記載する。
ヤゲン比Rvをヤゲン比の適値Rvfと一致させるため、移動量M1=Rvf−Rvmが必要となる。。図20[ii]にM1を示す。しかしながらここで移動量M1は、動径角θwMaxρにおけるコバ厚さT(θwMaxρ)内であることは言うまでも無いが、実際には加工後の眼鏡レンズの安全上、また外観上のため、眼鏡レンズの表面側、及び裏面側に最低限の残り幅が必要となり、これを表面側残り幅Wf、裏面側残り幅Wrとすると、Wf<M1 かつ M1<T(θwMaxρ)−Wrの範囲となる必要がある。
この範囲にM1が入る場合には、この移動量M1を仮想ヤゲン位置Pに加えることでヤゲン比Rv=Rvfとなる。P=Zp−Zf+M+M1
一方でこの範囲にM1が入らない場合、コバ厚さT(θwMaxρ)の範囲内でRvがRvfに最も近づく位置まで移動する。つまりは、M1=Wf または M1=T(θwMinρ)−Wr のいずれかとなる。
ここでRvm>Rvfの場合ついても、同じ考え方でWf>M1となっているのでこの場合も移動量M1はM1=Wfとなる。
この移動量M1を移動した後の仮想ヤゲン位置Pは、P=Zp−Zf+M+M1となる。この状態でのヤゲン比は、Rvm1=P/T となる。
(8.8 傾斜移動) 次に加工軸に沿った移動ではヤゲン比がその適値に到達できないため、眼鏡フレームのボクシング測定による水平幅、鉛直幅のうち、大きい幅に沿って傾斜することでヤゲン比Rvを変化させる。一般的なフレームでは水平幅が大きい幅となるので、ここでは水平幅として説明する。
Z軸に沿った移動量M+M1で動径角θwMaxρでのヤゲン位置は、眼鏡レンズ表面から距離が最小となっている。
水平幅方向にフレーム形状を2分するとき、動径角θwMaxρでのヤゲン位置を固定し、固定した動径角θwMaxρが含まれない側、例えば、動径角θwMaxρが左側に属している時には右側の動径水平長さ成分ρ・Cosθの最大となる動径角θwMaxHでZ方向の移動量が最大となるように傾斜を想定する。
最大移動量Amaxは
Amax=2・(Rvf−Rvm1)
として求めることができる。図20[iii]に断面として示す。この傾斜による各動径における移動幅Aは、ボクシング測定による水平幅Hに対する水平長さLhの比Lh/Hを最大移動幅Amaxに乗じたものとして表される。つまり
A=Amax・Lh/H
となる。図22にLh、Hの関係を示す。
ここで水平幅Hは以下の式で示すように各動径の水平長さ成分ρ・Cosθの最大値(ρ・Cosθ)maxから最小値(ρ・Cosθ)minを引いたもの
H=(ρ・Cosθ)max−(ρ・Cosθ)min
となる。また、各動径ρの水平長さLhは
Lh=(ρ・Cosθ)−(ρ・Cosθ)min
となる。但し、動径角θwMaxρが右側に属している時には
Lh=(ρ・Cosθ)max−(ρ・Cosθ)
となる。
ここでAmaxの移動量は、ヤゲン比の適値と一致する為の条件から算出した値の為、動径角θwMaxHでのコバ厚内で取り得るかの検証が必要である。移動量Amaxは以下の式を満たす範囲となる。
Zf(θwMaxH)+Wf<P+Amax<Zr(θwMaxH)−Wr
これを外れる場合にはいずれかの限界位置にとどめるようにAmaxの値を変更する。この場合には、ヤゲン比の適値Rvfとは一致しない結果となる。
以上の結果から、ヤゲン位置Pは、
P=Zp−Zf+M+M1+Amax・(Lv/V) または
P=Zp−Zf+M+M1+Amax・(Lh/H)
の式を用いて各動径θにおけるPを求める。
(8.9 ヤゲン位置指定によるレンズ表面球面) ここで、図24は眼鏡フレーム形状球面上の処方位置に座標原点があり、その球心がZ軸上にある元座標系からレンズ表面の近似球面上の処方位置に座標原点があり、その球心がZ軸上にある新座標系の関係を示している。元座標での眼鏡フレーム形状の座標(Xp,Yp,Zp)でZ座標からヤゲン位置Pを引いた値Zp−Pは、この元座標系でのヤゲン比が適値となるときの眼鏡レンズ表面の座標Zgとなっている。レンズ表面(Xp,Yp,Zg)4点の座標値を用いて球面の方程式
(X−ag)+(Y−bg)+(Z−cg)=dg
に代入し、眼鏡レンズ表面の近似球面の中心(ag,bg,cg)、半径dgを求める。ここでレンズ表面の近似球面をZ軸が通る座標(0,0、eg)とすると
eg=±√{dg−(−ag)−(−bg)}+cg
の式で求めることができる。
測定平面に対して鉛直で処方位置に一致するレンズ表面球面上の点を新たな座標原点とすることで加工中心を処方位置に維持する。元座標系のZ軸のX軸回りにα、Y軸回りにβの傾斜角による原点のずれegに相当の平行移動変換を行う。平行移動後の座標を(X3,Y3,Z3)とすると
X3=Xp+eg・sin(β)
Y3=Yp−eg・sin(α)
Z3=Zp−eg・cos(β)・cos(α)
これを更にレンズ表面の近似球面の中心がZ軸上とするためX軸回りに回転角γ=tan−1{(−bg)/(cg−eg)}回転する。この座標値を(X4,Y4,Z4)とし、次にY軸回りに回転角δ=tan−1{(ag)/(cg−eg)}回転することで、眼鏡フレーム形状(Xv,Yv,Zv)を得る。図24では、図の複雑化をさける為、bg=0、γ=0となる場合の図となっている。
X4=X3
Y4=Y3・cos(γ)+Z3・sin(γ)
Z4=−Y3・sin(γ)+Z3・cos(γ)
Xv=X4・cos(δ)−Z4・sin(δ)
Yv=Y4
Zv=X4・sin(δ)+Z4・cos(δ)
(8.10 レンズ表面基準座標系でのフレーム形状) ここに求めた眼鏡フレーム形状(Xv,Yv,Zv)は、極座標として(ρv,θv)と高さZvとして表示できる。ヤゲン比の適値と一致、または出来るだけ適値に近づけたヤゲン位置から眼鏡レンズ表面の近似球面を求め、この眼鏡レンズ表面上の処方位置(加工中心)を原点とし、表面球心が加工軸(Z軸)を通る座標系上に眼鏡フレーム形状を座標変換表示したものとなっている。
演算制御回路19は、求めたヤゲン位置(ρv,θv,Zv)をデータメモリー191に記憶する。
(9 測定終了通知) 演算制御回路19は、測定の終了情報とレンズ表面及び裏面の位置データ、レンズコバ厚、レンズ表面、裏面のカーブ値、ヤゲン位置情報、ヤゲンカーブ値などをタブレット端末2に通知する。タブレット端末2は、図4に示す加工中画面のレンズ測定結果に基づくヤゲン(または溝)の状態を図表示するエリア241に得られた情報に基づく図表示をする。
(10 制御データ演算) 演算制御回路19は、エンドミル131先端から元方向に一定量、ここでは1mmの位置をエンドミル131のレンズ裏面と一致する加工位置に定め、エンドミル131の先端から元方向に一定量の位置とレンズ裏面の位置データとが一致するようにレンズ回転駆動モータ161、キャリッジ駆動モータ121、スライダー駆動モータ125の制御データを求める。エンドミル131先端ではなく、元方向に一定量の位置を加工位置とするのは、各種レンズ裏面カーブから想定される変化に対してレンズ裏面を突き抜けるに十分な位置とするためである。
演算制御回路19は、フレーム形状データ、レンズ裏面位置データ、及び切落し回転位置での半径値とレンズ裏面位置データに基づき、エンドミル131での形状切落しを実施するためのスライダー駆動モータ125、キャリッジ駆動モータ121、レンズ回転駆動モータ161、の各制御データを演算し、データメモリー191に記憶する。
演算制御回路19は次に、コバ厚、エンドミル直径、隣り合う各加工制御2点間の距離からエンドミル131にて各制御2点間で加工除去される体積を求める。求めた加工除去体積を予め補正値メモリー193に設定されているエンドミル加工での単位時間当りの最適加工除去体積で除算することで各制御2点間の最適な制御時間を定める。これを各制御2点間のスライダー駆動モータ125、キャリッジ駆動モータ121、レンズ回転駆動モータ161の各制御速度に修正してデータメモリー191に記憶する。また補正値メモリー193には、各駆動モータの限界高速度が記憶されているので各制御速度がこの限界高速度を越える高速度になっている場合には該当する制御モータを限界高速度に設定すると共にその他の駆動モータの制御速度をその減速比に合わせて減速した速度に修正し、データメモリー191に記憶する。
(11 加工準備) 演算制御回路19は、ウェット・ドライ切替部18のドライ位置センサー181dの状態を見ることでドライ位置であることを確認し、エンドミル131による最初の制御データに基づき、スライダー駆動モータ125を駆動し、スライダー123を移動させながら、キャリッジ駆動モータ121を駆動し、キャリッジ122を移動させながら、レンズ回転駆動モータ161を駆動し、レンズ軸120を回転させる。スピンドル駆動モータ136を駆動し、エンドミル131を回転状態にする。脱臭装置17の排気ファン171を稼動させる。
(12 エンドミル切落し)
(12.1 最初の切り込み)
演算制御回路19は、キャリッジ駆動モータ121とスライダー駆動モータ125を駆動させ、最初の切り込み回転位置のレンズ外径位置からフレーム形状の動径位置までの間を半径単位間隔の制御位置データ、制御速度に従ってキャリッジとスライダーを移動させることで切り込み方向の加工をする。
次に演算制御回路19は、フレーム形状の動径位置からレンズ外径位置まで制御データに従いながら、限界高速度で移動し、更にキャリッジを左方向(エンドミルから離れる方向)に次の回転切り込み位置のレンズ外径に余裕値を加えた位置までキャリッジ駆動モータ121とスライダー駆動モータ125を駆動し、キャリッジ122とスライダー123を移動する。演算制御回路19はレンズ回転駆動モータ161を駆動し、次の回転切り込み位置まで限界高速度で回転する。
(12.2 2個目の切り込み) 演算制御回路19はキャリッジ駆動モータ121とスライダー駆動モータ125を動作させ、2個目の切り込み回転位置のレンズ外径位置からフレーム形状の動径位置までの間を半径単位間隔の制御位置データ、制御速度に従ってキャリッジ122とスライダー123を移動させることで切り込み方向の加工をする。
次に演算制御回路19は、フレーム形状の動径位置からレンズ外径位置まで制御データに従いながら、限界高速度で移動し、更にキャリッジ122を左方向(エンドミルから離れる方向)に次の回転切り込み位置のレンズ外径に余裕値を加えた位置までキャリッジ駆動モータ121とスライダー駆動モータ125を駆動し、キャリッジ122とスライダー123を移動する。演算制御回路19はレンズ回転駆動モータ161を駆動し、次の回転切り込み位置まで限界高速度で回転する。
(12.3 3,4個目の切り込み、最初の切落し) 演算制御回路19は、3箇所目の切り込み回転位置も同様に制御することで切り込み方向の加工をする。切込み回転位置が4箇所有る時には、更に同様の制御を繰り返す。3箇所または4箇所ある切り込みの最後の加工を終了した後、最初の切り込み回転位置方向に向かって、最後の切り込み終了状態からフレーム形状の隣の動径に基づくレンズ回転駆動モータ161、キャリッジ駆動モータ121、スライダー駆動モータ125の各制御データ、制御速度に従って駆動する。次々にフレーム形状の隣の動径に基づくレンズ回転駆動モータ161、キャリッジ駆動モータ121、スライダー駆動モータ125の各制御データ、制御速度に従って駆動することでフレーム形状に沿った形状加工がされ、最初の切り込み回転位置のフレーム形状動径に到達すると切落し片MLdが切り離される。切落し片MLdは加工室11の円形開口11dを通り、ビニール袋183の中に落下する。
(12.4 切落し) 演算制御回路19は、最後の切込みから最初の切込みまでフレーム形状に従った切落し加工に引き続き、フレーム形状沿った次の動径情報に基づくレンズ回転駆動モータ161、キャリッジ駆動モータ121、スライダー駆動モータ125の各制御データ、制御速度で駆動することでエンドミル131での切落し加工を進める。フレーム形状に従った1周の駆動制御を最後の切り込み位置まで到達すると周辺部分が最後の切落し片MLdとして切り離される。切落し片MLdは加工室11の円形開口11dを通り、ビニール袋183の中に落下する。
(12.5 エンドミル切落し終了、戻り) 演算制御回路19は、キャリッジ駆動モータ121を駆動しキャリッジ122を左方の加工開始基準位置に移動させながら、スライダー駆動モータ125を駆動しスライダー123を前方の加工開始基準位置に移動させながら、レンズ回転駆動モータ161を駆動しレンズ軸120を加工開始位置に回転させる。スピンドル駆動モータ136を停止する。脱臭装置17の排気ファン171を停止する。
(13 ウェット切替) 演算制御回路19は、スライダー駆動モータ125とキャリッジ駆動モータ121を駆動制御して、キャリッジ122に固定されている切替作動バー122bをリンク連動板185の作動ピン185aの前側面に当て、その後、スライダー123の移動により切替作動バー122bを後方に移動させる。リンク連動板185の作動ピン185aが後方に押されるとリンク棒184により連結されている切替プレート181がその旋回軸181cの周りを旋回動する。移動量全体の中央を過ぎると切替プレート181、及びリンク連動板185に取り付けられた引張コイルバネ186の作用で切替プレート181はウェット側に移動され、ストッパーピン187b、187dにより止まる。演算制御回路19はウェット位置検出センサー181wにより正しくウェット位置となったことを確認し、スライダー駆動モータ125とキャリッジ駆動モータ121の駆動を停止した後、逆方向に駆動しスライダー123とキャリッジ121を加工開始位置に移動する。
(14 ヤゲン制御データ演算) 演算制御回路19は、加工種221で指定された加工状態に仕上げるための制御データの演算を行う。ここではヤゲン加工の場合を記載するが、溝加工、平加工においても利用する砥石形状、砥石径などの条件が異なるが制御は同様に実施される。
(14.1 ヤゲン制御データ、制御速度演算) 演算制御回路19は、データメモリー191に保存されたフレーム形状データ(ρv,θv)、溝位置データZvに基づき、ヤゲン砥石133aのヤゲン先端位置をヤゲン制御でのヤゲン砥石133a上の基準位置と定める。
演算制御回路19は、ヤゲン砥石133a上の基準位置に対応させて眼鏡レンズMLを駆動制御するためのキャリッジ駆動モータ121、スライダー駆動モータ125、及びレンズ回転駆動モータ161の各制御データを演算し、データメモリー191に記憶する。演算制御回路19は次に、フレーム形状の各動径に対応したコバ厚T、平加工取代(エンドミル切落しフレーム形状動径とヤゲン加工フレーム形状動径との差)、各加工制御2点間の距離からヤゲン加工での各制御2点間で加工除去される体積を求める。求めた加工除去体積を予め補正値メモリー193に設定記憶されているヤゲン砥石133a加工での単位時間当りの最適加工除去体積で除算することで各制御点間の最適な制御時間を定める。これを各制御2点間のスライダー駆動モータ125、キャリッジ駆動モータ121、レンズ回転駆動モータ161の各制御速度に修正してデータメモリー191に記憶する。
(14.2 制御限界高速度修正) 演算制御回路19は、データメモリー191に記憶した各制御速度が、補正値メモリー193に記憶されている各駆動モータの限界高速度を越える高速度になっている場合には該当する制御モータの制御速度を限界高速度に修正すると共にその他のモータの制御速度をその減速比に合わせて減速した速度に修正し、データメモリー191に記憶する。
(14.3 マルチタスクへの適応) ここまでに説明のヤゲン制御データ演算の工程は、演算制御回路19がレンズ測定を完了させた以降のCPU負荷の小さい動作中を利用してマルチタスクとして着手することで、動作が停止し演算のみを実行する時間の発生を減らす。
(15 ヤゲン加工) 演算制御回路19は、ヤゲン砥石133aの加工に適したスピンドル駆動モータ136の回転速度を補正値メモリー193から引き出し、スピンドル駆動モータ136をその回転速度で駆動させ、給水装置3のポンプ37を駆動させ、脱臭装置17の排気ファン171を作動させる。ポンプ37の作動が安定し、給水が砥石にされる十分な時間を待機した後、制御動作に入る。
(15.1 ヤゲン制御) 演算制御回路19は、ウェット・ドライ切替部18のウェット位置センサー181wの状態を確認することでウェット位置であることを確認し、キャリッジ駆動モータ121を駆動し、眼鏡レンズMLが取代分だけヤゲン砥石133aから離れる(制御位置よりは左方)位置に移動させながら、レンズ回転駆動モータ161、スライダー駆動モータ125を駆動し、ヤゲン制御のための最初の制御データの位置まで移動する。演算制御回路19はレンズ回転駆動モータ161、キャリッジ駆動モータ121、スライダー駆動モータ125の各モータの制御データ、制御速度にて初期回転位置の制御を実施することで加工を開始する。2点目以降の制御データ、制御速度に基づき、同様に駆動制御することで全周にヤゲン加工をする。
(15.2 加工開始位置に戻り) 演算制御回路19は、キャリッジ駆動モータ121を駆動させキャリッジ122を左方の加工開始基準位置に移動させながら、スライダー駆動モータ125を駆動させスライダー123を加工開始基準位置に移動させながら、レンズ回転駆動モータ161を駆動させレンズ軸120を開始位置に回転し、加工開始状態に戻す。スピンドル駆動モータ136を停止する。給水装置3のポンプ37を停止する。脱臭装置17の排気ファン171を停止する。
(16 ドライ切替、第1画面) 演算制御回路19は、スライダー駆動モータ125とキャリッジ駆動モータ121を駆動制御して、キャリッジ122に固定されている切替作動バー122bをリンク連動板185の作動ピン185aの後側面に当て、その後、スライダー123の移動により切替作動バー122bを前方に移動させる。リンク連動板185が前方に押されるとリンク棒184により連結されている切替プレート181がその旋回軸181cの周りを旋回動する。移動量全体の中央を過ぎると切替プレート181、及びリンク連動板185に取り付けられた引張コイルバネ186の作用で切替プレート181はドライ側に移動され、ストッパーピン187a,187cにより止まる。
演算制御回路19はドライ位置検出センサー181dにより正しくドライ位置となったことを確認し、スライダー123の移動を停止する。演算制御回路19は、スライダー駆動モータ125とキャリッジ駆動モータ121を制御してキャリッジ122、スライダー123を加工開始位置に移動し停止する。演算制御回路19は、タブレット端末2に加工終了の通知をする。タブレット端末2は、終了通知を受け、第1画面に切り替える。
以上説明したように、この発明の実施形態の眼鏡レンズ加工データ作成方法は、眼鏡フレーム形状の3次元計測データとフレーム形状に沿う被加工眼鏡レンズの表面と裏面の高さデータとを用いて眼鏡レンズの周縁にヤゲンを形成するためのヤゲン位置を決定する為の算出方法で、眼鏡フレーム形状の3次元データから近似する球の方程式を求め、球の曲率半径を求める段階と、眼鏡レンズの表面と裏面の高さデータとフレーム形状データからレンズ表面と裏面の近似する球の方程式を求め、球の曲率半径を求める段階と、眼鏡レンズの表面と裏面の近似球面の光軸方向位置に対する眼鏡フレームの近似球面の光軸方向位置を仮にヤゲン位置と定め、ヤゲン位置に基づくヤゲン比を求める段階と、眼鏡レンズ表面と裏面の高さデータから眼鏡フレーム形状に沿ったレンズ周縁のコバ厚さの総和または平均値を求め、予め設定された総和または平均値に適したヤゲン比の適値を定める段階と、定めたヤゲン比の適値に仮に定めたヤゲン位置でのヤゲン比を一致、または出来るだけ近いヤゲン比となるようなヤゲン位置を算出する段階とからなる眼鏡レンズの周縁にヤゲンを形成する為のヤゲン位置を決定する為の算出方法を提供することができる。
1・・・レンズ加工装置
2・・・タブレット端末
3・・・給水装置
4・・・外部サーバー(クラウドコンピュータ)
11・・・加工室
12・・・レンズ駆動部
13・・・スピンドル
14・・・レンズ測定部
18・・・ウェット・ドライ切替部
19・・・演算制御回路部
120・・・レンズ軸
122・・・キャリッジ
123・・・スライダー
131・・・エンドミル
132・・・溝掘砥石
133・・・研削砥石
140・・・測定子ユニット
150・・・固定ベース
31・・・排水ホース
32・・・排気ホース
36・・・給水ホース
ML・・・眼鏡レンズ
MLd・・・眼鏡レンズ切り離し片
MLf・・・眼鏡レンズ表面
FLM・・・眼鏡フレーム
pl−m・・・測定平面
pl−x・・・測定平面上のX軸を含む鉛直平面
pl−y・・・測定平面上のY軸を含む鉛直平面
pl−r・・・眼鏡フレーム球面中心をZ軸が通る座標系のXY平面(右眼)

Claims (1)

  1. 眼鏡フレーム形状の3次元計測データとフレーム形状に沿う被加工眼鏡レンズの表面と裏面の高さデータとを用いて眼鏡レンズの周縁にヤゲンを形成するためのヤゲン位置を決定する為の算出方法で、眼鏡フレーム形状の3次元データから近似する球の方程式を求め、球の曲率半径を求める段階と、眼鏡レンズの表面と裏面の高さデータとフレーム形状データからレンズ表面と裏面の近似する球の方程式を求め、球の曲率半径を求める段階と、眼鏡レンズの表面と裏面の近似球面の光軸方向位置に対する眼鏡フレームの近似球面の光軸方向位置を仮にヤゲン位置と定め、ヤゲン位置に基づくヤゲン比を求める段階と、眼鏡レンズ表面と裏面の高さデータから眼鏡フレーム形状に沿ったレンズ周縁のコバ厚さの総和または平均値を求め、予め設定された総和または平均値に適したヤゲン比の適値を定める段階と、定めたヤゲン比の適値に仮に定めたヤゲン位置でのヤゲン比を一致、または出来るだけ近いヤゲン比となるようなヤゲン位置を算出する段階とからなる眼鏡レンズの周縁にヤゲンを形成する為のヤゲン位置を決定する為の算出方法






JP2016082140A 2016-04-15 2016-04-15 眼鏡レンズ加工データ作成方法 Active JP6103788B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016082140A JP6103788B1 (ja) 2016-04-15 2016-04-15 眼鏡レンズ加工データ作成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082140A JP6103788B1 (ja) 2016-04-15 2016-04-15 眼鏡レンズ加工データ作成方法

Publications (2)

Publication Number Publication Date
JP6103788B1 true JP6103788B1 (ja) 2017-03-29
JP2017189858A JP2017189858A (ja) 2017-10-19

Family

ID=59366085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082140A Active JP6103788B1 (ja) 2016-04-15 2016-04-15 眼鏡レンズ加工データ作成方法

Country Status (1)

Country Link
JP (1) JP6103788B1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190247A (ja) * 1989-01-18 1990-07-26 Topcon Corp レンズ研削方法及びそのための装置
JPH04360761A (ja) * 1990-07-06 1992-12-14 Hoya Corp 眼鏡レンズ加工機及び眼鏡レンズ加工方法
JPH05111866A (ja) * 1991-10-22 1993-05-07 Hoya Corp ヤゲン位置表示装置
US20120133886A1 (en) * 2010-07-20 2012-05-31 Essilor International (Compagnie Generale D'optique) Method of calculating a setpoint for beveling or grooving an ophthalmic lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190247A (ja) * 1989-01-18 1990-07-26 Topcon Corp レンズ研削方法及びそのための装置
JPH04360761A (ja) * 1990-07-06 1992-12-14 Hoya Corp 眼鏡レンズ加工機及び眼鏡レンズ加工方法
JPH05111866A (ja) * 1991-10-22 1993-05-07 Hoya Corp ヤゲン位置表示装置
US20120133886A1 (en) * 2010-07-20 2012-05-31 Essilor International (Compagnie Generale D'optique) Method of calculating a setpoint for beveling or grooving an ophthalmic lens

Also Published As

Publication number Publication date
JP2017189858A (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
US7740520B2 (en) Apparatus for processing chamfering of eyeglass lens
US7500315B2 (en) Hole data input device and eyeglass lens processing apparatus having the same
JP5405720B2 (ja) 眼鏡レンズ加工装置
US7840294B2 (en) Layout setting device for processing eyeglass lens, eyeglass lens processing apparatus, eyeglass frame measuring device and cup attaching device, each having the same
JP2021024055A (ja) 眼鏡レンズ加工装置
US6588898B2 (en) Apparatus for displaying lens contour, apparatus for processing lens contour data, and apparatus for grinding edge of eyeglass lens with the same
JP4733672B2 (ja) 眼鏡レンズ研削加工装置
US6688944B2 (en) Spectacle lens chamfering data preparing method, spectacle lens chamfering method, spectacle lens chamfering data preparing apparatus, and spectacle lens chamfering apparatus
JP5265127B2 (ja) 眼鏡レンズ加工装置
JP6103788B1 (ja) 眼鏡レンズ加工データ作成方法
JP6124322B1 (ja) 眼鏡レンズ加工データ作成方法
JP2022076815A (ja) 眼鏡レンズ加工装置
JP2000254847A (ja) 眼鏡レンズのヤゲン形状表示装置及びその表示装置によるレンズ周縁加工方法及びそのレンズ周縁加工装置
JP6244520B2 (ja) 眼鏡レンズ加工装置
JP6244519B2 (ja) 眼鏡レンズ加工装置
JP6124310B2 (ja) 眼鏡レンズ加工装置
JP2022172423A (ja) 眼鏡レンズ溝掘機
JP6268345B2 (ja) 眼鏡レンズ加工装置
JP5523931B2 (ja) 眼鏡レンズのレイアウト表示装置、眼鏡レンズ加工データ演算方法、及び眼鏡レンズ研削加工装置
JP2022076806A (ja) 眼鏡レンズ加工データ作成方法
JP2016149106A (ja) タブレット端末と加工装置
JP3141234B2 (ja) 眼鏡レンズと、その加工方法及び加工装置
JP2005212034A (ja) レンズ研削加工方法及びその装置
JP4271418B2 (ja) 眼鏡レンズ研削加工装置
JP4472828B2 (ja) レンズ形状データ処理装置及びそれを有する眼鏡レンズ周縁加工装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6103788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250