JP6087056B2 - 誘導結合プラズマms/ms型質量分析装置 - Google Patents

誘導結合プラズマms/ms型質量分析装置 Download PDF

Info

Publication number
JP6087056B2
JP6087056B2 JP2012001616A JP2012001616A JP6087056B2 JP 6087056 B2 JP6087056 B2 JP 6087056B2 JP 2012001616 A JP2012001616 A JP 2012001616A JP 2012001616 A JP2012001616 A JP 2012001616A JP 6087056 B2 JP6087056 B2 JP 6087056B2
Authority
JP
Japan
Prior art keywords
vacuum chamber
inductively coupled
coupled plasma
mass spectrometer
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012001616A
Other languages
English (en)
Other versions
JP2013143196A (ja
Inventor
憲幸 山田
憲幸 山田
健雄 桑原
健雄 桑原
北本 淳
淳 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Priority to JP2012001616A priority Critical patent/JP6087056B2/ja
Priority to US13/734,378 priority patent/US8610053B2/en
Priority to CN2013200049288U priority patent/CN203339108U/zh
Publication of JP2013143196A publication Critical patent/JP2013143196A/ja
Application granted granted Critical
Publication of JP6087056B2 publication Critical patent/JP6087056B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0495Vacuum locks; Valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、誘導結合プラズマMS/MS型質量分析装置(ICP-MS/MS)における、新規な差動排気構成に関する。
誘導結合プラズマMS/MS型質量分析装置(ICP-MS/MS)は、これまで商用製品化された例は無いものの、実験研究において構成、使用されている例が、多く紹介されている。すなわち、ICP-MS/MSは、誘導結合プラズマ装置(ICP)と、それに連結されたMS/MS型質量分析装置(MS/MS)とからなる。誘導結合プラズマ装置は、被分析試料を含むプラズマを生成するものである。MS/MS型質量分析装置は、インタフェースおよびイオンレンズと、コリジョン/リアクション(衝突/反応)セルと、セルを挟んでその前段と後段にそれぞれ設けられる二つのマスフィルタと、電子増倍管などの検出器とから構成される。二つのマスフィルタは、イオンを抽出する分離手段、例えば、四重極マスフィルタを用いて、イオンビーム中の所定のイオンを質量電荷比に従って分離する。コリジョン/リアクションセルは、水素などの比較的分子量の小さい反応ガスを導入し、前段のマスフィルタから導入されるイオンビーム中の多原子分子イオンを反応ガス分子と衝突、反応させることにより選択的に中和して、測定信号への干渉を防止しようとするものである。
このような構成により、誘導結合プラズマ装置(ICP)で生成されたプラズマは、インタフェースを介してイオンビームとして質量分析装置(MS/MS)に導入され、前段のマスフィルタにより所定の質量電荷比のイオンが分離されて、コリジョン/リアクションセルに送られる。前段のマスフィルタを出たイオンビームには、同一の質量電荷比を有する複数種のイオンが含まれている可能性がある。このイオンビームは、セル内で反応ガスに衝突、反応し、より小さい若しくはより大きい質量電荷比を有する多原子分子イオンが生成され、さらに、後段のマスフィルタに送られる。後段のマスフィルタは、コリジョン/リアクションセルから導入されたイオンビームから更に所定の質量電荷比に従って測定対象となるイオンを分離し、検出器に送る。
このように、ICP-MS/MSは、二つのマスフィルタおよびセルを用いて、測定対象イオンを干渉イオンから効率的に分離し定量しようとする装置である。非特許文献1では、ICP-MS/MSにおいて、イオン分子反応を利用して、検出器に入力されるイオンを選択的に低減させることができることを示す実験を紹介している。すなわち、前段のマスフィルタに、イオン源から、テルビウムイオン(Tb+質量数159)、セリウムイオン(Ce+質量数140、142)、酸化セリウムイオン(CeO+質量数156、158)を送って通過させ、それらを、酸素(O2)を反応ガスとするコリジョン/リアクションセルに導入する。セル内で、Tb+およびCe+は、O2と反応して、TbO+(質量数175)、CeO+(質量数156、158)が形成され、後段のマスフィルタに送られるので、後段のマスフィルタを、前段のマスフィルタより16高い質量電荷比で動作させることにより、TbO+、CeO+に対応する質量数において、それぞれテルビウムとセリウムを検出することができる。一方、CeO2 +イオン(質量数172、174)は、セル内で、ほとんど形成されることがなく、CeO+イオンのままにとどまる。この結果、後段のマスフィルタでは、CeO2 +の質量数172、174のイオンの通過がほとんどなくなる。つまり、セル内のイオン分子反応の差を利用して、Tb+の信号に対してCeO+の信号を劇的に低減することができる。この実験が示すように、ICP-MS/MSにおいては、イオン分子反応を利用して、イオンを選択的に低減させることができるので、この原理に基づいて、ICP-MS/MSは、測定対象イオンに対する干渉イオンの低減が可能である。
ICP-MS/MSは、分析チャンバ内を真空に保つ必要があるが、そのための排気構成を示している例が、特許文献1である。
国際公開00/16375号公報(特表2002-525801号公報)
"Some Current Perspectives on ICP-MS" D.J. Douglas, Canadian Journal of Spectroscopy, Volume 34, No.2, 1989
前述のようにICP-MS/MSにおいては、反応ガスが供給されるセルを収容した真空チャンバの前後に、四重極が配置された真空チャンバが二つ設けられる。参照のため、特許文献1の図2を図6として添付して示す。特許文献1ではICP-MS/MSの真空系に関して、従来の引き出し電極とコリジョン/リアクションセルを収容している真空チャンバを、引き出し電極と四重極を有する第1の真空チャンバ6と、コリジョン/リアクションセルを有する第2の真空チャンバ20に分け、第1の真空チャンバ6を1×10-2Pa〜1Pa、典型的には1〜2×10-1Pa程度の真空度とし、第2の真空チャンバ20を1〜2×10-2Pa程度の真空度とすることを開示している。第2の真空チャンバ20の後段に設けられ、四重極マスフィルタ37と検出器38を有する第3の真空チャンバ33は、1×10-4Pa程度の真空度とされる。そして第1の真空チャンバ6は、引き出し電極8が格納される領域14と、四重極17が格納される領域15からなり、これらの領域がひとつの真空ステージとして、ターボ分子ポンプで真空排気されている。また真空チャンバ同士は直径2〜3 mm程度の開口19, 32によって連通しているが、これらの領域14, 15は20 mm程度の比較的大きな直径を有する開口11によって連通され、同様の圧力を有するようにされている。しかしながら本発明者らの知見によれば、このような排気構成は問題である。
すなわち上記のように、特許文献1で提案されている真空排気構成は、第1の真空チャンバ6の圧力を1〜2×10-1Pa程度とすることを意図している。また実際のところ、第1の真空チャンバ6は、大気圧下に存在するイオン源1から差動真空排気される二段目の真空ステージであり、その圧力はせいぜい1×10-2Pa程度までしか下げることができない。ところが四重極17には通常数MHz、数kV程度の比較的高周波数で高電圧の交流と、数百V程度の直流が重畳された電位が印加されるため、このような圧力でICP-MS/MSを動作させると、四重極が放電し、フィルタ動作が不能となったり、バックグランドノイズが高くなるというリスクがある。また、四重極に十分な質量選択性、質量分解能を持たせるためには、四重極と同程度の長さのイオン飛行距離を持たせる必要があるが、このような圧力下でのイオンの平均自由行程は、イオン種にもよるものの、例えばArイオンとArガス分子の衝突を仮定すると、30 cm程度と短くなってしまう。そのため質量選択性、質量分解能が不十分となり得るし、イオンとガス分子との衝突による感度低下も懸念される。仮にこの感度低下を防ぐために四重極の長さを短くしたとすると、今度は四重極自体の質量分解能が犠牲になり、スペクトル干渉の増大により本来のICP-MS/MSの持つ分析性能が低下するといった不具合が生じてしまう。
本発明は、ICP-MS/MSに用いる新規な差動真空排気の構成を提供することにより、上述のような問題点を解決し、微量な金属イオンを高感度で検出できる誘導結合プラズマ質量分析装置の特徴をICP-MS/MSにおいて十分に発揮させることを課題としている。
本発明の誘導結合プラズマMS/MS型質量分析装置(ICP-MS/MS)は、大気圧下で発生させた試料元素を含むプラズマを真空中に引き込み、さらに後段の真空チャンバに出射させる第一の真空チャンバと、第1の真空チャンバから出射したプラズマから分析対象を含むイオンをビームとして抽出し、かつ収束させ案内する手段を含む第2の真空チャンバと、第2の真空チャンバに接続され、第1のイオン光学分離手段を備えた第3の真空チャンバと、第3の真空チャンバに接続され、反応ガスが導入されるセルを有する第4の真空チャンバと、第4の真空チャンバに接続され、第2のイオン光学分離手段及び検出器を備えた第5の真空チャンバとを有する。第1及び第2のイオン光学分離手段は典型的には4本のロッド電極を有する四重極マスフィルタ(四重極)である。四重極は、コリジョン/リアクションセル内にも備えられる。なお、セル内のロッド電極は、四重極に限られず、6本、8本等のロッド電極からなる他の多重極を用いてもよい。
本発明のICP-MS/MSの5つの真空チャンバはそれぞれに排気され、この点において差動排気構成として新規なものであるが、特に本発明は、第2の真空チャンバと第3の真空チャンバを個別に排気する点で従来技術と区別される。すなわちイオンビームを抽出・収束させ案内する手段として引き出し電極やイオンレンズが格納される第2の真空チャンバと、一つ目の四重極が格納される第3の真空チャンバを直径2〜3 mm程度の小さなオリフィスを備えた隔壁で分け、それぞれの真空チャンバをターボ分子ポンプで排気することで、第3の真空チャンバへのイオン源からのArガス分子の流入量を1×10-2 sccm程度に下げる。なおこうした隔壁には電圧を印加して、イオンレンズとして動作させることもできる。これにより、第2、第3の真空チャンバを隔てる隔壁とマスフィルタとの距離を1mmから7mm程度と小さくすることができ、その隔壁とマスフィルタとの間にイオンレンズを設ける必要を省きつつ、イオンの損失を減少させることができる。その結果、第3の真空チャンバの圧力は従来より2桁程度低くなり、イオンの平均自由行程を長くすることができるなど後述する効果が得られる。
通常、第1の真空チャンバはロータリーポンプによって排気され、第2の真空チャンバから第5の真空チャンバはターボ分子ポンプ又は油拡散ポンプによって排気される。ターボ分子ポンプはスプリットフロー型、つまり一つのポンプでインレット(吸入口)を複数持つ型式のターボ分子ポンプとすることができる。但しスプリットフロー型では、下流側の吸込口の圧力は、上流側の吸込口の圧力よりも高くなってしまう。従って、本発明のICP-MS/MSに対して単純にスプリットフロー型のターボ分子ポンプを採用したとしても、コリジョン/リアクションセルの前段の領域におけるガスの分圧が高くなると放電や極端な感度低下などのリスクが考えられるため、適用に当たっては注意が必要である。真空チャンバの圧力は典型的には、コリジョン/リアクションセルへのガスの導入がない場合に、引き出し電極やイオンレンズを含む第2の真空チャンバは0.1 Pa〜0.5 Pa程度の圧力に維持され、一つ目の四重極が格納される第3の真空チャンバは第2の真空チャンバよりも低い、1×10-4 Pa〜1×10-3 Pa程度の圧力に維持され、コリジョン/リアクションセルを格納した第4の真空チャンバと第5の真空チャンバはともに1×10-4Pa以下の圧力に維持される。ガスの導入がある場合、第2の真空チャンバの圧力は0.1 Pa〜0.5 Pa程度、第3の真空チャンバの圧力は1×10-4 Pa〜1×10-2Pa程度、第4の真空チャンバの圧力は1×10-3 Pa〜0.2Pa程度、第5の真空チャンバの圧力は1×10-4Pa〜5×10-3Pa程度である。
本発明の一つの実施形態では、第5の真空チャンバは第3の真空チャンバと流路を介して接続された構成とすることができ、その場合にはこれらの真空チャンバは同じ圧力となる。上述のように本発明では、コリジョン/リアクションセルを格納した第4の真空チャンバの前後に四重極を格納した第3の真空チャンバと第5の真空チャンバがそれぞれ設けられるが、従来と異なり第3の真空チャンバを第2の真空チャンバと別個に排気する構成としたことにより、イオンガイドや質量選択といった機能を果たすこれらの四重極における放電や感度低下といったリスクが排除される。この場合に、第3の真空チャンバと第5の真空チャンバはそれぞれ個別のターボ分子ポンプで真空排気しても構わないが、これらの真空チャンバを流路を介して接続することで、数万rpmオーダの高速でロータが回転するターボ分子ポンプの数を減らすことによる付加的な利点が得られる。
本発明の具体的な適用に当たっては、第2の真空チャンバと第3の真空チャンバを一台のスプリットフロー型ターボ分子ポンプによって排気してもよく、また第3の真空チャンバと第4の真空チャンバ、或いは第4の真空チャンバと第5の真空チャンバをそれぞれ一台のスプリットフロー型ターボ分子ポンプによって排気してもよく、さらにこれらを組み合わせ、また上述した流路で接続する構成と併せて用いることもできる。
なお、第1の真空チャンバの粗引きに用いるロータリーポンプは、第2の真空チャンバから第5の真空チャンバを排気するターボ分子ポンプや油拡散ポンプからの排気を排気するための、バッキングポンプを兼ねて用いることができる。
本発明によれば、四重極を格納する第3の真空チャンバの圧力を十分に低くすることができるため、イオンの平均自由行程が長くなり、従って第3の真空チャンバ内でのイオンとガス分子の衝突による感度ロスをほぼなくすことができる。また四重極の長さを十分とることができるため、感度ロスを十分に下げながら、質量選択性、質量分解能を向上させることができる。さらに、蒸発していないサンプルマトリックスや中性分子が第3の真空チャンバに導入される量を減らすことができ、その結果四重極や周辺のイオンレンズが汚れにくくなるため、これらのメンテナンスの負担を軽減できる効果もある。
他方、第3と第5の真空チャンバを上述のように流路で接続した場合、高速回転するため他の部品に比べて信頼性が低く、数年ごとの軸受け交換などのオーバホールを必要とするターボ分子ポンプの数を減らし、或いはより小さなポンプとすることができる。これは低コスト化を可能にすると共に、質量分析装置の組み立て性を向上させ、メンテナンスの手間を軽減させ、かつポンプ故障の頻度低減により信頼性を向上させる。
本発明によるICP-MS/MSの新規な差動排気構成の基本的な概念を表す略示図である。 本発明の一実施形態によるICP-MS/MSの新規な差動排気構成の概略図である。 本発明の別の実施形態によるICP-MS/MSの新規な差動排気構成の概略図である。 本発明のさらに別の実施形態によるICP-MS/MSの新規な差動排気構成の概略図である。 本発明のさらに別の実施形態によるICP-MS/MSの新規な差動排気構成の概略図である。 特許文献1の図2に開示された、従来のICP-MS/MSの構成を示す断面図である。
本発明による誘導結合プラズマMS/MS型質量分析装置の実施形態の基本型を図1に示す。既述のように特許文献1に記載のような従来技術との違いは、引き出し電極が格納された真空チャンバと、これに続く四重極が格納された真空チャンバが、それぞれ別の真空チャンバとして真空ポンプで排気されている点である。
誘導結合プラズマMS/MS型質量分析装置10は、試料が噴霧導入される誘導結合プラズマPを発生させるための、図示しないプラズマトーチを含む。周知のようにプラズマトーチの近傍には、高周波電源に接続されたコイルが配置され、その動作によってプラズマPが発生する。装置10内には、相互に連通し得る5つの真空チャンバ11〜15が配置されている。第1の真空チャンバ11はプラズマPに隣接し、サンプリングコーン16とスキマーコーン17を含むインタフェース構造を有する。プラズマトーチで発生した試料のイオンを含むプラズマPの一部は、このインタフェース構造を介してイオンビームの形で抽出される。サンプリングコーン16の外側は大気圧程度の圧力であるため、第1の真空チャンバ11は比較的高い圧力となるが、S1で示すようにして、排気管を介して例えばロータリーポンプのような粗引きポンプにより減圧される。なお排気管は、装置の起動時に操作されて分析動作中は開状態に維持されるバルブを含む。
第1の真空チャンバ11によって引き込まれた、イオン化された試料を含むプラズマは、スキマーコーン17のオリフィスを通過して第2の真空チャンバ12に導かれる。第2の真空チャンバ12には、スキマーコーン17の背後にイオンビームを形成し案内するためのイオン光学部品、例えば引き出し電極とイオンレンズ18が配置され得る。なお、第1の真空チャンバ11によるインタフェース構造から出射したイオンを収束させつつ、後段に輸送するためのイオン光学デバイス(例えば パーキンエルマー社のNexIONに用いられているようなQuadrupole Ion Deflector)であれば、引き出し電極以外であっても構わない。第2の真空チャンバ12は、S2で示すようにして、例えばターボ分子ポンプや油拡散ポンプによって、例えば0.1Pa〜0.5Pa程度の中真空へと排気される。
第2の真空チャンバ12の後段には、隔壁19によって、第2の真空チャンバ12と隔てられる第3の真空チャンバ13が設けられる。第3の真空チャンバ13内には四重極マスフィルタ20が格納され、質量選択性、質量分解能を向上させつつイオンビームを第4の真空チャンバ14に輸送すると共に、プラズマガスやキャリヤガスなどが送り込まれるのを防止する。四重極マスフィルタ20は、四重極マスフィルタ本体20bと、その前後段にそれぞれ設けられたイオンガイド20a、20cとからなる。第3の真空チャンバ13はS3で示すように、第2の真空チャンバ12とは別個に、例えば1×10-4Pa〜2×10-2Pa程度の高真空へと排気される。但しこれは、スプリットフロー型ターボ分子ポンプのそれぞれの吸込口を用いてこれらの真空チャンバを個別に排気することを妨げるものではない。すなわち例えば、第2の真空チャンバ12はスプリットフロー式ターボ分子ポンプの低真空側吸込口に、第3の真空チャンバ13はその高真空側吸込口に接続することができる。第2の真空チャンバ12と第3の真空チャンバ13を隔てる隔壁19には、オリフィス21が設けられており、隔壁19の前段には、停止時に閉鎖されるゲート弁(図示せず)が設けられている。圧力が十分低いので隔壁19と四重極マスフィルタ20との間の距離は1mmと短くなっている。隔壁19は、イオンレンズとなっている。
オリフィス22を有する隔壁23によって第3の真空チャンバ13と隔てられているのは、第4の真空チャンバ14である。このチャンバ内には、コリジョン/リアクションセル24が置かれ、25で示すように試薬ガスを導入可能である。非特許文献1に関して述べたようにこうしたセルは公知であり、輸送されてきたイオンビームから、キャリアガスやプラズマガス、さらには補助ガスの元素を含み、質量スペクトルに干渉を生じるような多原子分子イオンを、試薬ガスの分子との電荷移動反応等を生じさせることによって除去する。またセル24内には、四重極マスフィルタ26のような多重極電極等が含まれる。第4の真空チャンバ14はS4で示すように、例えば1×10-5Pa〜0.2Pa程度の圧力へと排気されているが、この場合も単独でターボ分子ポンプによって排気してもよく、またスプリットフロー型ターボ分子ポンプを他の真空チャンバと共用して排気してもよい。
装置10の最終段には、オリフィス27を有する隔壁28によって第4の真空チャンバ14と隔てられた第5の真空チャンバ15が設けられている。このチャンバ内には、所定の質量電荷比を有するイオンを抽出するための分離手段として四重極マスフィルタ29が設けられ、また四重極マスフィルタ29の後ろ側には、抽出されたイオンを検知するための、例えば電子増倍管のような検出器30が配置されている。四重極マスフィルタ29は、イオンガイド29aと四重極マスフィルタ本体29bとからなる。検出器30は装置10の外部に設けられる信号処理手段に向けて検出信号を出力する。第5の真空チャンバ15はS5で示すように、ターボ分子ポンプなどによって高真空へと排気される。第5の真空チャンバ15は第4の真空チャンバ14より低い1×10-5Pa〜2×10-2Pa程度の圧力まで排気することができるが、後述のように第3の真空チャンバ13と流路を介して接続されて、同一の圧力に維持される場合もある。
図2から図5は、図1の基本構成に基づいた、真空ポンプの具体的な配置を例示的に示している。これらの図においては、装置10の真空チャンバ内の構成要素は図1と同様であるが、簡単化のために示されていない。他の構成要素で図1と同様のものには、同じ参照番号を付している。
図2は、二台のスプリットフロー型ターボ分子ポンプ31, 32を用いた例を示している。図示のように、第1の真空チャンバ11はロータリーポンプ33によって排気され、第2の真空チャンバ12及び第3の真空チャンバ13は共にスプリットフロー型ターボ分子ポンプ31によって排気され減圧される。すなわち第2の真空チャンバ13は吸込口S2で、第3の真空チャンバ13は吸込口S3で、それぞれスプリットフロー型ターボ分子ポンプ31の軸方向に連続する低真空側段34及び高真空側段35と接続され、低真空側段34及び高真空側段35のそれぞれは多数の、水平方向の面内を回転可能な回転翼36を含む。なお周知のように、軸方向を水平方向に向け、回転翼が鉛直面内で回転する構成のターボ分子ポンプもあり、本発明において同様に用いることができる。図2の実施形態の構成によれば、第3の真空チャンバ13は、低真空側段34内に位置する回転翼群と高真空側段35内に位置する回転翼群の両者の作用によって減圧されるのに対し、第2の真空チャンバ12は、低真空側段34内に位置する回転翼群によってのみ減圧される。従って第2の真空チャンバ12と第3の真空チャンバ13のそれぞれを別個の、所望の真空度へと排気することができる。
同様に、第4の真空チャンバ14及び第5の真空チャンバ15は共に、スプリットフロー型ターボ分子ポンプ32によって排気され減圧される。第4の真空チャンバ14は吸込口S4で、第5の真空チャンバ15は吸込口S5で、それぞれスプリットフロー型ターボ分子ポンプ32の軸方向に連続する低真空側段37及び高真空側段38と接続されている。また図2の構成では、スプリットフロー型ターボ分子ポンプ32の排気口39は排気管40を介してスプリットフロー型ターボ分子ポンプ31の低真空側段34の途中に連結され、さらにスプリットフロー型ターボ分子ポンプ31の排気口41は排気管42を介してロータリーポンプ33に連結されている。かくしてロータリーポンプ33は、スプリットフロー型ターボ分子ポンプ31及び32に対して排気を行うバッキングポンプとしても動作する。
図3は、第3の真空チャンバ13と第5の真空チャンバ15が、流路43を介して接続された構成の実施形態を示す概略図である。図2の実施例の場合と同様に、第2の真空チャンバ12及び第3の真空チャンバ13は共に、図2と同様のスプリットフロー型ターボ分子ポンプ31’によって排気され、第3の真空チャンバ13はその高真空側段35’と接続され、第2の真空チャンバ12はその低真空側段34’と接続される。しかしながらもう一台のターボ分子ポンプ44は、図2のターボ分子ポンプ32と異なりスプリットフロー型ではなく、また第4の真空チャンバ14のみに結合されている。従って図2の場合よりもコスト的に有利である。流路43としては、ベローズなどのホースを用いることができ、或いはチャンバやターボ分子ポンプのマニフォールドに流路を設けてもよい。ただし、特に試薬ガス26の導入時において、第5の真空チャンバ15の圧力上昇をなるべく減らすために、流路の断面積をなるべく広く、かつ、流路長さをなるべく短くすることで、流路コンダクタンスをなるべく大きくすることが望ましい。ターボ分子ポンプ44の排気口は、排気管40’を介してスプリットフロー型ターボ分子ポンプ31’の低真空側段34’の途中に連結されている。
図4は、第3の真空チャンバ13と第5の真空チャンバ15が流路43を介して接続された別の構成を示している。この例では第2の真空チャンバ12が単独のターボ分子ポンプ45によって排気され、第3の真空チャンバ13と第4の真空チャンバ14がスプリットフロー型ターボ分子ポンプ46によって排気されている。具体的には第3の真空チャンバ13は高真空側段47と接続され、第4の真空チャンバ14は低真空側段48と接続される。図5は図4と類似の構成であり、スプリットフロー型ターボ分子ポンプ46’の高真空側段47’が第5の真空チャンバ15に接続されている。
図1の5段差動排気の基本構成を有する誘導結合プラズマMS/MS型質量分析装置を準備した。第3の真空チャンバ13内の四重極はタリウム205に設定し、1ppbの信号強度を測定した。第5の真空チャンバ15内の四重極はイオンガイドとして駆動し、コリジョン/リアクションセル24にはガスを導入しなかった。比較のため、第2の真空チャンバ12のポンプ引き口S2にふたをして4段差動排気の構成として同様の測定を行ったが、隔壁22にガスの抜け道として、面積約600 mm2の開口を設けた。信号強度と、第2の真空チャンバ内の圧力についての測定結果を表1に示す。
Figure 0006087056
10 誘導結合プラズマMS/MS型質量分析装置
11 第1の真空チャンバ
12 第2の真空チャンバ
13 第3の真空チャンバ
14 第4の真空チャンバ
15 第5の真空チャンバ
20, 26, 29 四重極マスフィルタ
24 コリジョン/リアクションセル
31, 31’, 32, 46, 46’ スプリットフロー型ターボ分子ポンプ
33 ロータリーポンプ
43 流路
44, 45 ターボ分子ポンプ

Claims (12)

  1. イオン化された試料を含むプラズマを真空中に引き込む第1の真空チャンバと、
    前記第1の真空チャンバに接続され、前記第1の真空チャンバから出射したイオンからイオンビームを引き出し案内する手段を含む第2の真空チャンバと、
    前記第2の真空チャンバに接続され、第1のイオン光学分離手段を備えた第3の真空チャンバと、
    前記第3の真空チャンバに接続され、反応ガスが導入されるセルを有する第4の真空チャンバと、
    前記第4の真空チャンバに接続され、第2のイオン光学分離手段及び検出器を備えた第5の真空チャンバとを有し、
    前記第2の真空チャンバと前記第3の真空チャンバが個別に排気されてなる、誘導結合プラズマMS/MS型質量分析装置。
  2. 前記イオン光学分離手段は、質量電荷比によりイオンを分離するものであることを特徴とする請求項1に記載の誘導結合プラズマMS/MS型質量分析装置。
  3. 前記第2の真空チャンバが0.5 Paの圧力以下に維持され、前記第3の真空チャンバが1×10-4 Pa〜2×10-2 Paの圧力に維持される、請求項1又は2に記載の誘導結合プラズマMS/MS型質量分析装置。
  4. 前記第4の真空チャンバが1×10-5 Pa〜0.2 Paの圧力に維持される、請求項1から3に記載の誘導結合プラズマMS/MS型質量分析装置。
  5. 前記第1の真空チャンバがロータリーポンプによって排気され、前記第2の真空チャンバから前記第5の真空チャンバがターボ分子ポンプ又は油拡散ポンプによって排気される、請求項1から4のいずれかに記載の誘導結合プラズマMS/MS型質量分析装置。
  6. 前記第3の真空チャンバと前記第5の真空チャンバが流路を介して相互に接続されている、請求項1から5のいずれかに記載の誘導結合プラズマMS/MS型質量分析装置。
  7. 前記第2の真空チャンバと前記第3の真空チャンバが一台のスプリットフロー型ターボ分子ポンプによって排気される、請求項1から6のいずれかに記載の誘導結合プラズマMS/MS型質量分析装置。
  8. 前記第3の真空チャンバと前記第4の真空チャンバが一台のスプリットフロー型ターボ分子ポンプによって排気される、請求項1から6のいずれかに記載の誘導結合プラズマMS/MS型質量分析装置。
  9. 前記第4の真空チャンバと前記第5の真空チャンバが一台のスプリットフロー型ターボ分子ポンプによって排気される、請求項1から6のいずれかに記載の誘導結合プラズマMS/MS型質量分析装置。
  10. 前記第2の真空チャンバと前記第3の真空チャンバが一台のスプリットフロー型ターボ分子ポンプによって排気され、前記第4の真空チャンバと前記第5の真空チャンバが一台のスプリットフロー型ターボ分子ポンプによって排気される、請求項1から5のいずれかに記載の誘導結合プラズマMS/MS型質量分析装置。
  11. 前記ロータリーポンプが、前記第2の真空チャンバから前記第5の真空チャンバを排気するポンプのバッキングポンプを兼ねる、請求項5から10のいずれかに記載の誘導結合プラズマMS/MS型質量分析装置。
  12. 前記第2の真空チャンバと前記第3の真空チャンバとの間の隔壁から前記第1のイオン光学分離手段までの距離がほぼ1mmからほぼ7mmまでである、請求項1から11のいずれかに記載の誘導結合プラズマMS/MS型質量分析装置。
JP2012001616A 2012-01-06 2012-01-06 誘導結合プラズマms/ms型質量分析装置 Active JP6087056B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012001616A JP6087056B2 (ja) 2012-01-06 2012-01-06 誘導結合プラズマms/ms型質量分析装置
US13/734,378 US8610053B2 (en) 2012-01-06 2013-01-04 Inductively coupled plasma MS/MS mass analyzer
CN2013200049288U CN203339108U (zh) 2012-01-06 2013-01-06 Ms/ms型电感耦合等离子体质谱仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012001616A JP6087056B2 (ja) 2012-01-06 2012-01-06 誘導結合プラズマms/ms型質量分析装置

Publications (2)

Publication Number Publication Date
JP2013143196A JP2013143196A (ja) 2013-07-22
JP6087056B2 true JP6087056B2 (ja) 2017-03-01

Family

ID=48743270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012001616A Active JP6087056B2 (ja) 2012-01-06 2012-01-06 誘導結合プラズマms/ms型質量分析装置

Country Status (3)

Country Link
US (1) US8610053B2 (ja)
JP (1) JP6087056B2 (ja)
CN (1) CN203339108U (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106687808B (zh) * 2014-07-07 2019-08-20 纳米技术分析责任有限公司 用于分析时变气流的便携式电子系统
DE102014226038A1 (de) * 2014-12-16 2016-06-16 Carl Zeiss Microscopy Gmbh Druckreduzierungseinrichtung, Vorrichtung zur massenspektrometrischen Analyse eines Gases und Reinigungsverfahren
CN104576289B (zh) * 2014-12-31 2017-08-25 聚光科技(杭州)股份有限公司 一种可调真空压力的电感耦合等离子体质谱仪
US9368335B1 (en) * 2015-02-02 2016-06-14 Thermo Finnigan Llc Mass spectrometer
GB201509412D0 (en) * 2015-06-01 2015-07-15 Micromass Ltd Coupling intermediate pressure regions
CN106373853B (zh) * 2015-07-21 2018-10-09 株式会社岛津制作所 一种用于质谱仪离子化以及离子引入装置
GB2544959B (en) 2015-09-17 2019-06-05 Thermo Fisher Scient Bremen Gmbh Mass spectrometer
GB2544484B (en) * 2015-11-17 2019-01-30 Thermo Fisher Scient Bremen Gmbh Addition of reactive species to ICP source in a mass spectrometer
JP6734061B2 (ja) 2016-01-29 2020-08-05 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. プラズマ分光分析装置
CN108344622B (zh) * 2017-01-23 2021-05-14 深圳海关食品检验检疫技术中心 同时检测食品中多种准金属含量的检测方法
US10290482B1 (en) 2018-03-13 2019-05-14 Agilent Technologies, Inc. Tandem collision/reaction cell for inductively coupled plasma-mass spectrometry (ICP-MS)
US10854438B2 (en) 2018-03-19 2020-12-01 Agilent Technologies, Inc. Inductively coupled plasma mass spectrometry (ICP-MS) with improved signal-to-noise and signal-to-background ratios
JP7196763B2 (ja) * 2018-10-25 2022-12-27 株式会社島津製作所 ターボ分子ポンプおよび質量分析装置
US11239068B2 (en) * 2018-11-02 2022-02-01 Agilent Technologies, Inc. Inductively coupled plasma mass spectrometer with mass correction
US11848184B2 (en) 2018-12-19 2023-12-19 Shimadzu Corporation Mass spectrometer
CN114207774B (zh) * 2019-07-26 2024-07-23 株式会社日立高新技术 质量分析装置以及控制该质量分析装置的方法
CN111665103B (zh) * 2020-05-13 2023-08-18 中国科学院微电子研究所 一种低真空痕量气体的快速无损采样分析装置和方法
JP7396237B2 (ja) * 2020-09-15 2023-12-12 株式会社島津製作所 質量分析装置
US11443933B1 (en) 2020-10-30 2022-09-13 Agilent Technologies, Inc. Inductively coupled plasma mass spectrometry (ICP-MS) with ion trapping
EP4379769A1 (en) 2021-07-30 2024-06-05 Shimadzu Corporation Mass spectrometer
US20240290603A1 (en) * 2023-02-28 2024-08-29 Young In Ace Co., Ltd. Mass spectrometer and mass spectrometry method using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3947762B2 (ja) * 1997-11-26 2007-07-25 アジレント・テクノロジーズ・インク 誘導結合プラズマ質量分析装置、及び、その排気制御方法
GB9820210D0 (en) 1998-09-16 1998-11-11 Vg Elemental Limited Means for removing unwanted ions from an ion transport system and mass spectrometer
US6703607B2 (en) * 2002-05-30 2004-03-09 Mds Inc. Axial ejection resolution in multipole mass spectrometers
JP2007157529A (ja) * 2005-12-06 2007-06-21 Ulvac Japan Ltd 四極子形質量分析計用イオン源
US8507850B2 (en) * 2007-05-31 2013-08-13 Perkinelmer Health Sciences, Inc. Multipole ion guide interface for reduced background noise in mass spectrometry
US8481923B1 (en) * 2012-06-29 2013-07-09 Agilent Technologies, Inc. Atmospheric pressure plasma mass spectrometer

Also Published As

Publication number Publication date
US20130175442A1 (en) 2013-07-11
CN203339108U (zh) 2013-12-11
JP2013143196A (ja) 2013-07-22
US8610053B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
JP6087056B2 (ja) 誘導結合プラズマms/ms型質量分析装置
US8481923B1 (en) Atmospheric pressure plasma mass spectrometer
CA2698361C (en) Multi-pressure stage mass spectrometer and methods
EP2204842B1 (en) Means for removing unwanted ions from an ion transport system and mass spectrometer
JP5234019B2 (ja) 質量分析装置
CA2771200C (en) Mass spectrometer system
US8471200B2 (en) Mass spectrometer
EP3540758B1 (en) Tandem collision/reaction cell for inductively coupled plasma-mass spectrometry (icp-ms)
US11434913B2 (en) Multiple port vacuum pump system
JP2009266656A (ja) プラズマイオン源質量分析装置
US10354847B2 (en) Compact mass spectrometer
EP2808888B1 (en) Mass analysis device
JP2004531862A (ja) 不要イオン抑制のための質量分析計動作方法
WO2014191748A1 (en) Compact mass spectrometer
JP5452839B2 (ja) 分析装置
US8987663B2 (en) Ion inlet for a mass spectrometer
JP7047936B2 (ja) 質量分析装置
CN108447763A (zh) 使用气密射频离子导向器的质谱仪
US9368335B1 (en) Mass spectrometer
JP7396237B2 (ja) 質量分析装置
JP2022048479A5 (ja)
GB2520785A (en) Compact mass spectrometer
CN117912932A (zh) 质谱仪的导管气体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170201

R150 Certificate of patent or registration of utility model

Ref document number: 6087056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250