JP6085193B2 - 微細構造フィルムの製造方法および製造装置 - Google Patents

微細構造フィルムの製造方法および製造装置 Download PDF

Info

Publication number
JP6085193B2
JP6085193B2 JP2013041419A JP2013041419A JP6085193B2 JP 6085193 B2 JP6085193 B2 JP 6085193B2 JP 2013041419 A JP2013041419 A JP 2013041419A JP 2013041419 A JP2013041419 A JP 2013041419A JP 6085193 B2 JP6085193 B2 JP 6085193B2
Authority
JP
Japan
Prior art keywords
mold
roll
endless belt
wrinkle
belt shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013041419A
Other languages
English (en)
Other versions
JP2014168878A (ja
Inventor
誠 廣藤
誠 廣藤
箕浦 潔
潔 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2013041419A priority Critical patent/JP6085193B2/ja
Publication of JP2014168878A publication Critical patent/JP2014168878A/ja
Application granted granted Critical
Publication of JP6085193B2 publication Critical patent/JP6085193B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

本発明は、熱可塑性フィルムの表面に微細な凹凸パターンを成形することにより微細構造フィルムを製造する方法およびその製造装置に関する。本方法により得られた微細構造フィルムは、拡散、集光、反射、透過等の光学的な機能を有する光学フィルム等、ミクロンサイズからナノサイズの微細構造をその表面に必要とする部材として用いられる。
プリズムシート、光拡散シート、レンズシート等の光学フィルムの製造方法として、表面に微細な凹凸パターンが形成されているエンドレスベルト状の金型の表面に、フィルムを加圧し、フィルムの表面に前記金型の微細な凹凸パターンを成形する方法がある。かかる方法は、長尺の熱可塑性材料からなるフィルムに適用可能であり、例えば、巻き出しから成形工程を経て巻き取りまで連続的に処理する装置が提案されている。
特許文献1に、微細構造を表面に形成したエンドレスベルトからなる金型を適用して、加熱した前記金型に熱可塑性樹脂からなるフィルムを加圧してフィルム表面に微細凹凸構造を成形した後、前記金型を冷却してからフィルムを剥離する方法が記載されている。前記金型の加熱および冷却は、エンドレスベルトからなる前記金型を加熱ロールおよび冷却ロールと接触させることにより行われ、フィルムへの微細構造の成形は、加熱ロールと、加熱ロールと対向するニップロールとの間にエンドレスベルトからなる前記金型とフィルムを加圧することにより行われている。この構造では、成形時の温度と、剥離時の温度をそれぞれ独立に制御できるので、成形時の前記金型の温度を高く設定しても、剥離性が問題とならず、高い精度での微細凹凸構造の成形が可能である。
特開2008−260268号公報
しかしながら、特許文献1に記載の微細構造フィルムの製造方法では、エンドレスベルト状の金型搬送方向における金型の温度変化によって金型の幅方向の熱応力起因のシワやうねりが発生して、冷却ロールと金型との接触不良が発生する。その結果、フィルムの冷却不良を引き起こし、フィルムと金型の剥離不良やフィルム成形精度悪化の問題を発生させることがわかった。
本発明の目的はこれらの問題を解決することであり、熱可塑性樹脂からなるフィルムに、表面に微細構造を形成したエンドレスベルト形状を有する金型を押し当てて、フィルムの表面に微細構造を連続的に成形する微細構造フィルムの製造方法および製造装置において、金型にシワやうねりを発生させることなく安定的に搬送することにより、高い生産性で高精度な成形フィルムを製造することができる微細構造フィルムの製造方法および製造装置を提供することにある。
上記課題を解決するために、本発明は以下の構成を有する。すなわち、
(1)
1)表面に微細構造が形成されたエンドレスベルト形状を有する金型と、
2)前記エンドレスベルト形状を有する金型を加熱するための加熱ロールと加熱ロールと平行に配置され、表面が弾性体に覆われたニップロールおよび前記両ロールを用いた挟圧手段とを少なくとも備えた加圧機構と、
3)前記エンドレスベルト形状を有する金型を冷却するための冷却ロールと、
4)エンドレスベルト形状を有する金型に密着したフィルムを剥がすための剥離機構と、
5)前記加熱ロールおよび前記冷却ロールを回転させて、前記エンドレスベルト形状を有する金型を搬送する搬送機構と、
を少なくとも備えた微細構造フィルムの製造装置であって、
前記加熱ロールから前記冷却ロールに向かう第1の金型搬送経路において
前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面にシワ伸ばしロールが配置されていること
を特徴とする微細構造フィルムの製造装置。
(2)
前記エンドレスベルト形状を有する金型の幅をW、
前記エンドレスベルト形状を有する金型の厚さをt、
前記第1の金型搬送経路にあるシワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記冷却ロールと前記エンドレスベルト形状を有する金型との接触開始点までの金型搬送方向の距離をL1、
とした場合、数式1を満たすように前記第1の金型搬送経路にシワ伸ばしロールが配置されていること
を特徴とする(1)に記載の微細構造フィルムの製造装置。
1×10≦(W/t)×(1/L1)≦1×10・・・(数式1)
(3)
前記第1の金型搬送経路に配置されたシワ伸ばしロールが、シワ伸ばしロール表面の温度調整を行う温度調整機構を有すること
を特徴とする(1)または(2)に記載の微細構造フィルムの製造装置。
(4)
前記冷却ロールから前記加熱ロールに向かう第2の金型搬送経路において
前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面にシワ伸ばしロールが配置されていること
を特徴とする(1)〜(3)のいずれかに記載の微細構造フィルムの製造装置。
(5)
前記エンドレスベルト形状を有する金型の幅をW、
前記エンドレスベルト形状を有する金型の厚さをt、
前記第2の金型搬送経路にあるシワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記加熱ロールと前記エンドレスベルト形状を有する金型との接触開始点までの金型搬送方向の距離をL2、
とした場合、数式2を満たすように前記第2の金型搬送経路にシワ伸ばしロールが配置されていること
を特徴とする(4)に記載の微細構造フィルムの製造装置。
1×10≦(W/t)×(1/L2)≦1×10・・・(数式2)
(6)
前記第2の金型搬送経路に配置されたシワ伸ばしロールが、シワ伸ばしロール表面の温度調整を行う温度調整機構を有すること
を特徴とする(4)または(5)に記載の微細構造フィルムの製造装置。
(7)
1)表面に微細構造が形成されたエンドレスベルト形状を有する金型を、加熱された加熱ロールに抱かせながら加熱する金型加熱工程と、
2)フィルムの成形側表面と前記エンドレスベルト形状を有する金型の微細構造表面とを密着させた状態で、前記加熱ロールを含む一対のロールによりニップ加圧する加圧成形工程と、
3)加圧後の前記エンドレスベルト形状を有する金型と前記フィルムを密着させたまま冷却ゾーンまで搬送する第1の搬送工程と、
4)前記冷却ゾーンでエンドレスベルト形状を有する金型とフィルムを密着させたままエンドレスベルト形状を有する金型側から冷却する冷却工程と、
5)冷却後のエンドレスベルト形状を有する金型とフィルムとを剥離するフィルム剥離工程と、
6)フィルムを剥離した前記エンドレスベルト形状を有する金型を再度加熱ロールまで搬送する第2の搬送工程と、
を少なくとも含むことにより、エンドレスベルト形状を有する金型の表面に形成された微細構造を、加熱したフィルムの表面に成形する微細構造フィルムの製造方法であって、
前記第1の搬送工程において、前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面に配置されたシワ伸ばしロールにより前記エンドレスベルト形状を有する金型のシワを伸ばすこと
を特徴とする微細構造フィルムの製造方法。
(8)
前記エンドレスベルト形状を有する金型の幅をW、
前記エンドレスベルト形状を有する金型の厚さをt、
前記第1の搬送工程にあるシワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記冷却ロールと前記エンドレスベルト形状を有する金型との接触開始点までの金型搬送方向の距離をL1、
前記第1の搬送工程にある前記シワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点での前記シワ伸ばしロールの表面温度をT1、
前記第1の搬送工程にある前記シワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記冷却ロールと前記エンドレスベルト形状を有する金型との接触開始点での前記冷却ロールの表面温度をT2、
とした場合、数式3および数式4を満たすように前記シワ伸ばしロールを配置してシワを伸ばすこと
を特徴とする(7)に記載の微細構造フィルムの製造方法。
20≦(T1−T2)≦100・・・(数式3)
1×10≦(W/t)×((T1−T2)/L1)≦1×1010・・・(数式4)
(9)
前記第1の搬送工程に配置されたシワ伸ばしロールが、温度調整機構を有し、シワ伸ばしロール表面の温度調整を行うこと
を特徴とする(7)または(8)に記載の微細構造フィルムの製造方法。
(10)
前記第2の搬送工程において、前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面に配置されたシワ伸ばしロールにより前記エンドレスベルト形状を有する金型のシワを伸ばすこと
を特徴とする(7)〜(9)のいずれかに記載の微細構造フィルムの製造方法。
(11)
前記エンドレスベルト形状を有する金型の幅をW、
前記エンドレスベルト形状を有する金型の厚さをt、
前記第2の搬送工程にあるシワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記加熱ロールと前記エンドレスベルト形状を有する金型との接触開始点までの金型搬送方向の距離をL2、
前記第2の搬送工程にある前記シワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点での前記シワ伸ばしロールの表面温度をT3、
前記第2の搬送工程にある前記シワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記加熱ロールと前記エンドレスベルト形状を有する金型との接触開始点での前記加熱ロールの表面温度をT4、
とした場合、数式5を満たすように前記シワ伸ばしロールを配置してシワを伸ばすこと
を特徴とする(10)に記載の微細構造フィルムの製造方法。
1×10≦(W/t)×((T4−T3)/L2)≦1×1010・・・(数式5)
(12)
前記第2の搬送工程に配置されたシワ伸ばしロールが、温度調整機構を有し、シワ伸ばしロール表面の温度調整を行うこと
を特徴とする(10)または(11)に記載の微細構造フィルムの製造方法。
熱可塑性樹脂からなるフィルムに、表面に微細構造を形成したエンドレスベルト形状を有する金型を押し当てて、フィルムの表面に微細構造を連続的に成形する微細構造フィルムの製造方法および製造装置において、金型にシワやうねりを発生させることなく金型を搬送させて金型とフィルムの剥離挙動を安定化させることで、高精度な成形面を有するフィルムを製造することができる。
本発明を適用した微細構造フィルム製造装置の一実施形態を、フィルム幅方向から見た概略断面図である。 微細構造フィルムの製造装置のシワ伸ばしロールの一実施形態を示す概略平面図である。 微細構造フィルムの製造装置のシワ伸ばしロールの一実施形態を、フィルム幅方向から見た概略側面図である。 本発明を適用した微細構造フィルム製造装置の別の一実施形態を、フィルム幅方向から見た概略図である。 微細構造フィルムの製造装置における、冷却ロールから加熱ロールに向かう第2の金型搬送経路にシワ伸ばしロールが配置された場合の一実施形態を、フィルム幅方向から見た概略側面図である。 第1の金型搬送経路におけるシワ伸ばしロール付近の拡大図である。 本発明を適用した微細構造フィルム製造装置における、加熱ロールから冷却ロールに向かう第1の金型搬送経路のシワ伸ばしロールを、フィルム幅方向から見た概略側面図である。 本発明を適用した微細構造フィルム製造装置における、冷却ロールから加熱ロールに向かう第2の金型搬送経路のシワ伸ばしロールを、フィルム幅方向から見た概略側面図である。
本発明の微細構造フィルムの製造装置は、表面に微細構造が形成されたエンドレスベルト形状を有する金型と、前記エンドレスベルト形状を有する金型を加熱するための加熱ロールと加熱ロールと平行に配置され、表面が弾性体に覆われたニップロールおよび前記両ロールを用いた挟圧手段とを少なくとも備えた加圧機構と、前記エンドレスベルト形状を有する金型を冷却するための冷却ロールと、エンドレスベルト形状を有する金型に密着したフィルムを剥がすための剥離機構と、前記加熱ロールおよび前記冷却ロールを回転させて、前記エンドレスベルト形状を有する金型を搬送する搬送機構と、を少なくとも備えた微細構造フィルムの製造装置であって、前記加熱ロールから前記冷却ロールに向かう第1の金型搬送経路において前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面にシワ伸ばしロールが配置されていることを特徴とする微細構造フィルムの製造装置である。
本発明の実施形態の一例として、本発明を適用した微細構造フィルムの製造装置の一実施形態をフィルム幅方向から見た概略断面図を図1に示す。
図1に示すように、本発明の微細構造フィルムの製造装置1は、表面に微細構造が形成されたエンドレスベルト形状を有する金型3(以下金型3と略すこともある)と、金型3を加熱するための加熱ロール4、シワ伸ばしロール31、冷却ロール5と、加熱ロール4と平行に配置され、フィルムを加圧成形する表面に弾性体の層10を有するニップロール6と、成形後のフィルムを金型3より剥離する剥離機構たる剥離ロール7から構成される。そして加熱ロール4とニップロール6は、挟圧手段として金型3と成形用フィルム2とを積層した状態で挟んで加圧するために、少なくともどちらか一方に加圧装置12が接続され、加圧機構として構成されている。また、加熱ロール4、シワ伸ばしロール31、冷却ロール5に懸架した金型3を周回させるように搬送するための搬送機構として、加熱ロール4および/または冷却ロール5を回転駆動する駆動装置を備えている。また、成形用フィルムを搬送するため、巻出ロール8、巻取ロール9を備えており、さらに、必要に応じて図示しないガイドロールを1本ないしは複数本備えていてもよい。
微細構造フィルムの製造装置1の動作は以下の通りである。まず、巻出ロール8より巻き出されたフィルム2を加熱ロール4の表面部での熱伝導により加熱された金型3上に供給する。金型3上に供給されたフィルム2は、ニップロール6により金型3の微細構造が形成された面3aに押し付けられ、フィルム2の被成形層が設けられている面2aに金型3の表面の形状に対応する形状、すなわち金型3の微細構造とは逆パターンの微細構造が成形される。その後、フィルム2は金型3と密着したまま加熱ロール4から冷却ロール5へ向かう第1の金型搬送経路71を通って冷却ロール5の表面部まで搬送される。この搬送途中において、シワ伸ばしロール31は金型3の微細構造が形成された面3aの反対側の面から金型3を幅方向にわたって加圧し、第1の金型搬送経路71において金型3に発生したシワやうねりを取り除く。冷却ロール5の表面部まで搬送されたフィルム2は、金型3を介して冷却ロール5との間の熱伝導によって冷却された後、剥離ロール7によって金型3から剥離され、巻取ロール9に巻き取られる。一方、剥離ロール7でフィルム2と剥離した金型3は、冷却ロール5から加熱ロール4へ向かう第2の金型搬送経路72を通って、加熱ロール4まで搬送され再び加熱される。この動作が連続的に行われる。
本発明のシワ伸ばしロール31について図面を用いて詳細に説明する。
本発明の微細構造フィルムの製造装置1における、シワ伸ばしロールの一実施形態の概略平面図を図2に、フィルム幅方向から見た概略側面図を図3に示す。
図3に示す形態では、シワ伸ばしロール31は空圧や油圧で作動する流体圧シリンダ42によって金型3の微細構造が形成された面3aの反対側の面に押し付けられている。加圧方法については特に限定はされないが、一定圧力で押し付けることが好ましい。一定圧力で押し付けることで、金型3が等速で搬送されている間、常にシワやうねりの発生を抑制することができるようになる。
また、金型3のシワやうねりの発生抑制をより高精度に行うためには、流体圧シリンダ42の加圧力を調整できることが好ましい。加圧力を調整する機構の一実施形態を図3に示す。シワ伸ばしロール加圧装置44は、流体圧シリンダ42、荷重検知器43、図示しない制御回路から構成される。流体圧シリンダ42はシワ伸ばしロール31の軸受41を接続されていて、流体圧シリンダ42が動くことでシワ伸ばしロール31は金型3を微細構造が形成された面3aの反対側の面から金型3の幅方向にわたって加圧する。また、荷重検知器43は流体圧シリンダ42を挟んで軸受41と反対側に接続されていて、流体圧シリンダ42が金型3を加圧した際の荷重を検知し、図示しない制御回路に信号を伝達する。図示しない制御回路は、外部から与えられた流体圧シリンダ42の加圧目標値に対して、荷重検知器43からの荷重信号に基づいて流体圧シリンダ42を動かし加圧目標値に近づける操作を行う。なお、シワ伸ばしロール加圧装置44は図3で示すシワ伸ばしロール31の両端の軸受41にそれぞれ備えられていることが好ましく、さらにシワ伸ばしロール加圧装置44により、シワ伸ばしロール31が金型3の幅方向にわたって均一に加圧することが好ましい。
また、シワ伸ばしロール31と冷却ロール5の間の金型搬送方向の距離を調整できるようにしてもよい。ここで、金型搬送方向とは図3の金型搬送方向81の矢印の向きの方向のことである。フィルム2や金型3の材質、厚さ、幅などによって金型3へのシワやうねりの発生する条件は異なるが、前記距離を変更できるようにすることで、金型3に発生したシワやうねりを容易に抑制できるようになる。金型3のシワやうねりの抑制方法として、シワ伸ばしロール31の位置を調整することができるシワ伸ばしロール移動装置を備えていることが好ましい。シワ伸ばしロール移動装置の一実施形態を、本発明の微細構造フィルムの製造装置1におけるシワ伸ばしロールの一実施形態の概略平面図である図2と、フィルム幅方向から見た概略側面図である図3を用いて説明する。
シワ伸ばしロール移動装置47は、シワ伸ばしロール加圧装置44を固定するための架台45と、架台45をシワ伸ばしロール移動装置移動方向82の矢印の向きの方向に移動させることができるスライドレール46と、架台45をスライドレール46の長手方向にスライド可能なモータ48を備えている。このとき架台45およびスライドレール46は、水平な面に設置されている。
図3に示す機構を用いて、シワ伸ばしロール31の両端にある流体圧シリンダ42を作動させて金型3の微細構造が形成された面3aの反対側の面から金型3を幅方向にわたって加圧し、金型3を幅方向に押し広げることで、シワやうねりを除去することができる。金型3のシワやうねりが除去されると、冷却ロール5の表面において金型3の接触不良が抑制されるため、結果として、フィルム2の冷却不良を抑制するためフィルム2の冷却ロール5からの剥離挙動が安定し、高精度な成形面を有するフィルム2を製造することができる。
また、図3ではシワ伸ばしロール加圧装置44に流体圧シリンダ42を採用したが、これに限られるわけではなく例えばモータ駆動などでもよい。さらに、図3ではシワ伸ばしロール31の軸方向は金型3の幅方向に平行な配置としたが、金型3の幅方向に対して斜め方向に配置されていてもよい。
なお、シワ伸ばしロール31を支持する軸受41は、そのロールの質量や受ける負荷、回転速度などに応じて設計される。
シワ伸ばしロール31の形状について、シワ伸ばしロール31の断面のロール径がシワ伸ばしロール31の軸方向にわたって均一であってもよいし、軸方向の中央部のロール径を最大とし両端側に進むにつれロール径が連続的に順次減少する形状とし、軸方向の中央部の金型3の張力が最大になるようにすることでシワ伸ばしロール31の軸方向に金型3との間で摩擦勾配を作り、金型3との間に噛み込んだエアをシワ伸ばしロール31の両端側に排出できるようにしてもよい。なお、シワ伸ばしロール31の形状はこれらに限られるものではなく、これらの組み合わせやその他の形状であってもよい。
シワ伸ばしロール31の加工精度は、JIS B 0621(改訂年1984)にて定義される円筒度公差において0.1mm以下、円周振れ公差において0.1mm以下であることが好ましい。これらの値が0.1mmより大きくなると、加圧時のシワ伸ばしロール31と金型3の間に部分的な隙間ができるため、金型3のシワ伸ばしを行えない場合がある。また、加熱ロール4の表面粗さは、JIS B 0601(改訂年2001)にて定義される、算術平均粗さRaが0.2μm以下のものが好ましい。Raが0.2μmを超えると、上記と同様金型3との接触不良が発生し、シワ伸ばしが行えない場合がある。
続いてシワ伸ばしロール31のロール径は30〜200mmが好ましい。30mm未満では、シワ伸ばしロール31と金型3の間に大きな曲げ応力が加わり、金型3を連続して搬送するうちに徐々に金型3が変形する場合がある。一方、200mmより大きくなると、シワ伸ばしロール31自身の自重によりシワ伸ばしロール31自身が変形しやすくなったり、製作コストが多大になったりする場合がある。
シワ伸ばしロール31の表面には、硬質クロムめっき、セラミック溶射、ダイヤモンド・ライク・カーボン・コーティングなどの高硬度皮膜の形成処理を施すことが好ましい。なぜなら、シワ伸ばしロール31は常に金型3と接触していて、その表面が非常に磨耗しやすいためである。
続いてシワ伸ばしロール31以外の各構成部材の構造について説明する。
本発明において用いられる金型3は、表面に微細構造が形成された面を有するエンドレスベルト形状を有する金型である。エンドレスベルト形状を有する金型の材質は強度と熱伝導率が高い金属が好ましく、例えばニッケルや鋼、ステンレス鋼、銅などが好ましい。また、エンドレスベルト形状を有する金型として、エンドレスベルト形状を有する金属ベルトの表面に鍍金を施したものを使用してもよい。
金型3の表面に微細構造を形成する方法については、金属ベルトの表面に直接切削やレーザー加工を施工する方法、金属ベルトの表面に形成した鍍金皮膜に直接切削やレーザー加工を施工する方法、微細構造を内面に有する円筒状の原版に電気鋳造を施す方法、金属ベルトの表面に微細構造面が形成された薄板を連続して貼り付ける方法などが挙げられる。
エンドレスベルト形状を有する金属ベルトは、所定の厚さ、長さを持つ金属板の端部同士を突き合わせ溶接する方法や、例えば所定の倍の厚さの金属板を所定の半分の長さで溶接してエンドレス形状にした後に2倍に圧延する方法、などによって製造される。このとき、金属ベルトの厚さは金型として必要な強度とハンドリング性等の理由により、0.1〜0.4mmの範囲とすることが好ましい。この範囲よりも厚さが小さくなると、加熱ロール4と冷却ロール5によって懸架されるときに与えられる張力により、金属ベルトが破断あるいは塑性変形する場合がある。一方、この範囲よりも厚さが大きい場合、金属ベルトの曲げ剛性が大きくなりすぎて、加熱ロール4および冷却ロール5に懸架したり、これらのロールに懸架した状態で搬送させたりすることが難しくなったりする場合がある。
エンドレス形状を有する金属ベルトの表面に鍍金を施す場合は、鍍金の材質はニッケルや銅などが好ましい。また、鍍金の厚さは0.03〜0.1mmの範囲とすることが好ましい。金属ベルトの厚さに対して鍍金の厚さが大きくなると、金属ベルトと鍍金の境界面で剥離が発生する場合がある。一方、鍍金の厚さが小さすぎると、微細構造を精度よく加工することが困難となる場合がある。
微細構造とは、高さ10nm〜100μmの凸形状および/または凹形状が、ピッチ10nm〜1mm、より好ましくは高さ1μm〜50μmの凸形状および/または凹形状が、ピッチ1μm〜100μmで周期的に繰り返された形状のことを示し、例えば、三角形状の溝が複数個ストライプ状に並んでいるものでもよいし、矩形、半円形状もしくは半楕円形状等でもよい。さらには溝が直線である必要はなく、曲線のストライプパターンでもよい。また、その稜線方向はベルトの周方向に限らず幅方向であってもよい。さらに、微細構造は他にも直線状あるいは曲線状に連続したものに限られず、半球や円錐や直方体などの凸形状あるいは凹形状がドット状に離散的に配置されたものでもよい。凸形状および/または凹形状の高さやピッチが10nmより小さくなると、金型3への微細構造の形成が困難となり加工精度が悪化する場合がある。一方、凸形状および/または凹形状の高さが100μmより大きくなったり、ピッチが1mmより大きくなったりすると、フィルム2の被成形層が設けられている面2aに金型3の表面の微細構造に対応する形状、すなわち金型3の微細構造とは逆パターンの微細構造が成形される際に、成形不良が発生しやすくなる場合がある。
ここで、エンドレスベルト形状を有する金型の製造方法の一例を以下に示す。
まず、薄肉のステンレス鋼板の端部を突き合わせ溶接し、エンドレス形状を有する金属ベルトに加工する。次に、この金属ベルトをロールにはめて固定し、表面にニッケル鍍金処理を施し、その後、旋盤加工機にて金属ベルトの鍍金層に所定の微細構造を切削加工する方法がある。切削加工を施した金属ベルトは、ロールより取り外すことで、表面に所定の微細構造が形成されたエンドレスベルト形状を有する金型が得られる。
また、エンドレスベルト形状を有する金型の他の製造方法の例として、薄板状の金属板に微細構造を加工した後に、突き合わせ溶接でエンドレスベルト化する方法がある。薄板状の金属板への加工は、表面にニッケル鍍金処理を施した後、平面切削加工機にて鍍金層に所定の微細構造を切削する方法や、金属板表面を直接レーザー加工や、電子ビーム加工、あるいはフォトリソグラフィーにより微細精密構造を形成する方法が挙げられる。
続いて各ロール部材の構成について説明する。
ニップロール6は芯層の外表面に弾性体の層10を有する構造である。芯層は、強度および加工精度が求められ、例えば鋼や繊維強化樹脂、セラミックス、アルミ合金などが適用される。また、弾性体の層10は、加圧により変形する層であり、ゴム、樹脂、もしくはエラストマー材質等が好ましく適用される。芯層はその両端部で軸受11によって回転可能なように支持されており、さらに軸受11は、シリンダなどの加圧装置12と接続されている。ニップロール6はこの加圧装置12のストロークにより開閉し、フィルム2を加圧または開放する。
また、ニップロール6は所望のプロセスやフィルム材質に合わせて、温調機構を有してもよい。温調機構としては、ロール内部を中空にしてカートリッジヒーターや誘導加熱装置を埋め込んだり、内部に流路を加工して油や水、蒸気等の熱媒を流したりすることにより、ロール内部から加熱する構造でもよい。また、ロール外表面付近に赤外線加熱ヒーターを設置して、ロール外表面から加熱する構造でもよい。
ニップロール6の加工精度は、JIS B 0621(改訂年1984)にて定義される円筒度公差において0.03mm以下、円周振れ公差において0.03mm以下であることが好ましい。これらの値が0.03mmを超えると、加圧時の加熱ロール4とニップロール6の間に部分的な隙間ができるため、フィルム2を均一に加圧できなくなり、フィルム2の被成形層が設けられている面2aで成形性の低下が生じる場合がある。また、弾性体の層10の表面粗さは、JIS B 0601(改訂年2001)にて定義される、算術平均粗さRaが1.6μm以下のものが好ましい。Raが1.6μmを超えると、加圧時にフィルム2の被成形層が設けられている面2aの反対側の面に、弾性体の層10の表面形状が成形してしまう場合があるためである。
ニップロール6の弾性体の層10の耐熱性は、160℃以上の耐熱温度を有することが好ましく、さらに好ましくは180℃以上の耐熱温度を有することが好ましい。ここで耐熱温度とはその温度で24時間放置したときの引張強さの変化率が10%を超えるときの温度を言う。
弾性体の層10の材質としては、例えばゴムを用いる場合には、シリコーンゴムやEDPM(エチレンプロピレンジエンゴム)、ネオプレン、CSM(クロロスルホン化ポリエチレンゴム)、ウレタンゴム、NBR(ニトリルゴム)、エボナイトなどを用いることができる。更に高い弾性率と硬度を求める場合には、カレンダーローラ用樹脂としてゴムメーカ各社から販売されている上記ゴムに特殊な処方を用いたものや、じん性を向上させた硬質耐圧樹脂(例:ポリエステル樹脂)を用いることができる。
ニップロール6のロール径は特に制限されるものではないが、ニップロール6の軸方向の長さや質量などによって異なる適切な強度を確保できる最低限のロール径を有しつつ、さらに200mm以下とすることが好ましい。200mmより大きくなると金型搬送方向の加圧長さが長くなるために、フィルム2が金型3の微細構造が形成された面3aに押し付けられる圧力が低下し、微細構造の成形に必要な押圧時間が確保できない場合がある。
次に、ニップロール6と金型3を挟んで対向する加熱ロール4について説明する。加熱ロール4はニップ時に荷重を受けるので、強度および加工精度が求められ、さらに加熱装置を含むことが好ましい。ニップロール6の材質としては、例えば鋼や繊維強化樹脂、セラミックス、アルミ合金などが考えられる。また、加熱方式としては内部を中空にしてカートリッジヒーターや誘導加熱装置を設置したり、内部に流路を加工して油や水、蒸気等の熱媒を流したりすることにより、ロール内部から加熱する構造でもよい。また、ロール外表面付近に赤外線加熱ヒーターや誘導加熱装置を設置して、ロール外表面から加熱する構造でもよい。
ニップロール6は加熱ロール4と平行に配置されることが好ましい。
加熱ロール4の加工精度も、前述したニップロール6と同じく、JIS B 0621(改訂年1984)にて定義される円筒度公差において0.03mm以下、円周振れ公差において0.03mm以下であることが好ましい。これらの値が0.03mmより大きくなると、加圧時の加熱ロール4とニップロール6の間に部分的な隙間ができるため、フィルム2を均一に加圧できなくなり、フィルム2の被成形層が設けられている面2aで成形性の低下が生じる場合がある。また、加熱ロール4の表面粗さは、JIS B 0601(改訂年2001)にて定義される、算術平均粗さRaが0.2μm以下のものが好ましい。Raが0.2μmを超えると、金型3の微細構造が形成された面3aの反対側の面に加熱ロール4の形状が成形し、さらにそれがフィルム2の被成形層が設けられている面2aに成形してしまう場合があるためである。
加熱ロール4の表面には、硬質クロムめっき、セラミック溶射、ダイヤモンド・ライク・カーボン・コーティングなどの高硬度皮膜の形成処理を施すことが好ましい。なぜなら、加熱ロール4は常に金型3と接触しているうえ、ニップロール6による加圧力を受けるため、その表面は非常に磨耗しやすく、加熱ロール4の表面が磨耗したり、傷が入ったりすると、前述したようなフィルムの成形性の低下や、フィルムへのロール表面形状の成形が生じる場合があるためである。
加熱ロール4のロール径は、200〜500mmが好ましい。200mm未満では、金型3に大きな曲げ応力がかかり金型3が変形したり、繰り返しかかる応力により金型3の耐久性が低下したりする場合がある。一方、500mmより大きくなると、加工精度が低下したり、加熱ロール4自身の自重により加熱ロール4自身が変形しやすくなったり、製作コストが多大となったりする場合がある。
冷却ロール5は例えば内部に通水路が設けられ、一定の温度の水を連続して循環させる水冷式の冷却方式などによって冷却されることが好ましい。そして金型3との接触面における熱伝導により金型3を冷却する。
冷却ロール5は金型3との密着性を良くして幅方向に均一に熱伝達させて冷却するために、ロールの表面材質は鋼やアルミ合金、銅などの金属とし、加工精度はJIS B 0621(改訂年1984)にて定義される円筒度公差において0.1mm以下、円周振れ公差において0.1mm以下であることが好ましい。これらの値が0.1mmより大きくなると、冷却する金型3と接触不良を引き起こし、金型3の冷却不足につながり、結果としてフィルム2の冷却不良を引き起こし成形精度が悪化したり、剥離跡が発生したりする場合がある。また、冷却ロール5の表面粗さは、JIS B 0601(改訂年2001)にて定義される、算術平均粗さRaが0.2μm以下のものが好ましい。Raが0.2μmを超えると、上記と同様、金型3との接触不良が発生し、結果として冷却不良によってフィルム2の成形精度が悪化したり、剥離跡が発生したりする場合がある。
冷却ロール5の表面には、硬質クロムめっき、セラミック溶射、ダイヤモンド・ライク・カーボン・コーティングなどの高硬度皮膜の形成処理を施すことが好ましい。なぜなら、冷却ロール5は常に金型3と接触していて非常に磨耗しやすいからである。
冷却ロール5のロール径は、加熱ロール4の場合と同様200〜500mmの間が好ましい。200mm未満では、金型3に大きな曲げ応力がかかり金型3が変形したり、繰り返しかかる応力により金型3の耐久性が低下したりする場合がある。一方、500mmより大きくなると、加工精度が低下したり、冷却ロール5自身の自重により冷却ロール5自身が変形しやすくなったり、製作コストが多大となったりする問題が発生する場合がある。
剥離ロール7は冷却ロール5と同様に冷却装置を有しており、フィルム2の被成形層が設けられている面2aの反対側の面から冷却し、金型3からの剥離を補助する役割を果たす。また、剥離ロール7は流体圧シリンダなどにより冷却ロール5に対して押し当てられる構造であってもよい。剥離ロール7のフィルム2に対する加圧力は特に制限されず、剥離ロール7の周面がフィルム2の被成形層が設けられている面2aの反対側の面に密着していればよい。
剥離ロール7は金型3との密着性を良くして幅方向に均一に熱伝導させて冷却するために、ロールの表面材質は鋼やアルミ合金、銅などの金属とし、加工精度はJIS B 0621(改訂年1984)にて定義される円筒度公差において0.1mm以下、円周振れ公差において0.1mm以下であることが好ましい。これらの値が0.1mmを超えると、フィルム2との接触不良が発生し、結果として冷却不良によってフィルム2の成形精度が悪化したり、剥離跡が発生したりする場合がある。また、剥離ロール7の表面粗さは、JIS B 0601(改訂年2001)にて定義される、算術平均粗さRaが0.2μm以下のものが好ましい。Raが0.2μmを超えると上記と同様、フィルム2との接触不良が発生し、結果として冷却不良によってフィルム2の成形精度が悪化したり、剥離跡が発生したりする場合がある。
巻出ロール8および巻取ロール9はともにフィルム2を巻きつけるコアを固定できる構造となっており、端部はモータ等の駆動装置と連結され、速度を制御しながら回転可能となっている。また、トルク制御により、フィルム2に与えられる張力を調整できることが好ましい。
各ロールの端部は、ころがり軸受などにより回転支持される。加熱ロール4はモータ等の駆動装置と連結され、速度を制御しながら回転可能となっている。またシワ伸ばしロール31、冷却ロール5は金型3を通じて、加熱ロール4の駆動力により回転することが好ましい。搬送速度は微細構造の成形性と微細構造フィルムの生産性のバランスを考慮して決定されるが、微細構造を高精度に成形しながら生産性を高くするために、速度は1〜30m/分の範囲より決定されることが好ましい。速度が1m/分より遅くなると、第1の金型搬送経路71においてフィルム2への金型3からの熱負荷が大きくなりすぎてフィルム2が溶断する場合がある。一方、速度が30m/分より早くなると、ニップロール6によってフィルム2が加圧成形される際の時間が短くなり、フィルム2の成形性が低下する場合がある。ニップロール6の駆動装置は、加熱ロール4の端部とチェーンまたはベルトなどで連結し、加熱ロール4と連動して回転できるようにしたり、あるいは、加熱ロール4と速度を同期可能なモータなどを用いて独立して回転させたりすることが好ましいが、回転自在の構造とし、フィルム2との摩擦によって回転されるようにしてもよい。
各ロールを支持する軸受は、そのロールの質量や受ける負荷、回転速度などに応じて設計される。
図4に本発明の微細構造フィルムの製造装置1に関する別の好ましい形態を示す。
冷却ロール5から加熱ロール4に向かう第2の金型搬送経路72において、金型3の微細構造が形成された面3aの反対側の面に金型3のシワ伸ばしロール32を有することが好ましい。
シワ伸ばしロール32付近のフィルム幅方向から見た概略側面図を図5に示す。シワ伸ばしロール32、シワ伸ばしロール機構50、シワ伸ばしロール32の金型3への加圧方式はシワ伸ばしロール31の場合と同様である。
図5に示す機構を用いて、シワ伸ばしロール32の両端にある流体圧シリンダ52を作動させて、金型3の微細構造が形成された面3aの反対側の面から金型3を幅方向にわたって加圧し、金型3を幅方向に押し広げることで、シワやうねりを除去することができる。金型3のシワやうねりが除去されると、加熱ロール4の表面において金型3の接触不良が抑制されるため、金型3が幅方向にわたって均一に加熱される。その結果、金型3上に供給されたフィルム2がニップロール6により金型3の微細構造が形成された面3aに押し付けられ、フィルム2の被成形層が設けられている面2aに金型3の表面の微細構造に対応する形状、すなわち金型3の微細構造とは逆パターンの微細構造が成形される際に、金型3の幅方向にわたって均一に成形されるようになる。
本発明の微細構造フィルムの製造装置は、エンドレスベルト形状を有する金型の幅をW、エンドレスベルト形状を有する金型の厚さをt、第1の金型搬送経路にあるシワ伸ばしロールとエンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある冷却ロールとエンドレスベルト形状を有する金型との接触開始点までの金型搬送方向の距離をL1、とした場合、数式1を満たすように第1の金型搬送経路にシワ伸ばしロールが配置されていることが好ましい。
1×10≦(W/t)×(1/L1)≦1×10・・・(数式1)。
ここで、本発明の微細構造フィルムの製造装置を図6、7を参照しながら具体的に説明する。金型3の幅をW(単位 m)、金型3の厚さをt(単位 m)、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点から金型搬送方向にある冷却ロール5と金型3との接触開始点までの金型搬送方向の距離をL1(単位 m)、とした場合、数式1を満たすように第1の金型搬送経路にシワ伸ばしロールが配置されることが好ましい。
1×10≦(W/t)×(1/L1)≦1×10・・・(数式1)。
金型3の幅Wとは、図6で示す金型3の幅Wのことであり、金型3の幅Wは金型搬送方向で異なる10箇所において、定規で測定した金型3の幅の平均値とする。また、金型3の厚さtとは図6で示す金型3の厚さtのことであり、マイクロメータで測定した、金型3の微細構造が形成された面3aを有する任意の10点における金型3の厚さの平均値とする。
測定の際に金型3の微細構造が形成された面3aがある箇所においては、厚さtは微細構造のうち最も凸となっている部分の厚さをいう。また、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点から金型搬送方向にある冷却ロール5と金型3との接触開始点までの金型搬送方向の距離L1とは、図7で示す金型3のシワ伸ばしロール31と金型3との接触終了点61から金型搬送方向にある冷却ロール5と金型3との接触開始点62までの距離L1のことである。
ここで、数式1についてより好ましくは5×10≦(W/t)×(1/L1)≦5×10である。(W/t)×(1/L1)がこの範囲にあることで、より金型3へのシワやうねりの発生を抑制することができるため好ましい。
図6は第1の金型搬送経路におけるシワ伸ばしロール付近の拡大図であり、図7は本発明を適用した微細構造フィルム製造装置における、加熱ロールから冷却ロールに向かう第1の金型搬送経路71のシワ伸ばしロールを、フィルム幅方向から見た概略側面図である。
まず、金型3でのシワやうねりの発生メカニズムについて図6を用いて説明する。
金型3は加熱ロール4と冷却ロール5に懸架されて搬送されているため、常に第1の金型搬送経路71の金型搬送方向には温度差が発生している。そのため、第1の金型搬送経路71では金型3の幅方向に温度差起因の熱応力による引っ張りあるいは圧縮荷重が発生するが、この引っ張りあるいは圧縮荷重が、金型3の材質や寸法によって決まる座屈限界荷重を超えたときに金型3の幅方向に座屈を引き起こし、シワやうねりとなる。
このメカニズムについて、金型3の金型搬送方向微小長さb(単位 m)の区間について説明すると以下のようになる。
まず、金型3の金型搬送方向微小長さbの区間における金型3の幅方向の熱応力による引っ張りあるいは圧縮荷重は、金型3の幅方向の両端の位置が固定されていると仮定すると、物質の線膨張係数をα(単位 1/℃)、金型搬送方向微小長さbの区間での金型搬送方向の温度差をΔT(単位 ℃)、金型3のヤング率をE(単位 N/m)、金型3の厚さをt(単位 m)、熱応力による引っ張りあるいは圧縮荷重をH(単位 N)とした場合、H=α×ΔT×E×b×tとなる。
一方、金型3の金型搬送方向微小長さbの区間における金型3の幅方向の座屈限界荷重は、金型3の金型搬送方向微小長さbにおける金型3の幅方向で金型3の表面に対し垂直な方向の断面2次モーメントをI(単位 m)、金型3の幅方向の両端の固定モードに関わるパラメータをn、円周率をπ、座屈限界荷重をP(単位 N)とした場合、座屈についてのオイラーの公式により
P=(n×π×EI)/Wとなる。ここで、断面2次モーメントIはI=(b×t)/12であるからP=(n×π×E×b×t)/(12×W)と変換できる。
金型3でシワやうねりが発生しないためには、H≦Pとなればよいことからα×ΔT×E×b×t ≦ (n×π×E×b×t)/(12×W)となる。この式を変形、整理し、金型3の形状による項目や温度差による項目を左辺に、定数及び金型3の材質による項目を右辺に分けると(ΔT×W)/(t) ≦ (n×π)/(12×α)となる。このことから、(W/t)×ΔTが一定の値以下であれば、座屈が起こらないということがわかる。
続いて、(W/t)×ΔTが一定の値以下であれば、座屈が起こらないというメカニズムを図7の構成に適用する場合を考える。本発明の微細構造フィルムの製造装置1では、シワ伸ばしロール31と金型3との接触終了点61から、金型搬送方向にある冷却ロール5と金型3との接触開始点62での間で温度の変化が一様であると仮定すると、シワ伸ばしロール31と金型3との接触終了点61から金型搬送方向にある冷却ロール5と金型3との接触開始点62での金型搬送方向の温度勾配は、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点61でのシワ伸ばしロール71の表面温度をT1(単位 ℃)、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点61から金型搬送方向にある冷却ロール5と金型3との接触開始点62での冷却ロール5の表面温度をT2(単位 ℃)とすると、(T1−T2)/L1となる。ここで、金型搬送方向微小長さbの区間で考えると、温度差ΔTはΔT=(T1−T2)×b/L1となる。つまり図7においては、(W/t)×ΔTは(W/t)×((T1−T2)×b/L1)となる。ここで、金型搬送方向微小長さbは任意の値を取ることができる定数であるため、表記を省略することができ、結果として(W/t)×((T1−T2)/L1)が特定の値以下であれば座屈が発生しないこととなる。
発明者らは、この理論に基づき実験を行った結果、金型3の形状とシワ伸ばしロール31の取り付け位置が1×10≦(W/t)×(1/L1)≦1×10を満たせば金型3へのシワやうねりの発生を抑制することができることがわかった。なお、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点61でのシワ伸ばしロール31の表面温度T1は、シワ伸ばしロール31と金型3との接触終了点61における金型3の端部からシワ伸ばしロール31の軸方向に10mm離れた箇所で、熱電対を用いて測定したシワ伸ばしロール31の表面温度とし、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点61から金型搬送方向にある冷却ロール5と金型3との接触開始点62での冷却ロール5の表面温度T2は、冷却ロール5と金型3との接触開始点62における金型3の端部から冷却ロール5の軸方向に10mm離れた箇所で、熱電対を用いて測定した冷却ロール5の表面温度とする。この条件においては、金型3からフィルム2が剥離することなく冷却ロール5までフィルム2が金型3に密着したまま搬送することが可能となる。
(W/t)×(1/L1)<1×10となると、金型3の搬送が困難になったり、装置が大型化したりするという問題が発生する場合がある。これは、金型3の厚さtが大きくなることによる加熱ロール4や冷却ロール5の曲面周上での曲げ応力の増大化や、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点61から金型搬送方向にある冷却ロール5と金型3との接触開始点62までの金型搬送方向の距離L1が大きくなることによる、第1の金型搬送経路71や第2の金型搬送経路72の長尺化のためである。
一方、1×10<((W/t)×(1/L1)となると、上記の金型3のシワやうねり発生メカニズムの通り、金型3にシワやうねりが発生する。両条件とも、冷却ロール5と金型3との接触不良を引き起こし、結果としてフィルム2の成形不良が発生しやすくなる場合がある。
さらに、シワ伸ばしロール31に加えてシワ伸ばしロール32についても、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点から金型搬送方向にある加熱ロール4と金型3との接触開始点までの金型搬送方向の距離をL2(単位 m)、とした場合、シワ伸ばしロール32が数式2を満たすように配置されることが好ましい。
1×10≦(W/t)×(1/L2)≦1×10・・・(数式2)
数式2についてより好ましくは5×10≦(W/t)×(1/L2)≦5×10である。
詳細を、図8を用いて説明する。図8は本発明を適用した微細構造フィルムの製造装置における、冷却ロールから加熱ロールに向かう第2の金型搬送経路のシワ伸ばしロールを、フィルム幅方向から見た概略側面図である。第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点から金型搬送方向にある加熱ロール4と金型3との接触開始点までの金型搬送方向の距離L2とは、図8で示す金型3のシワ伸ばしロール32との接触終了点63から金型搬送方向にある加熱ロール4との接触開始点64までの距離L2のことである。
シワ伸ばしロール31の場合と同様、(W/t)×(1/L2)<1×10となると、金型3の搬送が困難になったり、装置が大型化したりするという問題が発生する場合がある。これは、金型3の厚さtが大きくなることによる加熱ロール4や冷却ロール5の曲面周上での曲げ応力の増大化や、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63から金型搬送方向にある加熱ロール4と金型3との接触開始点64までの金型搬送方向の距離L2が大きくなることによる、第1の金型搬送経路71や第2の金型搬送経路72の長尺化のためである。
一方、1×10<(W/t)×(1/L2)となると、上記の金型3のシワやうねり発生メカニズムの説明の通り、金型3にシワやうねりが発生する場合がある。両条件とも加熱ロール4と金型3との接触不良を引き起こし、結果として、金型3において幅方向に温度ムラが生じフィルム2の成形不良が発生しやすくなる場合がある。
本発明の微細構造フィルムの製造装置1に関するさらに別の形態として、シワ伸ばしロール31、32は温度調整機構を有し、それぞれシワ伸ばしロール31、32の温度調整を行うことが好ましい。温度調整を行う機構としては、ロール内部を中空にしてカートリッジヒーターや誘導加熱装置を埋め込んだり、内部に流路を加工して油や水、蒸気等の熱媒を流したりすることにより、ロール内部から加熱する構造でもよい。また、ロール外表面付近に赤外線加熱ヒーターを設置して、ロール外表面から加熱する構造でもよいが、この限りではなく、その他の構造であってもよい。
図7、8を用いて説明する。まず、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63でのシワ伸ばしロール32の表面温度をT3(単位 ℃)、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63から金型搬送方向にある加熱ロール4と金型3との接触開始点64での加熱ロール4の表面温度をT4(単位 ℃)とする。なお、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63でのシワ伸ばしロール32の表面温度T3は、シワ伸ばしロール32と金型3との接触終了点63における金型3の端部からシワ伸ばしロール32の軸方向に10mm離れた箇所で、熱電対を用いて測定したシワ伸ばしロール32の表面温度とし、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63から金型搬送方向にある加熱ロール4と金型3との接触開始点64での加熱ロール4の表面温度T4は、加熱ロール4と金型3との接触開始点64における金型3の端部から加熱ロール4の軸方向に10mm離れた箇所で、熱電対を用いて測定した加熱ロール4の表面温度とする。
上記の(W/t)×ΔTが一定の値以下であれば、座屈が起きないというメカニズムに基づくと、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点61でのシワ伸ばしロール31の表面温度T1と、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点61から金型搬送方向にある冷却ロール5と金型3との接触開始点62での冷却ロール5の表面温度T2の温度差T1−T2や、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63でのシワ伸ばしロール32の表面温度T3と、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63から金型搬送方向にある加熱ロール4と金型3との接触開始点64での加熱ロール4の表面温度T4の温度差T4−T3が小さくなれば、金型3のシワやうねりは発生にくいことになる。シワ伸ばしロール31、32が温度調整機構を有し、金型3にシワやうねりが発生した場合、速やかにシワ伸ばしロール31、32の表面温度を調整し温度差を小さくすることでシワやうねりを抑制することが容易となる。さらに、シワ伸ばしロール加圧装置44、54を使用した金型3への加圧力の変更や、シワ伸ばしロール移動装置47、57を使用した金型3のシワ伸ばしロール31と金型3との接触終了点61から金型搬送方向にある冷却ロール5と金型3との接触開始点62までの距離L1や、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点から金型搬送方向にある加熱ロール4と金型3との接触開始点までの金型搬送方向の距離L2の変更と組み合わせることで、金型3にシワやうねりを発生させにくい条件範囲を広げることが可能となる。
上記の装置を用いて微細構造が表面に形成されたフィルムの製造方法を説明する。
本発明の微細構造フィルムの製造方法は、表面に微細構造が形成されたエンドレスベルト形状を有する金型を、加熱された加熱ロールに抱かせながら加熱する金型加熱工程と、フィルムの成形側表面と前記エンドレスベルト形状を有する金型の微細構造表面とを密着させた状態で、前記加熱ロールを含む一対のロールによりニップ加圧する加圧成形工程と、加圧後の前記エンドレスベルト形状を有する金型と前記フィルムを密着させたまま冷却ゾーンまで搬送する第1の搬送工程と、前記冷却ゾーンでエンドレスベルト形状を有する金型とフィルムを密着させたままエンドレスベルト形状を有する金型側から冷却する冷却工程と、冷却後のエンドレスベルト形状を有する金型とフィルムとを剥離するフィルム剥離工程と、フィルムを剥離した前記エンドレスベルト形状を有する金型を再度金型加熱ロールまで搬送する第2の搬送工程と、を少なくとも含むことにより、エンドレスベルト形状を有する金型の表面に形成された微細構造を、加熱したフィルムの表面に成形する微細構造フィルムの製造方法であって、前記第1の搬送工程において、前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面に配置されたシワ伸ばしロールにより前記エンドレスベルト形状を有する金型のシワを伸ばすことを特徴とする微細構造フィルムの製造方法である。
本発明の製造方法の実施形態の一例を、図1、2を用いて説明する。
まず準備段階として、フィルム2を巻出ロール8より引き出し、ニップロール6を開放した状態で、加熱ロール4とシワ伸ばしロール31と冷却ロール5に懸架された金型3上に沿わせ、剥離ロール7を経由し、巻取ロール9で巻き取っている状態とする。
続いて、駆動装置によりフィルム2を低速で搬送しながら、加熱ロール4の図示しない加熱装置及び冷却ロール5の図示しない冷却装置を作動し、加熱ロール4及び冷却ロール5を介してそれぞれのロール上での金型3の表面温度が所定の温度になるまで温調する。
また、温調中に金型3にシワやうねりが発生した場合にはシワ伸ばしロール加圧装置44を動かしシワ伸ばしロール31の金型3に対する加圧力を変更したり、シワ伸ばしロール移動装置47を動かして金型3の搬送方向でのシワ伸ばしロール31と接触位置を変更したりすることで、シワ伸ばしロール31の周面が金型3の微細構造が形成された面3aの反対側の面に密着するようにして、金型3のシワやうねりを抑制する。
このときの金型3の加圧分布は特に制限されないが、金型の幅方向に均一に加圧できることが好ましい。また、シワ伸ばしロール31の金型3の加圧力は金型3の厚さや加熱ロール4や冷却ロール5の温度、シワ伸ばしロール31と加熱ロール4および冷却ロール5の位置関係に依存するが、シワ伸ばしロール加圧装置44を通じてシワ伸ばしロール31に与えられる力をQとした場合、Qを金型3の幅Wで割った線圧Q/Wは0.1〜20kN/m、0.1〜10kN/mとすることがより好ましい。0.1kN/m未満では金型3のシワ伸ばしを十分に行えない場合があり、20kN/mより大きい場合では微細構造フィルムの製造を続けていくうちに金型3が変形する場合がある。
加熱ロール4及び冷却ロール5の表面温度が設定値まで温調されたら、微細構造フィルムの製造速度で搬送すると同時に、ニップロール6を閉じ、加熱ロール4とニップロール6でフィルム2及び金型3を加圧し、金型3の微細構造が形成された面3aの形状をフィルム2の被成形層が設けられている面2aに加圧により密着させる。このときの条件として、微細構造フィルムの製造速度は1〜30m/分、線圧は400kN/m以上の範囲で設定されることが好ましい。
微細構造フィルムの製造方法は、金型の周回動作に合わせて各工程を並べると、金型加熱工程、加圧成形工程、第1の搬送工程、シワ伸ばし工程、冷却工程、フィルム剥離工程、第2の搬送工程から構成される。以下、順に説明する。
まず、金型加熱工程では金型3は加熱ロール4と接触する部分において、常に高温の加熱ロール4からの熱伝導により加熱され、被成形層を有するフィルム2と共に加熱ロール4とニップロール6によって被成形層を有するフィルム2と共に加圧されるまでに、金型3の温度は加熱ロール4の表面温度まで昇温される。
加圧成形工程では、巻出ロール8から巻き出された、被成形層を有するフィルム2が加熱ロール4とニップロール6による加圧部において、加熱された金型3に被成形層を有する面を押し当てられて密着し、軟化したフィルム2を構成する樹脂が金型3の微細構造が形成された面3aのパターン内に充填される。第1の搬送工程では、金型3に加圧されたフィルム2が、金型3と密着したまま第1の金型搬送経路71を通って冷却工程まで搬送される。
シワ伸ばし工程では、第1の搬送工程の途中において、金型加熱工程と冷却工程における温度差により金型3に発生したシワやうねりを、金型3の微細構造が形成された面3aの反対側の面からシワ伸ばしロール31を押し当てて、金型3の幅方向に金型3を押し広げることによって取り除く。
冷却工程では、金型3と冷却ロール5が接触する部分において、フィルム2は冷却ロール5との熱伝導により、金型3ごとフィルム2を構成する樹脂のガラス転移温度以下まで冷却される。
フィルム剥離工程では冷却後のフィルム2は剥離ロール7により、冷却ロール5から連続的に剥がすように離型される。なお、図1において剥離ロール7はフィルム2の冷却ロール5に対する抱き付き角が90度となるように配置されているが、0〜180度となる範囲で他の位置に配置されていてもよい。フィルム2の冷却ロール5に対する抱き付き角が大きくなるほど、フィルム2が冷却される時間が長くなり、フィルム2を十分に冷やすことが可能となる。剥離後のフィルム2は巻取ロール9に巻き取られる。第2の搬送工程では、金型3が第2の金型搬送経路72を通って冷却工程から再度金型加熱工程まで搬送される。
第1の搬送工程の途中にシワ伸ばし工程があることにより、次の冷却工程においては金型3のシワやうねりによる冷却ロール5の接触不良が抑制されるため、フィルム2の冷却不良も抑制され、結果としてフィルム2の冷却ロール5からの剥離挙動が安定し、高精度な成形面を有するフィルムを製造することができる。
さらに、図4に示すように第2の搬送工程内の第2の金型搬送経路72において、金型3の微細構造が形成された面3aの反対側の面に前記金型のシワ伸ばしロールが配置され、金型3のシワ伸ばしを行うことが好ましい。
シワ伸ばしロール31と同様、第2の搬送工程において、冷却工程と金型加熱工程における温度差により金型3に発生したシワやうねりを、金型3の微細構造が形成された面3aの反対側の面からシワ伸ばしロール32を押し当てて、金型3の幅方向に金型3を押し広げて取り除くことができる。その結果、金型3と加熱ロール4との接触不良が抑制されて、加圧成形工程において金型3の幅方向の温度が均一となるため、軟化したフィルム2を構成する熱可塑性樹脂が金型3の幅方向にわたって均一に金型3の微細構造が形成された面3aのパターン内に充填される。シワ伸ばしロール32、シワ伸ばしロール機構50、シワ伸ばしロール32の金型3への加圧力はシワ伸ばしロール31の場合と同様である。
また、第1の搬送工程内の第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点から金型搬送方向にある冷却ロール5と金型3との接触開始点までの金型搬送方向の距離L1(単位 m)と、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点でのシワ伸ばしロール71の表面温度T1(単位 ℃)と、第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点から金型搬送方向にある冷却ロール5と金型3との接触開始点での冷却ロール5の表面温度T2(単位 ℃)が、数式3、4を満たすようにシワ伸ばしロール31が配置されることが好ましい。
20≦(T1−T2)≦100・・・(数式3)
1×10≦(W/t)×((T1−T2)/L1)≦1×1010・・・(数式4)
数式3についてより好ましくは30≦(T1−T2)≦50、数式4についてより好ましくは2×10≦(W/t)×((T1−T2)/L1)≦1×10である。
(T1−T2)<20では、T1−T2の温度差が小さいことで第1の金型搬送経路71においてフィルム2と金型3が剥離しやすくなり、フィルム2に剥離跡が発生しやすくなったりする場合がある。一方、100<(T1−T2)では、フィルム2が冷却されすぎて過冷却による剥離跡が発生しやすくなる場合がある。
さらに、20≦(T1−T2)≦100であったとしても、(W/t)×((T1−T2)/L1)<1×10では、金型3の搬送が困難になったり、装置が大型化したりするという問題が発生する場合がある。これは、金型3の厚さtが大きくなることによる加熱ロール4や冷却ロール5の曲面周上での曲げ応力の増大化や、第1の搬送工程内の第1の金型搬送経路71にあるシワ伸ばしロール31と金型3との接触終了点61から金型搬送方向にある冷却ロール5と金型3との接触開始点62までの金型搬送方向の距離L1が大きくなることによる、第1の金型搬送経路71や第2の金型搬送経路72の長尺化のためである。
一方、1×1010<(W/t)×((T1−T2)/L1)となると、上記の金型3のシワやうねり発生メカニズムの説明の通り、金型3にシワやうねりが発生する場合がある。両条件とも、冷却ロール5と金型3との接触不良を引き起こし、結果としてフィルム2の成形不良が発生しやすくなる場合がある。
さらに、シワ伸ばしロール31に加えてシワ伸ばしロール32についても、第2の搬送工程内の第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63から金型搬送方向にある加熱ロール4と金型3との接触開始点64までの金型搬送方向の距離L2(単位 m)と、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63でのシワ伸ばしロール32の表面温度T3(単位 ℃)と、第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63から金型搬送方向にある加熱ロール4と金型3との接触開始点64での加熱ロール4の表面温度T4(単位 ℃)が、数式5を満たすようにシワ伸ばしロール32が配置されることが好ましい。
1×10≦(W/t)×((T4−T3)/L2)≦1×1010・・・(数式5)
数式5についてより好ましくは2×10≦(W/t)×((T4−T3)/L2)≦1×10である。
(W/t)×((T4−T3)/L2)<1×10では、金型3の搬送が困難になったり、装置が大型化したりするという問題が発生する場合がある。これは、金型3の厚さtが大きくなることによる加熱ロール4や冷却ロール5の曲面周上での曲げ応力の増大化や、第2の搬送工程内の第2の金型搬送経路72にあるシワ伸ばしロール32と金型3との接触終了点63から金型搬送方向にある加熱ロール4と金型3との接触開始点64までの金型搬送方向の距離L2が大きくなることによる、第1の金型搬送経路71や第2の金型搬送経路72の長尺化のためである。
一方、1×1010<(W/t)×((T4−T3)/L2)となると、上記の金型3のシワやうねり発生メカニズムの説明の通り、金型3にシワやうねりが発生しやすくなる場合がある。両条件とも加熱ロール4と金型3との接触不良を引き起こし、結果として、金型3において幅方向に温度ムラが生じフィルム2の成形不良が発生しやすくなる場合がある。
また、シワ伸ばしロール31、32が上記表面温度を満たすようにするための方法として、シワ伸ばしロール31、32が、温度調整機構を有し、それぞれシワ伸ばしロール31、32の表面温度調整を行うことが好ましい。
本発明に適用されるフィルム2に用いられる被成形層の材料は、熱可塑性樹脂を主たる成分とした熱可塑性樹脂が用いられ、具体的に好ましくは、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂ポリエーテル系樹脂、ポリエステルアミド系樹脂、ポリエーテルエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、あるいはポリ塩化ビニル系樹脂などを挙げることができる。このなかで共重合するモノマー種が多様であり、かつそのことによって材料物性の調整が容易であるなどの理由から特にポリエステル系樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂、アクリル系樹脂またはこれらの混合物から選ばれる熱可塑性樹脂を含有していることが好ましく、上述の熱可塑性樹脂の含有率は50質量%以上であることがさらに好ましい。
フィルム2は上述の樹脂の単体からなるフィルムであっても構わないし、複数の樹脂層からなる積層体であってもよい。単体からなるフィルムの場合、両表面に被成形層を有するフィルムとして扱う。複数の樹脂層からなる積層体の場合、単体フィルムと比べて、易滑性や耐摩擦性などの表面特性や、機械的強度、耐熱性を付与することができる。このように複数の樹脂層からなる積層体とした場合はフィルム全体が前述の熱可塑性樹脂を主たる成分とする要件を満たすことが好ましいが、フィルム全体としては前記要件を満たしていなくても、少なくとも前記要件を満たす層が表層に形成されていれば容易に表面を形成することができる。特に、微細構造フィルムの加工性を良くするために金型温度を高温にしたい場合は、表層にガラス転移温度が低く微細構造を成形しやすい樹脂、芯層にガラス転移温度が高く強度の強い樹脂、という構成のフィルムを用いることで、フィルムの平面性を維持しつつ、フィルムの加工性を高めることができる。
以上の微細構造フィルムの製造方法を用いれば、表面に微細構造を形成したエンドレスベルト形状を有する金型を押し当てて、フィルムの表面に微細構造を連続的に成形する際に、金型にシワやうねりを発生させにくく安定的に搬送することができ、高い生産性で高精度な成形フィルムを製造することができる。
以下、本発明の実施例について説明する。ただし、本発明は以下の実施例に限定されない。
(実施例1)
図1、2、3の構成を有する装置で微細構造フィルムを製造した。
フィルム2には、ポリカーボネート樹脂を芯層とし、その両面に被成形層としてポリメタクリル酸メチル(PMMA)樹脂を積層した、3層積層フィルムを共押出しにより作成し用いた。フィルム2の総厚さは200μm、各層の積層比(厚さ比)はおよそ1:8:1であり、幅は480mmとした。
金型3は厚さ0.2mmのステンレス鋼ベルトの表面に厚さ0.1mmのニッケル鍍金をしたものに、ピッチ25μm、深さ12.5μmのV溝形状を金型3の周方向と平行に切削加工して作成した。この金型3の総厚さはステンレス鋼ベルトとの厚さにメッキ層の厚さを加えた0.3mmとした。また、金型3の幅は500mm、周長は1,800mmとした。そして、金型3に加える張力は6kN/mとした。
加熱ロール4は炭素鋼からなる筒状の芯材の表面に硬質クロム鍍金をしたものを用いた。加熱ロール4の金型3を懸架する部分の外径は400mm、幅方向長さは540mmとした。また、加熱装置には加熱ロール内部に備えた誘導加熱装置を用い、微細構造フィルムの製造時に加熱ロール4の表面温度を210℃まで加熱した。
ニップロール6は外径が160mmの炭素鋼からなる筒状の芯材表面に、弾性体の層10としてポリエステル樹脂(硬度:ショアD86°)を20mmの厚さで被膜したものを用いた。加圧領域の幅は460mmとし、金型3の全500mm幅のうち460mm幅にわたってフィルム2を加圧する構成とした。
加圧装置12には空気圧シリンダを用い、ニップロール6に対し加圧力400kNを負荷した(線圧:870kN/m)。このときのフィルム2に負荷される見かけのニップ圧は測定の結果σ=109MPaであった。
冷却ロール5は加熱ロール4と同様に、炭素鋼を芯材とし、表面に硬質クロム鍍金をしたものを用いた。金型3を懸架する部分の外径は250mm、幅方向長さは540mmとした。冷却ロール5は内部に20℃の冷却水を流し続けた。
シワ伸ばしロール31は、加熱ロール4、冷却ロール5と同様に、炭素鋼を芯材とし、表面に硬質クロム鍍金をしたものを用いた。外径は100mm、幅方向長さは540mmとした。シワ伸ばしロール31は、金型3のシワ伸ばしロール31との接触終了点61から冷却ロール5との接触開始点62までの距離L1が250mmとなるように配置した。シワ伸ばしロールの金型への加圧装置は空気圧シリンダを用い、フィルム製造条件では金型3に対するシワ伸ばしロール31からの加圧力は0.23kNとした(線圧:0.5kN/m)。また、金型搬送方向への位置調整はモータ48としてサーボモータを使って、スライドレール46に載ったシワ伸ばしロール加圧装置44付きの架台45を移動させることによって行った。さらに、シワ伸ばしロール31の内部に温度調整機構を取り付け、フィルム製造条件ではシワ伸ばしロール31の表面温度が150℃となるように温度調整した。
製造条件は次の通りとした。まず、室温状態で微細構造フィルムの製造速度1m/分で加圧なしの状態でフィルムの搬送を続けながら、加熱ロール4の表面温度を210℃まで加熱した。
加熱中に金型3にシワやうねりが発生した場合はシワ伸ばしロール加圧装置44とシワ伸ばしロール移動装置47を微調整させながらシワやうねりの発生を抑制した。
そして加熱ロール4の加熱完了後、速度を10m/分にしてニップロール6で加圧し、10分間連続で微細構造フィルムを製造した。その結果、フィルム製造中、金型3にはシワやうねりの発生は視認されなかった。
また、走行体用K熱電対(安立計器(株)製 U−119K−01−D0−0−TC2−W)を使用して、シワ伸ばしロール31と金型3との接触終了点61における金型3の端部からシワ伸ばしロール31の軸方向に10mm離れた箇所でのシワ伸ばしロール31の表面温度T1、冷却ロール5と金型3との接触開始点62における金型3の端部から冷却ロール5の軸方向に10mm離れた箇所での冷却ロール5の表面温度T2を測定した。
測定の結果、製造中のシワ伸ばしロール31と金型3との接触終了点61のシワ伸ばしロール31の表面温度T1は150℃、冷却ロール5と金型3との接触開始点62の冷却ロール5の表面温度T2は55℃であった。
ここで、本実施例においては(W/t)×(1/L1)=(0.5/0.0003)×(1/0.25)=1.1×10であった。さらに、T1−T2=150−55=95、(W/t)×((T1−T2)/L1)=(0.5/0.0003)×((150−55)/0.25)=1.1×10であった。
この状態で成形したフィルム2の表面を電子顕微鏡で観察したところ、表面に成形不良箇所は無く、成形したフィルムの断面形状を観察した結果、ピッチ25μm、深さ12.5μmのV溝形状が全幅にわたって成形されていた。
(実施例2)
実施例1の構成に図4、5に示すシワ伸ばしロール32を追加設置した構成で微細構造フィルムを製造した。シワ伸ばしロール32の配置、加圧力、温度調整の条件は下記の条件とした。
シワ伸ばしロール32は、シワ伸ばしロール31と同様に、炭素鋼を芯材とし、表面に硬質クロム鍍金をしたものを用いた。外径は100mm、幅方向長さは540mmとした。シワ伸ばしロール32は、金型3のシワ伸ばしロール32との接触終了点63から加熱ロール4との接触開始点64までの距離L2が250mmとなるように配置した。シワ伸ばしロールの金型への加圧装置は空気圧シリンダを用い、フィルム製造条件ではシワ伸ばしロール31と同様、金型3に対するシワ伸ばしロール32からの加圧力は0.23kNとした(線圧:0.5kN/m)。また、金型搬送方向への位置調整はモータ58としてサーボモータを使って、スライドレール56に載ったシワ伸ばしロール加圧装置54付きの架台55を移動させることによって行った。さらに、シワ伸ばしロール32の内部に温度調整機構を取り付け、フィルム製造条件ではシワ伸ばしロール32の表面温度が100℃となるように温度調整した。
製造条件は次の通りとした。まず、室温状態で微細構造フィルムの製造速度1m/分で加圧なしの状態でフィルムの搬送を続けながら、加熱ロール4の表面温度を220℃まで加熱した。
加熱中に金型3にシワやうねりが発生した場合はシワ伸ばしロール加圧装置44、54とシワ伸ばしロール移動装置47、57を微調整させながらシワやうねりの発生を抑制した。
そして加熱ロール4の加熱完了後、速度を20m/分にしてニップロール6で加圧し、10分間連続で微細構造フィルムを製造した。その結果、フィルム製造中、金型3にはシワやうねりの発生は視認されなかった。
また、走行体用K熱電対(安立計器(株)製 U−119K−01−D0−0−TC2−W)を使用して、シワ伸ばしロール31と金型3との接触終了点61における金型3の端部からシワ伸ばしロール31の軸方向に10mm離れた箇所での近傍のシワ伸ばしロール31の表面温度T1、冷却ロール5と金型3との接触開始点62における金型3の端部から冷却ロール5の軸方向に10mm離れた箇所での冷却ロール5の表面温度T2、シワ伸ばしロール32と金型3との接触終了点63における金型3の端部からシワ伸ばしロール32の軸方向に10mm離れた箇所でのシワ伸ばしロール32の表面温度T3、加熱ロール4と金型3との接触開始点64における金型3の端部から加熱ロール4の軸方向に10mm離れた箇所での加熱ロール4の表面温度T4を測定した。
測定の結果、製造中のシワ伸ばしロール31と金型3との接触終了点61のシワ伸ばしロール31の表面温度T1は150℃、冷却ロール5と金型3との接触開始点62の冷却ロール5の表面温度T2は59℃、シワ伸ばしロール32と金型3との接触終了点63のシワ伸ばしロール32の表面温度T3は100℃、加熱ロール4と金型3との接触開始点64の加熱ロール4の表面温度T4は217℃であった。
ここで、本実施例においては(W/t)×(1/L1)=(0.5/0.0003)×(1/0.25)=1.1×10、(W/t)×(1/L2)=(0.5/0.0003)×(1/0.25)=1.1×10であった。さらに、T1−T2=150−59=91、(W/t)×((T1−T2)/L1)=(0.5/0.0003)×((150−59)/0.25)=1.0×10、(W/t)×((T4−T3)/L2)=(0.5/0.0003)×((217−100)/0.25)=1.3×10であった。
この状態で成形したフィルム2の表面を電子顕微鏡で観察したところ、表面に成形不良箇所は無く、成形したフィルムの断面形状を観察した結果、ピッチ25μm、深さ12.5μmのV溝形状が全幅にわたって成形されていた。
(比較例1)
シワ伸ばしロール31が無いことを除けば実施例1と同条件で微細構造フィルムを製造した。
その結果、離間直前から徐々に金型3の冷却ロール5との接触開始点付近から、加熱ロール4に向かって金型搬送方向にシワやうねりが金型3の幅方向に数本発生し、離間した後も、金型3表面に発生したシワやうねりは解消しなかった。
この状態で成形したフィルム2の表面を光学顕微鏡や電子顕微鏡で観察したところ、金型3にシワやうねりが発生した箇所に対応する箇所で連続V溝形状の高さが周辺よりも1〜2μm低い成形不良や冷却ロール5からの剥離跡があることを確認した。
1:微細構造フィルムの製造装置
2:フィルム
2a:フィルムの被成形層が設けられている面
3:金型
3a:金型の微細構造が形成された面
4:加熱ロール
5:冷却ロール
6:ニップロール
7:剥離ロール
8:巻出ロール
9:巻取ロール
10:弾性体の層
11、41、51:軸受
12:加圧装置
31、32:シワ伸ばしロール
40、50:シワ伸ばしロール機構
42、52:流体圧シリンダ
43、53:荷重検知器
44、54:シワ伸ばしロール加圧装置
45、55:架台
46、56:スライドレール
47、57:シワ伸ばしロール移動装置
48、58:モータ
61、63:シワ伸ばしロールと金型との接触終了点
62:冷却ロールと金型との接触開始点
64:加熱ロールと金型との接触開始点
71:第1の金型搬送経路
72:第2の金型搬送経路
81:金型搬送方向
82:シワ伸ばしロール移動装置移動方向
L1:第1の金型搬送経路における金型のシワ伸ばしロールとの接触終了点から冷却ロールとの接触開始点までの距離
L2:第2の金型搬送経路における金型のシワ伸ばしロールとの接触終了点から加熱ロールとの接触開始点までの距離
W:金型の幅
b:金型の搬送方向微小長さ
t:金型の厚さ
ΔT:金型搬送方向微小長さbの区間での金型搬送方向の温度差

Claims (10)

  1. 1)表面に微細構造が形成されたエンドレスベルト形状を有する金型と、
    2)前記エンドレスベルト形状を有する金型を加熱するための加熱ロールと加熱ロールと平行に配置され、表面が弾性体に覆われたニップロールおよび前記両ロールを用いた挟圧手段とを少なくとも備えた加圧機構と、
    3)前記エンドレスベルト形状を有する金型を冷却するための冷却ロールと、
    4)エンドレスベルト形状を有する金型に密着したフィルムを剥がすための剥離機構と、
    5)前記加熱ロールおよび前記冷却ロールを回転させて、前記エンドレスベルト形状を有する金型を搬送する搬送機構と、
    を少なくとも備えた微細構造フィルムの製造装置であって、
    前記加熱ロールから前記冷却ロールに向かう第1の金型搬送経路において
    前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面に、幅方向にわたって前記金型を加圧するシワ伸ばしロールが配置されていること、かつ、
    該シワ伸ばしロールが、シワ伸ばしロール表面の温度調整を行う温度調整機構を有すること
    を特徴とする微細構造フィルムの製造装置。
  2. 前記エンドレスベルト形状を有する金型の幅をW、
    前記エンドレスベルト形状を有する金型の厚さをt、
    前記第1の金型搬送経路にあるシワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記冷却ロールと前記エンドレスベルト形状を有する金型との接触開始点までの金型搬送方向の距離をL1、
    とした場合、数式1を満たすように前記第1の金型搬送経路にシワ伸ばしロールが配置されていること
    を特徴とする請求項1に記載の微細構造フィルムの製造装置。
    1×10≦(W/t)×(1/L1)≦1×10・・・(数式1)
  3. 前記冷却ロールから前記加熱ロールに向かう第2の金型搬送経路において
    前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面にシワ伸ばしロールが配置されていること
    を特徴とする請求項1または2に記載の微細構造フィルムの製造装置。
  4. 前記エンドレスベルト形状を有する金型の幅をW、
    前記エンドレスベルト形状を有する金型の厚さをt、
    前記第2の金型搬送経路にあるシワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記加熱ロールと前記エンドレスベルト形状を有する金型との接触開始点までの金型搬送方向の距離をL2、
    とした場合、数式2を満たすように前記第2の金型搬送経路にシワ伸ばしロールが配置されていること
    を特徴とする請求項に記載の微細構造フィルムの製造装置。
    1×10≦(W/t)×(1/L2)≦1×10・・・(数式2)
  5. 前記第2の金型搬送経路に配置されたシワ伸ばしロールが、シワ伸ばしロール表面の温度調整を行う温度調整機構を有すること
    を特徴とする請求項またはに記載の微細構造フィルムの製造装置。
  6. 1)表面に微細構造が形成されたエンドレスベルト形状を有する金型を、加熱された加熱ロールに抱かせながら加熱する金型加熱工程と、
    2)フィルムの成形側表面と前記エンドレスベルト形状を有する金型の微細構造表面とを密着させた状態で、前記加熱ロールを含む一対のロールによりニップ加圧する加圧成形工程と、
    3)加圧後の前記エンドレスベルト形状を有する金型と前記フィルムを密着させたまま冷却ゾーンまで搬送する第1の搬送工程と、
    4)前記冷却ゾーンでエンドレスベルト形状を有する金型とフィルムを密着させたままエンドレスベルト形状を有する金型側から冷却する冷却工程と、
    5)冷却後のエンドレスベルト形状を有する金型とフィルムとを剥離するフィルム剥離工程と、
    6)フィルムを剥離した前記エンドレスベルト形状を有する金型を再度加熱ロールまで搬送する第2の搬送工程と、
    を少なくとも含むことにより、エンドレスベルト形状を有する金型の表面に形成された微細構造を、加熱したフィルムの表面に成形する微細構造フィルムの製造方法であって、
    前記第1の搬送工程において、前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面に、幅方向にわたって前記金型を加圧する配置されたシワ伸ばしロールにより前記エンドレスベルト形状を有する金型のシワを伸ばすこと、かつ、
    該シワ伸ばしロールが、温度調整機構を有し、シワ伸ばしロール表面の温度調整を行うこと
    を特徴とする微細構造フィルムの製造方法。
  7. 前記エンドレスベルト形状を有する金型の幅をW、
    前記エンドレスベルト形状を有する金型の厚さをt、
    前記第1の搬送工程にあるシワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記冷却ロールと前記エンドレスベルト形状を有する金型との接触開始点までの金型搬送方向の距離をL1、
    前記第1の搬送工程にある前記シワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点での前記シワ伸ばしロールの表面温度をT1、
    前記第1の搬送工程にある前記シワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記冷却ロールと前記エンドレスベルト形状を有する金型との接触開始点での前記冷却ロールの表面温度をT2、
    とした場合、数式3および数式4を満たすように前記シワ伸ばしロールを配置してシワを伸ばすこと
    を特徴とする請求項に記載の微細構造フィルムの製造方法。
    20≦(T1−T2)≦100・・・(数式3)
    1×10≦(W/t)×((T1−T2)/L1)≦1×1010・・・(数式4)
  8. 前記第2の搬送工程において、前記エンドレスベルト形状を有する金型の微細構造が形成された面の反対側の面に配置されたシワ伸ばしロールにより前記エンドレスベルト形状を有する金型のシワを伸ばすこと
    を特徴とする請求項6または7に記載の微細構造フィルムの製造方法。
  9. 前記エンドレスベルト形状を有する金型の幅をW、
    前記エンドレスベルト形状を有する金型の厚さをt、
    前記第2の搬送工程にあるシワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記加熱ロールと前記エンドレスベルト形状を有する金型との接触開始点までの金型搬送方向の距離をL2、
    前記第2の搬送工程にある前記シワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点での前記シワ伸ばしロールの表面温度をT3、
    前記第2の搬送工程にある前記シワ伸ばしロールと前記エンドレスベルト形状を有する金型との接触終了点から金型搬送方向にある前記加熱ロールと前記エンドレスベルト形状を有する金型との接触開始点での前記加熱ロールの表面温度をT4、
    とした場合、数式5を満たすように前記シワ伸ばしロールを配置してシワを伸ばすこと
    を特徴とする請求項に記載の微細構造フィルムの製造方法。
    1×10≦(W/t)×((T4−T3)/L2)≦1×1010・・・(数式5)
  10. 前記第2の搬送工程に配置されたシワ伸ばしロールが、温度調整機構を有し、シワ伸ばしロール表面の温度調整を行うこと
    を特徴とする請求項またはに記載の微細構造フィルムの製造方法。
JP2013041419A 2013-03-04 2013-03-04 微細構造フィルムの製造方法および製造装置 Expired - Fee Related JP6085193B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041419A JP6085193B2 (ja) 2013-03-04 2013-03-04 微細構造フィルムの製造方法および製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041419A JP6085193B2 (ja) 2013-03-04 2013-03-04 微細構造フィルムの製造方法および製造装置

Publications (2)

Publication Number Publication Date
JP2014168878A JP2014168878A (ja) 2014-09-18
JP6085193B2 true JP6085193B2 (ja) 2017-02-22

Family

ID=51691675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041419A Expired - Fee Related JP6085193B2 (ja) 2013-03-04 2013-03-04 微細構造フィルムの製造方法および製造装置

Country Status (1)

Country Link
JP (1) JP6085193B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110000058A (zh) * 2019-04-11 2019-07-12 中山市旭森涂层材料有限公司 一种即时贴涂布系统及涂布工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224932B2 (ja) * 2008-06-25 2013-07-03 株式会社ジロオコーポレートプラン 光学シート及びその製造方法
KR101883193B1 (ko) * 2011-03-31 2018-07-30 도레이 카부시키가이샤 미세구조 전사 필름의 제조 방법 및 제조 장치

Also Published As

Publication number Publication date
JP2014168878A (ja) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5924337B2 (ja) 微細構造転写フィルムの製造方法および製造装置
KR102454079B1 (ko) 표면 구조 필름의 제조 방법 및 제조 장치
JP4135768B2 (ja) 間欠式フィルム成形装置及び成型方法
TW200831274A (en) A device for intermittently forming films and a method of forming films
JP6064667B2 (ja) 両面構造フィルムの製造方法および製造装置
KR102490286B1 (ko) 표면 구조 필름의 제조방법 및 제조장치
JP5712733B2 (ja) 微細構造転写フィルムの製造方法および製造装置
JP5884596B2 (ja) 微細構造転写フィルムの製造方法および製造装置
WO2020071090A1 (ja) エンボス成形用シリコーンゴムローラー、それを用いたプラスチックフィルムの製造方法および製造装置、ならびに表面保護フィルム
JP6311395B2 (ja) 凹凸構造フィルムの製造方法および製造装置
JP4135769B2 (ja) 間欠式フィルム成形装置および成形方法
JP6085193B2 (ja) 微細構造フィルムの製造方法および製造装置
JP6075103B2 (ja) エンドレスベルト状金属金型およびその製造方法
JP2010030192A (ja) 微細形状転写シート、微細形状転写シートの製造方法
JP5104228B2 (ja) 微細形状転写シートの製造装置および微細形状転写シートの製造方法
JP2014133351A (ja) 微細構造転写装置及び微細構造転写方法
JP4929006B2 (ja) 間欠式フィルム成形装置および成型方法
JP2008087227A (ja) 微細形状転写シートの製造方法および製造装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160208

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees