JP6056537B2 - Particulate matter measuring apparatus and filter manufacturing method - Google Patents

Particulate matter measuring apparatus and filter manufacturing method Download PDF

Info

Publication number
JP6056537B2
JP6056537B2 JP2013031171A JP2013031171A JP6056537B2 JP 6056537 B2 JP6056537 B2 JP 6056537B2 JP 2013031171 A JP2013031171 A JP 2013031171A JP 2013031171 A JP2013031171 A JP 2013031171A JP 6056537 B2 JP6056537 B2 JP 6056537B2
Authority
JP
Japan
Prior art keywords
cell
particulate matter
cells
plugged
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013031171A
Other languages
Japanese (ja)
Other versions
JP2014159784A (en
Inventor
正文 野田
正文 野田
充宏 阿曽
充宏 阿曽
正 内山
正 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013031171A priority Critical patent/JP6056537B2/en
Publication of JP2014159784A publication Critical patent/JP2014159784A/en
Application granted granted Critical
Publication of JP6056537B2 publication Critical patent/JP6056537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、粒子状物質の測定装置及びフィルタの製造方法に関し、特に、内燃機関から排出される排気ガス中の粒子状物質の測定装置及びフィルタの製造方法に関する。   The present invention relates to a particulate matter measuring device and a filter manufacturing method, and more particularly to a particulate matter measuring device and a filter manufacturing method in exhaust gas discharged from an internal combustion engine.

ディーゼルエンジンから排出される排気ガス中の粒子状物質(Particulate Matter、以下、PM)を捕集するフィルタとして、例えば、ディーゼル・パティキュレイト・フィルタ(Diesel Particulate Filter、以下、DPF)が知られている。一般的に、DPFは、多孔質セラミックスの隔壁で区画された格子状の排気流路を形成する多数のセルを備え、これらセルの上流側と下流側とを交互に目封止して形成される。   For example, a diesel particulate filter (hereinafter referred to as DPF) is known as a filter that collects particulate matter (hereinafter referred to as PM) in exhaust gas discharged from a diesel engine. Yes. In general, a DPF includes a large number of cells that form a lattice-shaped exhaust passage partitioned by porous ceramic partition walls, and is formed by alternately plugging the upstream side and the downstream side of these cells. The

DPFのPM捕集量には限度があるため、PM堆積量が所定量に達すると、これら堆積したPMを燃焼除去するいわゆる強制再生が必要になる。そのため、強制再生の制御には、PM堆積量を精度良く測定することが望まれる。   Since there is a limit to the amount of PM collected by the DPF, when the amount of accumulated PM reaches a predetermined amount, so-called forced regeneration is required to burn and remove the accumulated PM. Therefore, it is desired to measure the PM accumulation amount with high accuracy for the forced regeneration control.

例えば、特許文献1には、排気下流側が目封止された測定用セルを挟んで対向する一対のセルに一対の電極をそれぞれ挿入し、これら電極間で形成されるコンデンサの静電容量に基づいてPM堆積量を検出するPMセンサが開示されている。   For example, in Patent Document 1, a pair of electrodes are inserted into a pair of cells facing each other with a measurement cell whose downstream side is plugged, and the capacitance of the capacitor formed between these electrodes is based on the capacitance of the capacitor. A PM sensor for detecting the amount of accumulated PM is disclosed.

特開2012−241643号公報JP 2012-241643 A

ところで、上述した従来技術のPMセンサでは、図10(a)に示すように、測定用セル100に流入した排気ガスは、測定用セル100を区画する左右上下の四つの隔壁を透過して、隣接する四つのセル101〜104に流入する。そのため、排気ガス中のPMは測定用セル100の左右上下の隔壁表面に略矩形状に堆積する(図10(b)参照)。   By the way, in the above-described prior art PM sensor, as shown in FIG. 10A, the exhaust gas flowing into the measurement cell 100 passes through the four right, left, upper and lower partition walls that partition the measurement cell 100, It flows into the four adjacent cells 101-104. Therefore, PM in the exhaust gas is deposited in a substantially rectangular shape on the left and right and upper and lower partition wall surfaces of the measurement cell 100 (see FIG. 10B).

このように、測定用セル100の隔壁表面にPMが略矩形状に堆積すると、コンデンサを形成する電極10A,10B間の静電容量変化がサチュレートして、感度の低下を招く可能性がある。   As described above, when PM is deposited in a substantially rectangular shape on the partition wall surface of the measurement cell 100, the change in capacitance between the electrodes 10A and 10B forming the capacitor may be saturated, leading to a decrease in sensitivity.

本発明は、このような点に鑑みてなされたもので、その目的は、静電容量変化の早期サチュレートを効果的に抑制して、感度の低下を抑止することにある。   The present invention has been made in view of such a point, and an object thereof is to effectively suppress early saturation of a change in capacitance and to suppress a decrease in sensitivity.

上述の目的を達成するため、本発明の粒子状物質の測定装置は、内燃機関の排気通路内に設けられ、多孔質性の隔壁で区画された格子状の排気流路を形成する複数のセルの上流側と下流側とを交互に目封止されたフィルタと、少なくとも一つのセルを測定用セルとし、当該測定用セルに隔壁を介して隣接する四つのセルのうち、対向する一対のセルに非目封止側からそれぞれ挿入される一対の電極と、前記一対の電極間の静電容量に基づいて、前記フィルタに捕集される排気中の粒子状物質の堆積量を算出する堆積量算出手段と、を備え、前記測定用セル内の非目封止側に、当該測定用セルの開口を絞るオリフィスを設けたことを特徴とする。   In order to achieve the above-mentioned object, the particulate matter measuring device of the present invention is provided in an exhaust passage of an internal combustion engine, and forms a plurality of cells forming a lattice-like exhaust flow path partitioned by porous partition walls. A filter in which the upstream side and the downstream side are alternately plugged, and at least one cell is a measurement cell, and a pair of opposed cells among the four cells adjacent to the measurement cell via a partition wall A deposition amount for calculating a deposition amount of particulate matter in the exhaust gas collected by the filter based on a pair of electrodes respectively inserted from the non-plugged side and a capacitance between the pair of electrodes And an orifice for narrowing the opening of the measurement cell on the non-plugged side in the measurement cell.

また、前記四つのセルのうち、前記電極が挿入されていない一対のセル内に設けられて、当該セルの流路を塞ぐ閉塞部材をさらに備えてもよい。   Moreover, you may further provide the obstruction | occlusion member which is provided in a pair of cell in which the said electrode is not inserted among the said four cells, and block | closes the flow path of the said cell.

また、前記閉塞部材は、セルの目封止側から非目封止側までを埋め込んで形成されてもよい。   Further, the closing member may be formed by embedding from the plugged side of the cell to the non-plugged side.

また、前記閉塞部材は、セルの非目封止側を目封止して形成されてもよい。   Further, the closing member may be formed by plugging the non-plugged side of the cell.

また、前記電極が挿入された一対のセルのうち、一方のセルの非目封止側端部を第2の閉塞部材で閉塞してもよい。   Moreover, you may block | close the non-plugging side edge part of one cell among a pair of cells in which the said electrode was inserted with the 2nd closure member.

また、前記フィルタは、前記排気通路内に、前記測定用セルのオリフィスを上流側に向けて配置されてもよい。   The filter may be disposed in the exhaust passage with the orifice of the measurement cell facing upstream.

また、前記排気通路の所定位置から分岐するバイパス通路と、前記バイパス通路の分岐位置よりも下流側の排気通路内に設けられ、当該下流側の排気通路内を流れる排気中の粒子状物質を捕集する第2のフィルタと、をさらに備え、前記フィルタは、前記バイパス通路内に配置されてもよい。   In addition, a bypass passage that branches from a predetermined position of the exhaust passage, and an exhaust passage that is downstream of the bypass passage, and traps particulate matter in the exhaust that flows through the exhaust passage on the downstream side. And a second filter that collects, the filter may be disposed in the bypass passage.

また、前記フィルタに堆積した粒子状物質を燃焼除去する強制再生を実行する際は、前記一対の電極をヒータとして機能させてもよい。   Moreover, when performing forced regeneration which burns and removes the particulate matter deposited on the filter, the pair of electrodes may function as a heater.

本発明のフィルタの製造方法は、多孔質性の隔壁で区画された格子状の流路を形成する複数のセルを含み、当該セルの一端側と他端側とが交互に目封止されると共に、所定のセルの非目封止側に当該セルの開口を絞るオリフィスが設けられるフィルタの製造方法であって、前記所定のセルの非目封止側に、目封止剤を注入するステップと、前記所定のセルに注入された目封止剤に、前記オリフィスの開口径と同径の可燃性部材を挿入するステップと、前記フィルタを燃成して、前記所定のセルに挿入された前記可燃性部材を燃焼除去するステップと、を含むことを特徴とする。   The filter manufacturing method of the present invention includes a plurality of cells forming a grid-like flow path partitioned by porous partition walls, and one end side and the other end side of the cells are alternately plugged. And a method of manufacturing a filter in which an orifice for narrowing the opening of the cell is provided on the non-plugged side of the predetermined cell, the step of injecting a plugging agent into the non-plugged side of the predetermined cell And a step of inserting a combustible member having the same diameter as the opening diameter of the orifice into the plugging agent injected into the predetermined cell, and the filter is burned and inserted into the predetermined cell. And combusting and removing the combustible member.

本発明の粒子状物質の測定装置によれば、静電容量の変化の早期サチュレートを効果的に抑制して、感度の低下を抑止することができる。   According to the particulate matter measuring device of the present invention, it is possible to effectively suppress the early saturation of the change in capacitance and suppress the decrease in sensitivity.

本発明の一実施形態に係る粒子状物質の測定装置を示す模式的な全体構成図である。It is a typical whole block diagram which shows the measuring apparatus of the particulate matter which concerns on one Embodiment of this invention. 本発明の一実施形態に係る粒子状物質の測定装置において、(a)はDPFを排気下流側から視た模式的な斜視図、(b)はDPFの一部を排気下流側から視た模式的な平面図である。In the particulate matter measurement device according to an embodiment of the present invention, (a) is a schematic perspective view of a DPF viewed from the exhaust downstream side, and (b) is a schematic view of a part of the DPF viewed from the exhaust downstream side. FIG. (a)〜(e)は、図2(a)のA1〜A5線縦断面図である。(A)-(e) is A1-A5 line longitudinal cross-sectional view of Fig.2 (a). (a)〜(e)は、図2(a)のB1〜B5線横断面図である。(A)-(e) is the B1-B5 line cross-sectional view of Fig.2 (a). 本発明の一実施形態に係る粒子状物質の測定装置において、閉塞部材の変形例を示す模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing a modification of the blocking member in the particulate matter measurement device according to an embodiment of the present invention. 本発明の一実施形態に係る粒子状物質の測定装置において、電極用セルの変形例を示す模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing a modification of the electrode cell in the particulate matter measurement device according to one embodiment of the present invention. 本発明の一実施形態に係る粒子状物質の測定装置において、測定用セルの隔壁表面に堆積するPMを従来技術と比較した図である。It is the figure which compared PM deposited on the partition wall surface of the cell for measurement with the prior art in the particulate matter measuring device concerning one embodiment of the present invention. 本発明の一実施形態に係る粒子状物質の測定装置において、静電容量の変化がサチュレートする時期を従来技術と比較した図である。In the particulate matter measuring device according to one embodiment of the present invention, it is a diagram comparing the time when the change in capacitance saturates with the prior art. 本発明の他の実施形態に係る粒子状物質の測定装置を示す模式的な全体構成図である。It is a typical whole block diagram which shows the measuring apparatus of the particulate matter which concerns on other embodiment of this invention. 従来のPMセンサにおいて、(a)は測定用セルに流入する排気ガスの流れを示す図、(b)は測定用セルの隔壁表面に堆積するPMを示す図である。In the conventional PM sensor, (a) is a view showing the flow of exhaust gas flowing into the measurement cell, and (b) is a view showing PM deposited on the partition wall surface of the measurement cell.

以下、図1〜4に基づいて、本発明の一実施形態に係る粒子状物質の測定装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, based on FIGS. 1-4, the measuring apparatus of the particulate matter which concerns on one Embodiment of this invention is demonstrated. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、ディーゼルエンジン(以下、単にエンジン)10には、吸気マニホールド10aと排気マニホールド10bとが設けられている。吸気マニホールド10aには新気を導入する吸気通路11が接続され、排気マニホールド10bには排気ガスを大気に放出する排気通路12が接続されている。   As shown in FIG. 1, a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10a and an exhaust manifold 10b. An intake passage 11 for introducing fresh air is connected to the intake manifold 10a, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10b.

さらに、排気通路12には、排気上流側から順に、排気管内噴射装置13、排気後処理装置14、DPF入口温度センサ31、DPF出口温度センサ32が設けられている。   Further, in the exhaust passage 12, an exhaust pipe injection device 13, an exhaust aftertreatment device 14, a DPF inlet temperature sensor 31, and a DPF outlet temperature sensor 32 are provided in this order from the exhaust upstream side.

排気管内噴射装置13は、電子制御ユニット(以下、ECU)20から出力される指示信号に応じて、排気通路12内に未燃燃料(HC)を噴射する。なお、エンジン10の多段噴射によるポスト噴射を用いる場合は、この排気管内噴射装置13を省略してもよい。   The exhaust pipe injection device 13 injects unburned fuel (HC) into the exhaust passage 12 in response to an instruction signal output from an electronic control unit (hereinafter, ECU) 20. In addition, when using the post injection by the multistage injection of the engine 10, this in-pipe injection device 13 may be omitted.

DPF入口温度センサ31は、DPF16に流入する排気ガスの温度(以下、入口温度TIN)を検出する。DPF出口温度センサ32は、DPF16から流出する排気ガスの温度(以下、出口温度TOUT)を検出する。これら入口温度TIN及び出口温度TOUTは、電気的に接続されたECU20に出力される。 The DPF inlet temperature sensor 31 detects the temperature of exhaust gas flowing into the DPF 16 (hereinafter referred to as inlet temperature T IN ). The DPF outlet temperature sensor 32 detects the temperature of exhaust gas flowing out from the DPF 16 (hereinafter referred to as outlet temperature T OUT ). The inlet temperature T IN and the outlet temperature T OUT are output to the electrically connected ECU 20.

排気後処理装置14は、ケース14a内に排気上流側から順に酸化触媒15、DPF16を配置して構成されている。   The exhaust aftertreatment device 14 is configured by arranging an oxidation catalyst 15 and a DPF 16 in order from the exhaust upstream side in a case 14a.

酸化触媒15は、例えば、コーディエライトハニカム構造体等のセラミックス製担体表面に触媒成分を担持して形成されている。酸化触媒15は、DPF16の強制再生時に、排気管内噴射装置13又はポスト噴射によって未燃燃料(HC)が供給されると、これを酸化して排気ガスの温度を上昇させる。これにより、DPF16はPM燃焼温度(例えば、約600℃)まで昇温されて、堆積したPMが燃焼除去される。   The oxidation catalyst 15 is formed, for example, by supporting a catalyst component on the surface of a ceramic carrier such as a cordierite honeycomb structure. When the unburnt fuel (HC) is supplied by the in-pipe injection device 13 or post-injection during forced regeneration of the DPF 16, the oxidation catalyst 15 oxidizes this and raises the temperature of the exhaust gas. As a result, the DPF 16 is heated to the PM combustion temperature (for example, about 600 ° C.), and the deposited PM is burned and removed.

DPF16は、例えば、多孔質セラミックスの隔壁で区画された格子状の排気流路を形成する多数のセルを排気ガスの流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して構成されている。以下、図2〜4に基づいて、本実施形態のDPF16の詳細構造を説明する。   The DPF 16 has, for example, a large number of cells forming a grid-like exhaust flow path partitioned by porous ceramic partition walls along the exhaust gas flow direction, and the upstream side and the downstream side of these cells are alternately arranged. It is configured by plugging. Hereinafter, based on FIGS. 2-4, the detailed structure of DPF16 of this embodiment is demonstrated.

図2〜4に示すように、DPF16には、排気上流側が解放(排気下流側が目封止)された複数のセル1が、静電容量の測定用として選定されている(以下、セル1を測定用セルという)。   As shown in FIGS. 2 to 4, in the DPF 16, a plurality of cells 1 that are open on the exhaust upstream side (plugged on the exhaust downstream side) are selected for capacitance measurement (hereinafter, cell 1 is referred to as “cell 1”). Called measurement cell).

また、測定用セル1に隔壁を介して隣接する4つのセル2〜5のうち、測定用セル1を挟んで対向する一対のセル2,3には、コンデンサを形成する一対の電極A,Bがそれぞれ挿入されている(以下、セル2,3を電極用セルという)。   Of the four cells 2 to 5 adjacent to the measurement cell 1 through a partition wall, the pair of cells 2 and 3 that are opposed to each other with the measurement cell 1 in between are a pair of electrodes A and B forming a capacitor. Are inserted (hereinafter, cells 2 and 3 are referred to as electrode cells).

さらに、測定用セル1を挟んで対向し、且つ電極A,Bが挿入されない一対のセル4,5には、セル4,5内の排気流路を閉塞する閉塞部材6が設けられている(以下、セル4,5を閉塞用セルという)。   Further, a pair of cells 4 and 5 that face each other with the measurement cell 1 interposed therebetween and into which the electrodes A and B are not inserted are provided with a closing member 6 that closes the exhaust flow path in the cells 4 and 5 ( Hereinafter, the cells 4 and 5 are referred to as blocking cells).

電極A,Bは、例えば導電性の金属線であって、排気上流側を目封止された電極用セル2,3に非目封止側(排気下流側)から挿入されてコンデンサを形成する。電極用セル2に挿入された電極Aは、排気下流側の基端部を外方に突出させると共に、その基端部を導電性の金属部材で形成された接続線A1(図2参照)によって互いに接続されている。同様に、電極用セル3に挿入された電極Bは、排気下流側の基端部を外方に突出させると共に、その基端部を導電性の金属部材で形成された接続線B1(図2参照)によって互いに接続されている。   The electrodes A and B are, for example, conductive metal wires, and are inserted from the non-plugged side (exhaust downstream side) into the electrode cells 2 and 3 plugged on the exhaust upstream side to form a capacitor. . The electrode A inserted into the electrode cell 2 has a base end portion on the exhaust downstream side protruding outward, and the base end portion is connected by a connection line A1 (see FIG. 2) formed of a conductive metal member. Are connected to each other. Similarly, the electrode B inserted into the electrode cell 3 has a base end portion on the exhaust downstream side protruding outward, and a connection line B1 formed of a conductive metal member at the base end portion (FIG. 2). Are connected to each other.

本実施形態において、電極Aの突出量は、接続線A1と接続線B1との接触を回避するために、電極Bの突出量よりも長く設定されている。なお、これら突出量は、必ずしも電極Aを長くする必要はなく、電極Bを長く設定することもできる。   In the present embodiment, the protruding amount of the electrode A is set longer than the protruding amount of the electrode B in order to avoid contact between the connecting line A1 and the connecting line B1. In addition, these protrusion amounts do not necessarily need to make the electrode A longer, and the electrode B can be set longer.

測定用セル1の排気上流側端には、測定用セル1内に流れ込む排気ガスを絞るオリフィス8が設けられている(図3,4参照)。このオリフィス8により測定用セル1内への排気ガス流量が低減されることで、測定用セル1を区画する隔壁へのPM堆積を遅らせることができる。すなわち、オリフィス8の開口径を適宜最適な値に設定すれば、電極A,B間の静電容量変化がサチュレートする時期を所望の時期に調整できるように構成されている。   An orifice 8 for restricting exhaust gas flowing into the measurement cell 1 is provided at the exhaust upstream end of the measurement cell 1 (see FIGS. 3 and 4). By reducing the exhaust gas flow rate into the measurement cell 1 by the orifice 8, PM deposition on the partition walls defining the measurement cell 1 can be delayed. In other words, when the opening diameter of the orifice 8 is appropriately set to an optimal value, the time when the capacitance change between the electrodes A and B is saturated can be adjusted to a desired time.

なお、オリフィス8の製造方法としては、一般的な従来のDPFの製造工程に以下の行程を含むことが好ましい。まず、複数のセルを交互に目封止する従来の行程において、測定用セル1の非目封止側端に、目封止部材と同一材料のセラミックスを注入する。その後、測定用セル1に注入された目封止部材に、オリフィス8と同径の円柱部材(不図示)を挿入する。この円柱部材には、高温時に燃焼除去される可燃性材料を用いることが好ましい。そして、DPF16を十分に乾燥させた後、所定の高温で燃成する。この燃成行程で、円柱部材は燃焼除去されるため、測定用セル1にオリフィス8が設けられたDPF16を容易に製造することができる。   In addition, as a manufacturing method of the orifice 8, it is preferable that the following process is included in the manufacturing process of a general conventional DPF. First, in the conventional process of alternately plugging a plurality of cells, ceramics of the same material as the plugging member is injected into the non-plugged side end of the measurement cell 1. Thereafter, a cylindrical member (not shown) having the same diameter as the orifice 8 is inserted into the plugging member injected into the measuring cell 1. For this cylindrical member, it is preferable to use a combustible material that is burned and removed at a high temperature. Then, after the DPF 16 is sufficiently dried, it burns at a predetermined high temperature. In this combustion process, the cylindrical member is burned and removed, so that the DPF 16 in which the orifice 8 is provided in the measuring cell 1 can be easily manufactured.

閉塞用セル4,5内に設けられた閉塞部材6は、例えばDPF16と同一材料のセラミックスで形成されている。本実施形態において、この閉塞部材6は、閉塞用セル4,5の目封止側から非目封止側に至る排気流路を全て塞ぐように、閉塞用セル4,5内の全領域に埋設されている(図3,4参照)。   The closing member 6 provided in the closing cells 4 and 5 is made of, for example, ceramics made of the same material as the DPF 16. In the present embodiment, the closing member 6 covers the entire area in the closing cells 4 and 5 so as to block all the exhaust flow paths from the plugging side to the non-plugging side of the closing cells 4 and 5. It is buried (see FIGS. 3 and 4).

すなわち、測定用セル1に流入した排気ガスは、閉塞用セル4,5に流れ込むことなく、電極用セル2,3へと流れ込むように構成されている。これにより、測定用セル1に流入した排気ガス中のPMは、電極用セル2,3側の隔壁表面に捕集され、閉塞用セル4,5側の隔壁への堆積が効果的に抑制される。特に、オリフィス8との相乗効果により、測定用セル1の閉塞用セル4,5側の隔壁のみならず、測定用セル1内の目封止背面及び隔壁表面へのコ字状(U字状)の堆積も効果的に抑制することができる。   In other words, the exhaust gas that has flowed into the measuring cell 1 is configured to flow into the electrode cells 2 and 3 without flowing into the blocking cells 4 and 5. Thereby, PM in the exhaust gas flowing into the measuring cell 1 is collected on the surface of the partition walls on the electrode cells 2 and 3 side, and the deposition on the partition walls on the closing cells 4 and 5 side is effectively suppressed. The In particular, due to the synergistic effect with the orifice 8, not only the partition walls on the closing cells 4 and 5 side of the measurement cell 1 but also the U-shape (U-shape) on the plugging back surface and the partition surface in the measurement cell 1 ) Can also be effectively suppressed.

なお、閉塞部材6は必ずしも、閉塞用セル4,5内の全領域に埋設される必要はなく、図5に示すように、閉塞用セル4,5内の流路の一部を閉塞(図示例では、非目封止側を目封止)するように設けてもよい。   Note that the closing member 6 does not necessarily need to be embedded in the entire area in the closing cells 4 and 5, and as shown in FIG. 5, a part of the flow path in the closing cells 4 and 5 is closed (see FIG. In the example shown, the non-plugged side may be plugged.

また、図6に示すように、追加の閉塞部材7(第二の閉塞部材)を電極A,Bの何れか一方(図示例では電極A)の挿入側端部に設けてもよい。この場合、PMの閉塞用セル4,5側の隔壁表面への堆積のみならず、電極用セル2側の隔壁表面への堆積も効果的に抑制することができる。   Further, as shown in FIG. 6, an additional closing member 7 (second closing member) may be provided at the insertion side end of one of the electrodes A and B (electrode A in the illustrated example). In this case, not only deposition of PM on the partition wall surfaces on the blocking cells 4 and 5 side but also deposition on the partition wall surface on the electrode cell 2 side can be effectively suppressed.

次に、図1に戻って、本実施形態のECU20を説明する。ECU20は、エンジン10や排気管内噴射装置13の燃料噴射等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備え構成されている。また、ECU20は、静電容量演算部21と、PM堆積量推定部22とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU20に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   Next, returning to FIG. 1, the ECU 20 of the present embodiment will be described. The ECU 20 performs various controls such as fuel injection of the engine 10 and the exhaust pipe injection device 13, and includes a known CPU, ROM, RAM, input port, output port, and the like. Moreover, ECU20 has the electrostatic capacitance calculating part 21 and PM deposition amount estimation part 22 as a one part function element. Each of these functional elements will be described as being included in the ECU 20 which is an integral hardware, but any one of these may be provided in separate hardware.

静電容量演算部21は、電極A,Bから入力される信号に基づいて、これら電極A,B間の静電容量Cを演算する。静電容量Cは、電極A,B間の媒体の誘電率ε、電極A,Bの面積S、電極A,B間の距離dとする以下の数式1で演算される。   The capacitance calculation unit 21 calculates the capacitance C between the electrodes A and B based on the signals input from the electrodes A and B. The electrostatic capacity C is calculated by the following formula 1 where the dielectric constant ε of the medium between the electrodes A and B, the area S of the electrodes A and B, and the distance d between the electrodes A and B are calculated.

Figure 0006056537
Figure 0006056537

PM堆積量推定部22は、DPF入口温度センサ31で検出される入口温度TIN及びDPF出口温度センサ32で検出される出口温度TOUTの平均値(以下、DPF平均温度TAVE)と、静電容量演算部21で演算される静電容量Cとに基づいて、DPF16に捕集されたPM堆積量PMDEPを推定する。PM堆積量PMDEPの推定には、予め実験により求めた近似式やマップ等を用いることができる。 The PM accumulation amount estimation unit 22 calculates the average value of the inlet temperature T IN detected by the DPF inlet temperature sensor 31 and the outlet temperature T OUT detected by the DPF outlet temperature sensor 32 (hereinafter, DPF average temperature T AVE ), static Based on the capacitance C calculated by the capacitance calculation unit 21, the PM deposition amount PM DEP collected by the DPF 16 is estimated. For the estimation of the PM deposition amount PM DEP , an approximate expression or a map obtained in advance by experiments can be used.

次に、本実施形態に係る粒子状物質の測定装置による作用効果を説明する。   Next, the function and effect of the particulate matter measurement device according to the present embodiment will be described.

従来のPMセンサでは、測定用セルを挟んで対向する四つのセルは、排気上流側のみが目封止され、排気下流側は非目封止とされている。そのため、測定用セルに流入した排気ガス中のPMは、測定用セルを区画する四つの隔壁表面に略矩形状に堆積する(図10(b)参照)。このように、測定用セルの隔壁表面にPMが略矩形状に堆積すると、コンデンサを形成する電極間の静電容量変化は早期にサチュレートして、感度の低下を招くといった課題がある。   In the conventional PM sensor, four cells facing each other across the measurement cell are plugged only on the exhaust upstream side, and the exhaust downstream side is not plugged. Therefore, PM in the exhaust gas flowing into the measurement cell is deposited in a substantially rectangular shape on the surfaces of the four partition walls that partition the measurement cell (see FIG. 10B). Thus, when PM is deposited in a substantially rectangular shape on the partition wall surface of the measurement cell, there is a problem that the change in capacitance between the electrodes forming the capacitor is saturated at an early stage, leading to a decrease in sensitivity.

これに対し、本実施形態の粒子状物質の測定装置では、測定用セル1の排気上流側端に、排気ガス流量を絞るオリフィス8が設けられている。また、測定用セル1を挟んで対向し、且つ電極A,Bが挿入されない閉塞用セル4,5内に、これら閉塞用セル4,5の排気流路を閉塞する閉塞部材6が設けられている。   On the other hand, in the particulate matter measuring device of the present embodiment, an orifice 8 for restricting the exhaust gas flow rate is provided at the exhaust upstream end of the measuring cell 1. Further, a blocking member 6 that closes the exhaust flow path of the blocking cells 4 and 5 is provided in the blocking cells 4 and 5 that face each other with the measurement cell 1 interposed therebetween and into which the electrodes A and B are not inserted. Yes.

すなわち、オリフィス8によって測定用セル1内への排気ガス流量が低減されるため、測定用セル1を区画する隔壁へのPM堆積は抑制される。また、閉塞部材6によって閉塞用セル4,5への排気ガス流入が阻止されるため、閉塞用セル4,5側の隔壁への堆積も抑制される(図7参照)。さらに、オリフィス8と閉塞部材6との相乗効果により、測定用セル1の閉塞用セル4,5側の隔壁のみならず、測定用セル1内の目封止背面及び隔壁表面へのコ字状(U字状)のPM堆積も効果的に抑制される。その結果、図8に示すように、静電容量の変化がサチュレートする時期を、従来技術のPMセンサに比べて大幅に遅れさせることが可能になる。   That is, since the exhaust gas flow rate into the measurement cell 1 is reduced by the orifice 8, PM deposition on the partition walls defining the measurement cell 1 is suppressed. In addition, since the exhaust gas is prevented from flowing into the closing cells 4 and 5 by the closing member 6, accumulation on the partition walls on the closing cells 4 and 5 side is also suppressed (see FIG. 7). Further, due to the synergistic effect of the orifice 8 and the closing member 6, not only the partition wall on the closing cell 4, 5 side of the measuring cell 1 but also the U-shape on the plugging back surface and the partition surface in the measuring cell 1. (U-shaped) PM deposition is also effectively suppressed. As a result, as shown in FIG. 8, it is possible to greatly delay the time when the change in capacitance is saturated as compared with the PM sensor of the prior art.

したがって、本実施形態の粒子状物質の測定装置によれば、静電容量変化の早期サチュレートが効果的に抑制されて、感度の低下を確実に抑止することができる。   Therefore, according to the particulate matter measuring device of the present embodiment, the early saturation of the capacitance change is effectively suppressed, and the decrease in sensitivity can be reliably suppressed.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、DPF16は、排気通路12内に測定用セル1の非目封止側を排気上流側に向けて配置されるものとして説明したが、測定用セル1の目封止側を排気上流側に向けて配置してもよい。また、オリフィス8のみで静電容量変化のサチュレート時期を所望の時期に調整できる場合は、閉塞用セル4,5の閉塞部材6を省略して構成してもよい。   For example, the DPF 16 has been described as being disposed in the exhaust passage 12 with the non-plugged side of the measurement cell 1 facing the upstream side of the exhaust, but the plugged side of the measurement cell 1 is on the upstream side of the exhaust. You may arrange it. Further, in the case where the saturating time of the capacitance change can be adjusted to a desired time only by the orifice 8, the closing member 6 of the closing cells 4 and 5 may be omitted.

また、図9に示すように、酸化触媒15よりも下流側の排気通路12から分岐するバイパス通路18を設け、このバイパス通路18内に容量を小さくした計測用のDPF16を配置して構成してもよい。この場合、分岐部よりも下流側の排気通路12には容量の大きいDPF17(第2のフィルタ)を設け、バイパス通路18には排気ガスの流量を調整するオリフィス18aを設けることが好ましい。また、計測用のDPF16の強制再生を実行する場合は、電極A,Bに電圧を印加してヒータとして機能させてもよい。   Further, as shown in FIG. 9, a bypass passage 18 branched from the exhaust passage 12 downstream of the oxidation catalyst 15 is provided, and a measurement DPF 16 having a reduced capacity is disposed in the bypass passage 18. Also good. In this case, it is preferable to provide a large-capacity DPF 17 (second filter) in the exhaust passage 12 on the downstream side of the branch portion, and provide the bypass passage 18 with an orifice 18a for adjusting the flow rate of the exhaust gas. When forced regeneration of the measurement DPF 16 is executed, a voltage may be applied to the electrodes A and B so as to function as a heater.

1 測定用セル
2,3 電極用セル
4,5 閉塞用セル
6 閉塞部材
8 オリフィス
10 エンジン
12 排気通路
14 排気後処理装置
16 DPF(フィルタ)
20 ECU
21 静電容量演算部(堆積量算出手段)
22 PM堆積量推定部(堆積量算出手段)
A,B 電極
DESCRIPTION OF SYMBOLS 1 Measurement cell 2,3 Electrode cell 4,5 Blocking cell 6 Blocking member 8 Orifice 10 Engine 12 Exhaust passage 14 Exhaust aftertreatment device 16 DPF (filter)
20 ECU
21 Capacitance calculation unit (deposition amount calculation means)
22 PM accumulation amount estimation unit (deposition amount calculation means)
A and B electrodes

Claims (8)

内燃機関の排気通路内に設けられ、多孔質性の隔壁で区画された格子状の排気流路を形成する複数のセルの上流側と下流側とを交互に目封止されたフィルタと、
少なくとも一つのセルを測定用セルとし、当該測定用セルに隔壁を介して隣接する四つのセルのうち、対向する一対のセルに非目封止側からそれぞれ挿入される一対の電極と、
前記一対の電極間の静電容量に基づいて、前記フィルタに捕集される排気中の粒子状物質の堆積量を算出する堆積量算出手段と、を備え、
前記測定用セル内の非目封止側に、当該測定用セルの開口を絞るオリフィスを設け
前記四つのセルのうち、前記電極が挿入されていない一対のセル内に設けられて、当該セルの流路を塞ぐ閉塞部材をさらに備える
ことを特徴とする粒子状物質の測定装置。
A filter provided in the exhaust passage of the internal combustion engine and alternately plugged upstream and downstream of a plurality of cells forming a grid-like exhaust flow path partitioned by porous partition walls;
A pair of electrodes inserted into the pair of opposed cells from the non-plugged side among the four cells adjacent to the measurement cell via a partition wall, and at least one cell as a measurement cell;
A deposition amount calculating means for calculating a deposition amount of particulate matter in the exhaust gas collected by the filter based on a capacitance between the pair of electrodes;
On the non-plugged side in the measurement cell, an orifice for narrowing the opening of the measurement cell is provided ,
Of the four cells, a particulate matter measuring apparatus further comprising a blocking member provided in a pair of cells into which the electrode is not inserted and blocking a flow path of the cell .
前記閉塞部材は、セルの目封止側から非目封止側までを埋め込んで形成される請求項1に記載の粒子状物質の測定装置。 The particulate matter measuring device according to claim 1 , wherein the blocking member is formed by embedding from a plugged side to a non-plugged side of a cell. 前記閉塞部材は、セルの非目封止側を目封止して形成される請求項1に記載の粒子状物質の測定装置。 The particulate matter measuring device according to claim 1 , wherein the blocking member is formed by plugging a non-plugged side of a cell. 前記電極が挿入された一対のセルのうち、一方のセルの非目封止側端部を第2の閉塞部材で閉塞した請求項1から3の何れか一項に記載の粒子状物質の測定装置。 The measurement of the particulate matter according to any one of claims 1 to 3 , wherein a non-plugged side end portion of one of the pair of cells into which the electrodes are inserted is closed with a second closing member. apparatus. 前記フィルタは、前記排気通路内に、前記測定用セルのオリフィスを上流側に向けて配置される請求項1から4の何れか一項に記載の粒子状物質の測定装置。 The particulate matter measuring device according to any one of claims 1 to 4 , wherein the filter is disposed in the exhaust passage with an orifice of the measurement cell facing an upstream side. 前記排気通路の所定位置から分岐するバイパス通路と、
前記バイパス通路の分岐位置よりも下流側の排気通路内に設けられ、当該下流側の排気通路内を流れる排気中の粒子状物質を捕集する第2のフィルタと、をさらに備え、
前記フィルタは、前記バイパス通路内に配置される請求項1から5の何れか一項に記載の粒子状物質の測定装置。
A bypass passage branched from a predetermined position of the exhaust passage;
A second filter that is provided in the exhaust passage downstream of the bypass passage branching position and collects particulate matter in the exhaust gas flowing in the downstream exhaust passage;
The particulate matter measuring device according to any one of claims 1 to 5 , wherein the filter is disposed in the bypass passage.
前記フィルタに堆積した粒子状物質を燃焼除去する強制再生を実行する際は、前記一対の電極をヒータとして機能させる
請求項6に記載の粒子状物質の測定装置。
When performing forced regeneration for burning and removing particulate matter deposited on the filter, the pair of electrodes function as a heater.
The apparatus for measuring particulate matter according to claim 6 .
多孔質性の隔壁で区画された格子状の流路を形成する複数のセルを含み、当該セルの一端側と他端側とが交互に目封止されると共に、所定のセルの非目封止側に当該セルの開口を絞るオリフィスが設けられるフィルタの製造方法であって、
前記所定のセルの非目封止側に、目封止剤を注入するステップと、
前記所定のセルに注入された目封止剤に、前記オリフィスの開口径と同径の可燃性部材を挿入するステップと、
前記フィルタを燃成して、前記所定のセルに挿入された前記可燃性部材を燃焼除去するステップと、を含むことを特徴とするフィルタの製造方法。
Including a plurality of cells forming a grid-like flow path partitioned by porous partition walls, wherein one end side and the other end side of the cell are alternately plugged, and a predetermined cell is not plugged A method of manufacturing a filter in which an orifice for restricting the opening of the cell is provided on the stop side,
Injecting a plugging agent into the non-plugged side of the predetermined cell;
Inserting a flammable member having the same diameter as the opening diameter of the orifice into the plugging agent injected into the predetermined cell;
Combusting the filter, and combusting and removing the combustible member inserted in the predetermined cell.
JP2013031171A 2013-02-20 2013-02-20 Particulate matter measuring apparatus and filter manufacturing method Expired - Fee Related JP6056537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031171A JP6056537B2 (en) 2013-02-20 2013-02-20 Particulate matter measuring apparatus and filter manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031171A JP6056537B2 (en) 2013-02-20 2013-02-20 Particulate matter measuring apparatus and filter manufacturing method

Publications (2)

Publication Number Publication Date
JP2014159784A JP2014159784A (en) 2014-09-04
JP6056537B2 true JP6056537B2 (en) 2017-01-11

Family

ID=51611620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031171A Expired - Fee Related JP6056537B2 (en) 2013-02-20 2013-02-20 Particulate matter measuring apparatus and filter manufacturing method

Country Status (1)

Country Link
JP (1) JP6056537B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099115A1 (en) 2013-12-27 2015-07-02 三菱化学株式会社 Light-emitting device and method for designing light emitting device
JP2016153737A (en) * 2015-02-20 2016-08-25 いすゞ自動車株式会社 Sensor
CN110057221A (en) * 2019-05-16 2019-07-26 北京盛赢节能技术有限公司 Fluid-bed heat exchanger lower resistance end socket

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131370A (en) * 1984-07-24 1986-02-13 株式会社デンソー Porous ceramic structure
JPS62145919U (en) * 1986-03-10 1987-09-14
EP1961929A1 (en) * 2005-12-05 2008-08-27 Ngk Insulators, Ltd. Honeycomb structure body and method of producing the same
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
US20080105567A1 (en) * 2006-11-08 2008-05-08 Honda Motor Co., Ltd. Sensing device and method
WO2008117853A1 (en) * 2007-03-27 2008-10-02 Ngk Insulators, Ltd. Fine particle sensor
JP2012177299A (en) * 2010-03-16 2012-09-13 Ibiden Co Ltd Sensor for exhaust emission control system
JP2012237228A (en) * 2011-05-11 2012-12-06 Isuzu Motors Ltd Pm sensor

Also Published As

Publication number Publication date
JP2014159784A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP6028615B2 (en) Particulate matter measuring device
JP6089763B2 (en) Particulate matter measuring device
US6735941B2 (en) Exhaust gas purification system having particulate filter
JP6197377B2 (en) Exhaust purification device
JP6051948B2 (en) Exhaust gas purification device for internal combustion engine
JP6036388B2 (en) Particulate matter measuring device
JP6136298B2 (en) Exhaust gas purification device for internal combustion engine
JP6056537B2 (en) Particulate matter measuring apparatus and filter manufacturing method
WO2016140215A1 (en) Sensor
WO2015053323A1 (en) Exhaust purification system
JP6032053B2 (en) Exhaust system state detection device and control device
US10481061B2 (en) Sensor for detecting an emission amount of particulate matter
JP2015059476A (en) Exhaust purification system of internal combustion engine
US10072551B2 (en) Exhaust purification system
JP6123343B2 (en) Exhaust gas purification device for internal combustion engine
JP2015059477A (en) Exhaust purification system of internal combustion engine
WO2016140214A1 (en) Sensor
JP2014145277A (en) Exhaust purification device for internal combustion engine
JP2015059478A (en) Exhaust purification system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees