JP2008064621A - Particle sensor - Google Patents
Particle sensor Download PDFInfo
- Publication number
- JP2008064621A JP2008064621A JP2006243131A JP2006243131A JP2008064621A JP 2008064621 A JP2008064621 A JP 2008064621A JP 2006243131 A JP2006243131 A JP 2006243131A JP 2006243131 A JP2006243131 A JP 2006243131A JP 2008064621 A JP2008064621 A JP 2008064621A
- Authority
- JP
- Japan
- Prior art keywords
- particulate
- amount
- fine particle
- fine particles
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
本発明は微粒子(PM)センサに関し、更に詳しくは、内燃機関排気系の微粒子排出量検知および微粒子規制に対する車上診断(OBD)に利用できる微粒子センサに関する。 The present invention relates to a particulate matter (PM) sensor, and more particularly to a particulate sensor that can be used for on-board diagnosis (OBD) for particulate emission detection and particulate regulation in an exhaust system of an internal combustion engine.
自動車の排気ガスに含まれる有害物質への排出量規制は厳しくなる一方であり、米国では2010年には排出量の車載診断装置が必須となると言われている。 Emission regulations for harmful substances contained in automobile exhaust gas are becoming stricter, and it is said that in-vehicle diagnostic equipment for emissions will be essential in the United States in 2010.
また、ガソリン車であっても筒内へ燃料を直接噴射する方式であると、微粒子捕集フィルタ(DPF)を搭載したディーゼル車よりも多くの微粒子(PM)を排出しているという報告もある。 There is also a report that even if it is a gasoline vehicle, if the fuel is directly injected into the cylinder, more particulates (PM) are discharged than a diesel vehicle equipped with a particulate filter (DPF). .
特許文献1には、光源から放射される光を排気ガスの流れの中を透過させて受光部により受光し、パティキュレート濃度との間に一定の相関関数を有する排気ガスの光の不透過度を検出し、制御手段においてパティキュレート濃度に換算する技術が開示されている。 In Patent Document 1, light emitted from a light source is transmitted through an exhaust gas flow and received by a light receiving unit, and the light opacity of exhaust gas having a constant correlation function with the particulate concentration. A technique is disclosed in which this is detected and converted to a particulate concentration by a control means.
特許文献2には、微粒子堆積量の検知方法として、フィルタ圧力損失によるフィルタ前後の排圧の差圧を差圧センサにより検出し、検出した差圧に基づき微粒子堆積量を決定する方法が開示されている。また、運転時間、運転条件によるエンジンからの微粒子発生量予測を併用して、フィルタへの微粒子堆積量を推定する方法(モデリング法)も知られている。
特許文献1に開示の発明のように光を排気ガス管中に透過し、その不透過度を測定する方法では、排気ガス流全体が測定できるが、発光・受光部の窓が汚れて徐々に精度が悪化するという問題がある。 In the method of transmitting light into the exhaust gas pipe and measuring the opacity as in the invention disclosed in Patent Document 1, the entire exhaust gas flow can be measured. There is a problem that accuracy deteriorates.
特許文献2に開示の差圧に基づき微粒子堆積量を決定する方法について検討すると、微粒子捕集フィルタにおいては、微粒子の堆積量に対して、フィルタの圧力損失がヒステリシスを持つ場合が多く、フィルタ圧力損失によるフィルタ前後の排圧の差圧のみから微粒子堆積量を一義的に検知することは不可能な場合が多い。例えば、ディーゼルエンジンの排気微粒子を捕集するウォールフロー型のセラミックフィルタ(DPF)では、低温で微粒子を捕集し続けた後、フィルタ細孔内にコートされた触媒が活性となる温度に一時的に昇温すると、細孔内に堆積した微粒子が酸化除去され、わずかな細孔内微粒子の酸化消滅により大幅に圧力損失が低下するため、堆積微粒子量と圧力損失との関係はヒステリシスを示し、同一の圧力損失でも、堆積微粒子の量が大きく異なる状態が生じ得ることになる。したがって、このような微粒子捕集フィルタにおいては、圧力損失から一義的に微粒子堆積量を推定することは困難である。
Examining the method for determining the amount of particulate deposition based on the differential pressure disclosed in
また、差圧に基づき微粒子堆積量を決定する方法もモデリング法も微粒子堆積量を直接検知しているのではないという問題もある。 There is also a problem that neither the method for determining the amount of fine particle deposition based on the differential pressure nor the modeling method directly detects the amount of fine particle deposition.
本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、微粒子の車上診断に使用し得るセンサを提供することにある。 The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a sensor that can be used for on-vehicle diagnosis of fine particles.
本発明者らは上記課題を達成すべく鋭意検討した結果、電極を備えた特定の微粒子センサによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be achieved by a specific fine particle sensor provided with an electrode, and have completed the present invention.
即ち、本発明によれば、以下に示す微粒子センサおよび微粒子測定方法が提供される。 That is, according to the present invention, the following fine particle sensor and fine particle measurement method are provided.
[1] ガス流路に垂直な断面の一部またはガス流路とは異なる第2の流路上で微粒子を捕集する微粒子捕集手段と、前記微粒子捕集手段に備えられた少なくとも2つの電極を備えた微粒子センサ。 [1] Particulate collection means for collecting fine particles on a part of a cross section perpendicular to the gas flow path or a second flow path different from the gas flow path, and at least two electrodes provided in the fine particle collection means Fine particle sensor with
[2] 前記微粒子捕集手段がハニカム構造体である上記[1]に記載の微粒子センサ。 [2] The particulate sensor according to [1], wherein the particulate collection means is a honeycomb structure.
[3] 前記ハニカム構造体が微粒子捕集フィルタである上記[2]に記載の微粒子センサ。 [3] The particulate sensor according to [2], wherein the honeycomb structure is a particulate collection filter.
[4] 前記微粒子捕集手段がセラミックフォームである上記[1]に記載の微粒子センサ。 [4] The particulate sensor according to [1], wherein the particulate collection means is ceramic foam.
[5] 上記[1]〜[4]のいずれかに記載の微粒子センサの前記電極間に直流電流を流し、前記電極間の直流抵抗に基づき微粒子量を決定する微粒子量決定方法。 [5] A fine particle amount determination method in which a direct current is passed between the electrodes of the fine particle sensor according to any one of [1] to [4], and the fine particle amount is determined based on a direct current resistance between the electrodes.
[6] 上記[1]〜[4]のいずれかに記載の微粒子センサの前記電極間に交流電流を流し、前記電極間のインピーダンスに基づき微粒子量を決定する微粒子量決定方法。 [6] A method for determining the amount of fine particles, wherein an alternating current is passed between the electrodes of the fine particle sensor according to any one of [1] to [4], and the amount of fine particles is determined based on impedance between the electrodes.
本発明の微粒子センサは圧力損失を増大させることなく微粒子を検知することができる。本発明の微粒子センサはガス流路の断面の一部またはガス流路とは異なる第2の流路に配設される。従って、本発明の微粒子センサを構成する微粒子捕集手段はガス流路の断面全体を塞ぐことがない。このため、微粒子捕集手段として、圧力損失の比較的大きい微粒子捕集フィルタ(DPF)を使用しても、圧力損失を低く抑えることが可能である。 The particulate sensor of the present invention can detect particulates without increasing pressure loss. The fine particle sensor of the present invention is disposed in a part of the cross section of the gas flow path or a second flow path different from the gas flow path. Therefore, the particulate collection means constituting the particulate sensor of the present invention does not block the entire cross section of the gas flow path. For this reason, even if a particulate collection filter (DPF) having a relatively large pressure loss is used as the particulate collection means, the pressure loss can be kept low.
また、本発明の微粒子センサは、ガス流路の断面全体をカバーする微粒子センサに比べて、小型であるので、低コストで製造することができる。 In addition, since the particle sensor of the present invention is smaller than the particle sensor that covers the entire cross section of the gas flow path, it can be manufactured at low cost.
本発明によれば、少量の微粒子を確実に検出でき、車上で規制をクリアしているか判断できるセンサが提供される。 ADVANTAGE OF THE INVENTION According to this invention, the sensor which can detect a small amount of microparticles | fine-particles reliably and can judge whether the regulation is cleared on a vehicle is provided.
以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。 BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.
図1は本発明の一実施形態を示す概略側面図である。微粒子センサ2は微粒子捕集手段4と、微粒子捕集手段4の上面および下面の一部に設けられた電極6により構成される。この微粒子センサ2がガス流路8の断面の一部において微粒子を捕集する。ガス流れ10は図1中、左から右に流れる。
FIG. 1 is a schematic side view showing an embodiment of the present invention. The
図2は本発明の他の一実施形態を示す概略側面図である。微粒子センサ2は微粒子捕集手段4と、微粒子捕集手段4の上面および下面の一部に設けられた電極6により構成される。この微粒子センサ2がガス流路8とは別の流路12において微粒子を捕集する。ガス流れ10は図2中、左から右に流れ、一部が別の流路12にも流れる。
FIG. 2 is a schematic side view showing another embodiment of the present invention. The
本発明における微粒子捕集手段としては種々のものを採用することができる。 Various means can be adopted as the particulate collection means in the present invention.
本発明において、微粒子捕集手段(電極を除く)の材質は特に限定されないが、炭化珪素、コージェライト、アルミナタイタネイト、サイアロン、ムライト、窒化珪素、リン酸ジルコニウム、ジルコニア、チタニア、アルミナもしくはシリカ又はこれらの組み合わせからなるセラミックス、又は焼結金属を主成分とする材料から構成されているものが好適である。 In the present invention, the material of the particulate collecting means (excluding the electrode) is not particularly limited, but silicon carbide, cordierite, alumina titanate, sialon, mullite, silicon nitride, zirconium phosphate, zirconia, titania, alumina or silica or What is comprised from the ceramic which consists of these combinations, or the material which has a sintered metal as a main component is suitable.
微粒子捕集手段の形状は、微粒子を捕集できる形状であればいずれでも良い。好ましい形状としてハニカム状、微粒子捕集フィルタ(DPF)状、セラミックフォーム状等が例示できるがこれらに限られない。 The shape of the fine particle collecting means may be any shape as long as the fine particle can be collected. Examples of preferable shapes include a honeycomb shape, a fine particle collection filter (DPF) shape, and a ceramic foam shape, but are not limited thereto.
ハニカム状の形状のものとしてハニカム構造体を例示することができる。ここで、ハニカム構造体とは、隔壁により仕切られた軸方向に貫通する多数の流通孔(セル)を有する構造体をいう。また、本発明において、微粒子捕集フィルタ(DPF)とは、ハニカム構造体の端面において、各セルの一方の端部を、千鳥状になるように、互い違いに目封止したものをいう。 A honeycomb structure can be exemplified as a honeycomb-shaped one. Here, the honeycomb structure means a structure having a large number of flow holes (cells) penetrating in the axial direction partitioned by partition walls. In the present invention, the particulate collection filter (DPF) refers to a filter in which one end of each cell is alternately plugged so as to form a staggered pattern on the end face of the honeycomb structure.
本発明において、セラミックフォーム体とは、基材が炭化珪素、コージェライト、アルミナタイタネート、サイアロン、ムライト、窒化珪素、リン酸ジルコニウム、ジルコニア、チタニア、アルミナ、若しくはシリカ、又はこれらの組み合わせからなるセラミックスの坏土に、発泡ポリウレタンフォーム等の造孔材を混錬して焼成し、完成した成形体の気孔率が75%以上であるものをいう。 In the present invention, the ceramic foam body is a ceramic whose base material is silicon carbide, cordierite, alumina titanate, sialon, mullite, silicon nitride, zirconium phosphate, zirconia, titania, alumina, silica, or a combination thereof. A porous material such as foamed polyurethane foam is kneaded and fired in the clay, and the finished molded product has a porosity of 75% or more.
本発明の微粒子捕集手段の断面の大きさはガス流路の断面全体を塞ぎさえしなければ良いが、ガス流路の断面の50%以下であるのが好ましい。微粒子捕集フィルタ(DPF)を製造する際に使用する、複数のセルからなるセグメントを、本発明の微粒子捕集手段として使用しても良い。さらに、単一のセルを本発明の微粒子捕集手段として使用しても良い。 The size of the cross-section of the particulate collection means of the present invention is not limited as long as the entire cross section of the gas flow path is blocked, but is preferably 50% or less of the cross section of the gas flow path. You may use the segment which consists of a several cell used when manufacturing a particulate collection filter (DPF) as a particulate collection means of this invention. Furthermore, a single cell may be used as the particulate collection means of the present invention.
本発明の微粒子センサは、電極を利用することによって、捕集された微粒子の量を検知することが可能である。具体的には、電極間の交流インピーダンス、直流抵抗、リアクタンス、キャパシタンス等の電気的特性を計測することによって、捕集された微粒子の量を検知する。すなわち、この微粒子センサにおいては、微粒子センサに設けられた電極間の交流インピーダンス等の電気的特性を計測することによって、微粒子センサに微粒子が堆積したことによる、電極間の静電容量、直流抵抗値等の変化を検知することができる。電極間の静電容量等は、微粒子センサ内の微粒子の絶対量に対応して変化するため、交流インピーダンス等の電気的特性の計測データから微粒子センサの微粒子堆積量を一義的に推定することができる。具体的には、堆積した微粒子の質量と交流インピーダンス等の電気的特性との関係を実測値に基づいて予めグラフ化等しておくことにより、交流インピーダンス等の電気的特性を計測するだけで、その計測時点での微粒子の堆積量を推定することができるようになる。 The fine particle sensor of the present invention can detect the amount of collected fine particles by using an electrode. Specifically, the amount of collected fine particles is detected by measuring electrical characteristics such as AC impedance, DC resistance, reactance, and capacitance between the electrodes. That is, in this fine particle sensor, the capacitance between the electrodes and the DC resistance value due to the accumulation of fine particles on the fine particle sensor by measuring the electrical characteristics such as the AC impedance between the electrodes provided in the fine particle sensor. Etc. can be detected. Since the capacitance between the electrodes changes corresponding to the absolute amount of fine particles in the fine particle sensor, it is possible to uniquely estimate the fine particle accumulation amount of the fine particle sensor from measurement data of electrical characteristics such as AC impedance. it can. Specifically, by preliminarily graphing the relationship between the mass of the deposited fine particles and the electrical characteristics such as AC impedance based on the actual measurement values, simply measuring the electrical characteristics such as AC impedance, It becomes possible to estimate the amount of deposited fine particles at the time of measurement.
本発明においては、このように交流インピーダンスの計測値から、微粒子の堆積量を推定することが可能であるが、更に精度良く微粒子の堆積量を決定するため、インピーダンス計測回路内にコイル(インダクタンス)を接続することが好ましい。このようにコイルを接続することにより、静電容量を持つフィルタとコイルを含む回路の交流インピーダンスは、共振条件Lω=1/Cω(L:インダクタンス、C:静電容量、ω:2πf(f:周波数))で急激に0に近づくため、微粒子の堆積量変化に対する交流インピーダンスの変化がシャープになり、より精度良く微粒子堆積量を検知できる。 In the present invention, it is possible to estimate the amount of deposited fine particles from the measured value of AC impedance in this way, but in order to determine the amount of deposited fine particles more accurately, a coil (inductance) is provided in the impedance measuring circuit. Are preferably connected. By connecting the coils in this way, the AC impedance of the circuit including the coil and the filter having the electrostatic capacitance is the resonance condition Lω = 1 / Cω (L: inductance, C: electrostatic capacitance, ω: 2πf (f: Since the frequency)) suddenly approaches 0, the change in the AC impedance with respect to the change in the amount of deposited fine particles becomes sharp, and the amount of deposited particles can be detected more accurately.
接続するコイルのインダクタンスの値は、狙いの微粒子堆積量において共振条件を満足するように設定しておけば良い。すなわち、可変インダクタンスを用いるなどして、微粒子堆積量が、所定の値に達したときに、交流インピーダンスが急激に0に近づくようにインダクタンスの値を予め制御しておく。なお、本発明においては、このようなインダクタンスの他、キャパシタンス、直流抵抗などをインピーダンス計測回路内に直列又は並列に接続して、共振条件を調整することも可能である。 The inductance value of the coil to be connected may be set so as to satisfy the resonance condition in the target particle deposition amount. That is, by using a variable inductance, the inductance value is controlled in advance so that the AC impedance abruptly approaches 0 when the amount of deposited particles reaches a predetermined value. In the present invention, it is possible to adjust resonance conditions by connecting capacitance, DC resistance, etc. in series or in parallel in the impedance measurement circuit in addition to such inductance.
本発明の微粒子センサにおいて、交流インピーダンスを計測する際の交流電流の周波数は、1kHz〜10MHzであることが好ましい。1kHz未満では、インピーダンスに占める直流抵抗成分の比率が大きくなるため、静電容量の変化による測定インピーダンスの相対変化率が小さくなり、微粒子堆積量の検知精度が低下する。一方、10MHzを超えると、微粒子センサからの信号取り出し線等を含む計測系全体に含まれるノイズ的インダクタンスの量が過大になり、計測精度が低下する。 In the fine particle sensor of the present invention, the frequency of the alternating current when measuring the alternating current impedance is preferably 1 kHz to 10 MHz. If it is less than 1 kHz, the ratio of the DC resistance component occupying the impedance increases, so the relative change rate of the measured impedance due to the change in capacitance decreases, and the accuracy of detecting the amount of deposited particles decreases. On the other hand, if it exceeds 10 MHz, the amount of noise-like inductance included in the entire measurement system including the signal extraction line from the fine particle sensor becomes excessive, and the measurement accuracy decreases.
本発明においては、導電性を有するハニカム構造体の直流抵抗を検出することで微粒子(PM)の堆積量を決定することもできる。そのためには微粒子捕集手段の導電率が室温(25℃)で1.0×10−6S/cm以上、25℃〜800℃での導電率の変化が、2桁以下であるのが好ましい。このような微粒子捕集手段としてSi結合SiCを主成分とするハニカム構造体を例示することができる。ここで、本明細書中、主成分とは、成分の60質量%以上を占めるものをいう。 In the present invention, the amount of particulates (PM) deposited can be determined by detecting the direct current resistance of the honeycomb structure having conductivity. For this purpose, it is preferable that the conductivity of the particulate collecting means is 1.0 × 10 −6 S / cm or more at room temperature (25 ° C.), and the change in conductivity at 25 ° C. to 800 ° C. is 2 digits or less. . As such a particulate collecting means, a honeycomb structure mainly composed of Si-bonded SiC can be exemplified. Here, in this specification, a main component means what occupies 60 mass% or more of a component.
本発明において、電極の材質も特に限定はされないが、導電性ペーストの焼結体、導電性セラミックス、または金属の内の何れかから構成されているものが好適である。 In the present invention, the material of the electrode is not particularly limited, but is preferably composed of a sintered body of conductive paste, conductive ceramics, or metal.
本発明の微粒子センサにおいて、電極の形成方法は特に限定されないが、銀ペースト等の導電性ペーストを微粒子センサ外周面等の所定位置に塗布し、これを加熱して焼き付ける方法を用いると、形成が容易で、電極が微粒子センサに強固に接合されるので好ましい。 In the fine particle sensor of the present invention, the method of forming the electrode is not particularly limited. However, when a method of applying a conductive paste such as silver paste to a predetermined position on the outer peripheral surface of the fine particle sensor and heating and baking it is formed. It is preferable because it is easy and the electrode is firmly bonded to the fine particle sensor.
なお、微粒子捕集手段と電極とは、両者の熱膨張係数の差が20×10−6/℃以下となるように各々の材質を選択することが好ましい。例えば、本発明の微粒子センサをエンジン直下に使用するような場合には、使用時に高温環境下に晒されるため、微粒子捕集手段と電極との熱膨張係数の差が大きすぎると、両者の熱膨張差により微粒子センサが破損したり電極が剥離したりする恐れがあるが、両者の熱膨張係数の差が20×10−6/℃以下であれば、そのような不具合が生じる可能性が低くなる。 In addition, it is preferable to select each material so that the difference between the thermal expansion coefficients of the fine particle collecting means and the electrode is 20 × 10 −6 / ° C. or less. For example, when the particulate sensor of the present invention is used directly under an engine, it is exposed to a high temperature environment during use. Therefore, if the difference in thermal expansion coefficient between the particulate collection means and the electrode is too large, There is a risk that the particle sensor may be damaged or the electrode may be peeled off due to the difference in expansion. However, if the difference in thermal expansion coefficient between the two is 20 × 10 −6 / ° C. or less, the possibility of such a problem is low. Become.
また、本発明においては、二以上の電極が、平行に配置された平板状の形状に形成されてなるとともに、少なくとも一方の電極をセラミック体の内部に導電体を配設して構成してもよい。このように、導電体をセラミック体で覆うように構成することによって、導電体が直接排気ガスと接触することがなく、導電体の腐食や劣化を有効に防止することが可能となる。さらに、電極の両方を、セラミック体と、その内部に配設された導電体とで構成してもよい。 In the present invention, two or more electrodes may be formed in a flat plate shape arranged in parallel, and at least one of the electrodes may be configured by disposing a conductor inside the ceramic body. Good. In this manner, by configuring the conductor to be covered with the ceramic body, the conductor does not directly contact the exhaust gas, and it is possible to effectively prevent the conductor from being corroded or deteriorated. Furthermore, you may comprise both electrodes with the ceramic body and the conductor arrange | positioned in the inside.
本発明の微粒子センサは基材に触媒が担持されていても良く、又、担持されていなくても良い。本発明において、触媒とは、三元触媒、酸化触媒、NOX選択還元型触媒(SCR)、NOX吸蔵還元型触媒(LNT)等、いずれでも良い。 The fine particle sensor of the present invention may or may not carry a catalyst on a substrate. In the present invention, the catalyst may be a three-way catalyst, an oxidation catalyst, a NO X selective reduction catalyst (SCR), a NO X storage reduction catalyst (LNT), or the like.
以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(実施例1)
タルク、カオリン、仮焼カオリン、アルミナ、水酸化アルミニウム、シリカの各粉末を、SiO2が42〜56質量%、Al2O3が0〜45質量%、MgOが12〜16質量%という化学組成の範囲に入るように所定の割合で調合したコージェライト化原料に、造孔剤としてグラファイトを15〜25質量%、PET、PMA、フェノール樹脂等の合成樹脂を合計5〜15質量%添加し、更にメチルセルロース類と界面活性剤とを所定量添加し、これに水を加えて混練し坏土とした。次いで、この坏土を真空脱気後、ハニカム構造に押し出し成形し、マイクロ波乾燥及び熱風乾燥法により乾燥した後、最高温度を1400〜1435℃として焼成することにより、多孔質のセラミックス(コージェライト)からなる直方体形状のハニカム構造体を製造した(端面の一辺の長さ30mm、長さ152mm)。
(Example 1)
Talc, kaolin, calcined kaolin, alumina, aluminum hydroxide, the respective powders of silica, SiO 2 is 42 to 56 wt%, Al 2 O 3 is 0 to 45 wt%, MgO is the chemical composition of 12 to 16 wt% To the cordierite forming raw material prepared at a predetermined ratio so as to fall within the range of 15 to 25% by mass of graphite as a pore-forming agent, 5 to 15% by mass in total of synthetic resins such as PET, PMA, and phenol resin, Further, methylcelluloses and a surfactant were added in predetermined amounts, and water was added thereto and kneaded to obtain a clay. The clay is then vacuum degassed, extruded into a honeycomb structure, dried by microwave drying and hot air drying, and fired at a maximum temperature of 1400 to 1435 ° C. ) In the shape of a rectangular parallelepiped.
このハニカム構造体の外周の対向する2カ所に銀ペーストを塗布して焼き付けることにより、電極を形成し、当該電極間の交流インピーダンスを計測するインピーダンス計測回路を構成した。 An electrode was formed by applying and baking a silver paste at two opposing locations on the outer periphery of the honeycomb structure to constitute an impedance measurement circuit for measuring the AC impedance between the electrodes.
この電極付きハニカム構造体からなる微粒子センサ2を図1のようにガス流路8に配設した。このガス流路8に、微粒子を含むディーゼルエンジン排ガスを流し、微粒子センサ2に微粒子を堆積させながら、前記電極間の交流インピーダンスの計測を行ったところ、堆積した微粒子の質量と計測した交流インピーダンスとの関係は、図3のようになり、交流インピーダンスの値より微粒子の堆積量が推定できることを確認した。
The
図3は図1に示す本発明の微粒子センサ2の場所でのインピーダンス測定結果(表面電極、電極サイズ直径20mm、10kHz)を示す図である。図3中、横軸は微粒子堆積量(mg/L)、縦軸はインピーダンス変化率(%)を示す。
FIG. 3 is a diagram showing impedance measurement results (surface electrode, electrode size diameter 20 mm, 10 kHz) at the location of the
(実施例2)
粒径5μm以下の粒子を16質量%含む平均粒径20μmのSiC粉末100質量%に対し、外配でガイロメ粘土5質量%、メチルセルロース3質量%、界面活性剤1質量%、及び水25質量%を加え、混合後、押出し成形により、断面の一辺の長さ30mm、長さ150mm、セル密度16セル/cm2、リブ厚430μmのハニカム形状の成形体を成形した。この成形体を酸化雰囲気中にて400℃で仮焼してバインダー成分を除去した後、Ar雰囲気中にて2200℃で焼成してハニカム構造の再結晶SiC焼結体を得た。
(Example 2)
For 100% by mass of SiC powder having an average particle size of 20 μm containing 16% by mass of particles having a particle size of 5 μm or less, 5% by mass of gyrome clay, 3% by mass of methylcellulose, 1% by mass of surfactant, and 25% by mass of water After mixing, a honeycomb-shaped formed body having a side length of 30 mm, a length of 150 mm, a cell density of 16 cells / cm 2 and a rib thickness of 430 μm was formed by extrusion molding. This molded body was calcined at 400 ° C. in an oxidizing atmosphere to remove the binder component, and then fired at 2200 ° C. in an Ar atmosphere to obtain a recrystallized SiC sintered body having a honeycomb structure.
このハニカム構造体の外周の対向する2カ所に銀ペーストを塗布して焼き付けることにより、電極を形成し、当該電極間の直流抵抗を計測する直流抵抗計測回路を構成した。 A silver paste was applied and baked at two opposing locations on the outer periphery of the honeycomb structure to form an electrode, and a DC resistance measuring circuit for measuring the DC resistance between the electrodes was configured.
この電極付きハニカム構造体からなる微粒子センサ2を図1のようにガス流路8に配設した。このガス流路8に、微粒子を含むディーゼルエンジン排ガスを流し、微粒子センサ2に微粒子を堆積させながら、前記電極間の直流抵抗の計測を行ったところ、堆積した微粒子の質量と計測した直流抵抗との関係は、図4のようになり、直流抵抗の値より微粒子の堆積量が推定できることを確認した。
The
図4は図1に示す本発明の微粒子センサ2の場所での直流抵抗測定結果(表面電極、電極サイズ直径20mm)を示す図である。図4中、横軸は微粒子堆積量(g/L)、縦軸は直流抵抗変化率(%)を示す。
FIG. 4 is a diagram showing a DC resistance measurement result (surface electrode, electrode size diameter 20 mm) at the location of the
本発明は、内燃機関の排気系等で排出される微粒子の排出量を計測する微粒子センサとして使用することができる。 The present invention can be used as a particulate sensor that measures the amount of particulates discharged in an exhaust system of an internal combustion engine.
2:微粒子センサ、4:微粒子捕集手段、6:電極、8:ガス流路、10:ガス流れ、12:別のガス流路 2: Fine particle sensor, 4: Fine particle collecting means, 6: Electrode, 8: Gas flow path, 10: Gas flow, 12: Another gas flow path
Claims (6)
前記微粒子捕集手段に備えられた少なくとも2つの電極を備えた微粒子センサ。 Fine particle collecting means for collecting fine particles on a part of a cross section perpendicular to the gas flow path or a second flow path different from the gas flow path;
A particulate sensor comprising at least two electrodes provided in the particulate collection means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006243131A JP2008064621A (en) | 2006-09-07 | 2006-09-07 | Particle sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006243131A JP2008064621A (en) | 2006-09-07 | 2006-09-07 | Particle sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008064621A true JP2008064621A (en) | 2008-03-21 |
Family
ID=39287459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006243131A Withdrawn JP2008064621A (en) | 2006-09-07 | 2006-09-07 | Particle sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008064621A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010078378A (en) * | 2008-09-24 | 2010-04-08 | Honda Motor Co Ltd | Granular substance detecting sensor |
WO2010125636A1 (en) * | 2009-04-27 | 2010-11-04 | トヨタ自動車株式会社 | Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine |
WO2011083581A1 (en) * | 2010-01-08 | 2011-07-14 | トヨタ自動車株式会社 | Particle detection device |
WO2011135718A1 (en) | 2010-04-30 | 2011-11-03 | トヨタ自動車株式会社 | Particulate filter failure detection device and failure detection method |
WO2011135717A1 (en) | 2010-04-30 | 2011-11-03 | トヨタ自動車株式会社 | Particulate matter quantity detection apparatus |
WO2012032622A1 (en) * | 2010-09-08 | 2012-03-15 | トヨタ自動車株式会社 | Pm detection device |
JP2012167945A (en) * | 2011-02-10 | 2012-09-06 | Seiko Instruments Inc | Particle counter |
JP2013068197A (en) * | 2011-09-26 | 2013-04-18 | Denso Corp | Detection system |
JP2013520659A (en) * | 2010-02-26 | 2013-06-06 | イーティーエイチ・チューリッヒ | Method for spatially manipulating a micro object and apparatus for carrying out said method |
JP2014159784A (en) * | 2013-02-20 | 2014-09-04 | Isuzu Motors Ltd | Apparatus for measuring particulate substance and method for manufacturing filter |
JP2014159783A (en) * | 2013-02-20 | 2014-09-04 | Isuzu Motors Ltd | Apparatus for measuring particulate substance |
JP2014159780A (en) * | 2013-02-20 | 2014-09-04 | Isuzu Motors Ltd | Exhaust emission control device for internal combustion engine |
WO2015053322A1 (en) * | 2013-10-08 | 2015-04-16 | いすゞ自動車株式会社 | Exhaust purification system |
WO2015053323A1 (en) * | 2013-10-08 | 2015-04-16 | いすゞ自動車株式会社 | Exhaust purification system |
JP2015141074A (en) * | 2014-01-28 | 2015-08-03 | 九州エレクトロン株式会社 | Particulate detector |
JP2016008861A (en) * | 2014-06-23 | 2016-01-18 | いすゞ自動車株式会社 | Sensor |
JP2016008862A (en) * | 2014-06-23 | 2016-01-18 | いすゞ自動車株式会社 | Sensor |
WO2016047530A1 (en) * | 2014-09-26 | 2016-03-31 | いすゞ自動車株式会社 | Diagnostic device |
JP2016061680A (en) * | 2014-09-18 | 2016-04-25 | いすゞ自動車株式会社 | Sensor |
JP2016061679A (en) * | 2014-09-18 | 2016-04-25 | いすゞ自動車株式会社 | Diagnosis apparatus |
EP3048278A1 (en) * | 2015-01-26 | 2016-07-27 | Bosal Emission Control Systems NV | Device for the diagnosis of the operability of a particle filter for an exhaust gas stream of an internal combustion engine |
JP2017025740A (en) * | 2015-07-17 | 2017-02-02 | いすゞ自動車株式会社 | Exhaust emission control device |
WO2017104261A1 (en) * | 2015-12-14 | 2017-06-22 | 株式会社村田製作所 | Filtration device |
-
2006
- 2006-09-07 JP JP2006243131A patent/JP2008064621A/en not_active Withdrawn
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010078378A (en) * | 2008-09-24 | 2010-04-08 | Honda Motor Co Ltd | Granular substance detecting sensor |
DE112009004746T5 (en) | 2009-04-27 | 2013-01-24 | Toyota Jidosha Kabushiki Kaisha | PM SENSOR, PM-LOW DETECTION DEVICE FOR EXHAUST GAS AND ANORMALITY DETECTION DEVICE FOR FUEL-POWERED MACHINE |
WO2010125636A1 (en) * | 2009-04-27 | 2010-11-04 | トヨタ自動車株式会社 | Pm sensor, device for sensing amount of pm in exhaust gas, and abnormality sensing device for internal combustion engine |
DE112009004746B4 (en) * | 2009-04-27 | 2013-10-17 | Toyota Jidosha Kabushiki Kaisha | PM SENSOR, PM-LOW DETECTION DEVICE FOR EXHAUST GAS AND ANORMALITY DETECTION DEVICE FOR FUEL-POWERED MACHINE |
US8736284B2 (en) | 2010-01-08 | 2014-05-27 | Toyota Jidosha Kabushiki Kaisha | Particulate matter detection device |
WO2011083581A1 (en) * | 2010-01-08 | 2011-07-14 | トヨタ自動車株式会社 | Particle detection device |
CN102187210A (en) * | 2010-01-08 | 2011-09-14 | 丰田自动车株式会社 | Particle detection device |
JP2013520659A (en) * | 2010-02-26 | 2013-06-06 | イーティーエイチ・チューリッヒ | Method for spatially manipulating a micro object and apparatus for carrying out said method |
US9162778B2 (en) | 2010-02-26 | 2015-10-20 | ETH Zürich | Method for spatially manipulating a microscopic object and device for conducting said method |
WO2011135718A1 (en) | 2010-04-30 | 2011-11-03 | トヨタ自動車株式会社 | Particulate filter failure detection device and failure detection method |
CN102985644A (en) * | 2010-04-30 | 2013-03-20 | 丰田自动车株式会社 | PM amount detecting apparatus |
WO2011135717A1 (en) | 2010-04-30 | 2011-11-03 | トヨタ自動車株式会社 | Particulate matter quantity detection apparatus |
CN102869859A (en) * | 2010-04-30 | 2013-01-09 | 丰田自动车株式会社 | Particulate filter failure detection device and failure detection method |
JP5382210B2 (en) * | 2010-04-30 | 2014-01-08 | トヨタ自動車株式会社 | Particulate filter failure detection apparatus and failure detection method |
US8656763B2 (en) | 2010-04-30 | 2014-02-25 | Toyota Jidosha Kabushiki Kaisha | Failure detection apparatus and failure detection method for a particulate filter |
JP5429368B2 (en) * | 2010-04-30 | 2014-02-26 | トヨタ自動車株式会社 | PM amount detection device |
US8966956B2 (en) | 2010-04-30 | 2015-03-03 | Toyota Jidosha Kabushiki Kaisha | Particulate matter amount detecting apparatus |
JP5440707B2 (en) * | 2010-09-08 | 2014-03-12 | トヨタ自動車株式会社 | PM detector |
WO2012032622A1 (en) * | 2010-09-08 | 2012-03-15 | トヨタ自動車株式会社 | Pm detection device |
JP2012167945A (en) * | 2011-02-10 | 2012-09-06 | Seiko Instruments Inc | Particle counter |
JP2013068197A (en) * | 2011-09-26 | 2013-04-18 | Denso Corp | Detection system |
JP2014159780A (en) * | 2013-02-20 | 2014-09-04 | Isuzu Motors Ltd | Exhaust emission control device for internal combustion engine |
JP2014159783A (en) * | 2013-02-20 | 2014-09-04 | Isuzu Motors Ltd | Apparatus for measuring particulate substance |
JP2014159784A (en) * | 2013-02-20 | 2014-09-04 | Isuzu Motors Ltd | Apparatus for measuring particulate substance and method for manufacturing filter |
WO2015053322A1 (en) * | 2013-10-08 | 2015-04-16 | いすゞ自動車株式会社 | Exhaust purification system |
WO2015053323A1 (en) * | 2013-10-08 | 2015-04-16 | いすゞ自動車株式会社 | Exhaust purification system |
EP3056699A4 (en) * | 2013-10-08 | 2017-06-07 | Isuzu Motors Limited | Exhaust purification system |
JP2015141074A (en) * | 2014-01-28 | 2015-08-03 | 九州エレクトロン株式会社 | Particulate detector |
JP2016008861A (en) * | 2014-06-23 | 2016-01-18 | いすゞ自動車株式会社 | Sensor |
JP2016008862A (en) * | 2014-06-23 | 2016-01-18 | いすゞ自動車株式会社 | Sensor |
JP2016061680A (en) * | 2014-09-18 | 2016-04-25 | いすゞ自動車株式会社 | Sensor |
JP2016061679A (en) * | 2014-09-18 | 2016-04-25 | いすゞ自動車株式会社 | Diagnosis apparatus |
JP2016070077A (en) * | 2014-09-26 | 2016-05-09 | いすゞ自動車株式会社 | Diagnostic device |
WO2016047530A1 (en) * | 2014-09-26 | 2016-03-31 | いすゞ自動車株式会社 | Diagnostic device |
EP3048278A1 (en) * | 2015-01-26 | 2016-07-27 | Bosal Emission Control Systems NV | Device for the diagnosis of the operability of a particle filter for an exhaust gas stream of an internal combustion engine |
CN105822398A (en) * | 2015-01-26 | 2016-08-03 | 博萨尔排放控制系统公司 | Diagnosis device for internal combustion engine and vehicle-mounted diagnosis system |
CN105822398B (en) * | 2015-01-26 | 2019-12-06 | 博萨尔排放控制系统公司 | Diagnostic device for internal combustion engine and on-board diagnostic system |
JP2017025740A (en) * | 2015-07-17 | 2017-02-02 | いすゞ自動車株式会社 | Exhaust emission control device |
WO2017104261A1 (en) * | 2015-12-14 | 2017-06-22 | 株式会社村田製作所 | Filtration device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008064621A (en) | Particle sensor | |
US7977955B2 (en) | Particulate matter sensor | |
JP5068311B2 (en) | Impedance measuring instrument and impedance measuring method for particulate collector | |
KR100899968B1 (en) | Particulate matter detection sensor for exhaust gas purifying apparatus | |
JP4920752B2 (en) | Honeycomb structure | |
US20080229931A1 (en) | Honeycomb structure body and method for producing the same | |
JP2008008151A (en) | Honeycomb structure for particulate sensor | |
EP1640054A2 (en) | Honeycomb filter and method of manufacturing the same | |
JP2007296512A (en) | Honeycomb filter | |
JP2009255055A (en) | Honeycomb structure | |
EP2236188A1 (en) | Honeycomb catalyst body | |
JP2013053589A (en) | Wall flow type exhaust gas purification filter | |
EP2236189B1 (en) | Honeycomb structure | |
JP4855811B2 (en) | Fine particle amount detection system | |
JP6902153B1 (en) | Columnar honeycomb structure filter and its manufacturing method | |
JP2008231930A (en) | Fine particle deposit amount measurement method of honeycomb structure | |
US11421570B2 (en) | Particulate filter and canning structure | |
JP2008063985A (en) | Honeycomb structure for fine particle sensor | |
JP2008223495A (en) | Temperature measurement honeycomb structure body | |
JP6964616B2 (en) | Method for estimating the characteristics of fired ceramics | |
JP2008018388A (en) | Honeycomb structure body having electrode | |
JP5486973B2 (en) | Honeycomb catalyst body and exhaust gas purification device | |
JP5419669B2 (en) | Honeycomb catalyst body | |
JP2007078520A (en) | Particulate collection filter and filter unit | |
JP2007077878A (en) | Particulate collecting filter and filter unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20091110 |