WO2017104261A1 - Filtration device - Google Patents

Filtration device Download PDF

Info

Publication number
WO2017104261A1
WO2017104261A1 PCT/JP2016/081160 JP2016081160W WO2017104261A1 WO 2017104261 A1 WO2017104261 A1 WO 2017104261A1 JP 2016081160 W JP2016081160 W JP 2016081160W WO 2017104261 A1 WO2017104261 A1 WO 2017104261A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
tubular member
fluid
metal porous
filtration device
Prior art date
Application number
PCT/JP2016/081160
Other languages
French (fr)
Japanese (ja)
Inventor
萬壽 優
近藤 孝志
順子 渡邉
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017104261A1 publication Critical patent/WO2017104261A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means

Definitions

  • the present invention relates to a filtration device for filtering a filtration object contained in a fluid.
  • a cross-flow type filtration device is known as this type of filtration device (for example, see Patent Document 1: Japanese Patent Laid-Open No. 2013-210239).
  • a cross-flow type filtration device flows a fluid containing a filtration object along the surface of a filtration filter such as a hollow fiber membrane, and the fluid from which the filtration object is removed by passing through the filtration filter (hereinafter referred to as filtrate).
  • filtrate the fluid from which the filtration object is removed by passing through the filtration filter
  • the filtration object captured on the surface of the filtration filter is untrapped by the fluid flow. Thereby, clogging of the filtration filter can be suppressed, the filtrate can be collected continuously for a longer time, and the filtration efficiency can be improved.
  • Patent Document 1 still has room for improvement in terms of further suppressing the clogging of the filtration filter and further improving the filtration efficiency.
  • an object of the present invention is to solve the above-mentioned problems, and to provide a filtration device that can further suppress the clogging of the filtration filter and further improve the filtration efficiency.
  • a filtration device in order to achieve the above object, includes a tubular member having a flow path through which a fluid containing an object to be filtered flows.
  • a filtration filter having a metal porous membrane for filtering the filtration object;
  • a filtration device comprising: A part of the side wall of the tubular member is provided with a filtrate outlet for discharging a filtrate that is a fluid obtained by filtering the object to be filtered.
  • the metal porous membrane is arranged in the convex portion and arranged along the fluid flow direction, It is characterized by that.
  • clogging of the filtration filter can be further suppressed, and the filtration efficiency can be further improved.
  • the inventors of the present invention provide a projecting portion that projects so as to reduce the flow path of the tubular member, so that the fluid flowing through the flow path comes into contact with the projecting section, disturbing the flow of the fluid in the vicinity of the projecting section. It has been found that a flow having a velocity component (turbulent flow) is generated in a direction crossing the extending direction of the tube axis of the member. Further, the present inventors have found that when the flow path is reduced by the convex portion, the pressure in the reduced flow path is increased, and the flow velocity of the fluid flowing through the flow path is increased. Furthermore, the present inventors have found that the trapping of the filtration object on the filtration filter is more easily released by the fluid whose flow is disturbed and whose flow velocity is increased. Based on these points, the present inventors have reached the following invention.
  • a filtration device includes a tubular member having a flow path through which a fluid containing an object to be filtered flows, A filtration filter having a metal porous membrane for filtering the filtration object; A filtration device comprising: A part of the side wall of the tubular member is provided with a filtrate outlet for discharging a filtrate that is a fluid obtained by filtering the object to be filtered. Around the filtrate outlet, there is provided a convex portion protruding into the flow path so as to reduce the flow path, The metal porous membrane is arranged in the convex portion and arranged along the fluid flow direction, A filtration device is provided.
  • the convex portion may be formed by projecting a part of the side wall of the tubular member toward the side wall facing the part.
  • the filtration filter has a frame member that holds the outer peripheral portion of the metal porous membrane,
  • the frame member is attached to a part of the side wall of the tubular member,
  • the convex portion may be formed by the frame member.
  • tubular member may be a tubular member having a uniform inner diameter excluding the convex portion.
  • the protrusion amount of the convex portion is one or more times the size of the filtration object.
  • This configuration can disturb the fluid flow and increase the fluid flow velocity. Thereby, clogging of the filtration filter can be further suppressed, and the filtration efficiency can be further improved.
  • the distance between the metal porous membrane and the side wall of the tubular member facing the metal porous membrane is preferably greater than one time the size of the filtration object.
  • the object to be filtered can pass between the metal porous membrane and the side wall of the tubular member. Thereby, clogging of the filtration filter can be further suppressed, and the filtration efficiency can be further improved.
  • FIG. 1 is a schematic diagram illustrating a state in which an object to be filtered is filtered using the filtration device according to the embodiment of the present invention.
  • the filtration device 1 is a cross-flow type filtration device.
  • the filtration device 1 is configured to introduce a fluid 12 including an object to be filtered 11 from a fluid inlet 1a and discharge it from a fluid outlet 1b.
  • the filtration device 1 also filters a part of the fluid 12 flowing from the fluid inlet 1a to the fluid outlet 1b, and removes a fluid 13 (hereinafter referred to as filtrate) 13 from which the filtration object 11 has been removed by the filtration. It is comprised so that it may discharge
  • the fluid 12 including the filtration object 11 is placed in the fluid tank 2.
  • the fluid 12 in the fluid tank 2 is taken into the pump 3 through the pipe 21, and is supplied to the fluid inlet 1 a of the filtration device 1 through the pipe 22 by the pump 3.
  • the fluid 12 passing through the inside of the filtration device 1 and discharged from the fluid discharge port 1 b is returned to the fluid tank 2 through the pipe 23.
  • the fluid 12 circulates in the order of the fluid tank 2, the pipe 21, the pump 3, the pipe 22, the filtration device 1, and the pipe 23.
  • the pump 3 may be arranged in the path of the pipe 23 instead of between the pipe 21 and the pipe 22.
  • a closed filtration apparatus may be realized by using the fluid tank 2 or the filtrate tank 4 as a sealed container.
  • FIG. 2 is a schematic cross-sectional view of the filtration device 1.
  • the filtration device 1 includes a tubular member 31 having a flow path 31 a through which the fluid 12 including the filtration object 11 flows, and a filtration filter 32 that filters the filtration object 11.
  • the tubular member 31 is, for example, a cylindrical member.
  • a filtrate discharge port 1 c is provided in a part of the side wall of the tubular member 31.
  • Around the filtrate outlet 1c there is provided a convex portion 5 protruding into the flow path 31a so as to reduce the flow path 31a.
  • the convex portion 5 is formed by projecting a part of the side wall of the tubular member 31 toward the side wall facing the part.
  • the convex part 5 is cyclically
  • a step is formed on the side wall of the tubular member 31 by the convex portion 5.
  • the tubular member 31 is formed of a tubular member having a uniform inner diameter except for the convex portion 5 so that turbulent flow is unlikely to occur except in the vicinity of the convex portion 5.
  • tubular member 31 an arbitrary cross-sectional shape such as a square or an ellipse may be used.
  • the material of the tubular member 31 include stainless steel, silicon resin, PVDF (Teflon: registered trademark), vinyl chloride, glass, butadiene-free resin, and the like.
  • a coating material may be applied so that the object to be filtered does not easily adhere to these materials.
  • a pipe 24 is in fluid communication with the convex portion 5.
  • the filtration filter 32 is arrange
  • the filtration filter 32 includes a metal porous film 32a that filters the object to be filtered 11, and a frame body 32b that holds the outer periphery of the metal porous film 32a.
  • the metal porous film 32 a is disposed in the convex portion 5 and is disposed along the flow direction of the fluid 12.
  • the flow direction of the fluid 12 is parallel to the extending direction of the tube axis A1.
  • the metal porous film 32a is disposed in parallel with the extending direction of the tube axis A1.
  • the filtration object 11 is a biological substance contained in the liquid.
  • the “biological substance” means a substance derived from a living organism such as a cell (eukaryotic organism), a bacterium (eubacteria), or a virus.
  • cells eukaryotes
  • examples of cells include eggs, sperm, induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell masses, suspension cells, and adhesions.
  • sex cells nerve cells, leukocytes, lymphocytes, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells (CTC), HL-60, HELA, and fungi.
  • bacteria examples include gram positive bacteria, gram negative bacteria, Escherichia coli, and tuberculosis bacteria.
  • virus examples include DNA virus, RNA virus, rotavirus, (bird) influenza virus, yellow fever virus, dengue fever virus, encephalitis virus, hemorrhagic fever virus, and immunodeficiency virus.
  • the metallic porous membrane 32a is a porous membrane that separates biological substances.
  • FIG. 3 is an enlarged perspective view of a part of the metal porous film 32a.
  • the metal porous film 32a has a first main surface 32c and a second main surface 32d that face each other.
  • the metal porous film 32a is provided with a plurality of through holes 32e penetrating the first main surface 32c and the second main surface 32d.
  • the through hole 32e separates a biological material from the liquid.
  • the shape and size of the through-hole 32e are appropriately set according to the shape and size of the biological material.
  • the through holes 32e are arranged at regular intervals or periodically, for example.
  • the shape of the through hole 32e is, for example, a square when viewed from the first main surface 32c or the second main surface 32d side of the metal porous film 32a.
  • the size of the through hole 32e is, for example, from 0.1 ⁇ m to 500 ⁇ m in length and from 0.1 ⁇ m to 500 ⁇ m in width.
  • the interval between the through holes 32e is, for example, greater than 1 time and less than or equal to 10 times, more preferably less than or equal to 3 times the opening diameter of the through holes 32e.
  • the aperture ratio of the through-hole 32e in the metal porous film 32a is, for example, 10% or more.
  • Examples of the material of the metal porous film 32a include gold, silver, copper, platinum, nickel, stainless steel, palladium, titanium, cobalt, and alloys thereof.
  • the metal porous film 32a has a diameter of, for example, 8 mm.
  • the thickness of the metal porous film 32a is, for example, not less than 0.05 ⁇ m and not more than 100 ⁇ m, and preferably not less than 0.1 ⁇ m and not more than 50 ⁇ m.
  • the outer shape of the metal porous film 32a is, for example, one of a circle, an ellipse, and a polygon. In the present embodiment, the metal porous film 32a has a circular outer shape.
  • the frame body 32b is formed in an annular shape (for example, an annular shape).
  • the material of the frame 32b include metals such as duralumin and aluminum, and resins such as polyethylene, polystyrene, polypropylene, polycarbonate, polyacetal, and polyetherimide.
  • the width of the frame 32b is, for example, 0.9 mm.
  • the thickness of the frame body 32b is, for example, 20 ⁇ m.
  • the metal porous membrane 32a is arranged in the convex portion 5 protruding so as to reduce the flow path 31a, and is arranged along the flow direction of the fluid 12.
  • the flow of the fluid 12 can be disturbed by the convex portion 5 and the flow velocity of the fluid 12 can be increased. Thereby, clogging of the filter 32 can be further suppressed, and the filtration efficiency can be further improved.
  • the protrusion amount of the convex part 5 is 1 time or more of the magnitude
  • FIG. According to this configuration, the flow of the fluid 12 can be disturbed and the flow velocity of the fluid 12 can be increased. Thereby, clogging of the filter 32 can be further suppressed, and the filtration efficiency can be further improved. Moreover, the effect which can capture the filtration target object 11 also arises in the level
  • the distance between the metal porous membrane 32a and the side wall of the tubular member 31 facing the metal porous membrane 32a is preferably larger than one time the size of the filtration object 11. According to this configuration, the filtration object 11 can pass between the metal porous membrane 32 a and the side wall of the tubular member 31. Thereby, clogging of the filter 32 can be further suppressed, and the filtration efficiency can be further improved.
  • a PBS solution (phosphate buffered saline) containing the cells HL60 is used as the fluid 12, and the liquid components are filtered from the PBS solution by the filtration filter 32 and the cells HL60 are captured.
  • the PBS solution contained 1 ⁇ 10 5 cells HL60 having an approximately spherical shape with a diameter of about 9 ⁇ m, and the total amount of the PBS solution was 50 ml.
  • the metal porous film 32a a nickel mesh film having a circular outer shape, a thickness of 1.0 ⁇ m, a diameter of 7.8 mm, and a mesh structure in a range of 6 mm in diameter from the center was used.
  • the mesh structure was a square lattice arrangement in which square through holes with sides of 2.5 ⁇ m were arranged at a pitch of 3.6 ⁇ m.
  • the metal porous film 32a was arranged so that the main surface on the flow channel 31a side was located 1.5 mm away from the side wall of the tubular member 31 into the flow channel 31a. Further, as the tubular member 31, a tube having an inner diameter of 2 mm was used.
  • the pump 3 was driven for about 30 minutes so that the PBS solution flowed through the flow path 31a in the tubular member 31 at a flow rate of 240 ml per minute. Then, when the liquid volume (filtrate) of the liquid that passed through the filter 32 was measured, the liquid volume was 40 ml.
  • the filtration filter 32 is disposed so that the main surface of the metal porous membrane 32a on the flow path 31a side is along the side wall of the tubular member 31, and the PBS solution is flowed into the flow path 31a in the same manner as described above,
  • the liquid volume of was 22 ml. Further, almost no filtrate was obtained in the latter half of the filtration operation by driving the pump 3. Further, when the metal porous membrane 32a was observed with a microscope, it was confirmed that a large number of cells HL60 were captured on the metal porous membrane 32a. That is, it was confirmed that clogging occurred in the metal porous film 32a.
  • the filtration device according to the example of the present invention can further suppress the clogging of the filtration filter 32 and further improve the filtration efficiency.
  • the convex portion 5 is formed by projecting a part of the side wall of the tubular member 31 toward the side wall facing the part, but the present invention is not limited to this.
  • a through hole may be provided in the tubular member 31, a frame body 32b may be attached to the inner periphery of the through hole, and the convex portion 5 may be formed by the frame body 32b. That is, the frame body 32b may be attached to a part of the side wall of the tubular member 31, and the convex portion 5 may be formed by the thickness of the frame body 32b.
  • the metal porous film 32a can be arranged on the convex portion 5 and can be arranged along the flow direction of the fluid 12.
  • the tubular member 31 has a straight cylindrical shape (straight tube shape), but the present invention is not limited to this.
  • the tubular member 31 should just be comprised so that the fluid 12 can be flowed along the metal porous membrane 32a.
  • the portion of the tubular member 31 on the fluid introduction port 1a side or fluid discharge port 1b side is configured to bend in a direction intersecting with the extending direction of the tube axis A1. May be.
  • one filter 32 is provided for one tubular member 31, but the present invention is not limited to this.
  • a plurality of (for example, three) filtration filters 32 may be provided for one tubular member 31.
  • the plurality of filtration filters 32 be arranged in the extending direction of the tube axis A1, as shown in FIG.
  • the plurality of filtration filters 32 may have different opening diameters of the through holes 32e (see FIG. 3) of the respective metal porous membranes 32a. According to this configuration, even if the fluid 12 includes a plurality of filtering objects 11 having different sizes, the filtering objects 11 can be classified.
  • the fluid 12 is a liquid, but the present invention is not limited to this.
  • the fluid 12 may be a gas, and the filtration target 11 may be fine particles contained in the gas.
  • the fine particles are, for example, industrial powder materials and PM2.5.
  • the present invention can further suppress the clogging of the filtration filter and further improve the filtration efficiency, it is particularly useful for a filtration apparatus for filtering a fluid having a high concentration of the filtration object.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a filtration device that further suppresses clogging of a filter and makes it possible to further improve filtration efficiency. The filtration device is provided with: a tubular member comprising a flow path through which a fluid containing an object to be filtered flows; and a filter comprising a porous metal film for filtering the object to be filtered. A filtrate discharge port for discharging a filtrate that is the fluid from which the object to be filtered has been filtered is provided to part of the side wall of the tubular member. A protruding section protruding into the flow path so as to reduce the flow path is provided around the filtrate discharge port. The porous metal film is arranged within the protruding section so as to follow the flow direction of the fluid.

Description

濾過装置Filtration device
 本発明は、流体に含まれる濾過対象物を濾過する濾過装置に関する。 The present invention relates to a filtration device for filtering a filtration object contained in a fluid.
 従来、この種の濾過装置として、クロスフロー方式の濾過装置が知られている(例えば、特許文献1:特開2013-210239号公報参照)。クロスフロー方式の濾過装置は、濾過対象物を含む流体を中空糸膜等の濾過フィルタの表面に沿うように流し、当該濾過フィルタを通過することにより濾過対象物が取り除かれた流体(以下、濾液という)を収集する装置である。 Conventionally, a cross-flow type filtration device is known as this type of filtration device (for example, see Patent Document 1: Japanese Patent Laid-Open No. 2013-210239). A cross-flow type filtration device flows a fluid containing a filtration object along the surface of a filtration filter such as a hollow fiber membrane, and the fluid from which the filtration object is removed by passing through the filtration filter (hereinafter referred to as filtrate). Device).
 この濾過装置によれば、濾過対象物を含む流体を濾過フィルタの表面に沿うように流すので、濾過フィルタの表面で捕捉された濾過対象物が流体の流れによって捕捉が解かれる。これにより、濾過フィルタの目詰まりを抑えて、濾液の収集をより長時間連続的に行うことを可能にし、濾過効率を向上させることができる。 According to this filtration device, since the fluid containing the filtration object flows along the surface of the filtration filter, the filtration object captured on the surface of the filtration filter is untrapped by the fluid flow. Thereby, clogging of the filtration filter can be suppressed, the filtrate can be collected continuously for a longer time, and the filtration efficiency can be improved.
特開2013-210239号公報JP 2013-210239 A
 しかしながら、特許文献1の濾過装置では、濾過フィルタの目詰まりをより一層抑えて、濾過効率をより一層向上させるという観点において、未だ改善の余地がある。 However, the filtration device of Patent Document 1 still has room for improvement in terms of further suppressing the clogging of the filtration filter and further improving the filtration efficiency.
 従って、本発明の目的は、前記課題を解決することにあって、濾過フィルタの目詰まりをより一層抑えて、濾過効率をより一層向上させることができる濾過装置を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems, and to provide a filtration device that can further suppress the clogging of the filtration filter and further improve the filtration efficiency.
 前記目的を達成するために、本発明の一態様に係る濾過装置は、濾過対象物を含む流体が流れる流路を有する管状部材と、
 前記濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、
 を備える濾過装置であって、
 前記管状部材の側壁の一部には、前記濾過対象物が濾過された流体である濾液を排出するための濾液排出口が設けられ、
 前記濾液排出口の周囲には、前記流路を縮小するように前記流路内へ突出する凸部が設けられ、
 前記金属製多孔膜は、前記凸部内に配置されるとともに、前記流体の流れ方向に沿うように配置されている、
 ことを特徴とする。
In order to achieve the above object, a filtration device according to an aspect of the present invention includes a tubular member having a flow path through which a fluid containing an object to be filtered flows.
A filtration filter having a metal porous membrane for filtering the filtration object;
A filtration device comprising:
A part of the side wall of the tubular member is provided with a filtrate outlet for discharging a filtrate that is a fluid obtained by filtering the object to be filtered.
Around the filtrate outlet, there is provided a convex portion protruding into the flow path so as to reduce the flow path,
The metal porous membrane is arranged in the convex portion and arranged along the fluid flow direction,
It is characterized by that.
 本発明に係る濾過装置によれば、濾過フィルタの目詰まりをより一層抑えて、濾過効率をより一層向上させることができる。 According to the filtration device according to the present invention, clogging of the filtration filter can be further suppressed, and the filtration efficiency can be further improved.
本発明の実施形態に係る濾過装置を用いて濾過対象物を濾過する様子を示す概略図である。It is the schematic which shows a mode that the filtration target object is filtered using the filtration apparatus which concerns on embodiment of this invention. 図1の濾過装置の概略断面図である。It is a schematic sectional drawing of the filtration apparatus of FIG. 金属製多孔膜の一部の拡大斜視図である。It is an expansion perspective view of a part of metallic porous membrane. 図1の濾過装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the filtration apparatus of FIG. 管状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of a tubular member. 管状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of a tubular member. 管状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of a tubular member. 管状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of a tubular member. 濾過フィルタが1つの管状部材に複数設けられた例を示す断面図である。It is sectional drawing which shows the example in which the filtration filter was provided with two or more by one tubular member.
 (本発明の基礎となった知見)
 本発明者らは、濾過フィルタの目詰まりをより一層抑えて、濾過効率をより一層向上させるため、鋭意検討した結果、以下の新規な知見を得た。
(Knowledge that became the basis of the present invention)
As a result of intensive studies in order to further suppress the clogging of the filtration filter and further improve the filtration efficiency, the present inventors have obtained the following new knowledge.
 本発明者らは、管状部材の流路を縮小するように突出する凸部を設けることによって、流路を流れる流体が凸部に接触して凸部の近傍の流体の流れが乱され、管状部材の管軸の延在方向と交差する方向に速度成分を有する流れ(乱流)が生じることを知見した。また、本発明者らは、凸部によって流路が縮小されることで、当該縮小された流路内の圧力が増加し、当該流路を流れる流体の流速が速くなることを知見した。更に、本発明者らは、流れが乱され且つ流速が速くなった流体により、濾過フィルタ上の濾過対象物の捕捉がより一層解かれやすくなることを見出した。これらの点を踏まえて、本発明者らは、以下の発明に至った。 The inventors of the present invention provide a projecting portion that projects so as to reduce the flow path of the tubular member, so that the fluid flowing through the flow path comes into contact with the projecting section, disturbing the flow of the fluid in the vicinity of the projecting section. It has been found that a flow having a velocity component (turbulent flow) is generated in a direction crossing the extending direction of the tube axis of the member. Further, the present inventors have found that when the flow path is reduced by the convex portion, the pressure in the reduced flow path is increased, and the flow velocity of the fluid flowing through the flow path is increased. Furthermore, the present inventors have found that the trapping of the filtration object on the filtration filter is more easily released by the fluid whose flow is disturbed and whose flow velocity is increased. Based on these points, the present inventors have reached the following invention.
 本発明の一態様に係る濾過装置は、濾過対象物を含む流体が流れる流路を有する管状部材と、
 前記濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、
 を備える濾過装置であって、
 前記管状部材の側壁の一部には、前記濾過対象物が濾過された流体である濾液を排出するための濾液排出口が設けられ、
 前記濾液排出口の周囲には、前記流路を縮小するように前記流路内へ突出する凸部が設けられ、
 前記金属製多孔膜は、前記凸部内に配置されるとともに、前記流体の流れ方向に沿うように配置されている、
 濾過装置を提供する。
A filtration device according to one embodiment of the present invention includes a tubular member having a flow path through which a fluid containing an object to be filtered flows,
A filtration filter having a metal porous membrane for filtering the filtration object;
A filtration device comprising:
A part of the side wall of the tubular member is provided with a filtrate outlet for discharging a filtrate that is a fluid obtained by filtering the object to be filtered.
Around the filtrate outlet, there is provided a convex portion protruding into the flow path so as to reduce the flow path,
The metal porous membrane is arranged in the convex portion and arranged along the fluid flow direction,
A filtration device is provided.
 この構成によれば、濾過フィルタの目詰まりをより一層抑えて、濾過効率をより一層向上させることができる。 According to this configuration, clogging of the filtration filter can be further suppressed, and the filtration efficiency can be further improved.
 なお、前記凸部は、前記管状部材の側壁の一部を、当該一部に対向する側壁に向けて突出させることにより形成されてもよい。 The convex portion may be formed by projecting a part of the side wall of the tubular member toward the side wall facing the part.
 また、前記濾過フィルタは、前記金属製多孔膜の外周部を保持する枠部材を有し、
 前記枠部材は、前記管状部材の側壁の一部に取り付けられ、
 前記凸部は、前記枠部材により形成されてもよい。
Further, the filtration filter has a frame member that holds the outer peripheral portion of the metal porous membrane,
The frame member is attached to a part of the side wall of the tubular member,
The convex portion may be formed by the frame member.
 また、前記管状部材は、前記凸部を除いて内径が一様な管状部材であってもよい。 Further, the tubular member may be a tubular member having a uniform inner diameter excluding the convex portion.
 また、前記凸部の突出量は、前記濾過対象物の大きさの1倍以上であることが好ましい。 Moreover, it is preferable that the protrusion amount of the convex portion is one or more times the size of the filtration object.
 この構成によれば、流体の流れを乱すとともに流体の流速を速めることができる。これにより、濾過フィルタの目詰まりをより一層抑えて、濾過効率をより一層向上させることができる。 This configuration can disturb the fluid flow and increase the fluid flow velocity. Thereby, clogging of the filtration filter can be further suppressed, and the filtration efficiency can be further improved.
 また、前記金属製多孔膜と、当該金属製多孔膜に対向する前記管状部材の側壁との距離は、前記濾過対象物の大きさの1倍より大きいことが好ましい。 In addition, the distance between the metal porous membrane and the side wall of the tubular member facing the metal porous membrane is preferably greater than one time the size of the filtration object.
 この構成によれば、濾過対象物が、金属製多孔膜と管状部材の側壁との間を通過することができる。これにより、濾過フィルタの目詰まりをより一層抑えて、濾過効率をより一層向上させることができる。 According to this configuration, the object to be filtered can pass between the metal porous membrane and the side wall of the tubular member. Thereby, clogging of the filtration filter can be further suppressed, and the filtration efficiency can be further improved.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態)
 図1は、本発明の実施の形態に係る濾過装置を用いて濾過対象物を濾過する様子を示す概略図である。
(Embodiment)
FIG. 1 is a schematic diagram illustrating a state in which an object to be filtered is filtered using the filtration device according to the embodiment of the present invention.
 図1に示すように、本実施の形態に係る濾過装置1は、クロスフロー方式の濾過装置である。濾過装置1は、濾過対象物11を含む流体12を流体導入口1aより導入し、流体排出口1bより排出するように構成されている。また、濾過装置1は、流体導入口1aから流体排出口1bへ流れる流体12の一部を濾過し、当該濾過により濾過対象物11が取り除かれた流体(以下、濾液という)13を濾液排出口1cより排出するように構成されている。 As shown in FIG. 1, the filtration device 1 according to the present embodiment is a cross-flow type filtration device. The filtration device 1 is configured to introduce a fluid 12 including an object to be filtered 11 from a fluid inlet 1a and discharge it from a fluid outlet 1b. The filtration device 1 also filters a part of the fluid 12 flowing from the fluid inlet 1a to the fluid outlet 1b, and removes a fluid 13 (hereinafter referred to as filtrate) 13 from which the filtration object 11 has been removed by the filtration. It is comprised so that it may discharge | emit from 1c.
 濾過対象物11を含む流体12は、流体タンク2内に入れられている。流体タンク2内の流体12は、配管21を通じてポンプ3内に取り込まれ、当該ポンプ3によって配管22を通じて濾過装置1の流体導入口1aへ供給される。濾過装置1の内部を通過して流体排出口1bより排出された流体12は、配管23を通じて流体タンク2内に戻される。このようにして、流体12は、ポンプ3が駆動する間、流体タンク2、配管21、ポンプ3、配管22、濾過装置1、配管23の順に循環する。 The fluid 12 including the filtration object 11 is placed in the fluid tank 2. The fluid 12 in the fluid tank 2 is taken into the pump 3 through the pipe 21, and is supplied to the fluid inlet 1 a of the filtration device 1 through the pipe 22 by the pump 3. The fluid 12 passing through the inside of the filtration device 1 and discharged from the fluid discharge port 1 b is returned to the fluid tank 2 through the pipe 23. Thus, while the pump 3 is driven, the fluid 12 circulates in the order of the fluid tank 2, the pipe 21, the pump 3, the pipe 22, the filtration device 1, and the pipe 23.
 一方、濾過装置1の内部に供給された流体12の一部は、濾過されて濾液13として濾液排出口1cより排出される。濾液排出口1cより排出された濾液13は、配管24を通じて濾液タンク4内に入れられる。 On the other hand, a part of the fluid 12 supplied to the inside of the filtration device 1 is filtered and discharged as the filtrate 13 from the filtrate outlet 1c. The filtrate 13 discharged from the filtrate discharge port 1 c is put into the filtrate tank 4 through the pipe 24.
 なお、図1の他の形態として、ポンプ3を配管21と配管22の間ではなく、配管23の経路内に配置してもよい。あるいは、流体タンク2や濾液タンク4を密閉容器として、閉鎖系の濾過装置を実現してもよい。 As another form of FIG. 1, the pump 3 may be arranged in the path of the pipe 23 instead of between the pipe 21 and the pipe 22. Alternatively, a closed filtration apparatus may be realized by using the fluid tank 2 or the filtrate tank 4 as a sealed container.
 次に、濾過装置1の構成について説明する。図2は、濾過装置1の概略断面図である。 Next, the configuration of the filtration device 1 will be described. FIG. 2 is a schematic cross-sectional view of the filtration device 1.
 図2に示すように、濾過装置1は、濾過対象物11を含む流体12が流れる流路31aを有する管状部材31と、濾過対象物11を濾過する濾過フィルタ32とを備えている。 As shown in FIG. 2, the filtration device 1 includes a tubular member 31 having a flow path 31 a through which the fluid 12 including the filtration object 11 flows, and a filtration filter 32 that filters the filtration object 11.
 管状部材31は、例えば、円筒状の部材である。管状部材31の側壁の一部に、濾液排出口1cが設けられている。濾液排出口1cの周囲には、流路31aを縮小するように流路31a内へ突出する凸部5が設けられている。本実施の形態において、凸部5は、管状部材31の側壁の一部を、当該一部に対向する側壁に向けて突出させることにより形成されている。また、凸部5は、例えば、濾液排出口1cの面に対して環状に形成されている。当該凸部5により管状部材31の側壁に段差が形成されている。この段差により、凸部5の近傍の流体12の流れが乱され、管軸A1の延在方向と交差する方向に速度成分を有する流れ(乱流)が生じる。本実施の形態において、管状部材31は、凸部5の近傍以外は乱流が生じ難いように、凸部5を除いて内径が一様な管状部材で構成されている。 The tubular member 31 is, for example, a cylindrical member. A filtrate discharge port 1 c is provided in a part of the side wall of the tubular member 31. Around the filtrate outlet 1c, there is provided a convex portion 5 protruding into the flow path 31a so as to reduce the flow path 31a. In the present embodiment, the convex portion 5 is formed by projecting a part of the side wall of the tubular member 31 toward the side wall facing the part. Moreover, the convex part 5 is cyclically | annularly formed with respect to the surface of the filtrate discharge port 1c, for example. A step is formed on the side wall of the tubular member 31 by the convex portion 5. By this step, the flow of the fluid 12 in the vicinity of the convex portion 5 is disturbed, and a flow having a velocity component (turbulent flow) is generated in a direction intersecting the extending direction of the tube axis A1. In the present embodiment, the tubular member 31 is formed of a tubular member having a uniform inner diameter except for the convex portion 5 so that turbulent flow is unlikely to occur except in the vicinity of the convex portion 5.
 なお、管状部材31の他の形態として、方形や楕円形など任意の断面形状であってもよい。また、管状部材31の材料としては、例えば、ステンレス鋼、シリコン樹脂、PVDF(テフロン:登録商標)、塩化ビニル、ガラス、ブタジエン非含有樹脂、などが挙げられる。さらに、これらの材料に濾過対象物が付着しにくい様にコーティング材を塗布してもよい。 In addition, as another form of the tubular member 31, an arbitrary cross-sectional shape such as a square or an ellipse may be used. Examples of the material of the tubular member 31 include stainless steel, silicon resin, PVDF (Teflon: registered trademark), vinyl chloride, glass, butadiene-free resin, and the like. Furthermore, a coating material may be applied so that the object to be filtered does not easily adhere to these materials.
 凸部5には、配管24が流体連通している。凸部5内には、配管24へ流れる流体12を濾過するように濾過フィルタ32が配置されている。濾過フィルタ32は、濾過対象物11を濾過する金属製多孔膜32aと、金属製多孔膜32aの外周部を保持する枠体32bとを有している。 A pipe 24 is in fluid communication with the convex portion 5. In the convex part 5, the filtration filter 32 is arrange | positioned so that the fluid 12 which flows into the piping 24 may be filtered. The filtration filter 32 includes a metal porous film 32a that filters the object to be filtered 11, and a frame body 32b that holds the outer periphery of the metal porous film 32a.
 金属製多孔膜32aは、凸部5内に配置されるとともに、流体12の流れ方向に沿うように配置されている。本実施の形態において、流体12の流れ方向は、管軸A1の延在方向と平行である。金属製多孔膜32aは、管軸A1の延在方向と平行に配置されている。 The metal porous film 32 a is disposed in the convex portion 5 and is disposed along the flow direction of the fluid 12. In the present embodiment, the flow direction of the fluid 12 is parallel to the extending direction of the tube axis A1. The metal porous film 32a is disposed in parallel with the extending direction of the tube axis A1.
 本実施の形態において、濾過対象物11は、液体に含まれる生物由来物質である。本明細書において、「生物由来物質」とは、細胞(真核生物)、細菌(真性細菌)、ウィルス等の生物に由来する物質を意味する。細胞(真核生物)としては、例えば、卵、精子、人工多能性幹細胞(iPS細胞)、ES細胞、幹細胞、間葉系幹細胞、単核球細胞、単細胞、細胞塊、浮遊性細胞、接着性細胞、神経細胞、白血球、リンパ球、再生医療用細胞、自己細胞、がん細胞、血中循環がん細胞(CTC)、HL-60、HELA、菌類を含む。細菌(真性細菌)としては、例えば、グラム陽性菌、グラム陰性菌、大腸菌、結核菌を含む。ウィルスとしては、例えば、DNAウィルス、RNAウィルス、ロタウィルス、(鳥)インフルエンザウィルス、黄熱病ウィルス、デング熱病ウィルス、脳炎ウィルス、出血熱ウィルス、免疫不全ウィルスを含む。 In the present embodiment, the filtration object 11 is a biological substance contained in the liquid. In the present specification, the “biological substance” means a substance derived from a living organism such as a cell (eukaryotic organism), a bacterium (eubacteria), or a virus. Examples of cells (eukaryotes) include eggs, sperm, induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell masses, suspension cells, and adhesions. Includes sex cells, nerve cells, leukocytes, lymphocytes, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells (CTC), HL-60, HELA, and fungi. Examples of bacteria (true bacteria) include gram positive bacteria, gram negative bacteria, Escherichia coli, and tuberculosis bacteria. Examples of the virus include DNA virus, RNA virus, rotavirus, (bird) influenza virus, yellow fever virus, dengue fever virus, encephalitis virus, hemorrhagic fever virus, and immunodeficiency virus.
 また、本実施の形態において、金属製多孔膜32aは、生物由来物質を分離する多孔膜である。図3は、金属製多孔膜32aの一部の拡大斜視図である。 Further, in the present embodiment, the metallic porous membrane 32a is a porous membrane that separates biological substances. FIG. 3 is an enlarged perspective view of a part of the metal porous film 32a.
 図3に示すように、金属製多孔膜32aは、互いに対向する第1主面32cと第2主面32dとを有している。また、金属製多孔膜32aには、第1主面32cと第2主面32dとを貫通する複数の貫通孔32eが設けられている。貫通孔32eは、液体から生物由来物質を分離するものである。貫通孔32eの形状及び寸法は、生物由来物質の形状、大きさに応じて適宜設定されるものである。貫通孔32eは、例えば、等間隔又は周期的に配置される。貫通孔32eの形状は、例えば、金属製多孔膜32aの第1主面32c又は第2主面32d側から見て正方形である。貫通孔32eのサイズは、例えば、縦0.1μm以上500μm以下、横0.1μm以上500μm以下である。貫通孔32e間の間隔は、例えば、貫通孔32eの開口径の1倍よりも大きく10倍以下であり、より好ましくは3倍以下である。また、金属製多孔膜32aにおける貫通孔32eの開口率は、例えば、10%以上である。 As shown in FIG. 3, the metal porous film 32a has a first main surface 32c and a second main surface 32d that face each other. The metal porous film 32a is provided with a plurality of through holes 32e penetrating the first main surface 32c and the second main surface 32d. The through hole 32e separates a biological material from the liquid. The shape and size of the through-hole 32e are appropriately set according to the shape and size of the biological material. The through holes 32e are arranged at regular intervals or periodically, for example. The shape of the through hole 32e is, for example, a square when viewed from the first main surface 32c or the second main surface 32d side of the metal porous film 32a. The size of the through hole 32e is, for example, from 0.1 μm to 500 μm in length and from 0.1 μm to 500 μm in width. The interval between the through holes 32e is, for example, greater than 1 time and less than or equal to 10 times, more preferably less than or equal to 3 times the opening diameter of the through holes 32e. Moreover, the aperture ratio of the through-hole 32e in the metal porous film 32a is, for example, 10% or more.
 金属製多孔膜32aの材料としては、例えば、金、銀、銅、白金、ニッケル、ステンレス鋼、パラジウム、チタン、コバルト、及びこれらの合金が挙げられる。金属製多孔膜32aの直径は、例えば、直径8mmである。金属製多孔膜32aの厚さは、例えば、0.05μm以上100μm以下であり、好ましくは、0.1μm以上50μm以下である。金属製多孔膜32aの外形は、例えば、円形、楕円形、又は多角形のいずれかである。本実施の形態においては、金属製多孔膜32aの外形は、円形とする。 Examples of the material of the metal porous film 32a include gold, silver, copper, platinum, nickel, stainless steel, palladium, titanium, cobalt, and alloys thereof. The metal porous film 32a has a diameter of, for example, 8 mm. The thickness of the metal porous film 32a is, for example, not less than 0.05 μm and not more than 100 μm, and preferably not less than 0.1 μm and not more than 50 μm. The outer shape of the metal porous film 32a is, for example, one of a circle, an ellipse, and a polygon. In the present embodiment, the metal porous film 32a has a circular outer shape.
 枠体32bは、環状(例えば、円環状)に形成されている。枠体32bの材料としては、例えば、ジュラルミン、アルミニウムなどの金属や、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリアセタール、ポリエーテルイミドなどの樹脂が挙げられる。枠体32bの幅は、例えば、0.9mmである。枠体32bの厚さは、例えば、20μmである。 The frame body 32b is formed in an annular shape (for example, an annular shape). Examples of the material of the frame 32b include metals such as duralumin and aluminum, and resins such as polyethylene, polystyrene, polypropylene, polycarbonate, polyacetal, and polyetherimide. The width of the frame 32b is, for example, 0.9 mm. The thickness of the frame body 32b is, for example, 20 μm.
 本実施の形態に係る濾過装置1によれば、金属製多孔膜32aが、流路31aを縮小するように突出する凸部5内に配置されるとともに、流体12の流れ方向に沿うように配置されている。この構成によれば、凸部5により流体12の流れを乱すとともに流体12の流速を速めることができる。これにより、濾過フィルタ32の目詰まりをより一層抑えて、濾過効率をより一層向上させることができる。 According to the filtration device 1 according to the present embodiment, the metal porous membrane 32a is arranged in the convex portion 5 protruding so as to reduce the flow path 31a, and is arranged along the flow direction of the fluid 12. Has been. According to this configuration, the flow of the fluid 12 can be disturbed by the convex portion 5 and the flow velocity of the fluid 12 can be increased. Thereby, clogging of the filter 32 can be further suppressed, and the filtration efficiency can be further improved.
 なお、凸部5の突出量は、濾過対象物11の大きさの1倍以上であることが好ましい。この構成によれば、流体12の流れを乱すとともに流体12の流速を速めることができる。これにより、濾過フィルタ32の目詰まりをより一層抑えて、濾過効率をより一層向上させることができる。また、凸部5によって流路31a内に生じた段差で、濾過対象物11を捕捉できる効果も生じる。 In addition, it is preferable that the protrusion amount of the convex part 5 is 1 time or more of the magnitude | size of the filtration target object 11. FIG. According to this configuration, the flow of the fluid 12 can be disturbed and the flow velocity of the fluid 12 can be increased. Thereby, clogging of the filter 32 can be further suppressed, and the filtration efficiency can be further improved. Moreover, the effect which can capture the filtration target object 11 also arises in the level | step difference produced in the flow path 31a by the convex part 5. FIG.
 また、金属製多孔膜32aと、当該金属製多孔膜32aに対向する管状部材31の側壁との距離は、濾過対象物11の大きさの1倍より大きいことが好ましい。この構成によれば、濾過対象物11が、金属製多孔膜32aと管状部材31の側壁との間を通過することができる。これにより、濾過フィルタ32の目詰まりをより一層抑えて、濾過効率をより一層向上させることができる。 In addition, the distance between the metal porous membrane 32a and the side wall of the tubular member 31 facing the metal porous membrane 32a is preferably larger than one time the size of the filtration object 11. According to this configuration, the filtration object 11 can pass between the metal porous membrane 32 a and the side wall of the tubular member 31. Thereby, clogging of the filter 32 can be further suppressed, and the filtration efficiency can be further improved.
 (実施例)
 次に、本発明の実施例に係る濾過装置を用いて流体から濾過対象物を濾過した結果について説明する。
(Example)
Next, the result of filtering the object to be filtered from the fluid using the filtration device according to the embodiment of the present invention will be described.
 ここでは、流体12として、細胞HL60を含むPBS溶液(リン酸緩衝生理食塩水)を用い、濾過フィルタ32により当該PBS溶液から液体成分を濾過するとともに細胞HL60を捕捉するようにした。PBS溶液は直径約9μmの概球形を有する1×10個の細胞HL60を含み、PBS溶液の総量は50mlとした。 Here, a PBS solution (phosphate buffered saline) containing the cells HL60 is used as the fluid 12, and the liquid components are filtered from the PBS solution by the filtration filter 32 and the cells HL60 are captured. The PBS solution contained 1 × 10 5 cells HL60 having an approximately spherical shape with a diameter of about 9 μm, and the total amount of the PBS solution was 50 ml.
 また、金属製多孔膜32aとして、外形が円形、厚みが1.0μm、直径が7.8mm、中心から直径6mmの範囲にメッシュ構造を有するニッケル製のメッシュ膜を用いた。メッシュ構造は、一辺が2.5μmの正方形の貫通孔を3.6μmピッチで配置した正方格子配列とした。また、金属製多孔膜32aは、流路31a側の主面が管状部材31の側壁から流路31a内へ1.5mm離れて位置するように配置した。また、管状部材31として、内径2mmのチューブを用いた。 Further, as the metal porous film 32a, a nickel mesh film having a circular outer shape, a thickness of 1.0 μm, a diameter of 7.8 mm, and a mesh structure in a range of 6 mm in diameter from the center was used. The mesh structure was a square lattice arrangement in which square through holes with sides of 2.5 μm were arranged at a pitch of 3.6 μm. Further, the metal porous film 32a was arranged so that the main surface on the flow channel 31a side was located 1.5 mm away from the side wall of the tubular member 31 into the flow channel 31a. Further, as the tubular member 31, a tube having an inner diameter of 2 mm was used.
 この管状部材31内の流路31aに、毎分240mlの流速で前記PBS溶液が流れるように、ポンプ3を約30分間駆動させた。その後、濾過フィルタ32を通過した液体の液量(濾液)を測定したところ、当該液量は40mlであった。 The pump 3 was driven for about 30 minutes so that the PBS solution flowed through the flow path 31a in the tubular member 31 at a flow rate of 240 ml per minute. Then, when the liquid volume (filtrate) of the liquid that passed through the filter 32 was measured, the liquid volume was 40 ml.
 一方、金属製多孔膜32aの流路31a側の主面が管状部材31の側壁に沿うように濾過フィルタ32を配置し、前記と同様に流路31a内に前記PBS溶液を流したところ、濾液の液量は22mlであった。また、ポンプ3の駆動による濾過動作の後半では、ほとんど濾液が得られなかった。また、顕微鏡で金属製多孔膜32aを観察したところ、金属製多孔膜32a上に多数の細胞HL60が捕捉されていることを確認した。すなわち、金属製多孔膜32aに目詰まりが発生していることを確認した。 On the other hand, when the filtration filter 32 is disposed so that the main surface of the metal porous membrane 32a on the flow path 31a side is along the side wall of the tubular member 31, and the PBS solution is flowed into the flow path 31a in the same manner as described above, The liquid volume of was 22 ml. Further, almost no filtrate was obtained in the latter half of the filtration operation by driving the pump 3. Further, when the metal porous membrane 32a was observed with a microscope, it was confirmed that a large number of cells HL60 were captured on the metal porous membrane 32a. That is, it was confirmed that clogging occurred in the metal porous film 32a.
 以上により、本発明の実施例に係る濾過装置によれば、濾過フィルタ32の目詰まりをより一層抑えて、濾過効率をより一層向上させることができることが確認された。 From the above, it was confirmed that the filtration device according to the example of the present invention can further suppress the clogging of the filtration filter 32 and further improve the filtration efficiency.
 なお、本発明は前記実施の形態に限定されるものではなく、その他種々の態様で実施できる。例えば、前記では、凸部5は、管状部材31の側壁の一部を、当該一部に対向する側壁に向けて突出させることにより形成されるものとしたが、本発明はこれに限定されない。例えば、図4に示すように、管状部材31に貫通穴を設け、当該貫通穴の内側周囲に枠体32bを取り付け、当該枠体32bにより凸部5を形成するようにしてもよい。すなわち、管状部材31の側壁の一部に枠体32bを取り付け、当該枠体32bの厚みにより凸部5を形成するようにしてもよい。この場合でも、金属製多孔膜32aを凸部5に配置するとともに流体12の流れ方向に沿うように配置することができる。 Note that the present invention is not limited to the above-described embodiment, and can be implemented in various other modes. For example, in the above description, the convex portion 5 is formed by projecting a part of the side wall of the tubular member 31 toward the side wall facing the part, but the present invention is not limited to this. For example, as shown in FIG. 4, a through hole may be provided in the tubular member 31, a frame body 32b may be attached to the inner periphery of the through hole, and the convex portion 5 may be formed by the frame body 32b. That is, the frame body 32b may be attached to a part of the side wall of the tubular member 31, and the convex portion 5 may be formed by the thickness of the frame body 32b. Even in this case, the metal porous film 32a can be arranged on the convex portion 5 and can be arranged along the flow direction of the fluid 12.
 また、前記では、図2に示すように、管状部材31が真っ直ぐな円筒状(直管形状)であるものとしたが、本発明はこれに限定されない。管状部材31は、金属製多孔膜32aに沿って流体12を流すことができるように構成されていればよい。例えば、図5~図8に示すように、管状部材31の流体導入口1a側又は流体排出口1b側の部分が、管軸A1の延在方向に対して交差する方向に曲がるように構成されてもよい。 In the above description, as shown in FIG. 2, the tubular member 31 has a straight cylindrical shape (straight tube shape), but the present invention is not limited to this. The tubular member 31 should just be comprised so that the fluid 12 can be flowed along the metal porous membrane 32a. For example, as shown in FIGS. 5 to 8, the portion of the tubular member 31 on the fluid introduction port 1a side or fluid discharge port 1b side is configured to bend in a direction intersecting with the extending direction of the tube axis A1. May be.
 また、前記では、図2に示すように、濾過フィルタ32が、1つの管状部材31に対して1つ設けられるものとしたが、本発明はこれに限定されない。濾過フィルタ32は、図9に示すように、1つの管状部材31に対して複数(例えば、3つ)設けられてもよい。なお、この場合、複数の濾過フィルタ32は、図9に示すように、管軸A1の延在方向に配列されることが好ましい。また、複数の濾過フィルタ32は、それぞれの金属製多孔膜32aの貫通穴32e(図3参照)の開口径が互いに異なっていてもよい。この構成によれば、流体12にサイズの異なる複数の濾過対象物11が含まれる場合であっても、それらの濾過対象物11を分級することが可能になる。 In the above description, as shown in FIG. 2, one filter 32 is provided for one tubular member 31, but the present invention is not limited to this. As shown in FIG. 9, a plurality of (for example, three) filtration filters 32 may be provided for one tubular member 31. In this case, it is preferable that the plurality of filtration filters 32 be arranged in the extending direction of the tube axis A1, as shown in FIG. The plurality of filtration filters 32 may have different opening diameters of the through holes 32e (see FIG. 3) of the respective metal porous membranes 32a. According to this configuration, even if the fluid 12 includes a plurality of filtering objects 11 having different sizes, the filtering objects 11 can be classified.
 また、前記では、流体12が液体であるとしたが、本発明はこれに限定されない。例えば、流体12は気体であり、濾過対象物11は気体に含まれた微粒子であってもよい。微粒子とは、例えば、工業用粉体材料やPM2.5などである。 In the above description, the fluid 12 is a liquid, but the present invention is not limited to this. For example, the fluid 12 may be a gas, and the filtration target 11 may be fine particles contained in the gas. The fine particles are, for example, industrial powder materials and PM2.5.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of the present invention according to the appended claims.
 本発明は、濾過フィルタの目詰まりをより一層抑えて、濾過効率をより一層向上させることができるので、特に、濾過対象物の濃度が高い流体を濾過する濾過装置に有用である。 Since the present invention can further suppress the clogging of the filtration filter and further improve the filtration efficiency, it is particularly useful for a filtration apparatus for filtering a fluid having a high concentration of the filtration object.
  1  濾過装置
  1a 流体導入口
  1b 流体排出口
  1c 濾液排出口
  2  流体タンク
  3  ポンプ
  4  濾液タンク
  5  凸部
 11  濾過対象物
 12  流体
 13  濾液
 21~24 配管
 31  管状部材
 31a 流路
 32  濾過フィルタ
 32a 金属製多孔膜
 32b 枠体
 32c 第1主面
 32d 第2主面
 32e 貫通孔
DESCRIPTION OF SYMBOLS 1 Filtration apparatus 1a Fluid introduction port 1b Fluid discharge port 1c Filtrate discharge port 2 Fluid tank 3 Pump 4 Filtrate tank 5 Convex part 11 Filtration object 12 Fluid 13 Filtrate 21-24 Piping 31 Tubular member 31a Flow path 32 Filtration filter 32a Metal Porous film 32b Frame 32c First main surface 32d Second main surface 32e Through hole

Claims (6)

  1.  濾過対象物を含む流体が流れる流路を有する管状部材と、
     前記濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、
     を備える濾過装置であって、
     前記管状部材の側壁の一部には、前記濾過対象物が濾過された流体である濾液を排出するための濾液排出口が設けられ、
     前記濾液排出口の周囲には、前記流路を縮小するように前記流路内へ突出する凸部が設けられ、
     前記金属製多孔膜は、前記凸部内に配置されるとともに、前記流体の流れ方向に沿うように配置されている、
     濾過装置。
    A tubular member having a flow path through which a fluid containing an object to be filtered flows;
    A filtration filter having a metal porous membrane for filtering the filtration object;
    A filtration device comprising:
    A part of the side wall of the tubular member is provided with a filtrate outlet for discharging a filtrate that is a fluid obtained by filtering the object to be filtered.
    Around the filtrate outlet, there is provided a convex portion protruding into the flow path so as to reduce the flow path,
    The metal porous membrane is arranged in the convex portion and arranged along the fluid flow direction,
    Filtration device.
  2.  前記凸部は、前記管状部材の側壁の一部を、当該一部に対向する側壁に向けて突出させることにより形成されている、請求項1に記載の濾過装置。 The filtration device according to claim 1, wherein the convex portion is formed by projecting a part of a side wall of the tubular member toward a side wall facing the part.
  3.  前記濾過フィルタは、前記金属製多孔膜の外周部を保持する枠部材を有し、
     前記枠部材は、前記管状部材の側壁の一部に取り付けられ、
     前記凸部は、前記枠部材により形成されている、請求項1に記載の濾過装置。
    The filtration filter has a frame member that holds an outer peripheral portion of the metal porous membrane,
    The frame member is attached to a part of the side wall of the tubular member,
    The filtration device according to claim 1, wherein the convex portion is formed by the frame member.
  4.  前記管状部材は、前記凸部を除いて内径が一様な管状部材である、請求項1~3のいずれか1つに記載の濾過装置。 The filtration device according to any one of claims 1 to 3, wherein the tubular member is a tubular member having a uniform inner diameter excluding the convex portion.
  5.  前記凸部の突出量は、前記濾過対象物の大きさの1倍以上である、請求項1~4のいずれか1つに記載の濾過装置。 The filtration device according to any one of claims 1 to 4, wherein a protruding amount of the convex portion is one or more times the size of the filtration object.
  6.  前記金属製多孔膜と、当該金属製多孔膜に対向する前記管状部材の側壁との距離は、前記濾過対象物の大きさの1倍より大きい、請求項1~5のいずれか1つに記載の濾過装置。 The distance between the metal porous membrane and the side wall of the tubular member facing the metal porous membrane is greater than one time the size of the object to be filtered, according to any one of claims 1 to 5. Filtration equipment.
PCT/JP2016/081160 2015-12-14 2016-10-20 Filtration device WO2017104261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-243478 2015-12-14
JP2015243478A JP2019022867A (en) 2015-12-14 2015-12-14 Filtration device

Publications (1)

Publication Number Publication Date
WO2017104261A1 true WO2017104261A1 (en) 2017-06-22

Family

ID=59055944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081160 WO2017104261A1 (en) 2015-12-14 2016-10-20 Filtration device

Country Status (2)

Country Link
JP (1) JP2019022867A (en)
WO (1) WO2017104261A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212096A1 (en) * 2017-05-19 2018-11-22 株式会社村田製作所 Filtration device
WO2019058865A1 (en) * 2017-09-25 2019-03-28 株式会社村田製作所 Filtration device
CN111093797A (en) * 2017-09-19 2020-05-01 株式会社村田制作所 Filtering device and filtering method
JP2021525516A (en) * 2018-05-30 2021-09-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Microfluidic filtration devices and methods for dissociation of tissues and cell aggregates and enrichment of single cells

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167712A (en) * 1981-04-10 1982-10-15 Hitachi Ltd Strainer
JPS59119310U (en) * 1983-01-27 1984-08-11 株式会社柳沢製作所 fluid filter device
JPS61135563U (en) * 1985-02-09 1986-08-23
JPH09290116A (en) * 1996-04-25 1997-11-11 Takasago Thermal Eng Co Ltd Air filter of low pressure loss
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
JP2010100183A (en) * 2008-10-24 2010-05-06 Komatsu Ltd Air filter cover
JP2012045498A (en) * 2010-08-27 2012-03-08 Yanagawa Engineering Co Ltd Concentrator
JP2013082005A (en) * 2011-09-30 2013-05-09 Metawater Co Ltd Screw press dehydrator
WO2013098487A1 (en) * 2011-12-30 2013-07-04 Kemira Oyj Method and device for taking samples and use of the method and the device
WO2015019889A1 (en) * 2013-08-09 2015-02-12 日立化成株式会社 Cell trapping device, cell trapping system, and production method for cell trapping device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167712A (en) * 1981-04-10 1982-10-15 Hitachi Ltd Strainer
JPS59119310U (en) * 1983-01-27 1984-08-11 株式会社柳沢製作所 fluid filter device
JPS61135563U (en) * 1985-02-09 1986-08-23
JPH09290116A (en) * 1996-04-25 1997-11-11 Takasago Thermal Eng Co Ltd Air filter of low pressure loss
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
JP2010100183A (en) * 2008-10-24 2010-05-06 Komatsu Ltd Air filter cover
JP2012045498A (en) * 2010-08-27 2012-03-08 Yanagawa Engineering Co Ltd Concentrator
JP2013082005A (en) * 2011-09-30 2013-05-09 Metawater Co Ltd Screw press dehydrator
WO2013098487A1 (en) * 2011-12-30 2013-07-04 Kemira Oyj Method and device for taking samples and use of the method and the device
WO2015019889A1 (en) * 2013-08-09 2015-02-12 日立化成株式会社 Cell trapping device, cell trapping system, and production method for cell trapping device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212096A1 (en) * 2017-05-19 2018-11-22 株式会社村田製作所 Filtration device
CN111093797A (en) * 2017-09-19 2020-05-01 株式会社村田制作所 Filtering device and filtering method
US11786847B2 (en) 2017-09-19 2023-10-17 Murata Manufacturing Co., Ltd. Filtration device and filtration method
WO2019058865A1 (en) * 2017-09-25 2019-03-28 株式会社村田製作所 Filtration device
CN111107920A (en) * 2017-09-25 2020-05-05 株式会社村田制作所 Filter device
JPWO2019058865A1 (en) * 2017-09-25 2020-07-30 株式会社村田製作所 Filtration device
US11529579B2 (en) 2017-09-25 2022-12-20 Murata Manufacturing Co., Ltd. Filtration device
JP2021525516A (en) * 2018-05-30 2021-09-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Microfluidic filtration devices and methods for dissociation of tissues and cell aggregates and enrichment of single cells
JP7455389B2 (en) 2018-05-30 2024-03-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Microfluidic filtration devices and methods for dissociation of tissue and cell aggregates and enrichment of single cells

Also Published As

Publication number Publication date
JP2019022867A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2017104261A1 (en) Filtration device
JP6521038B2 (en) Metal porous film, classification method using the same, and classification apparatus
WO2017022484A1 (en) Filtration filter device
US10926229B2 (en) Filtration filter
JP6197978B1 (en) Filtration filter and filtration filter device
US20220162539A1 (en) Filtration and collection device
JP6137438B1 (en) Filtration filter
JP6323632B2 (en) Filtration filter device
US11389752B2 (en) Filtration device
WO2017104260A1 (en) Filtration device
WO2022123953A1 (en) Filtration device, filtration system, and filtration method
JP2016214154A (en) Filtration container, filtration device, and filtration method
WO2018212096A1 (en) Filtration device
US20240066440A1 (en) Filter device
US11498032B2 (en) Concentration apparatus
CN111107920A (en) Filter device
CN115297941A (en) Filter and filtering equipment
JP2024031809A (en) filter device
JP2015181406A (en) Apparatuses and methods for platelet production
WO2016139987A1 (en) Structure and collection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP