WO2018212096A1 - Filtration device - Google Patents

Filtration device Download PDF

Info

Publication number
WO2018212096A1
WO2018212096A1 PCT/JP2018/018355 JP2018018355W WO2018212096A1 WO 2018212096 A1 WO2018212096 A1 WO 2018212096A1 JP 2018018355 W JP2018018355 W JP 2018018355W WO 2018212096 A1 WO2018212096 A1 WO 2018212096A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
filtration
filter
holder
fluid
Prior art date
Application number
PCT/JP2018/018355
Other languages
French (fr)
Japanese (ja)
Inventor
萬壽 優
順子 渡邉
近藤 孝志
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018212096A1 publication Critical patent/WO2018212096A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/24Preventing accumulation of dirt or other matter in the pipes, e.g. by traps, by strainers

Definitions

  • the present invention relates to a filtration device for filtering a filtration object contained in a fluid.
  • Patent Document 1 what is described in Patent Document 1 is known as a filtering device.
  • a branch pipe is attached to a branch portion set in the main pipe via a strainer.
  • the strainer prevents floating substances contained in the flow of the main pipe from entering the branch pipe.
  • Patent Document 1 still has room for improvement from the viewpoint of suppressing fluid leakage.
  • An object of the present invention is to solve the above-described problem and provide a filtration device that suppresses fluid leakage.
  • the filtration device includes: A flow path member through which a fluid flows; A filtration filter for filtering an object to be filtered contained in the fluid; A holder in which the filtration filter is attached to the flow path member; With The flow path member includes a first flow path into which the fluid flows and a second flow path that extends in a direction different from the first flow path, and the first flow path and the second flow path include The connected part is provided with a discharge port for discharging the fluid, The first flow path is provided in a direction intersecting the opening surface of the discharge port, The holder is attached to the flow path member so that the filtration filter is located at the discharge port of the flow path member.
  • fluid leakage can be suppressed in the filtration device.
  • the front view of the filtration apparatus of Embodiment 1 which concerns on this invention The top view of the filtration apparatus of Embodiment 1 which concerns on this invention Enlarged sectional view of the A1 portion of the filtration device of FIG.
  • the schematic block diagram of the filtration filter of Embodiment 1 which concerns on this invention before pinching with a holder Partial enlarged perspective view of the filtration filter according to the first embodiment of the present invention before being clamped by the holder Schematic of a part of the filtration filter of FIG. 4 as seen from the thickness direction
  • Schematic configuration diagram of a modified filtration device Schematic configuration diagram of another modification of the filtration device
  • a discharge port is provided on a side surface of the flow channel inside the flow channel member, and a filtration filter is attached to the discharge port by a holder.
  • the filtration filter is attached in parallel to the direction of fluid flow in the flow path.
  • the inventors increase the pressure difference between the flow path and the outside of the flow path, so that fluid may leak from the joint between the flow path member and the holder. I found it.
  • the present inventors provide a discharge port in a portion of the flow path member where the first flow path and the second flow path are connected, and the first flow path intersects the opening surface of the discharge port. It has been found that the fluid flowing in the first flow path can easily flow to the discharge port by being provided in the direction in which the first flow path is provided. Thus, it has been found that by reducing the pressure in the flow path, the pressure difference between the flow path and the outside of the flow path can be reduced, and fluid leakage can be suppressed.
  • the filtration device is A flow path member through which a fluid flows; A filtration filter for filtering an object to be filtered contained in the fluid; A holder in which the filtration filter is attached to the flow path member; With The flow path member includes a first flow path into which the fluid flows and a second flow path that extends in a direction different from the first flow path, and the first flow path and the second flow path include The connected part is provided with a discharge port for discharging the fluid, The first flow path is provided in a direction intersecting the opening surface of the discharge port, The holder is attached to the flow path member so that the filtration filter is located at the discharge port of the flow path member.
  • the first flow path may be inclined at an acute angle with respect to the opening surface of the discharge port.
  • the flow path member has a first surface provided with the discharge port,
  • the holder has a second surface to which the filtration filter is attached;
  • the holder may be attached to the flow path member with the second surface of the holder being brought into surface contact with the first surface of the flow path member.
  • the flow path member has a third flow path surrounded by a portion where the first flow path and the second flow path are connected, and the filtration filter, The outlet is provided in the third flow path;
  • the channel cross-sectional area of the third channel may be smaller than the channel cross-sectional area of the first channel.
  • the flow rate of the fluid flowing through the third flow path can be increased, and clogging of the filtration filter can be suppressed.
  • the holder may be attached to the flow path member such that a plurality of the filtration filters are located at the discharge port of the third flow path.
  • the first flow path and the second flow path may be formed symmetrically about a portion where the first flow path and the second flow path are connected.
  • Such a configuration can improve convenience.
  • FIGS. 1A and 1B show a front view and a plan view, respectively, of the filtration device 10 according to the first embodiment of the present invention.
  • FIG. 2 shows an enlarged cross-sectional view of the A1 portion of the filtration device 10 of FIG.
  • the X, Y, and Z directions in FIGS. 1A, 1B, and 2 indicate the horizontal direction, vertical direction, and height direction of the filtration device 10, respectively.
  • the filtration device 10 includes a flow path member 20, a filtration filter 30, and a holder 40.
  • a holder 40 to which the filtration filter 30 is attached is attached to the flow path member 20 by a fixture 50.
  • the flow path member 20 is a rectangular parallelepiped block member provided with a flow path through which a fluid flows.
  • the flow path member 20 includes a first flow path 21 and a second flow path 22 that extends in a direction different from the first flow path 21.
  • the flow path member 20 is provided with a discharge port 24 for discharging the filtered fluid at a portion where the first flow path 21 and the second flow path 22 are connected.
  • the third flow path 23 is provided in the flow path member 20 where the first flow path 21 and the second flow path 22 are connected.
  • the discharge port 24 is provided in the third flow path 23.
  • the 1st flow path 21 is a flow path into which the fluid containing the filtration target object flows.
  • the first flow path 21 is inclined at an acute angle with respect to the opening surface (XY plane) of the discharge port 24.
  • the first flow path 21 is inclined at an angle ⁇ 1 in the + Z direction with respect to the opening surface (XY plane) of the discharge port 24.
  • the angle ⁇ 1 is an angle larger than 0 degree and smaller than 90 degrees.
  • the shape of the first flow path 21 is, for example, a circular pipe shape having a diameter of 6 mm.
  • the filtration target means a biological substance contained in the fluid.
  • the “biological substance” means a substance derived from a living organism such as a cell (eukaryotic organism), a bacterium (eubacteria), or a virus.
  • cells eukaryotes
  • examples of cells include artificial pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell masses, suspension cells, adhesive cells, nerves. Includes cells, leukocytes, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells (CTC), HL-60, HELA, and fungi.
  • bacteria examples include Escherichia coli and tuberculosis.
  • Fluid means a liquid.
  • the fluid means a cell culture medium
  • the filtration target means a cell (eukaryote).
  • the second flow path 22 is a flow path through which a fluid containing the filtration target object flows, and extends in a direction different from that of the first flow path 21.
  • the second flow path 22 is inclined at an acute angle with respect to the opening surface (XY plane) of the discharge port 24.
  • the shape of the second channel is, for example, a circular tube shape with a diameter of 6 mm.
  • the discharge port 24 is provided in a portion where the first flow path 21 and the second flow path 22 are connected, and is a hole for discharging the fluid flowing inside the flow path member 20 to the outside.
  • the opening surface of the discharge port 24 is provided so as to intersect the direction in which the first flow path 21 extends.
  • the flow path member 20 has the first surface 25 on the side where the holder 40 is attached.
  • the first surface 25 is, for example, a flat wall surface.
  • the discharge port 24 is provided in the third flow path 23 and is provided in the first surface 25 of the flow path member 20.
  • a filtration filter 30 is disposed at the outlet 24.
  • the discharge port 24 has a size to which the filtration filter 30 can be attached.
  • the third flow path 23 is a flow path that connects the first flow path 21 and the second flow path 22.
  • the third flow path 23 is formed by a portion surrounded by the part where the first flow path 21 and the second flow path 22 are connected and the filtration filter 30. More specifically, the third flow path 23 is a portion where the first flow path 21 and the second flow path 22 are connected, and is concave from the first surface 25 toward the inside of the flow path member 20. It is formed with a recessed portion. At least a part of the side wall of the third flow path 23 is formed by the filtration filter 30 disposed in the discharge port 24. In the first embodiment, the third flow path 23 is formed along the first surface 25 of the flow path member 20.
  • the third flow path 23 extends in the X direction.
  • one end is connected to the first flow path 21 and the other end is connected to the second flow path 22.
  • the channel cross-sectional area of the third channel 23 is smaller than the channel cross-sectional areas of the first channel 21 and the second channel 22.
  • the shape of the third flow path is, for example, a rectangular shape having a length in the X direction of 42.2 mm and a cross section perpendicular to the fluid flow direction (length in the Z direction) 1 mm ⁇ (length in the Y direction) 6 mm It is.
  • the channel cross-sectional area refers to the cross-sectional area of the channel in a cross section perpendicular to the fluid flow direction.
  • the first flow path 21, the second flow path 22, and the third flow path 23 are formed on the same plane (XZ plane). Further, the first flow path 21 and the second flow path 22 are formed symmetrically with respect to a portion where the first flow path 21 and the second flow path 22 are connected. Specifically, as shown in FIG. 2, the first flow path 21 and the second flow path 22 are left and right with respect to a center line C1 passing through the center of the discharge port 24 provided in the third flow path 23. It is formed symmetrically.
  • the material of the flow path member 20 is, for example, polycarbonate, polyacetal, or acrylic.
  • the filtration filter 30 is a filter that filters an object to be filtered included in the fluid.
  • the filtration filter 30 is attached to the discharge port 24 of the flow path member 20.
  • the filtration filter 30 is a metal porous film.
  • FIG. 3 is a plan view showing a schematic configuration of the filtration filter 30.
  • FIG. 4 is an enlarged perspective view of a part of the filtration filter 30.
  • the X, Y, and Z directions in FIGS. 3 and 4 correspond to the X, Y, and Z directions in FIG. 2, and indicate the horizontal direction, vertical direction, and thickness direction of the filter 30, respectively.
  • 3 and 4 show the filtration filter 30 before being held by the holder 40.
  • FIG. 3 the filtration filter 30 includes a filter portion 31 and a frame portion 32 provided on the outer periphery of the filter portion 31.
  • the filtration filter 30 has a first main surface PS1 and a second main surface PS2 that face each other. In the first embodiment, as shown in FIG.
  • the filter part 31 includes a filter base part 34 in which a plurality of through holes 33 penetrating the first main surface PS1 and the second main surface PS2 are formed.
  • the material constituting the filter base portion 34 forming the base portion of the filter 30 is mainly composed of metal and / or metal oxide.
  • the filter base 34 may be, for example, gold, silver, copper, platinum, nickel, palladium, an alloy thereof, or an oxide thereof.
  • the outer shape of the filtration filter 30 is, for example, a circle, a rectangle, or an ellipse. In the first embodiment, the outer shape of the filtration filter 30 is substantially circular. In the present specification, “substantially circular” means that the ratio of the length of the major axis to the length of the minor axis is 1.0 or more and 1.2 or less.
  • the filter part 31 is a plate-like structure in which a plurality of through holes 33 are formed.
  • the shape of the filter unit 31 is, for example, a circle, a rectangle, or an ellipse. In the first embodiment, the shape of the filter unit 31 is substantially circular.
  • FIG. 5 is a schematic view of a part of the filter unit 31 as viewed from the thickness direction (+ Z direction).
  • the plurality of through holes 33 are periodically arranged on the first main surface PS1 and the second main surface PS2 of the filter unit 31. Specifically, the plurality of through holes 33 are provided at regular intervals in a matrix in the filter portion 31.
  • the through-hole 33 has a square shape when viewed from the first main surface PS1 side of the filter portion 31, that is, the + Z direction.
  • the through hole 33 is not limited to a square shape when viewed from the + Z direction, and may be a rectangular shape, a circular shape, or an elliptical shape, for example.
  • the shape (cross-sectional shape) of the through-hole 33 projected on a surface perpendicular to the first main surface PS1 of the filter portion 31 is a rectangle.
  • the cross-sectional shape of the through hole 33 is a rectangle in which the length of one side in the radial direction of the filtration filter 30 is longer than the length of one side in the thickness direction of the filtration filter 30.
  • the cross-sectional shape of the through-hole 33 is not limited to a rectangle, and may be, for example, a tapered shape such as a parallelogram or a trapezoid, a symmetric shape, or an asymmetric shape. .
  • the plurality of through holes 33 are arranged in two arrangement directions parallel to each side of the square when viewed from the first main surface PS1 side (+ Z direction) of the filter unit 31, that is, the X direction in FIG. They are provided at equal intervals in the Y direction.
  • the aperture ratio can be increased, and the passage resistance of the fluid to the filter 30 can be reduced.
  • the processing time can be shortened and the stress on the cells can be reduced.
  • the arrangement of the plurality of through holes 33 is not limited to a square lattice arrangement, and may be, for example, a quasi-periodic arrangement or a periodic arrangement.
  • the periodic array as long as it is a square array, a rectangular array in which the intervals in the two array directions are not equal may be used, or a triangular lattice array or a regular triangular lattice array may be used.
  • the through-hole 33 should just be provided with two or more by the filter part 31, and arrangement
  • the interval between the through holes 33 is appropriately designed according to the type (size, form, property, elasticity) or amount of cells to be separated.
  • the interval between the through holes 33 is, as shown in FIG. 5, the through holes 33 adjacent to the center of any through hole 33 when the through holes 33 are viewed from the first main surface PS ⁇ b> 1 side of the filter portion 31. It means the distance b from the center.
  • the interval b between the through holes 33 is, for example, larger than 1 side d of the through hole 33 and 10 times or less, and preferably 3 times or less the side d of the through hole 33.
  • the aperture ratio of the filter unit 31 is 10% or more, and preferably the aperture ratio is 25% or more.
  • the aperture ratio is calculated by (area occupied by the through hole 33) / (projected area of the first main surface PS1 when it is assumed that the through hole 33 is not vacant).
  • the thickness of the filter part 31 is preferably greater than 0.1 times the size of the through-hole 33 (one side d) and not more than 100 times. More preferably, the thickness of the filter portion 31 is greater than 0.5 times the size of the through-hole 33 (one side d) and not more than 10 times.
  • 1st main surface PS1 with which the fluid containing the filtration target object contacts has a small surface roughness.
  • the surface roughness means an average value of the difference between the maximum value and the minimum value measured by a stylus type step gauge at any five locations on the first main surface PS1.
  • the surface roughness is preferably smaller than the cell size, and more preferably less than half the cell size.
  • the openings of the plurality of through holes 33 on the first main surface PS1 of the filter part 31 are formed on the same plane (XY plane).
  • the through hole 33 of the filter part 31 communicates through a wall surface in which an opening on the first main surface PS1 side and an opening on the second main surface PS2 side are continuous.
  • the through hole 33 is provided so that the opening on the first main surface PS1 side can be projected onto the opening on the second main surface PS2 side. That is, when the filter unit 31 is viewed from the first main surface PS1 side, the through hole 33 is provided so that the opening on the first main surface PS1 side overlaps the opening on the second main surface PS2 side.
  • the through hole 33 is provided such that the inner wall thereof is perpendicular to the first main surface PS1 and the second main surface PS2.
  • the frame portion 32 is provided on the outer periphery of the filter portion 31 and is a portion where the number of through holes 33 per unit area is smaller than that of the filter portion 31.
  • the number of through holes 33 in the frame part 32 is 1% or less of the number of through holes 33 in the filter part 31.
  • the thickness of the frame part 32 may be larger than the thickness of the filter part 31. With such a configuration, the mechanical strength of the filtration filter 30 can be increased.
  • the frame part 32 functions as a connection part that connects the filtration filter 30 and the holder 40.
  • the frame 32 may display filter information (such as dimensions of the through hole 33).
  • the frame portion 32 is formed in a ring shape when viewed from the first main surface PS1 side of the filter portion 31.
  • the center of the frame portion 32 coincides with the center of the filter portion 31. That is, the frame part 32 is formed concentrically with the filter part 31.
  • the holder 40 is a jig in which the filtration filter 30 is attached to the flow path member 20. As shown in FIGS. 1A and 1B, the holder 40 is attached to the flow path member 20 by a fixing tool 50 such as a screw. The holder 40 is attached to the flow path member 20 so that the filtration filter 30 is located at the discharge port 24 of the flow path member 20. That is, when the holder 40 is attached to the flow path member 20, the filtration filter 30 is disposed at the discharge port 24 of the flow path member 20.
  • the holder 40 includes a first frame member 41 and a second frame member 42, and the frame portion 32 of the filtration filter 30 is sandwiched between the first frame member 41 and the second frame member 42. To do.
  • a discharge path 44 through which the fluid filtered through the filter 30 is discharged is formed inside the second frame member 42 of the holder 40.
  • the discharge path 44 communicates with the discharge port 24 of the flow path member 20.
  • the holder 40 holds the filtration filter 30 as follows.
  • the frame part 32 has a first bent part 32a, a second bent part 32b, and a corrugated part 32c.
  • the first bent portion 32a is a portion that bends the frame portion 32 toward the second main surface PS2 at an obtuse angle.
  • the second bent portion 32b is located closer to the outer edge 32d of the frame portion 32 than the first bent portion 32a, and is a portion that bends the frame portion 32 in the direction opposite to the first bent portion 32a (first main surface PS1 side). is there.
  • the first frame member 41 and the second frame member 42 sandwich a portion between the first bent portion 32a and the second bent portion 32b.
  • the wavy portion 32c is a portion located on the outer edge 32d side of the frame portion 32 with respect to the second bent portion 32b.
  • the waved portion 32 c functions as a retaining member that prevents the filtration filter 30 from coming off the holder 40.
  • the corrugated portion 32 c has a shape that undulates in the circumferential direction of the filtration filter 30.
  • a gap is provided between the first frame member 41 and the second frame member 42 on the outer edge 32d side of the frame portion 32 with respect to the second bent portion 32b. This gap prevents the undulating portion 32c from being compressed.
  • the holder 40 has a second surface 43 to which the filtration filter 30 is attached. Specifically, the second surface 43 is formed on the first frame member 41.
  • the second surface 43 is, for example, a flat wall surface.
  • the joint between the flow path member 20 and the holder 40 is formed by surface contact between the second surface 43 and the first surface 25. For this reason, the joint of the flow path member 20 and the holder 40 has a structure with improved sealing performance.
  • the joint between the flow path member 20 and the holder 40 is formed along the XY plane. Thereby, sealing performance can be further improved.
  • the seam on the side where the first flow path 21 is formed is referred to as an upstream seam S1
  • the seam on the side where the second flow path 22 is formed is referred to as a downstream seam S2. .
  • the upstream seam S1 is held outside the portion where the first flow path 21 and the third flow path 23 are connected (on the outer edge 32d side of the filter 30) and the first surface 25 of the flow path member 20. It is formed by bringing the second surface 43 of the tool 40 into surface contact.
  • the upstream seam S ⁇ b> 1 is formed on the side opposite to the direction D ⁇ b> 1 of the fluid flowing from the first channel 21 to the third channel 23. For this reason, the fluid flowing from the first flow path 21 to the third flow path 23 is less likely to flow in the upstream seam S1.
  • the downstream seam S2 is held outside the portion where the third flow path 23 and the second flow path 22 are connected (on the outer edge 32d side of the filtration filter 30) and the first surface 25 of the flow path member 20. It is formed by bringing the second surface 43 of the tool 40 into surface contact.
  • Examples of the material of the first frame member 41 and the second frame member 42 include metals such as duralumin and aluminum, and resins such as polyethylene, polystyrene, polypropylene, polycarbonate, polyacetal, and polyetherimide.
  • the operation of the filtration device 10 will be described.
  • the fluid containing the filtration target object flows from the first channel 21 in the channel member 20 to the second channel 22 through the third channel 23.
  • the filtration device 10 filters the filtration object contained in the fluid by the filtration filter 30 attached along the third flow path 23.
  • suction is performed from the discharge path 44 that discharges the filtered fluid.
  • the fluid containing the object to be filtered flows from the first flow path 21 toward the third flow path 23.
  • the first flow path 21 is inclined with respect to the opening surface (XY plane) of the discharge port 24. For this reason, the fluid flowing in the first flow path 21 flows toward the discharge port 24 of the third flow path 23.
  • the fluid flowing from the first flow path 21 to the third flow path 23 flows toward the discharge port 24, so that the fluid can easily pass through the filtration filter 30.
  • the upstream joint S1 is formed on the opposite side (reverse direction) to the direction D1 of the fluid flowing from the first flow path 21 to the third flow path 23. For this reason, it is difficult for the fluid flowing from the first flow path 21 to the third flow path 23 to flow into the upstream seam S1.
  • the fluid flowing through the third flow path 23 flows to the discharge port 24 and passes through the filter 30 or flows toward the second flow path 22.
  • suction is performed from the discharge path 44 side.
  • a part of the fluid flowing through the third flow path 23 is discharged from the discharge port 24 through the filtration filter 30 due to the inclination of the first flow path 21 and suction from the discharge path 44 side. Is flowing.
  • the fluid flowing through the third flow path 23 is actively flowing toward the discharge path 44 by suction from the discharge path 44 side.
  • the pressure of the fluid can be reduced.
  • the pressure of the fluid flowing from the third channel 23 toward the second channel 22 can be made smaller than the pressure of the fluid flowing from the first channel 21 toward the third channel 23. .
  • the flow path member 20 connects the first flow path 21, the second flow path 22 extending in a direction different from the first flow path 21, and the first flow path 21 and the second flow path 22. And a third flow path 23.
  • the third flow path 23 is provided with a discharge port 24, and the first flow path 21 is provided in a direction intersecting the opening surface of the discharge port 24.
  • the holder 40 is attached to the flow path member 20 so that the filtration filter 30 is located at the discharge port 24 of the flow path member 20.
  • the direction of the fluid flowing from the first flow path 21 into the third flow path 23 has a directional component toward the discharge port 24. That is, according to the filtering device 10, the fluid flowing from the first flow path 21 to the third flow path 23 can be flowed toward the discharge port 24. For this reason, in the filtration device 10, the fluid can be passed through the filtration filter 30 without increasing the pressure of the fluid in the flow channel of the flow channel member 20 as compared with the device shown in Patent Document 1. Thereby, the pressure difference between the inside of the flow path and the outside of the flow path can be reduced, and leakage of fluid from the joint between the flow path member 20 and the holder 40 can be suppressed.
  • the first flow path 21 is formed at an acute angle with respect to the opening surface (XY plane) of the discharge port 24.
  • the holder 40 is attached to the flow path member 20 by bringing the second surface 43 of the holder 40 into surface contact with the first surface 25 of the flow path member 20.
  • the joint between the flow path member 20 and the holder 40 can be formed by surface contact, and the sealing performance can be improved. For this reason, in the filtration apparatus 10, it can seal between the flow path member 20 and the holder 40, without using a sealing member. Thereby, the number of members of the filtration apparatus 10 can be reduced, and contamination by members can be suppressed.
  • the upstream seam S1 is outside the portion where the first flow path 21 and the third flow path 23 are connected (on the outer edge 32d side of the filtration filter 30), and the first surface 25 of the flow path member 20. And the second surface 43 of the holder 40 are brought into surface contact with each other.
  • the upstream seam S ⁇ b> 1 is formed on the side opposite to the direction D ⁇ b> 1 of the fluid flowing from the first channel 21 to the third channel 23. For this reason, fluid leakage can be suppressed at the upstream seam S1.
  • the attachment of the holder 40 to the flow path member 20 is easily performed by a fixture 50 such as a screw. Since it is easy to attach and remove the flow path member 20 and the holder 40, the filtration filter 30 held by the holder 40 can be easily replaced.
  • the flow path member 20 has a third flow path 23 surrounded by a portion where the first flow path 21 and the second flow path 22 are connected, and a filtration filter 30.
  • the cross-sectional area of the three flow paths 23 is smaller than the cross-sectional area of the first flow path 21.
  • the flow velocity of the fluid flowing in the third flow path 23 can be increased, and clogging of the filtration filter 30 due to the filtration target can be suppressed.
  • the first flow path 21 and the second flow path 22 are symmetric with respect to a portion where the first flow path 21 and the second flow path 22 are connected.
  • Such a configuration can improve convenience.
  • the fluid is allowed to flow from the second flow path 22 and flow out to the first flow path 21. Can be used.
  • a third flow path 23 is provided in a portion where the first flow path 21 and the second flow path 22 are connected, and a discharge port 24 is provided in the third flow path 23.
  • the present invention is not limited to this. As long as the discharge port 24 is provided in the portion where the first flow path 21 and the second flow path 22 are connected, another configuration may be used. That is, the third flow path 23 is not an essential configuration.
  • FIG. 6 shows a schematic configuration diagram of a modified filtration apparatus 10A.
  • the discharge port 24 may be provided in a portion between the first flow path 21 and the second flow path 22 of the flow path member 20a. That is, the discharge port 24 may be provided on an extension line of the first flow path 21. Even with such a configuration, leakage of fluid from the joint between the flow path member 20a and the holder 40 can be suppressed. Further, in the filtration device 10 ⁇ / b> A, the fluid flowing through the first flow path 21 can be directly flowed to the discharge port 24. For this reason, more fluid can be filtered in a short time.
  • Embodiment 1 although the example using one filtration filter 30 was demonstrated, it is not limited to this.
  • a plurality of filtration filters 30 may be used.
  • FIG. 7 shows a schematic configuration diagram of a modification of the filtration device 10B.
  • the holder 40 a of the filtration device 10 ⁇ / b> B may have a configuration in which a plurality of filtration filters 30 can be attached to the second surface 43.
  • the holder 40 a may be attached to the flow path member 20 so that the plurality of filtration filters 30 are located at the discharge port 24 of the flow path member 20.
  • a plurality of discharge paths 44 corresponding to the plurality of filtration filters 30 may be provided in the second frame member 42a of the holder 40a.
  • Embodiment 1 the example in which the third flow path 23 is formed along the first surface 25 of the flow path member 20 has been described, but the present invention is not limited to this.
  • the third flow path 23 may be inclined with respect to the first surface 25 of the flow path member 20.
  • the present invention is not limited to this.
  • the flow path cross-sectional area of the third flow path 23 may be the same as the flow path cross-sectional area of the first flow path 21 or the second flow path 22, or the flow of the first flow path 21 or the second flow path 22. It may be larger than the road cross-sectional area.
  • the present invention is not limited to this.
  • the first flow path 21, the second flow path 22, and the third flow path 23 may be formed on different planes.
  • the first flow path 21 may be formed on the XZ plane and the second flow path 22 may be formed on the YZ plane.
  • first flow path 21 and the second flow path 22 are formed symmetrically about a portion where the first flow path 21 and the second flow path 22 are connected.
  • first flow path 21 and the second flow path 22 may be formed asymmetrically around a portion where the first flow path 21 and the second flow path 22 are connected.
  • the filtration filter 30 is a metal porous film
  • the filtration filter 30 may be any filter as long as it can filter the filtration target contained in the fluid, and may be another filter such as a membrane.
  • Embodiment 1 the example in which the first main surface PS1 of the filtration filter 30 is flush with the first surface 25 of the flow path member 20 has been described, but the present invention is not limited to this.
  • the first main surface PS1 of the filtration filter 30 and the first surface 25 of the flow path member 20 may be on different planes.
  • the holder 40 includes a first frame member 41 and a second frame member 42, and the frame portion 32 of the filtration filter 30 is sandwiched between the first frame member 41 and the second frame member 42.
  • the holding device 40 may have another configuration as long as the filtration filter 30 can be attached to the flow path member 20.
  • the filtration filter 30 and the holder 40 may be integrally formed.
  • the example in which the discharge path 44 through which the fluid filtered through the filter 30 is discharged is formed inside the second frame member 42 of the holder 40 is not limited to this.
  • the holder 40 may not be provided with the discharge path 44.
  • a member provided with the discharge path 44 may be attached to the holder 40.
  • Embodiment 1 the example in which the holder 40 is attached to the flow path member 20 by the fixture 50 has been described, but the present invention is not limited to this. Any other configuration may be used as long as the filter 30 can be attached to the flow path member 20 by the holder 40.
  • the holder 40 and the flow path member 20 may be integrally formed without using the fixture 50.
  • the present invention is not limited to this.
  • the 1st flow path 21, the 2nd flow path 22, and the 3rd flow path 23 may be formed bent.
  • Embodiment 1 the example in which suction is performed from the discharge path 44 for discharging the filtered fluid has been described, but the present invention is not limited to this.
  • the filtering device 10 can achieve the effects of the first embodiment without performing suction from the discharge path 44.
  • the fluid including the filtration target is a liquid
  • the present invention is not limited to this.
  • the fluid may be a gas.
  • the joint between the flow path member 20 and the holder 40 is formed along the XY plane, but the present invention is not limited to this.
  • at least a part of the joint between the flow path member 20 and the holder 40 may be formed as a curved surface. That is, at least a part of the first surface 25 of the flow path member 20 and the second surface 43 of the holder 40 may be formed as a curved surface. Also with such a configuration, leakage of fluid from the joint between the flow path member 20 and the holder 40 can be suppressed.
  • the filtration device of the present invention can perform filtration while suppressing fluid leakage, it is useful for the application of filtering a fluid containing an object to be filtered.

Abstract

This filtration device is provided with: a flow-channel member in which a fluid flows; a filtration filter that filters an object in the fluid to be filtered; and a holding tool by which the filtration filter attached to the flow-channel member. The flow-channel member has a first flow channel into which a fluid flows and a second flow channel that extends in the different direction from the first flow channel, and a discharge port for discharging the fluid is provided at a part where the first flow channel and the second flow channel are connected to each other. The first flow channel is provided in the direction that crosses an opening surface of the discharge port, and the holding tool is attached to the flow-channel member such that the filtration filter is located at the discharge port of the flow-channel member.

Description

濾過装置Filtration device
 本発明は、流体に含まれる濾過対象物を濾過する濾過装置に関する。 The present invention relates to a filtration device for filtering a filtration object contained in a fluid.
 近年、濾過装置には、例えば、特許文献1に記載されているものが知られている。特許文献1に開示された濾過装置では、主配管に設定された分岐部に、ストレーナを介して分岐管が取り付けられている。当該濾過装置においては、ストレーナにより、主配管の流れに含まれる浮遊物が分岐管へ混入するのを防止している。 Recently, for example, what is described in Patent Document 1 is known as a filtering device. In the filtration device disclosed in Patent Literature 1, a branch pipe is attached to a branch portion set in the main pipe via a strainer. In the filtration device, the strainer prevents floating substances contained in the flow of the main pipe from entering the branch pipe.
特開昭57-167712号公報JP-A-57-167712
 しかしながら、特許文献1の濾過装置においては流体の漏出を抑制する観点で未だ改善の余地がある。 However, the filtration device of Patent Document 1 still has room for improvement from the viewpoint of suppressing fluid leakage.
 本発明の目的は、前記課題を解決することにあって、流体の漏出を抑制した濾過装置を提供することにある。 An object of the present invention is to solve the above-described problem and provide a filtration device that suppresses fluid leakage.
 本発明の一態様の濾過装置は、
 内部に流体が流れる流路部材と、
 前記流体に含まれる濾過対象物を濾過する濾過フィルタと、
 前記濾過フィルタが前記流路部材に取り付けられている保持具と、
を備え、
 前記流路部材は、前記流体が流入する第1流路と、前記第1流路と異なる方向に延びる第2流路と、を有するとともに、前記第1流路と前記第2流路とが接続されている部分に、前記流体を排出する排出口が設けられており、
 前記第1流路は、前記排出口の開口面に対して交差する方向に設けられており、
 前記濾過フィルタが前記流路部材の前記排出口に位置するように、前記保持具が前記流路部材に取り付けられている。
The filtration device according to one embodiment of the present invention includes:
A flow path member through which a fluid flows;
A filtration filter for filtering an object to be filtered contained in the fluid;
A holder in which the filtration filter is attached to the flow path member;
With
The flow path member includes a first flow path into which the fluid flows and a second flow path that extends in a direction different from the first flow path, and the first flow path and the second flow path include The connected part is provided with a discharge port for discharging the fluid,
The first flow path is provided in a direction intersecting the opening surface of the discharge port,
The holder is attached to the flow path member so that the filtration filter is located at the discharge port of the flow path member.
 本発明によれば、濾過装置において流体の漏出を抑制することができる。 According to the present invention, fluid leakage can be suppressed in the filtration device.
本発明に係る実施の形態1の濾過装置の正面図The front view of the filtration apparatus of Embodiment 1 which concerns on this invention 本発明に係る実施の形態1の濾過装置の平面図The top view of the filtration apparatus of Embodiment 1 which concerns on this invention 図1Aの濾過装置のA1部分における拡大断面図Enlarged sectional view of the A1 portion of the filtration device of FIG. 保持具によって挟持される前における、本発明に係る実施の形態1の濾過フィルタの概略構成図The schematic block diagram of the filtration filter of Embodiment 1 which concerns on this invention before pinching with a holder 保持具によって挟持される前における、本発明に係る実施の形態1の濾過フィルタの一部の拡大斜視図Partial enlarged perspective view of the filtration filter according to the first embodiment of the present invention before being clamped by the holder 図4の濾過フィルタの一部を厚み方向から見た概略図Schematic of a part of the filtration filter of FIG. 4 as seen from the thickness direction 変形例の濾過装置の概略構成図Schematic configuration diagram of a modified filtration device 別の変形例の濾過装置の概略構成図Schematic configuration diagram of another modification of the filtration device
(本発明の基礎となった知見)
 クロスフロー型の濾過装置においては、流路部材内部の流路の側面に排出口が設けられ、当該排出口に、保持具によって濾過フィルタが取り付けられている。当該濾過フィルタは、流路内の流体の流れる方向と平行に取り付けられている。このような濾過装置においては、流路内を流れる流体を、排出口を通じて排出路へと流すために、流路内の圧力を排出路内の圧力よりも大きくしている。
(Knowledge that became the basis of the present invention)
In the cross-flow type filtration device, a discharge port is provided on a side surface of the flow channel inside the flow channel member, and a filtration filter is attached to the discharge port by a holder. The filtration filter is attached in parallel to the direction of fluid flow in the flow path. In such a filtering device, in order to flow the fluid flowing in the flow path to the discharge path through the discharge port, the pressure in the flow path is made larger than the pressure in the discharge path.
 本発明者らは、流路内の圧力を大きくすると、流路内と流路外との圧力差が増大するため、流路部材と保持具との継ぎ目から流体が漏出するおそれがあることを見出した。 When the pressure in the flow path is increased, the inventors increase the pressure difference between the flow path and the outside of the flow path, so that fluid may leak from the joint between the flow path member and the holder. I found it.
 そこで、本発明者らは、流路部材において、第1流路と第2流路とが接続されている部分に排出口を設け、第1流路を、排出口の開口面に対して交差する方向に設けることで、第1流路を流れる流体を排出口へと流れやすくすることを見出した。これにより、流路内の圧力を低減することによって、流路内と流路外との圧力差を低減することができ、流体の漏出を抑制できることを見出した。 In view of this, the present inventors provide a discharge port in a portion of the flow path member where the first flow path and the second flow path are connected, and the first flow path intersects the opening surface of the discharge port. It has been found that the fluid flowing in the first flow path can easily flow to the discharge port by being provided in the direction in which the first flow path is provided. Thus, it has been found that by reducing the pressure in the flow path, the pressure difference between the flow path and the outside of the flow path can be reduced, and fluid leakage can be suppressed.
 これらの点を踏まえて、本発明者らは、以下の発明に至った。 Based on these points, the present inventors have reached the following invention.
 本発明の一態様に係る濾過装置は、
 内部に流体が流れる流路部材と、
 前記流体に含まれる濾過対象物を濾過する濾過フィルタと、
 前記濾過フィルタが前記流路部材に取り付けられている保持具と、
を備え、
 前記流路部材は、前記流体が流入する第1流路と、前記第1流路と異なる方向に延びる第2流路と、を有するとともに、前記第1流路と前記第2流路とが接続されている部分に、前記流体を排出する排出口が設けられており、
 前記第1流路は、前記排出口の開口面に対して交差する方向に設けられており、
 前記濾過フィルタが前記流路部材の前記排出口に位置するように、前記保持具が前記流路部材に取り付けられている。
The filtration device according to one embodiment of the present invention is
A flow path member through which a fluid flows;
A filtration filter for filtering an object to be filtered contained in the fluid;
A holder in which the filtration filter is attached to the flow path member;
With
The flow path member includes a first flow path into which the fluid flows and a second flow path that extends in a direction different from the first flow path, and the first flow path and the second flow path include The connected part is provided with a discharge port for discharging the fluid,
The first flow path is provided in a direction intersecting the opening surface of the discharge port,
The holder is attached to the flow path member so that the filtration filter is located at the discharge port of the flow path member.
 このような構成により、第1流路を流れる流体を排出口へと流れやすくすることができるため、流路部材と保持具との継ぎ目からの流体の漏出を抑制することができる。 With such a configuration, it is possible to easily flow the fluid flowing through the first flow path to the discharge port, and thus it is possible to suppress leakage of the fluid from the joint between the flow path member and the holder.
 前記濾過装置において、前記第1流路は、前記排出口の開口面に対して鋭角に傾斜していてもよい。 In the filtration device, the first flow path may be inclined at an acute angle with respect to the opening surface of the discharge port.
 このような構成により、流路部材と保持具との継ぎ目からの流体の漏出をさらに抑制することができる。 With such a configuration, leakage of fluid from the joint between the flow path member and the holder can be further suppressed.
 前記濾過装置において、前記流路部材は、前記排出口が設けられている第1面を有し、
 前記保持具は、前記濾過フィルタが取り付けられている第2面を有し、
 前記保持具は、前記保持具の前記第2面を前記流路部材の前記第1面に面接触させて、前記流路部材に取り付けられていてもよい。
In the filtration device, the flow path member has a first surface provided with the discharge port,
The holder has a second surface to which the filtration filter is attached;
The holder may be attached to the flow path member with the second surface of the holder being brought into surface contact with the first surface of the flow path member.
 このような構成により、流路部材の第1面と保持具の第2面とを面接触させて継ぎ目を形成することができるため、流体の漏出をさらに抑制することができる。 With such a configuration, since the seam can be formed by bringing the first surface of the flow path member into contact with the second surface of the holder, leakage of the fluid can be further suppressed.
 前記濾過装置において、前記流路部材は、前記第1流路と前記第2流路とが接続されている部分と、前記濾過フィルタとに囲まれている第3流路を有し、
 前記排出口は前記第3流路に設けられており、
 前記第3流路の流路断面積は、前記第1流路の流路断面積よりも小さくてもよい。
In the filtration device, the flow path member has a third flow path surrounded by a portion where the first flow path and the second flow path are connected, and the filtration filter,
The outlet is provided in the third flow path;
The channel cross-sectional area of the third channel may be smaller than the channel cross-sectional area of the first channel.
 このような構成により、第3流路を流れる流体の流速を増加させ、濾過フィルタの目詰まりを抑制することができる。 With such a configuration, the flow rate of the fluid flowing through the third flow path can be increased, and clogging of the filtration filter can be suppressed.
 前記濾過装置において、複数の前記濾過フィルタが前記第3流路の前記排出口に位置するように、前記保持具が前記流路部材に取り付けられていてもよい。 In the filtration device, the holder may be attached to the flow path member such that a plurality of the filtration filters are located at the discharge port of the third flow path.
 このような構成により、濾過フィルタが複数あるため、より効率的に流体に含まれる濾過対象物を濾過することができる。 With such a configuration, since there are a plurality of filtration filters, it is possible to more efficiently filter the filtration object contained in the fluid.
 前記濾過装置において、前記第1流路と前記第2流路は、前記第1流路と前記第2流路とが接続されている部分を中心にして対称に形成されていてもよい。 In the filtration device, the first flow path and the second flow path may be formed symmetrically about a portion where the first flow path and the second flow path are connected.
 このような構成により、利便性を向上させることができる。 Such a configuration can improve convenience.
 以下、本発明に係る実施の形態について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In each drawing, each element is exaggerated for easy explanation.
(実施の形態1)
[全体構成]
 図1Aと図1Bは、それぞれ、本発明に係る実施の形態1の濾過装置10の正面図と平面図を示す。図2は、図1Aの濾過装置10のA1部分における拡大断面図を示す。図1A、図1B、及び図2中のX、Y、Z方向は、それぞれ濾過装置10の横方向、縦方向、高さ方向を示している。図1A及び図2に示すように、濾過装置10は、流路部材20と、濾過フィルタ30と、保持具40と、を備える。濾過装置10においては、濾過フィルタ30が取り付けられている保持具40が、固定具50により流路部材20に取り付けられている。
(Embodiment 1)
[overall structure]
1A and 1B show a front view and a plan view, respectively, of the filtration device 10 according to the first embodiment of the present invention. FIG. 2 shows an enlarged cross-sectional view of the A1 portion of the filtration device 10 of FIG. The X, Y, and Z directions in FIGS. 1A, 1B, and 2 indicate the horizontal direction, vertical direction, and height direction of the filtration device 10, respectively. As shown in FIGS. 1A and 2, the filtration device 10 includes a flow path member 20, a filtration filter 30, and a holder 40. In the filtration device 10, a holder 40 to which the filtration filter 30 is attached is attached to the flow path member 20 by a fixture 50.
<流路部材>
 図1A及び図1Bに示すように、流路部材20は、内部に流体が流れる流路が設けられている、直方体のブロック部材である。図2に示すように、流路部材20は、第1流路21と、第1流路21と異なる方向に延びる第2流路22と、を有する。また、流路部材20は、第1流路21と第2流路22とが接続されている部分に、濾過した流体を排出する排出口24が設けられている。実施の形態1では、流路部材20において、第1流路21と第2流路22とが接続されている部分に、第3流路23が設けられている。排出口24は第3流路23に設けられている。
<Flow channel member>
As shown in FIGS. 1A and 1B, the flow path member 20 is a rectangular parallelepiped block member provided with a flow path through which a fluid flows. As shown in FIG. 2, the flow path member 20 includes a first flow path 21 and a second flow path 22 that extends in a direction different from the first flow path 21. Further, the flow path member 20 is provided with a discharge port 24 for discharging the filtered fluid at a portion where the first flow path 21 and the second flow path 22 are connected. In the first embodiment, the third flow path 23 is provided in the flow path member 20 where the first flow path 21 and the second flow path 22 are connected. The discharge port 24 is provided in the third flow path 23.
 第1流路21は、濾過対象物が含まれる流体が流入する流路である。実施の形態1では、第1流路21は、排出口24の開口面(XY平面)に対して鋭角に傾斜している。具体的には、第1流路21は、排出口24の開口面(XY平面)に対して+Z方向に角度θ傾斜している。ここで角度θは、0度より大きく90度より小さい角となっている。第1流路21の形状は、例えば、直径6mmの円管形状である。 The 1st flow path 21 is a flow path into which the fluid containing the filtration target object flows. In the first embodiment, the first flow path 21 is inclined at an acute angle with respect to the opening surface (XY plane) of the discharge port 24. Specifically, the first flow path 21 is inclined at an angle θ 1 in the + Z direction with respect to the opening surface (XY plane) of the discharge port 24. Here, the angle θ 1 is an angle larger than 0 degree and smaller than 90 degrees. The shape of the first flow path 21 is, for example, a circular pipe shape having a diameter of 6 mm.
 なお、本明細書において、濾過対象物とは、流体に含まれる生物由来物質を意味する。「生物由来物質」とは、細胞(真核生物)、細菌(真性細菌)、ウィルス等の生物に由来する物質を意味する。細胞(真核生物)としては、例えば、人工多能性幹細胞(iPS細胞)、ES細胞、幹細胞、間葉系幹細胞、単核球細胞、単細胞、細胞塊、浮遊性細胞、接着性細胞、神経細胞、白血球、再生医療用細胞、自己細胞、がん細胞、血中循環がん細胞(CTC)、HL-60、HELA、菌類を含む。細菌(真性細菌)としては、例えば、大腸菌、結核菌を含む。また、「流体」とは、液体を意味する。実施の形態1では、流体は細胞培養液を意味し、濾過対象物は細胞(真核生物)を意味する。 In the present specification, the filtration target means a biological substance contained in the fluid. The “biological substance” means a substance derived from a living organism such as a cell (eukaryotic organism), a bacterium (eubacteria), or a virus. Examples of cells (eukaryotes) include artificial pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell masses, suspension cells, adhesive cells, nerves. Includes cells, leukocytes, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells (CTC), HL-60, HELA, and fungi. Examples of bacteria (true bacteria) include Escherichia coli and tuberculosis. “Fluid” means a liquid. In the first embodiment, the fluid means a cell culture medium, and the filtration target means a cell (eukaryote).
 第2流路22は、濾過対象物が含まれる流体が流れる流路であって、第1流路21と異なる方向に延びている。実施の形態1では、第2流路22は、排出口24の開口面(XY平面)に対して鋭角に傾斜している。第2流路の形状は、例えば、直径6mmの円管形状である。 The second flow path 22 is a flow path through which a fluid containing the filtration target object flows, and extends in a direction different from that of the first flow path 21. In the first embodiment, the second flow path 22 is inclined at an acute angle with respect to the opening surface (XY plane) of the discharge port 24. The shape of the second channel is, for example, a circular tube shape with a diameter of 6 mm.
 排出口24は、第1流路21と第2流路22とが接続されている部分に設けられており、流路部材20の内部を流れる流体を外部に排出する孔である。排出口24の開口面は、第1流路21が延びる方向と交差するように設けられている。実施の形態1では、流路部材20は、保持具40が取り付けられている側に第1面25を有する。第1面25は、例えば平坦な壁面である。排出口24は、第3流路23に設けられているとともに、流路部材20の第1面25に設けられている。また、排出口24には、濾過フィルタ30が配置される。排出口24は、濾過フィルタ30を取り付けることができる大きさを有する。 The discharge port 24 is provided in a portion where the first flow path 21 and the second flow path 22 are connected, and is a hole for discharging the fluid flowing inside the flow path member 20 to the outside. The opening surface of the discharge port 24 is provided so as to intersect the direction in which the first flow path 21 extends. In the first embodiment, the flow path member 20 has the first surface 25 on the side where the holder 40 is attached. The first surface 25 is, for example, a flat wall surface. The discharge port 24 is provided in the third flow path 23 and is provided in the first surface 25 of the flow path member 20. A filtration filter 30 is disposed at the outlet 24. The discharge port 24 has a size to which the filtration filter 30 can be attached.
 第3流路23は、第1流路21と第2流路22とを接続する流路である。具体的には、第3流路23は、第1流路21と第2流路22とが接続されている部分と、濾過フィルタ30とに囲まれている部分で形成される。より具体的には、第3流路23は、第1流路21と第2流路22とが接続されている部分であって、第1面25から流路部材20の内部に向かって凹状に窪んだ部分で形成される。第3流路23の側壁の少なくとも一部は、排出口24に配置された濾過フィルタ30によって形成される。実施の形態1では、第3流路23は、流路部材20の第1面25に沿って形成されている。即ち、第3流路23は、X方向に延在している。第3流路23において、一端は、第1流路21に接続されており、他端は第2流路22に接続されている。また、第3流路23の流路断面積は、第1流路21及び第2流路22の流路断面積よりも小さい。第3流路の形状は、例えば、X方向の長さが42.2mmで、流体の流れる方向に垂直な断面が(Z方向の長さ)1mm×(Y方向の長さ)6mmの矩形形状である。なお、本明細書内で流路断面積とは、流体の流れる方向に垂直な断面における流路の断面積を示す。 The third flow path 23 is a flow path that connects the first flow path 21 and the second flow path 22. Specifically, the third flow path 23 is formed by a portion surrounded by the part where the first flow path 21 and the second flow path 22 are connected and the filtration filter 30. More specifically, the third flow path 23 is a portion where the first flow path 21 and the second flow path 22 are connected, and is concave from the first surface 25 toward the inside of the flow path member 20. It is formed with a recessed portion. At least a part of the side wall of the third flow path 23 is formed by the filtration filter 30 disposed in the discharge port 24. In the first embodiment, the third flow path 23 is formed along the first surface 25 of the flow path member 20. That is, the third flow path 23 extends in the X direction. In the third flow path 23, one end is connected to the first flow path 21 and the other end is connected to the second flow path 22. Further, the channel cross-sectional area of the third channel 23 is smaller than the channel cross-sectional areas of the first channel 21 and the second channel 22. The shape of the third flow path is, for example, a rectangular shape having a length in the X direction of 42.2 mm and a cross section perpendicular to the fluid flow direction (length in the Z direction) 1 mm × (length in the Y direction) 6 mm It is. In the present specification, the channel cross-sectional area refers to the cross-sectional area of the channel in a cross section perpendicular to the fluid flow direction.
 実施の形態1では、第1流路21、第2流路22、及び第3流路23は、同一平面(XZ平面)上に形成されている。また、第1流路21と第2流路22とは、第1流路21と第2流路22とが接続されている部分を中心にして対称に形成されている。具体的には、図2に示すように、第3流路23に設けられている排出口24の中心を通る中心線C1に対して、第1流路21と第2流路22とが左右対称に形成されている。 In Embodiment 1, the first flow path 21, the second flow path 22, and the third flow path 23 are formed on the same plane (XZ plane). Further, the first flow path 21 and the second flow path 22 are formed symmetrically with respect to a portion where the first flow path 21 and the second flow path 22 are connected. Specifically, as shown in FIG. 2, the first flow path 21 and the second flow path 22 are left and right with respect to a center line C1 passing through the center of the discharge port 24 provided in the third flow path 23. It is formed symmetrically.
 流路部材20の材料は、例えば、ポリカーボネート、ポリアセタール、アクリルである。 The material of the flow path member 20 is, for example, polycarbonate, polyacetal, or acrylic.
<濾過フィルタ>
 濾過フィルタ30は、流体に含まれる濾過対象物を濾過するフィルタである。濾過フィルタ30は、流路部材20の排出口24に取り付けられている。実施の形態1では、濾過フィルタ30は、金属製多孔膜である。
<Filtration filter>
The filtration filter 30 is a filter that filters an object to be filtered included in the fluid. The filtration filter 30 is attached to the discharge port 24 of the flow path member 20. In Embodiment 1, the filtration filter 30 is a metal porous film.
 図3は、濾過フィルタ30の概略構成を示す平面図である。図4は、濾過フィルタ30の一部の拡大斜視図である。図3及び図4中のX、Y、Z方向は、図2中のX、Y、Z方向に対応しており、それぞれ濾過フィルタ30の横方向、縦方向、厚み方向を示している。なお、図3及び図4は、保持具40によって挟持される前の濾過フィルタ30を示す。図3に示すように、濾過フィルタ30は、フィルタ部31と、フィルタ部31の外周に設けられている枠部32とを備える。図4に示すように、濾過フィルタ30は、互いに対向する第1主面PS1と第2主面PS2とを有している。実施の形態1において、図2に示すように、濾過フィルタ30の第1主面PS1は、流路部材20の第1面25と同一面となっている。フィルタ部31は、第1主面PS1と第2主面PS2とを貫通する複数の貫通孔33が形成されたフィルタ基体部34を備える。 FIG. 3 is a plan view showing a schematic configuration of the filtration filter 30. FIG. 4 is an enlarged perspective view of a part of the filtration filter 30. The X, Y, and Z directions in FIGS. 3 and 4 correspond to the X, Y, and Z directions in FIG. 2, and indicate the horizontal direction, vertical direction, and thickness direction of the filter 30, respectively. 3 and 4 show the filtration filter 30 before being held by the holder 40. FIG. As shown in FIG. 3, the filtration filter 30 includes a filter portion 31 and a frame portion 32 provided on the outer periphery of the filter portion 31. As shown in FIG. 4, the filtration filter 30 has a first main surface PS1 and a second main surface PS2 that face each other. In the first embodiment, as shown in FIG. 2, the first main surface PS <b> 1 of the filtration filter 30 is flush with the first surface 25 of the flow path member 20. The filter part 31 includes a filter base part 34 in which a plurality of through holes 33 penetrating the first main surface PS1 and the second main surface PS2 are formed.
 濾過フィルタ30の基体部分を形成するフィルタ基体部34を構成する材料は、金属及び/又は金属酸化物を主成分としている。フィルタ基体部34は、例えば、金、銀、銅、白金、ニッケル、パラジウム、これらの合金及びこれらの酸化物であってもよい。 The material constituting the filter base portion 34 forming the base portion of the filter 30 is mainly composed of metal and / or metal oxide. The filter base 34 may be, for example, gold, silver, copper, platinum, nickel, palladium, an alloy thereof, or an oxide thereof.
 濾過フィルタ30の外形は、例えば、円形、長方形、又は楕円形である。実施の形態1では、濾過フィルタ30の外形は、略円形である。なお、本明細書において、「略円形」とは、短径の長さに対する長径の長さの比が1.0以上1.2以下であることをいう。 The outer shape of the filtration filter 30 is, for example, a circle, a rectangle, or an ellipse. In the first embodiment, the outer shape of the filtration filter 30 is substantially circular. In the present specification, “substantially circular” means that the ratio of the length of the major axis to the length of the minor axis is 1.0 or more and 1.2 or less.
 フィルタ部31は、複数の貫通孔33が形成された板状構造体である。フィルタ部31の形状は、例えば、円形、長方形、楕円形である。実施の形態1では、フィルタ部31の形状は、略円形である。 The filter part 31 is a plate-like structure in which a plurality of through holes 33 are formed. The shape of the filter unit 31 is, for example, a circle, a rectangle, or an ellipse. In the first embodiment, the shape of the filter unit 31 is substantially circular.
 図5は、フィルタ部31の一部を厚み方向(+Z方向)から見た概略図である。図5に示すように、複数の貫通孔33は、フィルタ部31の第1主面PS1及び第2主面PS2上に周期的に配置されている。具体的には、複数の貫通孔33は、フィルタ部31においてマトリクス状に等間隔で設けられている。 FIG. 5 is a schematic view of a part of the filter unit 31 as viewed from the thickness direction (+ Z direction). As shown in FIG. 5, the plurality of through holes 33 are periodically arranged on the first main surface PS1 and the second main surface PS2 of the filter unit 31. Specifically, the plurality of through holes 33 are provided at regular intervals in a matrix in the filter portion 31.
 実施の形態1では、貫通孔33は、フィルタ部31の第1主面PS1側、即ち+Z方向から見て、正方形の形状を有する。なお、貫通孔33は、+Z方向から見た形状が正方形に限定されず、例えば長方形、円形、又は楕円などの形状であってもよい。 In Embodiment 1, the through-hole 33 has a square shape when viewed from the first main surface PS1 side of the filter portion 31, that is, the + Z direction. The through hole 33 is not limited to a square shape when viewed from the + Z direction, and may be a rectangular shape, a circular shape, or an elliptical shape, for example.
 実施の形態1では、フィルタ部31の第1主面PS1に対して垂直な面に投影した貫通孔33の形状(断面形状)は、長方形である。具体的には、貫通孔33の断面形状は、濾過フィルタ30の半径方向の一辺の長さが濾過フィルタ30の厚み方向の一辺の長さより長い長方形である。なお、貫通孔33の断面形状は、長方形に限定されず、例えば、平行四辺形又は台形等のテーパー形状であってもよいし、対称形状であってもよいし、非対称形状であってもよい。 In Embodiment 1, the shape (cross-sectional shape) of the through-hole 33 projected on a surface perpendicular to the first main surface PS1 of the filter portion 31 is a rectangle. Specifically, the cross-sectional shape of the through hole 33 is a rectangle in which the length of one side in the radial direction of the filtration filter 30 is longer than the length of one side in the thickness direction of the filtration filter 30. The cross-sectional shape of the through-hole 33 is not limited to a rectangle, and may be, for example, a tapered shape such as a parallelogram or a trapezoid, a symmetric shape, or an asymmetric shape. .
 実施の形態1では、複数の貫通孔33は、フィルタ部31の第1主面PS1側(+Z方向)から見て正方形の各辺と平行な2つの配列方向、即ち図5中のX方向とY方向に等しい間隔で設けられている。このように、複数の貫通孔33を正方格子配列で設けることによって、開口率を高めることが可能であり、濾過フィルタ30に対する流体の通過抵抗を低減することができる。このような構成により、処理時間を短くし、細胞へのストレスを低減することができる。 In the first embodiment, the plurality of through holes 33 are arranged in two arrangement directions parallel to each side of the square when viewed from the first main surface PS1 side (+ Z direction) of the filter unit 31, that is, the X direction in FIG. They are provided at equal intervals in the Y direction. Thus, by providing the plurality of through holes 33 in a square lattice arrangement, the aperture ratio can be increased, and the passage resistance of the fluid to the filter 30 can be reduced. With such a configuration, the processing time can be shortened and the stress on the cells can be reduced.
 なお、複数の貫通孔33の配列は、正方格子配列に限定されず、例えば、準周期配列、又は周期配列であってもよい。周期配列の例としては、方形配列であれば、2つの配列方向の間隔が等しくない長方形配列でもよく、三角格子配列又は正三角格子配列などであってもよい。なお、貫通孔33は、フィルタ部31に複数設けられていればよく、配列は限定されない。 Note that the arrangement of the plurality of through holes 33 is not limited to a square lattice arrangement, and may be, for example, a quasi-periodic arrangement or a periodic arrangement. As an example of the periodic array, as long as it is a square array, a rectangular array in which the intervals in the two array directions are not equal may be used, or a triangular lattice array or a regular triangular lattice array may be used. In addition, the through-hole 33 should just be provided with two or more by the filter part 31, and arrangement | positioning is not limited.
 貫通孔33の間隔は、分離する細胞の種類(大きさ、形態、性質、弾性)又は量に応じて適宜設計されるものである。ここで、貫通孔33の間隔とは、図5に示すように、貫通孔33をフィルタ部31の第1主面PS1側から見て、任意の貫通孔33の中心と隣接する貫通孔33の中心との距離bを意味する。周期配列の構造体の場合、貫通孔33の間隔bは、例えば、貫通孔33の一辺dの1倍より大きく10倍以下であり、好ましくは貫通孔33の一辺dの3倍以下である。あるいは、例えば、フィルタ部31の開口率は、10%以上であり、好ましくは開口率は、25%以上である。このような構成により、フィルタ部31に対する流体の通過抵抗を低減することができる。そのため、処理時間を短くすることができ、細胞へのストレスを低減することができる。なお、開口率とは、(貫通孔33が占める面積)/(貫通孔33が空いていないと仮定したときの第1主面PS1の投影面積)で計算される。 The interval between the through holes 33 is appropriately designed according to the type (size, form, property, elasticity) or amount of cells to be separated. Here, the interval between the through holes 33 is, as shown in FIG. 5, the through holes 33 adjacent to the center of any through hole 33 when the through holes 33 are viewed from the first main surface PS <b> 1 side of the filter portion 31. It means the distance b from the center. In the case of a periodic array structure, the interval b between the through holes 33 is, for example, larger than 1 side d of the through hole 33 and 10 times or less, and preferably 3 times or less the side d of the through hole 33. Alternatively, for example, the aperture ratio of the filter unit 31 is 10% or more, and preferably the aperture ratio is 25% or more. With such a configuration, it is possible to reduce the passage resistance of the fluid to the filter unit 31. Therefore, the processing time can be shortened and stress on the cells can be reduced. The aperture ratio is calculated by (area occupied by the through hole 33) / (projected area of the first main surface PS1 when it is assumed that the through hole 33 is not vacant).
 フィルタ部31の厚みは、貫通孔33の大きさ(一辺d)の0.1倍より大きく100倍以下が好ましい。より好ましくは、フィルタ部31の厚みは、貫通孔33の大きさ(一辺d)の0.5倍より大きく10倍以下である。このような構成により、流体に対する濾過フィルタ30の抵抗を低減することができ、処理時間を短くすることができる。その結果、細胞へのストレスを低減することができる。 The thickness of the filter part 31 is preferably greater than 0.1 times the size of the through-hole 33 (one side d) and not more than 100 times. More preferably, the thickness of the filter portion 31 is greater than 0.5 times the size of the through-hole 33 (one side d) and not more than 10 times. With such a configuration, the resistance of the filtration filter 30 with respect to the fluid can be reduced, and the processing time can be shortened. As a result, stress on cells can be reduced.
 フィルタ部31において、濾過対象物を含む流体が接触する第1主面PS1は、表面粗さが小さいことが好ましい。ここで、表面粗さとは、第1主面PS1の任意の5箇所において触針式段差計で測定された最大値と最小値の差の平均値を意味する。実施の形態1では、表面粗さは、細胞の大きさより小さいことが好ましく、細胞の大きさの半分より小さいことがより好ましい。言い換えると、フィルタ部31の第1主面PS1上の複数の貫通孔33の開口が同一平面(XY平面)上に形成されている。また、フィルタ部31のうち貫通孔33が形成されていない部分であるフィルタ基体部34は、繋がっており、一体に形成されている。このような構成により、フィルタ部31の表面(第1主面PS1)への細胞の付着が低減され、流体の抵抗を低減することができる。 In the filter part 31, it is preferable that 1st main surface PS1 with which the fluid containing the filtration target object contacts has a small surface roughness. Here, the surface roughness means an average value of the difference between the maximum value and the minimum value measured by a stylus type step gauge at any five locations on the first main surface PS1. In the first embodiment, the surface roughness is preferably smaller than the cell size, and more preferably less than half the cell size. In other words, the openings of the plurality of through holes 33 on the first main surface PS1 of the filter part 31 are formed on the same plane (XY plane). Moreover, the filter base | substrate part 34 which is a part in which the through-hole 33 is not formed among the filter parts 31 is connected, and is formed integrally. With such a configuration, adhesion of cells to the surface (first main surface PS1) of the filter unit 31 is reduced, and the resistance of the fluid can be reduced.
 フィルタ部31の貫通孔33は、第1主面PS1側の開口と第2主面PS2側の開口とが連続した壁面を通じて連通している。具体的には、貫通孔33は、第1主面PS1側の開口が第2主面PS2側の開口に投影可能に設けられている。即ち、フィルタ部31を第1主面PS1側から見た場合に、貫通孔33は、第1主面PS1側の開口が第2主面PS2側の開口と重なるように設けられている。実施の形態1において、貫通孔33は、その内壁が第1主面PS1及び第2主面PS2に対して垂直となるように設けられている。 The through hole 33 of the filter part 31 communicates through a wall surface in which an opening on the first main surface PS1 side and an opening on the second main surface PS2 side are continuous. Specifically, the through hole 33 is provided so that the opening on the first main surface PS1 side can be projected onto the opening on the second main surface PS2 side. That is, when the filter unit 31 is viewed from the first main surface PS1 side, the through hole 33 is provided so that the opening on the first main surface PS1 side overlaps the opening on the second main surface PS2 side. In the first embodiment, the through hole 33 is provided such that the inner wall thereof is perpendicular to the first main surface PS1 and the second main surface PS2.
 枠部32は、フィルタ部31の外周に設けられており、フィルタ部31に比べて単位面積当たりの貫通孔33の数が少ない部分である。枠部32における貫通孔33の数は、フィルタ部31における貫通孔33の数の1%以下である。枠部32の厚みは、フィルタ部31の厚みよりも厚くてもよい。このような構成により、濾過フィルタ30の機械強度を高めることができる。 The frame portion 32 is provided on the outer periphery of the filter portion 31 and is a portion where the number of through holes 33 per unit area is smaller than that of the filter portion 31. The number of through holes 33 in the frame part 32 is 1% or less of the number of through holes 33 in the filter part 31. The thickness of the frame part 32 may be larger than the thickness of the filter part 31. With such a configuration, the mechanical strength of the filtration filter 30 can be increased.
 枠部32は、濾過フィルタ30と保持具40とを接続する接続部として機能する。また、枠部32には、フィルタの情報(貫通孔33の寸法など)を表示してもよい。 The frame part 32 functions as a connection part that connects the filtration filter 30 and the holder 40. The frame 32 may display filter information (such as dimensions of the through hole 33).
 枠部32は、フィルタ部31の第1主面PS1側から見て、リング状に形成されている。濾過フィルタ30を第1主面PS1側から見て、枠部32の中心は、フィルタ部31の中心と一致する。即ち、枠部32は、フィルタ部31と同心円上に形成されている。 The frame portion 32 is formed in a ring shape when viewed from the first main surface PS1 side of the filter portion 31. When the filtration filter 30 is viewed from the first main surface PS1 side, the center of the frame portion 32 coincides with the center of the filter portion 31. That is, the frame part 32 is formed concentrically with the filter part 31.
<保持具>
 保持具40は、濾過フィルタ30が流路部材20に取り付けられている治具である。図1A及び図1Bに示すように、保持具40は、例えばねじ等の固定具50によって流路部材20に取り付けられている。濾過フィルタ30が流路部材20の排出口24に位置するように、保持具40は流路部材20に取り付けられている。すなわち、保持具40が流路部材20に取り付けられていることによって、濾過フィルタ30は流路部材20の排出口24に配置される。実施の形態1では、保持具40は、第1枠部材41と第2枠部材42とを備え、第1枠部材41と第2枠部材42との間で濾過フィルタ30の枠部32を挟持する。
<Holding tool>
The holder 40 is a jig in which the filtration filter 30 is attached to the flow path member 20. As shown in FIGS. 1A and 1B, the holder 40 is attached to the flow path member 20 by a fixing tool 50 such as a screw. The holder 40 is attached to the flow path member 20 so that the filtration filter 30 is located at the discharge port 24 of the flow path member 20. That is, when the holder 40 is attached to the flow path member 20, the filtration filter 30 is disposed at the discharge port 24 of the flow path member 20. In the first embodiment, the holder 40 includes a first frame member 41 and a second frame member 42, and the frame portion 32 of the filtration filter 30 is sandwiched between the first frame member 41 and the second frame member 42. To do.
 また、保持具40の第2枠部材42の内部には、濾過フィルタ30を通じて濾過された流体が排出される排出路44が形成されている。排出路44は、流路部材20の排出口24と連通している。 Further, a discharge path 44 through which the fluid filtered through the filter 30 is discharged is formed inside the second frame member 42 of the holder 40. The discharge path 44 communicates with the discharge port 24 of the flow path member 20.
 具体的には、以下のように、保持具40は濾過フィルタ30を挟持している。 Specifically, the holder 40 holds the filtration filter 30 as follows.
 図2に示すように、枠部32は、第1曲げ部32aと、第2曲げ部32bと、波状部32cとを有している。 As shown in FIG. 2, the frame part 32 has a first bent part 32a, a second bent part 32b, and a corrugated part 32c.
 第1曲げ部32aは、枠部32を第2主面PS2側に鈍角に曲がる部分である。第2曲げ部32bは、第1曲げ部32aよりも枠部32の外縁32d側に位置し、枠部32を第1曲げ部32aとは反対方向(第1主面PS1側)に曲がる部分である。第1枠部材41と第2枠部材42とは、第1曲げ部32aと第2曲げ部32bとの間の部分を挟持する。 The first bent portion 32a is a portion that bends the frame portion 32 toward the second main surface PS2 at an obtuse angle. The second bent portion 32b is located closer to the outer edge 32d of the frame portion 32 than the first bent portion 32a, and is a portion that bends the frame portion 32 in the direction opposite to the first bent portion 32a (first main surface PS1 side). is there. The first frame member 41 and the second frame member 42 sandwich a portion between the first bent portion 32a and the second bent portion 32b.
 波状部32cは、第2曲げ部32bよりも枠部32の外縁32d側に位置する部分である。波状部32cは、濾過フィルタ30が保持具40から抜けるのを抑える抜け止めとして機能する。波状部32cは、濾過フィルタ30の周方向に波打った形状を有する。 The wavy portion 32c is a portion located on the outer edge 32d side of the frame portion 32 with respect to the second bent portion 32b. The waved portion 32 c functions as a retaining member that prevents the filtration filter 30 from coming off the holder 40. The corrugated portion 32 c has a shape that undulates in the circumferential direction of the filtration filter 30.
 第2曲げ部32bよりも枠部32の外縁32d側において、第1枠部材41と第2枠部材42との間には隙間が設けられている。この隙間により、波状部32cが圧縮されることが抑えられている。 A gap is provided between the first frame member 41 and the second frame member 42 on the outer edge 32d side of the frame portion 32 with respect to the second bent portion 32b. This gap prevents the undulating portion 32c from being compressed.
 また、保持具40は、濾過フィルタ30が取り付けられている第2面43を有する。具体的には、第2面43は、第1枠部材41に形成されている。第2面43は、例えば平坦な壁面である。保持具40が濾過フィルタ30の枠部32を挟持した状態で、保持具40の第2面43を流路部材20の第1面25に面接触させることで、濾過フィルタ30は流路部材20の排出口24に取り付けられている。 The holder 40 has a second surface 43 to which the filtration filter 30 is attached. Specifically, the second surface 43 is formed on the first frame member 41. The second surface 43 is, for example, a flat wall surface. With the holder 40 holding the frame portion 32 of the filtration filter 30, the filtration filter 30 is brought into surface contact with the first surface 25 of the flow path member 20 by bringing the second surface 43 of the holder 40 into surface contact. It is attached to the discharge port 24.
 流路部材20と保持具40との継ぎ目は、第2面43と第1面25との面接触によって形成されている。このため、流路部材20と保持具40との継ぎ目は、シール性を向上させた構造になっている。実施の形態1では、流路部材20と保持具40との継ぎ目は、XY平面に沿って形成されている。これにより、シール性をさらに向上させることができる。なお、本明細書において、第1流路21が形成されている側の継ぎ目を上流側の継ぎ目S1と称し、第2流路22が形成されている側の継ぎ目を下流側の継ぎ目S2と称する。 The joint between the flow path member 20 and the holder 40 is formed by surface contact between the second surface 43 and the first surface 25. For this reason, the joint of the flow path member 20 and the holder 40 has a structure with improved sealing performance. In the first embodiment, the joint between the flow path member 20 and the holder 40 is formed along the XY plane. Thereby, sealing performance can be further improved. In the present specification, the seam on the side where the first flow path 21 is formed is referred to as an upstream seam S1, and the seam on the side where the second flow path 22 is formed is referred to as a downstream seam S2. .
 上流側の継ぎ目S1は、第1流路21と第3流路23とが接続されている部分よりも外側(濾過フィルタ30の外縁32d側)で、流路部材20の第1面25と保持具40の第2面43とを面接触させることによって形成されている。上流側の継ぎ目S1は、第1流路21から第3流路23に流れる流体の向きD1と反対側(逆らう方向)に形成されている。このため、上流側の継ぎ目S1においては、第1流路21から第3流路23へと流れる流体が、流入しにくくなっている。 The upstream seam S1 is held outside the portion where the first flow path 21 and the third flow path 23 are connected (on the outer edge 32d side of the filter 30) and the first surface 25 of the flow path member 20. It is formed by bringing the second surface 43 of the tool 40 into surface contact. The upstream seam S <b> 1 is formed on the side opposite to the direction D <b> 1 of the fluid flowing from the first channel 21 to the third channel 23. For this reason, the fluid flowing from the first flow path 21 to the third flow path 23 is less likely to flow in the upstream seam S1.
 下流側の継ぎ目S2は、第3流路23と第2流路22とが接続されている部分よりも外側(濾過フィルタ30の外縁32d側)で、流路部材20の第1面25と保持具40の第2面43とを面接触させることによって形成されている。 The downstream seam S2 is held outside the portion where the third flow path 23 and the second flow path 22 are connected (on the outer edge 32d side of the filtration filter 30) and the first surface 25 of the flow path member 20. It is formed by bringing the second surface 43 of the tool 40 into surface contact.
 第1枠部材41及び第2枠部材42の材料としては、例えば、ジュラルミン、アルミニウムなどの金属や、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリアセタール、ポリエーテルイミド、などの樹脂が挙げられる。 Examples of the material of the first frame member 41 and the second frame member 42 include metals such as duralumin and aluminum, and resins such as polyethylene, polystyrene, polypropylene, polycarbonate, polyacetal, and polyetherimide.
[動作]
 次に、濾過装置10の動作について説明する。濾過装置10において、濾過対象物が含まれる流体を、流路部材20内の第1流路21から第3流路23を通じて第2流路22へと流す。この時、濾過装置10は、第3流路23に沿って取り付けられている濾過フィルタ30によって、流体に含まれる濾過対象物を濾過する。実施の形態1において、効率よく濾過を行うために、濾過された流体を排出する排出路44から吸引を行っている。
[Operation]
Next, the operation of the filtration device 10 will be described. In the filtering device 10, the fluid containing the filtration target object flows from the first channel 21 in the channel member 20 to the second channel 22 through the third channel 23. At this time, the filtration device 10 filters the filtration object contained in the fluid by the filtration filter 30 attached along the third flow path 23. In Embodiment 1, in order to perform filtration efficiently, suction is performed from the discharge path 44 that discharges the filtered fluid.
 次に、濾過装置10における流体の流れについて説明する。 Next, the flow of fluid in the filtration device 10 will be described.
 濾過対象物を含む流体が、第1流路21から第3流路23に向かって流れる。第1流路21は排出口24の開口面(XY平面)に対して傾斜している。このため、第1流路21内を流れる流体は、第3流路23の排出口24に向かって流れる。このように、濾過装置10では、第1流路21から第3流路23へ流れる流体を排出口24に向けて流すことで、流体を濾過フィルタ30に通過させやすくしている。 The fluid containing the object to be filtered flows from the first flow path 21 toward the third flow path 23. The first flow path 21 is inclined with respect to the opening surface (XY plane) of the discharge port 24. For this reason, the fluid flowing in the first flow path 21 flows toward the discharge port 24 of the third flow path 23. As described above, in the filtration device 10, the fluid flowing from the first flow path 21 to the third flow path 23 flows toward the discharge port 24, so that the fluid can easily pass through the filtration filter 30.
 また、上流側の継ぎ目S1は、第1流路21から第3流路23に流れる流体の向きD1と反対側(逆らう方向)に形成されている。このため、第1流路21から第3流路23へと流れる流体が、上流側の継ぎ目S1に流入しにくくなっている。 Further, the upstream joint S1 is formed on the opposite side (reverse direction) to the direction D1 of the fluid flowing from the first flow path 21 to the third flow path 23. For this reason, it is difficult for the fluid flowing from the first flow path 21 to the third flow path 23 to flow into the upstream seam S1.
 次に、第3流路23を流れる流体は、排出口24に流れて濾過フィルタ30を通過するか、又は第2流路22に向かって流れる。実施の形態1では、排出路44側から吸引を行っている。これにより、濾過装置10では、第3流路23を流れる流体を、さらに、濾過フィルタ30に通過させやすくしている。 Next, the fluid flowing through the third flow path 23 flows to the discharge port 24 and passes through the filter 30 or flows toward the second flow path 22. In the first embodiment, suction is performed from the discharge path 44 side. Thereby, in the filtration apparatus 10, the fluid flowing through the third flow path 23 is further easily passed through the filtration filter 30.
 このように、濾過装置10では、第1流路21の傾斜及び排出路44側からの吸引によって、第3流路23を流れる流体の一部を、排出口24から濾過フィルタ30を通じて排出路44へと流している。 Thus, in the filtration device 10, a part of the fluid flowing through the third flow path 23 is discharged from the discharge port 24 through the filtration filter 30 due to the inclination of the first flow path 21 and suction from the discharge path 44 side. Is flowing.
 また、実施の形態1では、排出路44側からの吸引によって、第3流路23を流れる流体を積極的に排出路44に向かって流しているため、濾過フィルタ30よりも下流側の第3流路23においては、流体の圧力を小さくすることができる。具体的には、第3流路23から第2流路22に向かって流れる流体の圧力を、第1流路21から第3流路23に向かって流れる流体の圧力よりも小さくすることができる。これにより、流路内と流路外との圧力差を小さくすることができるため、第3流路23から第2流路22に向かって流れる流体は、下流側の継ぎ目S2から漏出しにくい。 Further, in the first embodiment, the fluid flowing through the third flow path 23 is actively flowing toward the discharge path 44 by suction from the discharge path 44 side. In the flow path 23, the pressure of the fluid can be reduced. Specifically, the pressure of the fluid flowing from the third channel 23 toward the second channel 22 can be made smaller than the pressure of the fluid flowing from the first channel 21 toward the third channel 23. . Thereby, since the pressure difference between the inside of the flow path and the outside of the flow path can be reduced, the fluid flowing from the third flow path 23 toward the second flow path 22 is unlikely to leak from the downstream seam S2.
[効果]
 実施の形態1に係る濾過装置10によれば、以下の効果を奏することができる。
[effect]
According to the filtration device 10 according to the first embodiment, the following effects can be obtained.
 濾過装置10において、流路部材20は、第1流路21と、第1流路21と異なる方向に延びる第2流路22と、第1流路21と第2流路22とを接続する第3流路23とを有する。第3流路23には排出口24が設けられており、第1流路21は、排出口24の開口面に対して交差する方向に設けられている。濾過フィルタ30が流路部材20の排出口24に位置するように、保持具40が流路部材20に取り付けられている。 In the filtration device 10, the flow path member 20 connects the first flow path 21, the second flow path 22 extending in a direction different from the first flow path 21, and the first flow path 21 and the second flow path 22. And a third flow path 23. The third flow path 23 is provided with a discharge port 24, and the first flow path 21 is provided in a direction intersecting the opening surface of the discharge port 24. The holder 40 is attached to the flow path member 20 so that the filtration filter 30 is located at the discharge port 24 of the flow path member 20.
 このような構成により、第1流路21から第3流路23に流入する流体の方向が、排出口24に向かう方向成分を有する。即ち、濾過装置10によれば、第1流路21から第3流路23へ流れる流体を、排出口24に向かって流すことができる。このため、濾過装置10においては、特許文献1に示す装置と比べて、流路部材20の流路内の流体の圧力を大きくせずとも、流体を濾過フィルタ30に通過させることができる。これにより、流路内と流路外との圧力差を低減することができ、流路部材20と保持具40との継ぎ目からの流体の漏出を抑制することができる。 With such a configuration, the direction of the fluid flowing from the first flow path 21 into the third flow path 23 has a directional component toward the discharge port 24. That is, according to the filtering device 10, the fluid flowing from the first flow path 21 to the third flow path 23 can be flowed toward the discharge port 24. For this reason, in the filtration device 10, the fluid can be passed through the filtration filter 30 without increasing the pressure of the fluid in the flow channel of the flow channel member 20 as compared with the device shown in Patent Document 1. Thereby, the pressure difference between the inside of the flow path and the outside of the flow path can be reduced, and leakage of fluid from the joint between the flow path member 20 and the holder 40 can be suppressed.
 また、第1流路21は、排出口24の開口面(XY平面)に対して鋭角に形成されている。このような構成により、流路部材20と保持具40との継ぎ目からの流体の漏出をさらに抑制することができる。 Further, the first flow path 21 is formed at an acute angle with respect to the opening surface (XY plane) of the discharge port 24. With such a configuration, fluid leakage from the joint between the flow path member 20 and the holder 40 can be further suppressed.
 濾過装置10において、保持具40は、保持具40の第2面43を流路部材20の第1面25に面接触させることによって、流路部材20に取り付けられている。 In the filtering device 10, the holder 40 is attached to the flow path member 20 by bringing the second surface 43 of the holder 40 into surface contact with the first surface 25 of the flow path member 20.
 このような構成により、流路部材20と保持具40との継ぎ目を面接触により形成することができ、シール性を向上させることができる。このため、濾過装置10において、シール部材を使用せずに流路部材20と保持具40との間をシールすることができる。これにより、濾過装置10の部材点数を減らすことができ、部材による汚染を抑制できる。 With such a configuration, the joint between the flow path member 20 and the holder 40 can be formed by surface contact, and the sealing performance can be improved. For this reason, in the filtration apparatus 10, it can seal between the flow path member 20 and the holder 40, without using a sealing member. Thereby, the number of members of the filtration apparatus 10 can be reduced, and contamination by members can be suppressed.
 また、上流側の継ぎ目S1は、第1流路21と第3流路23とが接続されている部分よりも外側(濾過フィルタ30の外縁32d側)で、流路部材20の第1面25と保持具40の第2面43とを面接触させることによって形成されている。上流側の継ぎ目S1は、第1流路21から第3流路23に流れる流体の向きD1と反対側(逆らう方向)に形成されている。このため、上流側の継ぎ目S1において、流体の漏出を抑制することができる。 Further, the upstream seam S1 is outside the portion where the first flow path 21 and the third flow path 23 are connected (on the outer edge 32d side of the filtration filter 30), and the first surface 25 of the flow path member 20. And the second surface 43 of the holder 40 are brought into surface contact with each other. The upstream seam S <b> 1 is formed on the side opposite to the direction D <b> 1 of the fluid flowing from the first channel 21 to the third channel 23. For this reason, fluid leakage can be suppressed at the upstream seam S1.
 また、第3流路23から排出口24に向かって流体が流れやすくなることで、第3流路23から第2流路22への流路内の圧力を低減することができる。このため、流路内と流路外との圧力差を小さくすることができるため、下流側の継ぎ目S2においても流体の漏出を抑制することができる。 Further, since the fluid easily flows from the third flow path 23 toward the discharge port 24, the pressure in the flow path from the third flow path 23 to the second flow path 22 can be reduced. For this reason, since the pressure difference between the inside of the flow path and the outside of the flow path can be reduced, fluid leakage can also be suppressed at the downstream seam S2.
 また、流路部材20への保持具40の取り付けは、ねじ等の固定具50によって容易に行われている。流路部材20と保持具40の取り付け及び取り外しが容易であるため、保持具40によって保持されている濾過フィルタ30の交換等を容易に行うことができる。 The attachment of the holder 40 to the flow path member 20 is easily performed by a fixture 50 such as a screw. Since it is easy to attach and remove the flow path member 20 and the holder 40, the filtration filter 30 held by the holder 40 can be easily replaced.
 濾過装置10において、流路部材20は、第1流路21と第2流路22とが接続されている部分と、濾過フィルタ30とに囲まれている第3流路23を有し、第3流路23の流路断面積は、第1流路21の流路断面積よりも小さい。 In the filtration device 10, the flow path member 20 has a third flow path 23 surrounded by a portion where the first flow path 21 and the second flow path 22 are connected, and a filtration filter 30. The cross-sectional area of the three flow paths 23 is smaller than the cross-sectional area of the first flow path 21.
 このような構成により、第3流路23内を流れる流体の流速を増加させることができ、濾過対象物による濾過フィルタ30の目詰まりを抑制することができる。 With such a configuration, the flow velocity of the fluid flowing in the third flow path 23 can be increased, and clogging of the filtration filter 30 due to the filtration target can be suppressed.
 濾過装置10において、第1流路21と第2流路22は、第1流路21と第2流路22とが接続されている部分を中心にして対称である。 In the filtration device 10, the first flow path 21 and the second flow path 22 are symmetric with respect to a portion where the first flow path 21 and the second flow path 22 are connected.
 このような構成により、利便性を向上させることができる。例えば、流入側の第1流路21と流出側の第2流路22を入れ替えて使用することができるため、第2流路22から流体を流入させて第1流路21へと流出させて使用することができる。 Such a configuration can improve convenience. For example, since the first flow path 21 on the inflow side and the second flow path 22 on the outflow side can be used interchangeably, the fluid is allowed to flow from the second flow path 22 and flow out to the first flow path 21. Can be used.
 なお、本発明は実施の形態1に限定されるものではなく、その他種々の態様で実施できる。実施の形態1では、第1流路21と第2流路22とが接続されている部分に第3流路23が設けられており、第3流路23に排出口24が設けられている例を説明したが、これに限定されない。第1流路21と第2流路22とが接続されている部分に排出口24が設けられていれば、他の構成であってもよい。即ち、第3流路23は、必須の構成ではない。 Note that the present invention is not limited to the first embodiment, and can be implemented in various other modes. In the first embodiment, a third flow path 23 is provided in a portion where the first flow path 21 and the second flow path 22 are connected, and a discharge port 24 is provided in the third flow path 23. Although an example has been described, the present invention is not limited to this. As long as the discharge port 24 is provided in the portion where the first flow path 21 and the second flow path 22 are connected, another configuration may be used. That is, the third flow path 23 is not an essential configuration.
 図6は、変形例の濾過装置10Aの概略構成図を示す。図6に示すように、排出口24が、流路部材20aの第1流路21と第2流路22との間の部分に設けられていてもよい。即ち、排出口24が第1流路21の延長線上に設けられていてもよい。このような構成であっても、流路部材20aと保持具40との継ぎ目からの流体の漏出を抑制することができる。また、濾過装置10Aにおいて、第1流路21を流れる流体を、排出口24へと直接流すことができる。このため、より多くの流体を短時間で濾過することができる。 FIG. 6 shows a schematic configuration diagram of a modified filtration apparatus 10A. As shown in FIG. 6, the discharge port 24 may be provided in a portion between the first flow path 21 and the second flow path 22 of the flow path member 20a. That is, the discharge port 24 may be provided on an extension line of the first flow path 21. Even with such a configuration, leakage of fluid from the joint between the flow path member 20a and the holder 40 can be suppressed. Further, in the filtration device 10 </ b> A, the fluid flowing through the first flow path 21 can be directly flowed to the discharge port 24. For this reason, more fluid can be filtered in a short time.
 実施の形態1では、1つの濾過フィルタ30を用いた例について説明したが、これに限定されない。例えば、濾過装置10においては、複数の濾過フィルタ30を用いてもよい。 In Embodiment 1, although the example using one filtration filter 30 was demonstrated, it is not limited to this. For example, in the filtration device 10, a plurality of filtration filters 30 may be used.
 図7は、変形例の濾過装置10Bの概略構成図を示す。図7に示すように、濾過装置10Bの保持具40aは、第2面43に、複数の濾過フィルタ30を取り付けることが可能な構成を有していてもよい。このように、複数の濾過フィルタ30が流路部材20の排出口24に位置するように、保持具40aが流路部材20に取り付けられていてもよい。また、保持具40aの第2枠部材42aにおいて、複数の濾過フィルタ30に対応する複数の排出路44が設けられていてもよい。これにより、濾過装置10Bにおいて、複数の濾過フィルタ30から濾過を行うことができるため、より多くの流体を短時間で濾過することができる。 FIG. 7 shows a schematic configuration diagram of a modification of the filtration device 10B. As illustrated in FIG. 7, the holder 40 a of the filtration device 10 </ b> B may have a configuration in which a plurality of filtration filters 30 can be attached to the second surface 43. Thus, the holder 40 a may be attached to the flow path member 20 so that the plurality of filtration filters 30 are located at the discharge port 24 of the flow path member 20. Further, a plurality of discharge paths 44 corresponding to the plurality of filtration filters 30 may be provided in the second frame member 42a of the holder 40a. Thereby, in the filtration apparatus 10B, since it can filter from the several filtration filter 30, more fluid can be filtered in a short time.
 実施の形態1では、第3流路23は、流路部材20の第1面25に沿って形成されている例を説明したが、これに限定されない。第3流路23は、流路部材20の第1面25に対して傾斜していてもよい。 In Embodiment 1, the example in which the third flow path 23 is formed along the first surface 25 of the flow path member 20 has been described, but the present invention is not limited to this. The third flow path 23 may be inclined with respect to the first surface 25 of the flow path member 20.
 実施の形態1では、第3流路23の流路断面積は、第1流路21及び第2流路22の流路断面積よりも小さい例を説明したが、これに限定されない。第3流路23の流路断面積は、第1流路21又は第2流路22の流路断面積と同じであってもよいし、第1流路21又は第2流路22の流路断面積よりも大きくてもよい。 In Embodiment 1, the example in which the channel cross-sectional area of the third channel 23 is smaller than the channel cross-sectional areas of the first channel 21 and the second channel 22 has been described, but the present invention is not limited to this. The flow path cross-sectional area of the third flow path 23 may be the same as the flow path cross-sectional area of the first flow path 21 or the second flow path 22, or the flow of the first flow path 21 or the second flow path 22. It may be larger than the road cross-sectional area.
 実施の形態1では、第1流路21、第2流路22、及び第3流路23は、同一平面(XZ平面)上に形成されている例を説明したが、これに限定されない。第1流路21、第2流路22、及び第3流路23は、異なる平面上に形成されていてもよい。例えば、第1流路21がXZ平面に形成され、第2流路22がYZ平面に形成されていてもよい。 In Embodiment 1, the example in which the first flow path 21, the second flow path 22, and the third flow path 23 are formed on the same plane (XZ plane) has been described, but the present invention is not limited to this. The first flow path 21, the second flow path 22, and the third flow path 23 may be formed on different planes. For example, the first flow path 21 may be formed on the XZ plane and the second flow path 22 may be formed on the YZ plane.
 実施の形態1では、第1流路21と第2流路22とは、第1流路21と第2流路22とが接続されている部分を中心にして対称に形成される例について説明したが、これに限定されない。例えば、第1流路21と第2流路22とは、第1流路21と第2流路22とが接続されている部分を中心にして非対称に形成されていてもよい。 In the first embodiment, an example is described in which the first flow path 21 and the second flow path 22 are formed symmetrically about a portion where the first flow path 21 and the second flow path 22 are connected. However, it is not limited to this. For example, the first flow path 21 and the second flow path 22 may be formed asymmetrically around a portion where the first flow path 21 and the second flow path 22 are connected.
 実施の形態1では、濾過フィルタ30は金属製多孔膜である例を説明したが、これに限定されない。濾過フィルタ30は、流体に含まれる濾過対象物を濾過することができるものであればよく、例えば、メンブレン等の他のフィルタであってもよい。 In Embodiment 1, the example in which the filtration filter 30 is a metal porous film has been described, but the present invention is not limited to this. The filtration filter 30 may be any filter as long as it can filter the filtration target contained in the fluid, and may be another filter such as a membrane.
 実施の形態1では、濾過フィルタ30の第1主面PS1は、流路部材20の第1面25と同一面となっている例を説明したが、これに限定されない。濾過フィルタ30の第1主面PS1と、流路部材20の第1面25とは異なる平面上にあってもよい。 In Embodiment 1, the example in which the first main surface PS1 of the filtration filter 30 is flush with the first surface 25 of the flow path member 20 has been described, but the present invention is not limited to this. The first main surface PS1 of the filtration filter 30 and the first surface 25 of the flow path member 20 may be on different planes.
 実施の形態1では、保持具40は、第1枠部材41と第2枠部材42とを備え、第1枠部材41と第2枠部材42との間で濾過フィルタ30の枠部32を挟持する例を説明したが、これに限定されない。保持具40は、濾過フィルタ30を流路部材20に取り付けることができれば、他の構成であってもよい。例えば、濾過フィルタ30と保持具40とを一体的に形成してもよい。 In the first embodiment, the holder 40 includes a first frame member 41 and a second frame member 42, and the frame portion 32 of the filtration filter 30 is sandwiched between the first frame member 41 and the second frame member 42. Although the example to do was demonstrated, it is not limited to this. The holding device 40 may have another configuration as long as the filtration filter 30 can be attached to the flow path member 20. For example, the filtration filter 30 and the holder 40 may be integrally formed.
 実施の形態1では、保持具40の第2枠部材42の内部には、濾過フィルタ30を通じて濾過された流体が排出される排出路44が形成されている例を説明したが、これに限定されない。保持具40に排出路44は設けられていなくてもよい。例えば、保持具40に、排出路44が設けられている部材が取り付けられていてもよい。 In the first embodiment, the example in which the discharge path 44 through which the fluid filtered through the filter 30 is discharged is formed inside the second frame member 42 of the holder 40 is not limited to this. . The holder 40 may not be provided with the discharge path 44. For example, a member provided with the discharge path 44 may be attached to the holder 40.
 実施の形態1では、保持具40は、固定具50によって流路部材20に取り付けられている例を説明したが、これに限定されない。保持具40によって濾過フィルタ30を流路部材20に取り付けることができれば、他の構成であってもよい。例えば、固定具50を使用せず、保持具40と流路部材20を一体的に形成してもよい。 In Embodiment 1, the example in which the holder 40 is attached to the flow path member 20 by the fixture 50 has been described, but the present invention is not limited to this. Any other configuration may be used as long as the filter 30 can be attached to the flow path member 20 by the holder 40. For example, the holder 40 and the flow path member 20 may be integrally formed without using the fixture 50.
 実施の形態1では、第1流路21、第2流路22、第3流路23、排出口24、及び濾過フィルタ30の形状及び大きさの例を説明したが、これに限定されない。また、第1流路21、第2流路22、及び第3流路23は、屈曲して形成されていてもよい。 In the first embodiment, examples of the shapes and sizes of the first flow path 21, the second flow path 22, the third flow path 23, the discharge port 24, and the filtration filter 30 are described, but the present invention is not limited to this. Moreover, the 1st flow path 21, the 2nd flow path 22, and the 3rd flow path 23 may be formed bent.
 実施の形態1では、濾過された流体を排出する排出路44から吸引を行っている例を説明したが、これに限定されない。濾過装置10においては、排出路44から吸引を行わなくても、実施の形態1の効果を奏することができる。 In Embodiment 1, the example in which suction is performed from the discharge path 44 for discharging the filtered fluid has been described, but the present invention is not limited to this. The filtering device 10 can achieve the effects of the first embodiment without performing suction from the discharge path 44.
 実施の形態1では、濾過対象物を含む流体が液体である例について説明したが、これに限定されない。例えば、流体は、気体であってもよい。 In Embodiment 1, the example in which the fluid including the filtration target is a liquid has been described, but the present invention is not limited to this. For example, the fluid may be a gas.
 実施の形態1では、流路部材20と保持具40との継ぎ目は、XY平面に沿って形成されている例について説明したが、これに限定されない。例えば、流路部材20と保持具40との継ぎ目は、少なくとも一部が曲面で形成されていてもよい。すなわち、流路部材20の第1面25及び保持具40の第2面43において、少なくとも一部が曲面で形成されていてもよい。このような構成によっても、流路部材20と保持具40との継ぎ目からの流体の漏出を抑制することができる。 In Embodiment 1, the example in which the joint between the flow path member 20 and the holder 40 is formed along the XY plane has been described, but the present invention is not limited to this. For example, at least a part of the joint between the flow path member 20 and the holder 40 may be formed as a curved surface. That is, at least a part of the first surface 25 of the flow path member 20 and the second surface 43 of the holder 40 may be formed as a curved surface. Also with such a configuration, leakage of fluid from the joint between the flow path member 20 and the holder 40 can be suppressed.
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as long as they do not depart from the scope of the present invention.
 本発明の濾過装置は、流体の漏出を抑制して濾過を行うことができるため、濾過対象物を含む流体を濾過する用途に有用である。 Since the filtration device of the present invention can perform filtration while suppressing fluid leakage, it is useful for the application of filtering a fluid containing an object to be filtered.
 10、10A、10B 濾過装置
 20、20a 流路部材
 21 第1流路
 22 第2流路
 23 第3流路
 24 排出口
 25 第1面
 30 濾過フィルタ
 31 フィルタ部
 32 枠部
 32a 第1曲げ部
 32b 第2曲げ部
 32c 波状部
 32d 外縁
 33 貫通孔
 34 フィルタ基体部
 40、40a 保持具
 41 第1枠部材
 42、42a 第2枠部材
 43 第2面
 44 排出路
 50 固定具
 PS1 第1主面
 PS2 第2主面
 S1 上流側の継ぎ目
 S2 下流側の継ぎ目
DESCRIPTION OF SYMBOLS 10, 10A, 10B Filtration apparatus 20, 20a Flow path member 21 1st flow path 22 2nd flow path 23 3rd flow path 24 Outlet 25 1st surface 30 Filtration filter 31 Filter part 32 Frame part 32a 1st bending part 32b 2nd bending part 32c Wave-like part 32d Outer edge 33 Through-hole 34 Filter base | substrate part 40, 40a Holder 41 1st frame member 42, 42a 2nd frame member 43 2nd surface 44 Discharge path 50 Fixing tool PS1 1st main surface PS2 1st 2 Main surface S1 Upstream seam S2 Downstream seam

Claims (6)

  1.  内部に流体が流れる流路部材と、
     前記流体に含まれる濾過対象物を濾過する濾過フィルタと、
     前記濾過フィルタが前記流路部材に取り付けられている保持具と、
    を備え、
     前記流路部材は、前記流体が流入する第1流路と、前記第1流路と異なる方向に延びる第2流路と、を有するとともに、前記第1流路と前記第2流路とが接続されている部分に、前記流体を排出する排出口が設けられており、
     前記第1流路は、前記排出口の開口面に対して交差する方向に設けられており、
     前記濾過フィルタが前記流路部材の前記排出口に位置するように、前記保持具が前記流路部材に取り付けられている、
     濾過装置。
    A flow path member through which a fluid flows;
    A filtration filter for filtering an object to be filtered contained in the fluid;
    A holder in which the filtration filter is attached to the flow path member;
    With
    The flow path member includes a first flow path into which the fluid flows and a second flow path that extends in a direction different from the first flow path, and the first flow path and the second flow path include The connected part is provided with a discharge port for discharging the fluid,
    The first flow path is provided in a direction intersecting the opening surface of the discharge port,
    The holder is attached to the flow path member so that the filtration filter is located at the discharge port of the flow path member.
    Filtration device.
  2.  前記第1流路は、前記排出口の開口面に対して鋭角に傾斜している、
     請求項1に記載の濾過装置。
    The first flow path is inclined at an acute angle with respect to the opening surface of the discharge port.
    The filtration device according to claim 1.
  3.  前記流路部材は、前記排出口が設けられている第1面を有し、
     前記保持具は、前記濾過フィルタが取り付けられている第2面を有し、
     前記保持具は、前記保持具の前記第2面を前記流路部材の前記第1面に面接触させて、前記流路部材に取り付けられている、
     請求項1又は2に記載の濾過装置。
    The flow path member has a first surface on which the discharge port is provided,
    The holder has a second surface to which the filtration filter is attached;
    The holder is attached to the flow path member by bringing the second surface of the holder into surface contact with the first surface of the flow path member.
    The filtration device according to claim 1 or 2.
  4.  前記流路部材は、前記第1流路と前記第2流路とが接続されている部分と、前記濾過フィルタとに囲まれている第3流路を有し、
     前記排出口は前記第3流路に設けられており、
     前記第3流路の流路断面積は、前記第1流路の流路断面積よりも小さい、
     請求項1~3のいずれか一項に記載の濾過装置。
    The flow path member has a third flow path surrounded by a portion where the first flow path and the second flow path are connected, and the filtration filter,
    The outlet is provided in the third flow path;
    The flow path cross-sectional area of the third flow path is smaller than the flow path cross-sectional area of the first flow path,
    The filtration device according to any one of claims 1 to 3.
  5.  複数の前記濾過フィルタが前記第3流路の前記排出口に位置するように、前記保持具が前記流路部材に取り付けられている、
     請求項4に記載の濾過装置。
    The holder is attached to the flow path member such that a plurality of the filtration filters are located at the discharge port of the third flow path.
    The filtration device according to claim 4.
  6.  前記第1流路と前記第2流路は、前記第1流路と前記第2流路とが接続されている部分を中心にして対称に形成されている、
     請求項1~5のいずれか一項に記載の濾過装置。
    The first flow path and the second flow path are formed symmetrically around a portion where the first flow path and the second flow path are connected.
    The filtration device according to any one of claims 1 to 5.
PCT/JP2018/018355 2017-05-19 2018-05-11 Filtration device WO2018212096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099611A JP2020142157A (en) 2017-05-19 2017-05-19 Filtration device
JP2017-099611 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018212096A1 true WO2018212096A1 (en) 2018-11-22

Family

ID=64273826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018355 WO2018212096A1 (en) 2017-05-19 2018-05-11 Filtration device

Country Status (2)

Country Link
JP (1) JP2020142157A (en)
WO (1) WO2018212096A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111042276A (en) * 2019-12-06 2020-04-21 宣城久悠谷电子科技有限公司 Sewage filtering device for sewage discharge pipeline

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634794U (en) * 1992-10-14 1994-05-10 ダイキ株式会社 Solid-liquid separation device in wastewater recycling device using hollow fiber membrane module
JP2002500942A (en) * 1997-07-31 2002-01-15 ザトーリウス アクチエン ゲゼルシャフト Filtration unit made of synthetic resin and method for producing the same
JP2002536160A (en) * 1999-01-29 2002-10-29 ポール・コーポレーション Separation apparatus and separation method
JP2016139520A (en) * 2015-01-27 2016-08-04 アイシン精機株式会社 Joint of fuel cell system
WO2017104261A1 (en) * 2015-12-14 2017-06-22 株式会社村田製作所 Filtration device
WO2017104259A1 (en) * 2015-12-14 2017-06-22 株式会社村田製作所 Filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634794U (en) * 1992-10-14 1994-05-10 ダイキ株式会社 Solid-liquid separation device in wastewater recycling device using hollow fiber membrane module
JP2002500942A (en) * 1997-07-31 2002-01-15 ザトーリウス アクチエン ゲゼルシャフト Filtration unit made of synthetic resin and method for producing the same
JP2002536160A (en) * 1999-01-29 2002-10-29 ポール・コーポレーション Separation apparatus and separation method
JP2016139520A (en) * 2015-01-27 2016-08-04 アイシン精機株式会社 Joint of fuel cell system
WO2017104261A1 (en) * 2015-12-14 2017-06-22 株式会社村田製作所 Filtration device
WO2017104259A1 (en) * 2015-12-14 2017-06-22 株式会社村田製作所 Filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111042276A (en) * 2019-12-06 2020-04-21 宣城久悠谷电子科技有限公司 Sewage filtering device for sewage discharge pipeline

Also Published As

Publication number Publication date
JP2020142157A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US11202996B2 (en) Filtration filter
JP6645576B2 (en) Filtration filter device
WO2017022484A1 (en) Filtration filter device
US10926229B2 (en) Filtration filter
CN109414631B (en) Filter device
WO2018212096A1 (en) Filtration device
WO2017104261A1 (en) Filtration device
US10646800B2 (en) Filtration filter device
US20200353383A1 (en) Filtration device
JPWO2017104259A1 (en) Filtration filter
US20230302382A1 (en) Filtration device, filtration system, and filtration method
JP6927314B2 (en) Filtration device
WO2018180614A1 (en) Filtration filter
JP5458581B2 (en) Liquid chromatography device
JP7347652B2 (en) Filters and filter devices
JP6927413B2 (en) Filtration filter and filtration device
KR20160041371A (en) Forming Screen Insert

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP