WO2017104260A1 - Filtration device - Google Patents

Filtration device Download PDF

Info

Publication number
WO2017104260A1
WO2017104260A1 PCT/JP2016/081159 JP2016081159W WO2017104260A1 WO 2017104260 A1 WO2017104260 A1 WO 2017104260A1 JP 2016081159 W JP2016081159 W JP 2016081159W WO 2017104260 A1 WO2017104260 A1 WO 2017104260A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
tubular member
fluid
particles
filtration device
Prior art date
Application number
PCT/JP2016/081159
Other languages
French (fr)
Japanese (ja)
Inventor
萬壽 優
近藤 孝志
順子 渡邉
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017104260A1 publication Critical patent/WO2017104260A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means

Definitions

  • the present invention relates to a filtration device for filtering a filtration object contained in a fluid.
  • a cross-flow type filtration device is known as this type of filtration device (for example, see Patent Document 1: Japanese Patent Laid-Open No. 2013-210239).
  • a cross-flow type filtration device flows a fluid containing a filtration object along the surface of a filtration filter such as a hollow fiber membrane, and the fluid from which the filtration object is removed by passing through the filtration filter (hereinafter referred to as filtrate). It is a device that collects.
  • the filtration object captured on the surface of the filtration filter is untrapped by the fluid flow. Thereby, clogging of the filtration filter can be suppressed, the filtrate can be collected continuously for a longer time, and the filtration efficiency can be improved.
  • a fluid to be filtered by a filtration device there is a fluid containing two or more kinds of particles having different average particle sizes or weights.
  • the filtering device of Patent Document 1 cannot capture a specific type of particles from the fluid with the filtering filter.
  • an object of the present invention is to solve the above-described problem, and a filtration device capable of capturing a specific type of particles from a fluid containing two or more types of particles as a filtration target with a filtration filter. It is to provide.
  • a filtration device includes: A tubular member having a flow path through which a fluid containing an object to be filtered flows; A filtration filter having a metal porous membrane for filtering the filtration object; A filtration device comprising: The metal porous membrane is disposed in a recessed portion that is recessed so as to expand the flow path, and is disposed along the fluid flow direction. It is characterized by that.
  • a specific type of particles can be captured by a filtration filter from a fluid containing two or more types of particles as an object to be filtered.
  • the present inventors When the fluid containing two or more kinds of particles having different average particle diameters or weights is flowed to the flow path of the tubular member, the present inventors have a kind of particles having a small average particle diameter or light weight near the side wall of the tubular member. I found that there is a tendency to flow.
  • the present inventors provide a concave portion in the tubular member, and dispose a metal porous membrane as a filtration filter in the concave portion along the fluid flow direction, thereby reducing the average particle diameter or weight. It has been found that different types of particles are trapped by the metal porous membrane.
  • the present inventors have found that particles having a large average particle diameter or a heavy type of particles are not captured by the metal porous film and continue to flow in the flow path. Based on these points, the present inventors have reached the following invention.
  • a filtration device includes a tubular member having a flow path through which a fluid containing an object to be filtered flows, A filtration filter having a metal porous membrane for filtering the filtration object; A filtration device comprising: The metal porous membrane is disposed in a recessed portion that is recessed so as to expand the flow path, and is disposed along the fluid flow direction. It is characterized by that.
  • the said recessed part may be formed by denting a part of side wall of the said tubular member in the direction away from the tube axis
  • the filtration filter has a frame body that holds the outer peripheral portion of the metal porous membrane,
  • the frame is attached to a part of the side wall of the tubular member,
  • the recess may be formed by the frame.
  • tubular member may be a tubular member having a uniform inner diameter except for the concave portion.
  • the filtration object includes two or more kinds of particles having different average particle diameters,
  • the amount of the recesses is preferably at least 1 times the average particle size of the particles having the smallest average particle size.
  • the whole type of particles having the smallest average particle diameter can be positioned in the recess and captured by the filtration filter. Moreover, it is possible to suppress the particles captured by the filtration filter from being unbound by the fluid flow.
  • the filtration object includes two or more kinds of particles having different average particle diameters,
  • the amount of the recesses is preferably at least 5 times the average particle size of the particles having the smallest average particle size.
  • the recessed amount of the recessed portion is 50 ⁇ m or more.
  • a specific type of particles particles having a small average particle diameter or light weight
  • a filtration filter from a fluid containing two or more types of particles as an object to be filtered.
  • the amount of depression of the recess is 0.125 to 2 times the inner diameter of the tubular member.
  • the concave amount of the concave portion is 0.125 times or more the inner diameter of the tubular member, a vortex is generated in the concave portion, the interaction time (distance) between the fluid and the filtration filter is increased, and the filtration efficiency is improved.
  • the amount of recesses is more than twice, the fluid flowing through the tubular member becomes difficult to reach the metal porous membrane, and the vortex flow is reduced, resulting in poor filtration efficiency.
  • FIG. 1 is a schematic diagram illustrating a state in which an object to be filtered is filtered using the filtration device according to the embodiment of the present invention.
  • the filtration device 1 is a cross-flow type filtration device.
  • the filtration device 1 is configured to introduce a fluid 12 including an object to be filtered 11 from a fluid inlet 1a and discharge it from a fluid outlet 1b.
  • the filtration device 1 also filters a part of the fluid 12 flowing from the fluid inlet 1a to the fluid outlet 1b, and removes a fluid 13 (hereinafter referred to as filtrate) 13 from which the filtration object 11 has been removed by the filtration. It is comprised so that it may discharge
  • the fluid 12 including the filtration object 11 is placed in the fluid tank 2.
  • the fluid 12 in the fluid tank 2 is taken into the pump 3 through the pipe 21, and is supplied to the fluid inlet 1 a of the filtration device 1 through the pipe 22 by the pump 3.
  • the fluid 12 passing through the inside of the filtration device 1 and discharged from the fluid discharge port 1 b is returned to the fluid tank 2 through the pipe 23.
  • the fluid 12 circulates in the order of the fluid tank 2, the pipe 21, the pump 3, the pipe 22, the filtration device 1, and the pipe 23.
  • the pump 3 may be arranged in the path of the pipe 23 instead of between the pipe 21 and the pipe 22.
  • a closed filtration apparatus may be realized by using the fluid tank 2 or the filtrate tank 4 as a sealed container.
  • FIG. 2 is a schematic cross-sectional view of the filtration device 1.
  • the filtration device 1 includes a tubular member 31 having a flow path 31 a through which the fluid 12 including the filtration object 11 flows, and a filtration filter 32 that filters the filtration object 11.
  • the tubular member 31 is, for example, a cylindrical member.
  • the tubular member 31 has a recess 5 that is recessed so as to enlarge the flow path 31a. That is, the recessed part 5 is a part which expands the flow path 31a.
  • the recess 5 is formed by recessing a part of the side wall of the tubular member 31 in a direction away from the tube axis A1.
  • a step is formed on the side wall of the tubular member 31 by the recess 5. By this step, the flow of the fluid 12 in the vicinity of the recess 5 is disturbed, and a flow having a velocity component (turbulent flow) is generated in a direction intersecting with the extending direction of the tube axis A1.
  • the tubular member 31 is formed of a tubular member having a uniform inner diameter except for the recess 5 so that turbulent flow is unlikely to occur except in the vicinity of the recess 5.
  • tubular member 31 an arbitrary cross-sectional shape such as a square or an ellipse may be used.
  • the material of the tubular member 31 include stainless steel, silicon resin, PVDF (Teflon: registered trademark), vinyl chloride, glass, butadiene-free resin, and the like.
  • a coating material may be applied so that the object to be filtered does not easily adhere to these materials.
  • a pipe 24 is connected to the recess 5.
  • a filtration filter 32 is arranged in the recess 5 so as to filter the fluid 12 flowing to the pipe 24.
  • the filtration filter 32 includes a metal porous film 32a that filters the object to be filtered 11, and a frame body 32b that holds the outer periphery of the metal porous film 32a.
  • the metal porous film 32a is disposed in the recess 5 and along the flow direction of the fluid 12.
  • the flow direction of the fluid 12 is parallel to the extending direction of the tube axis A1.
  • the metal porous film 32a is disposed in parallel with the extending direction of the tube axis A1.
  • the filtration object 11 is a biological substance contained in the liquid.
  • the “biological substance” means a substance derived from a living organism such as a cell (eukaryotic organism), a bacterium (eubacteria), or a virus.
  • cells eukaryotes
  • examples of cells include eggs, sperm, induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell masses, suspension cells, and adhesions.
  • sex cells nerve cells, leukocytes, lymphocytes, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells (CTC), HL-60, HELA, and fungi.
  • bacteria examples include gram positive bacteria, gram negative bacteria, Escherichia coli, and tuberculosis bacteria.
  • virus examples include DNA virus, RNA virus, rotavirus, (bird) influenza virus, yellow fever virus, dengue fever virus, encephalitis virus, hemorrhagic fever virus, and immunodeficiency virus.
  • the filtration object 11 includes two types of filtration objects 11a and 11b having different average particle diameters.
  • the flow rate of the fluid 12 is relatively fast (high density) on the center side of the flow path 31 a, and the flow rate of the fluid 12 is near the side wall of the tubular member 31.
  • the types of particles 11a having a large average particle diameter gather on the central side to form a high-density portion
  • the types of particles 11b having a small average particle size gather on the side wall to form a low-density portion.
  • the type of particles 11a having a large average particle diameter tend to flow in the center side of the flow path 31a.
  • the type of particles 11b having a small average particle diameter tends to flow near the side wall of the flow path 31a. For this reason, the types of particles 11a having a large average particle diameter are not captured by the metal porous film 32a and continue to flow in the flow path 31a.
  • the types of particles 11b having a small average particle diameter contribute to the turbulent flow described above, flow toward the metal porous film 32a, and are easily captured by the metal porous film 32a.
  • the metallic porous membrane 32a is a porous membrane that separates biological substances.
  • FIG. 3 is an enlarged perspective view of a part of the metal porous film 32a.
  • the metal porous film 32a has a first main surface 32c and a second main surface 32d that face each other.
  • the metal porous film 32a is provided with a plurality of through holes 32e penetrating the first main surface 32c and the second main surface 32d.
  • the through hole 32e separates a biological material from the liquid.
  • the shape and size of the through-hole 32e are appropriately set according to the shape and size of the biological material.
  • the through holes 32e are arranged at regular intervals or periodically, for example.
  • the shape of the through hole 32e is, for example, a square when viewed from the first main surface 32c or the second main surface 32d side of the metal porous film 32a.
  • the size of the through hole 32e is, for example, from 0.1 ⁇ m to 500 ⁇ m in length and from 0.1 ⁇ m to 500 ⁇ m in width.
  • the interval between the through holes 32e is, for example, greater than 1 time and less than or equal to 10 times, more preferably less than or equal to 3 times the opening diameter of the through holes 32e.
  • the aperture ratio of the through-hole 32e in the metal porous film 32a is, for example, 10% or more.
  • Examples of the material of the metal porous film 32a include gold, silver, copper, platinum, nickel, stainless steel, palladium, titanium, cobalt, and alloys thereof.
  • the metal porous film 32a has a diameter of, for example, 8 mm.
  • the thickness of the metal porous film 32a is, for example, not less than 0.05 ⁇ m and not more than 100 ⁇ m, and preferably not less than 0.1 ⁇ m and not more than 50 ⁇ m.
  • the outer shape of the metal porous film 32a is, for example, one of a circle, an ellipse, and a polygon. In the present embodiment, the metal porous film 32a has a circular outer shape.
  • the frame body 32b is formed in an annular shape (for example, an annular shape).
  • the material of the frame 32b include metals such as duralumin and aluminum, and resins such as polyethylene, polystyrene, polypropylene, polycarbonate, polyacetal, and polyetherimide.
  • the width of the frame 32b is, for example, 0.9 mm.
  • the thickness of the frame body 32b is, for example, 20 ⁇ m.
  • the metal porous membrane 32a is disposed in the recessed portion 5 that is recessed so as to enlarge the flow path 31a, and is disposed along the flow direction of the fluid 12. ing.
  • the filtration filter 32 can capture the types of particles having a small average particle size from among fluids containing two or more types of particles having different average particle sizes as the filtration object.
  • the amount of dents in the recesses 5 is at least one times the average particle size of the type of particles 11b having the smallest average particle size. According to this configuration, the entire type of particles 11 b having the smallest average particle diameter can be positioned in the recess 5 and captured by the filtration filter 32. Further, it is possible to prevent the particles 11 b captured by the filtration filter 32 from being unbound by the flow of the fluid 12.
  • the amount of recesses in the recesses 5 is preferably 5 times or more the average particle size of the type 11b having the smallest average particle size. According to this configuration, the type of particles 11b having the smallest average particle diameter can be positioned in the recess 5 and captured by the filtration filter 32 more reliably. Further, it is possible to further suppress the particles 11b captured by the filtration filter 32 from being unbound by the flow of the fluid 12.
  • the average particle diameter of the type of particles 11b having the smallest average particle diameter as the filtration object 11 is assumed to be about 3 ⁇ m to 10 ⁇ m, for example.
  • the recess amount of the recess 5 is preferably 15 ⁇ m to 50 ⁇ m or more. According to this configuration, a specific type of particles (particles having a small average particle diameter or a light weight) from the fluid 12 including two or more types of particles 11a and 11b as the filtration object 11 are more reliably obtained. It can be captured by the filtration filter 32.
  • the recess amount of the recess 5 is 0.125 times or more the inner diameter of the tubular member 31. According to this configuration, an eddy current is generated in the recess 5, the interaction time (distance) between the fluid 12 and the filtration filter 32 is increased, and the filtration efficiency is improved. In addition, it is more preferable that the amount of depression of the recess 5 is 0.25 times or more the inner diameter of the tubular member 31. According to this configuration, a large eddy current is generated in the recess 5, the interaction time (distance) between the fluid 12 and the filtration filter 32 is further increased, and the filtration efficiency is further improved.
  • the recessed amount of the recessed part 5 is 2 times or less of the internal diameter of the tubular member 31.
  • Example 1 Next, the result of filtering the object to be filtered from the fluid using the filtration device according to the embodiment of the present invention will be described.
  • a PBS solution (phosphate buffered saline) containing cells HL60 and erythrocytes is used as the fluid 12, and liquid components and erythrocytes are filtered from the PBS solution by the filtration filter 32 and the cells HL60 are captured.
  • the PBS solution contained 1 ⁇ 10 5 cells HL60 having an approximate spherical shape with a diameter of about 12 ⁇ m and 1 ⁇ 10 5 red blood cells having an approximate disc shape with a diameter of about 7 ⁇ m, and the total amount of the PBS solution was 50 ml.
  • the metal porous film 32a a nickel mesh film having a circular outer shape, a thickness of 1.0 ⁇ m, a diameter of 7.8 mm, and a mesh structure in a range of 6 mm in diameter from the center was used.
  • the mesh structure was a square lattice arrangement in which square through holes with sides of 4.5 ⁇ m were arranged at a pitch of 6.5 ⁇ m.
  • the metal porous film 32a was arranged so that the main surface on the flow channel 31a side was located at a distance of 1 mm from the flow channel 31a.
  • a tube having an inner diameter of 2 mm was used as the tubular member 31 .
  • the pump 3 was driven for about 30 minutes so that the PBS solution flowed through the flow path 31a in the tubular member 31 at a flow rate of 240 ml per minute. Thereafter, the filtration filter 32 was taken out and observed with a microscope. As a result, it was confirmed that about 1 ⁇ 10 4 pieces of red blood cells are trapped in a metal membrane 32a. In addition, as a result of observing the filtrate 13 with a microscope, red blood cells were confirmed, but the presence of the cell HL60 could not be confirmed.
  • the filtration filter 32 captures the types of particles having a small average particle size from the fluid containing two or more types of particles having different average particle sizes as the filtration target. Confirmed that you can.
  • the recess 5 is formed by recessing a part of the side wall of the tubular member 31 in the direction away from the tube axis A1, but the present invention is not limited to this.
  • a through hole may be provided in the tubular member 31, a frame body 32 b may be fitted into the through hole, and the concave portion 5 may be formed by the frame body 32 b. That is, the frame body 32b may be attached to a part of the side wall of the tubular member 31, and the recess 5 may be formed by the thickness of the frame body 32b.
  • the metal porous film 32a can be arranged in the recess 5 and along the flow direction of the fluid 12.
  • the filtration object 11 includes two or more kinds of particles having different average particle diameters
  • the present invention is not limited to this.
  • particles having different weights tend to flow in the central side of the channel 31a or near the side walls. That is, the heavy type of particles tend to flow in the center of the flow path 31a.
  • light-weight particles tend to flow near the side wall of the flow path 31a.
  • the filtration filter 32 captures the light-weight type particles from the fluid containing two or more types of particles having different weights as the filtration object 11. Can do.
  • the metal porous film 32a is arranged in parallel with the extending direction of the tube axis A1, but the present invention is not limited to this.
  • the metal porous film 32a may be disposed so as to be inclined with respect to the extending direction of the tube axis A1 within a range that does not substantially obstruct the flow of the fluid 12. That is, the metal porous film 32a only needs to be disposed substantially parallel to the extending direction of the tube axis A1.
  • the tubular member 31 has a straight cylindrical shape (straight tube shape), but the present invention is not limited to this.
  • the tubular member 31 should just be comprised so that the fluid 12 can be flowed along the metal porous membrane 32a.
  • the portion of the tubular member 31 on the fluid introduction port 1a side or fluid discharge port 1b side is configured to bend in a direction intersecting with the extending direction of the tube axis A1. May be.
  • one filter 32 is provided for one tubular member 31, but the present invention is not limited to this.
  • a plurality of (for example, three) filtration filters 32 may be provided for one tubular member 31.
  • the plurality of filtration filters 32 be arranged in the extending direction of the tube axis A1, as shown in FIG.
  • the plurality of filtration filters 32 may have different opening diameters of the through holes 32e (see FIG. 3) of the respective metal porous membranes 32a. According to this configuration, even if the fluid 12 includes a plurality of filtration objects 11 (for example, particles 11a and 11b) having different sizes, the filtration objects 11 can be classified.
  • the fluid 12 is a liquid, but the present invention is not limited to this.
  • the fluid 12 may be a gas, and the filtration target 11 may be fine particles contained in the gas.
  • the fine particles are, for example, industrial powder materials and PM2.5.
  • the present invention can capture a specific type of particles from a fluid containing two or more types of particles as an object to be filtered with a filtration filter, it is particularly suitable for a filtration device that filters biological substances contained in a liquid. Useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is a filtration device capable of capturing a specific type of particle by filter from within a fluid containing two or more types of particles that are objects to be filtered. The filtration device (1) is provided with: a tubular member (31) comprising a flow path (31a) through which a fluid (12) containing objects to be filtered (11) flows; and a filter (32) comprising a porous metal film (32a) for filtering the objects to be filtered (11). The porous metal film (32a) is arranged within a recessed section (5) so as to follow the flow direction of the fluid (12), said recessed section being recessed so as to enlarge the flow path (31a).

Description

濾過装置Filtration device
 本発明は、流体に含まれる濾過対象物を濾過する濾過装置に関する。 The present invention relates to a filtration device for filtering a filtration object contained in a fluid.
 従来、この種の濾過装置として、クロスフロー方式の濾過装置が知られている(例えば、特許文献1:特開2013-210239号公報参照)。クロスフロー方式の濾過装置は、濾過対象物を含む流体を中空糸膜等の濾過フィルタの表面に沿うように流し、当該濾過フィルタを通過することにより濾過対象物が取り除かれた流体(以下、濾液という。)を収集する装置である。 Conventionally, a cross-flow type filtration device is known as this type of filtration device (for example, see Patent Document 1: Japanese Patent Laid-Open No. 2013-210239). A cross-flow type filtration device flows a fluid containing a filtration object along the surface of a filtration filter such as a hollow fiber membrane, and the fluid from which the filtration object is removed by passing through the filtration filter (hereinafter referred to as filtrate). It is a device that collects.
 この濾過装置によれば、濾過対象物を含む流体を濾過フィルタの表面に沿うように流すので、濾過フィルタの表面で捕捉された濾過対象物が流体の流れによって捕捉が解かれる。これにより、濾過フィルタの目詰まりを抑えて、濾液の収集をより長時間連続的に行うことを可能にし、濾過効率を向上させることができる。 According to this filtration device, since the fluid containing the filtration object flows along the surface of the filtration filter, the filtration object captured on the surface of the filtration filter is untrapped by the fluid flow. Thereby, clogging of the filtration filter can be suppressed, the filtrate can be collected continuously for a longer time, and the filtration efficiency can be improved.
特開2013-210239号公報JP 2013-210239 A
 濾過装置で濾過する流体として、平均粒子径又は重量が異なる2種類以上の粒子を含む流体がある。しかしながら、特許文献1の濾過装置では、当該流体の中から特定の種類の粒子を濾過フィルタで捕捉することはできない。 As a fluid to be filtered by a filtration device, there is a fluid containing two or more kinds of particles having different average particle sizes or weights. However, the filtering device of Patent Document 1 cannot capture a specific type of particles from the fluid with the filtering filter.
 従って、本発明の目的は、前記課題を解決することにあって、濾過対象物として2種類以上の粒子を含む流体の中から特定の種類の粒子を濾過フィルタで捕捉することができる濾過装置を提供することにある。 Accordingly, an object of the present invention is to solve the above-described problem, and a filtration device capable of capturing a specific type of particles from a fluid containing two or more types of particles as a filtration target with a filtration filter. It is to provide.
 前記目的を達成するために、本発明の一態様に係る濾過装置は、
 濾過対象物を含む流体が流れる流路を有する管状部材と、
 前記濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、
 を備える濾過装置であって、
 前記金属製多孔膜は、前記流路を拡大するように凹んだ凹部内に配置されるとともに、前記流体の流れ方向に沿うように配置されている、
 ことを特徴とする。
In order to achieve the above object, a filtration device according to an aspect of the present invention includes:
A tubular member having a flow path through which a fluid containing an object to be filtered flows;
A filtration filter having a metal porous membrane for filtering the filtration object;
A filtration device comprising:
The metal porous membrane is disposed in a recessed portion that is recessed so as to expand the flow path, and is disposed along the fluid flow direction.
It is characterized by that.
 本発明に係る濾過装置によれば、濾過対象物として2種類以上の粒子を含む流体の中から特定の種類の粒子を濾過フィルタで捕捉することができる。 According to the filtration device according to the present invention, a specific type of particles can be captured by a filtration filter from a fluid containing two or more types of particles as an object to be filtered.
本発明の実施形態に係る濾過装置を用いて濾過対象物を濾過する様子を示す概略図である。It is the schematic which shows a mode that the filtration target object is filtered using the filtration apparatus which concerns on embodiment of this invention. 図1の濾過装置の概略断面図である。It is a schematic sectional drawing of the filtration apparatus of FIG. 金属製多孔膜の一部の拡大斜視図である。It is an expansion perspective view of a part of metallic porous membrane. 図1の濾過装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the filtration apparatus of FIG. 管状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of a tubular member. 管状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of a tubular member. 管状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of a tubular member. 管状部材の変形例を示す断面図である。It is sectional drawing which shows the modification of a tubular member. 濾過フィルタが1つの管状部材に複数設けられた例を示す断面図である。It is sectional drawing which shows the example in which the filtration filter was provided with two or more by one tubular member.
 (本発明の基礎となった知見)
 本発明者らは、平均粒子径又は重量が異なる2種類以上の粒子を含む流体を管状部材の流路に流した場合、平均粒子径が小さい又は重量が軽い種類の粒子が管状部材の側壁付近を流れる傾向があることを知見した。また、本発明者らは、管状部材に凹部を設け、当該凹部内に濾過フィルタとして金属製多孔膜を、流体の流れ方向に沿うように配置することで、平均粒子径が小さい又は重量が軽い種類の粒子は、金属製多孔膜で捕捉されることを見出した。更に、本発明者らは、平均粒子径が大きい粒子又は重量が重い種類の粒子は、金属製多孔膜で捕捉されず、流路内を流れ続けることを見出した。これらの点を踏まえて、本発明者らは、以下の発明に至った。
(Knowledge that became the basis of the present invention)
When the fluid containing two or more kinds of particles having different average particle diameters or weights is flowed to the flow path of the tubular member, the present inventors have a kind of particles having a small average particle diameter or light weight near the side wall of the tubular member. I found that there is a tendency to flow. In addition, the present inventors provide a concave portion in the tubular member, and dispose a metal porous membrane as a filtration filter in the concave portion along the fluid flow direction, thereby reducing the average particle diameter or weight. It has been found that different types of particles are trapped by the metal porous membrane. Furthermore, the present inventors have found that particles having a large average particle diameter or a heavy type of particles are not captured by the metal porous film and continue to flow in the flow path. Based on these points, the present inventors have reached the following invention.
 本発明の一態様に係る濾過装置は、濾過対象物を含む流体が流れる流路を有する管状部材と、
 前記濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、
 を備える濾過装置であって、
 前記金属製多孔膜は、前記流路を拡大するように凹んだ凹部内に配置されるとともに、前記流体の流れ方向に沿うように配置されている、
 ことを特徴とする。
A filtration device according to one embodiment of the present invention includes a tubular member having a flow path through which a fluid containing an object to be filtered flows,
A filtration filter having a metal porous membrane for filtering the filtration object;
A filtration device comprising:
The metal porous membrane is disposed in a recessed portion that is recessed so as to expand the flow path, and is disposed along the fluid flow direction.
It is characterized by that.
 この構成によれば、濾過対象物として2種類以上の粒子を含む流体の中から特定の種類の粒子(平均粒子径が小さい又は重量が軽い種類の粒子)を濾過フィルタで捕捉することができる。 According to this configuration, specific types of particles (particles having a small average particle diameter or light weight) can be captured by the filtration filter from a fluid containing two or more types of particles as the filtration object.
 なお、前記凹部は、前記管状部材の側壁の一部を前記管状部材の管軸から離れる方向に凹ませることにより形成されてもよい。 In addition, the said recessed part may be formed by denting a part of side wall of the said tubular member in the direction away from the tube axis | shaft of the said tubular member.
 また、前記濾過フィルタは、前記金属製多孔膜の外周部を保持する枠体を有し、
 前記枠体は、前記管状部材の側壁の一部に取り付けられ、
 前記凹部は、前記枠体により形成されてもよい。
Further, the filtration filter has a frame body that holds the outer peripheral portion of the metal porous membrane,
The frame is attached to a part of the side wall of the tubular member,
The recess may be formed by the frame.
 また、前記管状部材は、前記凹部を除いて内径が一様な管状部材であってもよい。 Further, the tubular member may be a tubular member having a uniform inner diameter except for the concave portion.
 なお、前記濾過対象物には、平均粒子径が異なる2種類以上の粒子が含まれ、
 前記凹部の凹み量は、最も平均粒子径が小さい種類の粒子の平均粒子径の1倍以上であることが好ましい。
The filtration object includes two or more kinds of particles having different average particle diameters,
The amount of the recesses is preferably at least 1 times the average particle size of the particles having the smallest average particle size.
 この構成によれば、最も平均粒子径が小さい種類の粒子の全体を凹部内に位置させ、濾過フィルタによって捕捉することができる。また、濾過フィルタによって捕捉した粒子が流体の流れによって捕捉が解かれることを抑えることができる。 According to this configuration, the whole type of particles having the smallest average particle diameter can be positioned in the recess and captured by the filtration filter. Moreover, it is possible to suppress the particles captured by the filtration filter from being unbound by the fluid flow.
 また、前記濾過対象物には、平均粒子径が異なる2種類以上の粒子が含まれ、
 前記凹部の凹み量は、最も平均粒子径が小さい種類の粒子の平均粒子径の5倍以上であることが好ましい。
Further, the filtration object includes two or more kinds of particles having different average particle diameters,
The amount of the recesses is preferably at least 5 times the average particle size of the particles having the smallest average particle size.
 この構成によれば、より確実に、最も平均粒子径が小さい種類の粒子を凹部内に位置させ、濾過フィルタによって捕捉することができる。また、濾過フィルタによって捕捉した粒子が流体の流れによって捕捉が解かれることをより一層抑えることができる。 According to this configuration, it is possible to more reliably place the type of particles having the smallest average particle size in the recess and capture them by the filtration filter. In addition, it is possible to further suppress the particles captured by the filtration filter from being unbound by the fluid flow.
 また、前記凹部の凹み量は、50μm以上であることが好ましい。 Moreover, it is preferable that the recessed amount of the recessed portion is 50 μm or more.
 この構成によれば、より確実に、濾過対象物として2種類以上の粒子を含む流体の中から特定の種類の粒子(平均粒子径が小さい又は重量が軽い種類の粒子)を濾過フィルタで捕捉することができる。 According to this configuration, a specific type of particles (particles having a small average particle diameter or light weight) are captured by a filtration filter from a fluid containing two or more types of particles as an object to be filtered. be able to.
 また、前記凹部の凹み量は、前記管状部材の内径の0.125倍以上2倍以下であることが好ましい。 Moreover, it is preferable that the amount of depression of the recess is 0.125 to 2 times the inner diameter of the tubular member.
 凹部の凹み量が管状部材の内径の0.125倍以上であることにより、凹部内で渦流が発生して、流体と濾過フィルタの相互作用時間(距離)が大きくなり、濾過効率が良くなる。一方、凹部の凹み量が2倍より大きくなると、管状部材を流れる流体が、金属製多孔膜に到達しにくくなり、渦流も小さくなって濾過効率が悪くなる。 When the concave amount of the concave portion is 0.125 times or more the inner diameter of the tubular member, a vortex is generated in the concave portion, the interaction time (distance) between the fluid and the filtration filter is increased, and the filtration efficiency is improved. On the other hand, when the amount of recesses is more than twice, the fluid flowing through the tubular member becomes difficult to reach the metal porous membrane, and the vortex flow is reduced, resulting in poor filtration efficiency.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態)
 図1は、本発明の実施の形態に係る濾過装置を用いて濾過対象物を濾過する様子を示す概略図である。
(Embodiment)
FIG. 1 is a schematic diagram illustrating a state in which an object to be filtered is filtered using the filtration device according to the embodiment of the present invention.
 図1に示すように、本実施の形態に係る濾過装置1は、クロスフロー方式の濾過装置である。濾過装置1は、濾過対象物11を含む流体12を流体導入口1aより導入し、流体排出口1bより排出するように構成されている。また、濾過装置1は、流体導入口1aから流体排出口1bへ流れる流体12の一部を濾過し、当該濾過により濾過対象物11が取り除かれた流体(以下、濾液という)13を濾液排出口1cより排出するように構成されている。 As shown in FIG. 1, the filtration device 1 according to the present embodiment is a cross-flow type filtration device. The filtration device 1 is configured to introduce a fluid 12 including an object to be filtered 11 from a fluid inlet 1a and discharge it from a fluid outlet 1b. The filtration device 1 also filters a part of the fluid 12 flowing from the fluid inlet 1a to the fluid outlet 1b, and removes a fluid 13 (hereinafter referred to as filtrate) 13 from which the filtration object 11 has been removed by the filtration. It is comprised so that it may discharge | emit from 1c.
 濾過対象物11を含む流体12は、流体タンク2内に入れられている。流体タンク2内の流体12は、配管21を通じてポンプ3内に取り込まれ、当該ポンプ3によって配管22を通じて濾過装置1の流体導入口1aへ供給される。濾過装置1の内部を通過して流体排出口1bより排出された流体12は、配管23を通じて流体タンク2内に戻される。このようにして、流体12は、ポンプ3が駆動する間、流体タンク2、配管21、ポンプ3、配管22、濾過装置1、配管23の順に循環する。 The fluid 12 including the filtration object 11 is placed in the fluid tank 2. The fluid 12 in the fluid tank 2 is taken into the pump 3 through the pipe 21, and is supplied to the fluid inlet 1 a of the filtration device 1 through the pipe 22 by the pump 3. The fluid 12 passing through the inside of the filtration device 1 and discharged from the fluid discharge port 1 b is returned to the fluid tank 2 through the pipe 23. Thus, while the pump 3 is driven, the fluid 12 circulates in the order of the fluid tank 2, the pipe 21, the pump 3, the pipe 22, the filtration device 1, and the pipe 23.
 一方、濾過装置1の内部に供給された流体12の一部は、濾過されて濾液13として濾液排出口1cより排出される。濾液排出口1cより排出された濾液13は、配管24を通じて濾液タンク4内に入れられる。 On the other hand, a part of the fluid 12 supplied to the inside of the filtration device 1 is filtered and discharged as the filtrate 13 from the filtrate outlet 1c. The filtrate 13 discharged from the filtrate discharge port 1 c is put into the filtrate tank 4 through the pipe 24.
 なお、図1の他の形態として、ポンプ3を配管21と配管22の間ではなく、配管23の経路内に配置してもよい。あるいは、流体タンク2や濾液タンク4を密閉容器として、閉鎖系の濾過装置を実現してもよい。 As another form of FIG. 1, the pump 3 may be arranged in the path of the pipe 23 instead of between the pipe 21 and the pipe 22. Alternatively, a closed filtration apparatus may be realized by using the fluid tank 2 or the filtrate tank 4 as a sealed container.
 次に、濾過装置1の構成について説明する。図2は、濾過装置1の概略断面図である。 Next, the configuration of the filtration device 1 will be described. FIG. 2 is a schematic cross-sectional view of the filtration device 1.
 図2に示すように、濾過装置1は、濾過対象物11を含む流体12が流れる流路31aを有する管状部材31と、濾過対象物11を濾過する濾過フィルタ32とを備えている。 As shown in FIG. 2, the filtration device 1 includes a tubular member 31 having a flow path 31 a through which the fluid 12 including the filtration object 11 flows, and a filtration filter 32 that filters the filtration object 11.
 管状部材31は、例えば、円筒状の部材である。管状部材31には、流路31aを拡大するように凹んだ凹部5が形成されている。すなわち、凹部5は、流路31aを拡大する部分である。本実施の形態において、凹部5は、管状部材31の側壁の一部を管軸A1から離れる方向に凹ませることにより形成されている。当該凹部5により管状部材31の側壁に段差が形成されている。この段差により、凹部5の近傍の流体12の流れが乱され、管軸A1の延在方向と交差する方向に速度成分を有する流れ(乱流)が生じる。本実施の形態において、管状部材31は、凹部5の近傍以外は乱流が生じ難いように、凹部5を除いて内径が一様な管状部材で構成されている。 The tubular member 31 is, for example, a cylindrical member. The tubular member 31 has a recess 5 that is recessed so as to enlarge the flow path 31a. That is, the recessed part 5 is a part which expands the flow path 31a. In the present embodiment, the recess 5 is formed by recessing a part of the side wall of the tubular member 31 in a direction away from the tube axis A1. A step is formed on the side wall of the tubular member 31 by the recess 5. By this step, the flow of the fluid 12 in the vicinity of the recess 5 is disturbed, and a flow having a velocity component (turbulent flow) is generated in a direction intersecting with the extending direction of the tube axis A1. In the present embodiment, the tubular member 31 is formed of a tubular member having a uniform inner diameter except for the recess 5 so that turbulent flow is unlikely to occur except in the vicinity of the recess 5.
 なお、管状部材31の他の形態として、方形や楕円形など任意の断面形状であってもよい。また、管状部材31の材料としては、例えば、ステンレス鋼、シリコン樹脂、PVDF(テフロン:登録商標)、塩化ビニル、ガラス、ブタジエン非含有樹脂、などが挙げられる。さらに、これらの材料に濾過対象物が付着しにくい様にコーティング材を塗布してもよい。 In addition, as another form of the tubular member 31, an arbitrary cross-sectional shape such as a square or an ellipse may be used. Examples of the material of the tubular member 31 include stainless steel, silicon resin, PVDF (Teflon: registered trademark), vinyl chloride, glass, butadiene-free resin, and the like. Furthermore, a coating material may be applied so that the object to be filtered does not easily adhere to these materials.
 凹部5には、配管24が接続されている。凹部5内には、配管24へ流れる流体12を濾過するように濾過フィルタ32が配置されている。濾過フィルタ32は、濾過対象物11を濾過する金属製多孔膜32aと、金属製多孔膜32aの外周部を保持する枠体32bとを有している。 A pipe 24 is connected to the recess 5. A filtration filter 32 is arranged in the recess 5 so as to filter the fluid 12 flowing to the pipe 24. The filtration filter 32 includes a metal porous film 32a that filters the object to be filtered 11, and a frame body 32b that holds the outer periphery of the metal porous film 32a.
 金属製多孔膜32aは、凹部5内に配置されるとともに、流体12の流れ方向に沿うように配置されている。本実施の形態において、流体12の流れ方向は、管軸A1の延在方向と平行である。金属製多孔膜32aは、管軸A1の延在方向と平行に配置されている。 The metal porous film 32a is disposed in the recess 5 and along the flow direction of the fluid 12. In the present embodiment, the flow direction of the fluid 12 is parallel to the extending direction of the tube axis A1. The metal porous film 32a is disposed in parallel with the extending direction of the tube axis A1.
 本実施の形態において、濾過対象物11は、液体に含まれる生物由来物質である。本明細書において、「生物由来物質」とは、細胞(真核生物)、細菌(真性細菌)、ウィルス等の生物に由来する物質を意味する。細胞(真核生物)としては、例えば、卵、精子、人工多能性幹細胞(iPS細胞)、ES細胞、幹細胞、間葉系幹細胞、単核球細胞、単細胞、細胞塊、浮遊性細胞、接着性細胞、神経細胞、白血球、リンパ球、再生医療用細胞、自己細胞、がん細胞、血中循環がん細胞(CTC)、HL-60、HELA、菌類を含む。細菌(真性細菌)としては、例えば、グラム陽性菌、グラム陰性菌、大腸菌、結核菌を含む。ウィルスとしては、例えば、DNAウィルス、RNAウィルス、ロタウィルス、(鳥)インフルエンザウィルス、黄熱病ウィルス、デング熱病ウィルス、脳炎ウィルス、出血熱ウィルス、免疫不全ウィルスを含む。 In the present embodiment, the filtration object 11 is a biological substance contained in the liquid. In the present specification, the “biological substance” means a substance derived from a living organism such as a cell (eukaryotic organism), a bacterium (eubacteria), or a virus. Examples of cells (eukaryotes) include eggs, sperm, induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell masses, suspension cells, and adhesions. Includes sex cells, nerve cells, leukocytes, lymphocytes, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells (CTC), HL-60, HELA, and fungi. Examples of bacteria (true bacteria) include gram positive bacteria, gram negative bacteria, Escherichia coli, and tuberculosis bacteria. Examples of the virus include DNA virus, RNA virus, rotavirus, (bird) influenza virus, yellow fever virus, dengue fever virus, encephalitis virus, hemorrhagic fever virus, and immunodeficiency virus.
 また、本実施の形態において、濾過対象物11は、平均粒子径が異なる2種類の濾過対象物11a,11bを含んでいる。管状部材31の流路31a内を流体12が流れるとき、相対的に、流路31aの中央側は流体12の流速が速く(密度が高く)なり、管状部材31の側壁近くでは流体12の流速が遅く(密度が低く)なる。このため、平均粒子径が大きい種類の粒子11aは中央側に集まって高密度部分を形成し、平均粒子径が小さい種類の粒子11bは側壁側に集まって低密度部分を形成する。すなわち、流体12が流路31a内を流れるとき、平均粒子径が大きい種類の粒子11aは、流路31aの中央側を流れる傾向がある。一方、平均粒子径が小さい種類の粒子11bは、流路31aの側壁付近を流れる傾向がある。このため、平均粒子径が大きい種類の粒子11aは、金属製多孔膜32aで捕捉されず、流路31a内を流れ続ける。一方、平均粒子径が小さい種類の粒子11bは、前述した乱流も寄与して、金属製多孔膜32a側に流れ、金属製多孔膜32aで捕捉され易くなる。 In the present embodiment, the filtration object 11 includes two types of filtration objects 11a and 11b having different average particle diameters. When the fluid 12 flows through the flow path 31 a of the tubular member 31, the flow rate of the fluid 12 is relatively fast (high density) on the center side of the flow path 31 a, and the flow rate of the fluid 12 is near the side wall of the tubular member 31. Becomes slow (low density). For this reason, the types of particles 11a having a large average particle diameter gather on the central side to form a high-density portion, and the types of particles 11b having a small average particle size gather on the side wall to form a low-density portion. That is, when the fluid 12 flows in the flow path 31a, the type of particles 11a having a large average particle diameter tend to flow in the center side of the flow path 31a. On the other hand, the type of particles 11b having a small average particle diameter tends to flow near the side wall of the flow path 31a. For this reason, the types of particles 11a having a large average particle diameter are not captured by the metal porous film 32a and continue to flow in the flow path 31a. On the other hand, the types of particles 11b having a small average particle diameter contribute to the turbulent flow described above, flow toward the metal porous film 32a, and are easily captured by the metal porous film 32a.
 また、本実施の形態において、金属製多孔膜32aは、生物由来物質を分離する多孔膜である。図3は、金属製多孔膜32aの一部の拡大斜視図である。 Further, in the present embodiment, the metallic porous membrane 32a is a porous membrane that separates biological substances. FIG. 3 is an enlarged perspective view of a part of the metal porous film 32a.
 図3に示すように、金属製多孔膜32aは、互いに対向する第1主面32cと第2主面32dとを有している。また、金属製多孔膜32aには、第1主面32cと第2主面32dとを貫通する複数の貫通孔32eが設けられている。貫通孔32eは、液体から生物由来物質を分離するものである。貫通孔32eの形状及び寸法は、生物由来物質の形状、大きさに応じて適宜設定されるものである。貫通孔32eは、例えば、等間隔又は周期的に配置される。貫通孔32eの形状は、例えば、金属製多孔膜32aの第1主面32c又は第2主面32d側から見て正方形である。貫通孔32eのサイズは、例えば、縦0.1μm以上500μm以下、横0.1μm以上500μm以下である。貫通孔32e間の間隔は、例えば、貫通孔32eの開口径の1倍よりも大きく10倍以下であり、より好ましくは3倍以下である。また、金属製多孔膜32aにおける貫通孔32eの開口率は、例えば、10%以上である。 As shown in FIG. 3, the metal porous film 32a has a first main surface 32c and a second main surface 32d that face each other. The metal porous film 32a is provided with a plurality of through holes 32e penetrating the first main surface 32c and the second main surface 32d. The through hole 32e separates a biological material from the liquid. The shape and size of the through-hole 32e are appropriately set according to the shape and size of the biological material. The through holes 32e are arranged at regular intervals or periodically, for example. The shape of the through hole 32e is, for example, a square when viewed from the first main surface 32c or the second main surface 32d side of the metal porous film 32a. The size of the through hole 32e is, for example, from 0.1 μm to 500 μm in length and from 0.1 μm to 500 μm in width. The interval between the through holes 32e is, for example, greater than 1 time and less than or equal to 10 times, more preferably less than or equal to 3 times the opening diameter of the through holes 32e. Moreover, the aperture ratio of the through-hole 32e in the metal porous film 32a is, for example, 10% or more.
 金属製多孔膜32aの材料としては、例えば、金、銀、銅、白金、ニッケル、ステンレス鋼、パラジウム、チタン、コバルト、及びこれらの合金が挙げられる。金属製多孔膜32aの直径は、例えば、直径8mmである。金属製多孔膜32aの厚さは、例えば、0.05μm以上100μm以下であり、好ましくは、0.1μm以上50μm以下である。金属製多孔膜32aの外形は、例えば、円形、楕円形、又は多角形のいずれかである。本実施の形態においては、金属製多孔膜32aの外形は、円形とする。 Examples of the material of the metal porous film 32a include gold, silver, copper, platinum, nickel, stainless steel, palladium, titanium, cobalt, and alloys thereof. The metal porous film 32a has a diameter of, for example, 8 mm. The thickness of the metal porous film 32a is, for example, not less than 0.05 μm and not more than 100 μm, and preferably not less than 0.1 μm and not more than 50 μm. The outer shape of the metal porous film 32a is, for example, one of a circle, an ellipse, and a polygon. In the present embodiment, the metal porous film 32a has a circular outer shape.
 枠体32bは、環状(例えば、円環状)に形成されている。枠体32bの材料としては、例えば、ジュラルミン、アルミニウムなどの金属や、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリアセタール、ポリエーテルイミドなどの樹脂が挙げられる。枠体32bの幅は、例えば、0.9mmである。枠体32bの厚さは、例えば、20μmである。 The frame body 32b is formed in an annular shape (for example, an annular shape). Examples of the material of the frame 32b include metals such as duralumin and aluminum, and resins such as polyethylene, polystyrene, polypropylene, polycarbonate, polyacetal, and polyetherimide. The width of the frame 32b is, for example, 0.9 mm. The thickness of the frame body 32b is, for example, 20 μm.
 本実施の形態に係る濾過装置1によれば、金属製多孔膜32aが、流路31aを拡大するように凹んだ凹部5内に配置されるとともに、流体12の流れ方向に沿うように配置されている。この構成によれば、濾過対象物として平均粒子径の異なる2種類以上の粒子を含む流体の中から平均粒子径が小さな種類の粒子を濾過フィルタ32で捕捉することができる。 According to the filtration device 1 according to the present embodiment, the metal porous membrane 32a is disposed in the recessed portion 5 that is recessed so as to enlarge the flow path 31a, and is disposed along the flow direction of the fluid 12. ing. According to this configuration, the filtration filter 32 can capture the types of particles having a small average particle size from among fluids containing two or more types of particles having different average particle sizes as the filtration object.
 なお、凹部5の凹み量は、最も平均粒子径が小さい種類の粒子11bの平均粒子径の1倍以上であることが好ましい。この構成によれば、最も平均粒子径が小さい種類の粒子11bの全体を凹部5内に位置させ、濾過フィルタ32によって捕捉することができる。また、濾過フィルタ32によって捕捉した粒子11bが流体12の流れによって捕捉が解かれることを抑えることができる。 In addition, it is preferable that the amount of dents in the recesses 5 is at least one times the average particle size of the type of particles 11b having the smallest average particle size. According to this configuration, the entire type of particles 11 b having the smallest average particle diameter can be positioned in the recess 5 and captured by the filtration filter 32. Further, it is possible to prevent the particles 11 b captured by the filtration filter 32 from being unbound by the flow of the fluid 12.
 また、凹部5の凹み量は、最も平均粒子径が小さい種類の粒子11bの平均粒子径の5倍以上であることが好ましい。この構成によれば、より確実に、最も平均粒子径が小さい種類の粒子11bを凹部5内に位置させ、濾過フィルタ32によって捕捉することができる。また、濾過フィルタ32によって捕捉した粒子11bが流体12の流れによって捕捉が解かれることをより一層抑えることができる。 Further, the amount of recesses in the recesses 5 is preferably 5 times or more the average particle size of the type 11b having the smallest average particle size. According to this configuration, the type of particles 11b having the smallest average particle diameter can be positioned in the recess 5 and captured by the filtration filter 32 more reliably. Further, it is possible to further suppress the particles 11b captured by the filtration filter 32 from being unbound by the flow of the fluid 12.
 なお、本濾過装置1において、濾過対象物11となる最も平均粒子径が小さい種類の粒子11bの平均粒子径は、例えば、3μm~10μm程度であると想定される。このため、凹部5の凹み量は、15μm~50μm以上であることが好ましい。この構成によれば、より確実に、濾過対象物11として2種類以上の粒子11a,11bを含む流体12の中から特定の種類の粒子(平均粒子径が小さい又は重量が軽い種類の粒子)を濾過フィルタ32で捕捉することができる。 In the present filtration device 1, the average particle diameter of the type of particles 11b having the smallest average particle diameter as the filtration object 11 is assumed to be about 3 μm to 10 μm, for example. For this reason, the recess amount of the recess 5 is preferably 15 μm to 50 μm or more. According to this configuration, a specific type of particles (particles having a small average particle diameter or a light weight) from the fluid 12 including two or more types of particles 11a and 11b as the filtration object 11 are more reliably obtained. It can be captured by the filtration filter 32.
 また、凹部5の凹み量は、管状部材31の内径の0.125倍以上であることが好ましい。この構成によれば、凹部5内で渦流が発生して、流体12と濾過フィルタ32の相互作用時間(距離)が大きくなり、濾過効率が良くなる。なお、凹部5の凹み量は、管状部材31の内径の0.25倍以上であることがさらに好ましい。この構成によれば、凹部5内で大きな渦流が発生して、流体12と濾過フィルタ32の相互作用時間(距離)がさらに大きくなり、濾過効率が一層良くなる。一方、凹部5の凹み量が2倍より大きくなると、管状部材31を流れる流体12が、金属製多孔膜32aに到達しにくくなり、渦流も小さくなって濾過効率が悪くなる。このため、凹部5の凹み量は、管状部材31の内径の2倍以下であることが好ましい。 Further, it is preferable that the recess amount of the recess 5 is 0.125 times or more the inner diameter of the tubular member 31. According to this configuration, an eddy current is generated in the recess 5, the interaction time (distance) between the fluid 12 and the filtration filter 32 is increased, and the filtration efficiency is improved. In addition, it is more preferable that the amount of depression of the recess 5 is 0.25 times or more the inner diameter of the tubular member 31. According to this configuration, a large eddy current is generated in the recess 5, the interaction time (distance) between the fluid 12 and the filtration filter 32 is further increased, and the filtration efficiency is further improved. On the other hand, when the dent amount of the concave portion 5 becomes larger than twice, the fluid 12 flowing through the tubular member 31 becomes difficult to reach the metallic porous membrane 32a, and the vortex flow becomes small, resulting in poor filtration efficiency. For this reason, it is preferable that the recessed amount of the recessed part 5 is 2 times or less of the internal diameter of the tubular member 31.
 (実施例1)
 次に、本発明の実施例に係る濾過装置を用いて流体から濾過対象物を濾過した結果について説明する。
Example 1
Next, the result of filtering the object to be filtered from the fluid using the filtration device according to the embodiment of the present invention will be described.
 ここでは、流体12として、細胞HL60と赤血球を含むPBS溶液(リン酸緩衝生理食塩水)を用い、濾過フィルタ32により当該PBS溶液から液体成分と赤血球を濾過するとともに細胞HL60を捕捉するようにした。PBS溶液は直径約12μmの概球形を有する1×10個の細胞HL60と直径約7μmの概円盤形を有する1×10個の赤血球を含み、PBS溶液の総量は50mlとした。 Here, a PBS solution (phosphate buffered saline) containing cells HL60 and erythrocytes is used as the fluid 12, and liquid components and erythrocytes are filtered from the PBS solution by the filtration filter 32 and the cells HL60 are captured. . The PBS solution contained 1 × 10 5 cells HL60 having an approximate spherical shape with a diameter of about 12 μm and 1 × 10 5 red blood cells having an approximate disc shape with a diameter of about 7 μm, and the total amount of the PBS solution was 50 ml.
 また、金属製多孔膜32aとして、外形が円形、厚みが1.0μm、直径が7.8mm、中心から直径6mmの範囲にメッシュ構造を有するニッケル製のメッシュ膜を用いた。メッシュ構造は、一辺が4.5μmの正方形の貫通孔を6.5μmピッチで配置した正方格子配列とした。また、金属製多孔膜32aは、流路31a側の主面が流路31aから1mmの距離離れて位置するように配置した。また、管状部材31として、内径2mmのチューブを用いた。 Further, as the metal porous film 32a, a nickel mesh film having a circular outer shape, a thickness of 1.0 μm, a diameter of 7.8 mm, and a mesh structure in a range of 6 mm in diameter from the center was used. The mesh structure was a square lattice arrangement in which square through holes with sides of 4.5 μm were arranged at a pitch of 6.5 μm. Further, the metal porous film 32a was arranged so that the main surface on the flow channel 31a side was located at a distance of 1 mm from the flow channel 31a. Further, as the tubular member 31, a tube having an inner diameter of 2 mm was used.
 この管状部材31内の流路31aに、毎分240mlの流速で前記PBS溶液が流れるように、ポンプ3を約30分間駆動させた。その後、濾過フィルタ32を取り出して顕微鏡で観察した。その結果、約1×10個の赤血球が金属製多孔膜32aに捕捉されていることを確認した。尚、濾液13を顕微鏡で観察した結果、赤血球は確認できたが、細胞HL60の存在は確認できなかった。 The pump 3 was driven for about 30 minutes so that the PBS solution flowed through the flow path 31a in the tubular member 31 at a flow rate of 240 ml per minute. Thereafter, the filtration filter 32 was taken out and observed with a microscope. As a result, it was confirmed that about 1 × 10 4 pieces of red blood cells are trapped in a metal membrane 32a. In addition, as a result of observing the filtrate 13 with a microscope, red blood cells were confirmed, but the presence of the cell HL60 could not be confirmed.
 一方、金属製多孔膜32aの流路31a側の主面が管状部材31の側壁に沿うように濾過フィルタ32を配置し、前記と同様に流路31a内に前記PBS溶液を流したところ、金属製多孔膜32aに捕捉された赤血球や細胞HL60は確認できなかった。すなわち、顕微鏡では、金属製多孔膜32a上の赤血球と細胞HL60を観察することができなかった。尚、濾液13を顕微鏡で観察した結果、赤血球と細胞HL60ともに存在を確認できなかった。 On the other hand, when the filtration filter 32 is arranged so that the main surface of the metal porous membrane 32a on the flow channel 31a side is along the side wall of the tubular member 31, and the PBS solution is flowed into the flow channel 31a in the same manner as described above, Red blood cells and cells HL60 captured by the porous membrane 32a could not be confirmed. That is, with the microscope, the red blood cells and the cells HL60 on the metal porous membrane 32a could not be observed. In addition, as a result of observing the filtrate 13 with a microscope, the presence of both erythrocytes and cells HL60 could not be confirmed.
 以上により、本発明の実施例に係る濾過装置によれば、濾過対象物として平均粒子径の異なる2種類以上の粒子を含む流体の中から平均粒子径が小さな種類の粒子を濾過フィルタ32で捕捉することができることが確認された。 As described above, according to the filtration device according to the embodiment of the present invention, the filtration filter 32 captures the types of particles having a small average particle size from the fluid containing two or more types of particles having different average particle sizes as the filtration target. Confirmed that you can.
 なお、本発明は前記実施の形態に限定されるものではなく、その他種々の態様で実施できる。例えば、前記では、凹部5は、管状部材31の側壁の一部を管軸A1から離れる方向に凹ませることにより形成されるものとしたが、本発明はこれに限定されない。例えば、図4に示すように、管状部材31に貫通穴を設け、当該貫通穴に枠体32bを嵌合させ、当該枠体32bにより凹部5を形成するようにしてもよい。すなわち、管状部材31の側壁の一部に枠体32bを取り付け、当該枠体32bの厚みにより凹部5を形成するようにしてもよい。この場合でも、金属製多孔膜32aを凹部5に配置するとともに流体12の流れ方向に沿うように配置することができる。 Note that the present invention is not limited to the above-described embodiment, and can be implemented in various other modes. For example, in the above description, the recess 5 is formed by recessing a part of the side wall of the tubular member 31 in the direction away from the tube axis A1, but the present invention is not limited to this. For example, as illustrated in FIG. 4, a through hole may be provided in the tubular member 31, a frame body 32 b may be fitted into the through hole, and the concave portion 5 may be formed by the frame body 32 b. That is, the frame body 32b may be attached to a part of the side wall of the tubular member 31, and the recess 5 may be formed by the thickness of the frame body 32b. Even in this case, the metal porous film 32a can be arranged in the recess 5 and along the flow direction of the fluid 12.
 また、前記では、濾過対象物11が平均粒子径が異なる2種類以上の粒子を含む例につて説明したが、本発明はこれに限定されない。例えば、平均粒子径が異なる粒子と同様に、重量が異なる粒子も流路31aの中央側又は側壁付近を流れる傾向がある。すなわち、重量が重い種類の粒子は、流路31aの中央側を流れる傾向がある。一方、重量が軽い種類の粒子は、流路31aの側壁付近を流れる傾向がある。本発明に係る濾過装置によれば、前記構成を有することで、濾過対象物11として重量の異なる2種類以上の粒子を含む流体の中から重量が軽い種類の粒子を濾過フィルタ32で捕捉することができる。 In the above description, the example in which the filtration object 11 includes two or more kinds of particles having different average particle diameters has been described, but the present invention is not limited to this. For example, similarly to particles having different average particle diameters, particles having different weights tend to flow in the central side of the channel 31a or near the side walls. That is, the heavy type of particles tend to flow in the center of the flow path 31a. On the other hand, light-weight particles tend to flow near the side wall of the flow path 31a. According to the filtration device according to the present invention, by having the above-described configuration, the filtration filter 32 captures the light-weight type particles from the fluid containing two or more types of particles having different weights as the filtration object 11. Can do.
 また、前記では、金属製多孔膜32aは、管軸A1の延在方向と平行に配置されるものとしたが、本発明はこれに限定されない。金属製多孔膜32aは、流体12の流れを実質的に妨げない範囲で管軸A1の延在方向に対して傾斜するように配置されてもよい。すなわち、金属製多孔膜32aは、管軸A1の延在方向と実質的に平行に配置されていればよい。 In the above description, the metal porous film 32a is arranged in parallel with the extending direction of the tube axis A1, but the present invention is not limited to this. The metal porous film 32a may be disposed so as to be inclined with respect to the extending direction of the tube axis A1 within a range that does not substantially obstruct the flow of the fluid 12. That is, the metal porous film 32a only needs to be disposed substantially parallel to the extending direction of the tube axis A1.
 また、前記では、図2に示すように、管状部材31が真っ直ぐな円筒状(直管形状)であるものとしたが、本発明はこれに限定されない。管状部材31は、金属製多孔膜32aに沿って流体12を流すことができるように構成されていればよい。例えば、図5~図8に示すように、管状部材31の流体導入口1a側又は流体排出口1b側の部分が、管軸A1の延在方向に対して交差する方向に曲がるように構成されてもよい。 In the above description, as shown in FIG. 2, the tubular member 31 has a straight cylindrical shape (straight tube shape), but the present invention is not limited to this. The tubular member 31 should just be comprised so that the fluid 12 can be flowed along the metal porous membrane 32a. For example, as shown in FIGS. 5 to 8, the portion of the tubular member 31 on the fluid introduction port 1a side or fluid discharge port 1b side is configured to bend in a direction intersecting with the extending direction of the tube axis A1. May be.
 また、前記では、図2に示すように、濾過フィルタ32が、1つの管状部材31に対して1つ設けられるものとしたが、本発明はこれに限定されない。濾過フィルタ32は、図9に示すように、1つの管状部材31に対して複数(例えば、3つ)設けられてもよい。なお、この場合、複数の濾過フィルタ32は、図9に示すように、管軸A1の延在方向に配列されることが好ましい。また、複数の濾過フィルタ32は、それぞれの金属製多孔膜32aの貫通穴32e(図3参照)の開口径が互いに異なっていてもよい。この構成によれば、流体12にサイズの異なる複数の濾過対象物11(例えば、粒子11a,11b)が含まれる場合であっても、それらの濾過対象物11を分級することが可能になる。 In the above description, as shown in FIG. 2, one filter 32 is provided for one tubular member 31, but the present invention is not limited to this. As shown in FIG. 9, a plurality of (for example, three) filtration filters 32 may be provided for one tubular member 31. In this case, it is preferable that the plurality of filtration filters 32 be arranged in the extending direction of the tube axis A1, as shown in FIG. The plurality of filtration filters 32 may have different opening diameters of the through holes 32e (see FIG. 3) of the respective metal porous membranes 32a. According to this configuration, even if the fluid 12 includes a plurality of filtration objects 11 (for example, particles 11a and 11b) having different sizes, the filtration objects 11 can be classified.
 また、前記では、流体12が液体であるとしたが、本発明はこれに限定されない。例えば、流体12は気体であり、濾過対象物11は気体に含まれた微粒子であってもよい。微粒子とは、例えば、工業用粉体材料やPM2.5などである。 In the above description, the fluid 12 is a liquid, but the present invention is not limited to this. For example, the fluid 12 may be a gas, and the filtration target 11 may be fine particles contained in the gas. The fine particles are, for example, industrial powder materials and PM2.5.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of the present invention according to the appended claims.
 本発明は、濾過対象物として2種類以上の粒子を含む流体の中から特定の種類の粒子を濾過フィルタで捕捉することができるので、特に、液体に含まれる生物由来物質を濾過する濾過装置に有用である。 Since the present invention can capture a specific type of particles from a fluid containing two or more types of particles as an object to be filtered with a filtration filter, it is particularly suitable for a filtration device that filters biological substances contained in a liquid. Useful.
  1  濾過装置
  1a 流体導入口
  1b 流体排出口
  1c 濾液排出口
  2  流体タンク
  3  ポンプ
  4  濾液タンク
  5  凹部
 11  濾過対象物
 12  流体
 13  濾液
 21~24 配管
 31  管状部材
 31a 流路
 32  濾過フィルタ
 32a 金属製多孔膜
 32b 枠体
 32c 第1主面
 32d 第2主面
 32e 貫通孔
DESCRIPTION OF SYMBOLS 1 Filtration apparatus 1a Fluid inlet 1b Fluid outlet 1c Filtrate outlet 2 Fluid tank 3 Pump 4 Filtrate tank 5 Recess 11 Filtration object 12 Fluid 13 Filtrate 21-24 Pipe 31 Tubular member 31a Channel 32 Filtration filter 32a Metal porous Film 32b Frame 32c First main surface 32d Second main surface 32e Through hole

Claims (8)

  1.  濾過対象物を含む流体が流れる流路を有する管状部材と、
     前記濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、
     を備える濾過装置であって、
     前記金属製多孔膜は、前記流路を拡大するように凹んだ凹部内に配置されるとともに、前記流体の流れ方向に沿うように配置されている、
     濾過装置。
    A tubular member having a flow path through which a fluid containing an object to be filtered flows;
    A filtration filter having a metal porous membrane for filtering the filtration object;
    A filtration device comprising:
    The metal porous membrane is disposed in a recessed portion that is recessed so as to expand the flow path, and is disposed along the fluid flow direction.
    Filtration device.
  2.  前記凹部は、前記管状部材の側壁の一部を前記管状部材の管軸から離れる方向に凹ませることにより形成されている、請求項1に記載の濾過装置。 The filtration device according to claim 1, wherein the concave portion is formed by denting a part of a side wall of the tubular member in a direction away from a tube axis of the tubular member.
  3.  前記濾過フィルタは、前記金属製多孔膜の外周部を保持する枠体を有し、
     前記枠体は、前記管状部材の側壁の一部に取り付けられ、
     前記凹部は、前記枠体により形成されている、請求項1に記載の濾過装置。
    The filtration filter has a frame body that holds the outer peripheral portion of the metal porous membrane,
    The frame is attached to a part of the side wall of the tubular member,
    The filtration device according to claim 1, wherein the recess is formed by the frame.
  4.  前記管状部材は、前記凹部を除いて内径が一様な管状部材である、請求項1~3のいずれか1つに記載の濾過装置。 The filtration device according to any one of claims 1 to 3, wherein the tubular member is a tubular member having a uniform inner diameter excluding the concave portion.
  5.  前記濾過対象物には、平均粒子径が異なる2種類以上の粒子が含まれ、
     前記凹部の凹み量は、最も平均粒子径が小さい種類の粒子の平均粒子径の1倍以上である、請求項1~4のいずれか1つに記載の濾過装置。
    The filtration object includes two or more kinds of particles having different average particle diameters,
    The filtration device according to any one of claims 1 to 4, wherein the amount of recesses in the recesses is one or more times the average particle size of the type of particles having the smallest average particle size.
  6.  前記濾過対象物には、平均粒子径が異なる2種類以上の粒子が含まれ、
     前記凹部の凹み量は、最も平均粒子径が小さい種類の粒子の平均粒子径の5倍以上である、請求項1~4のいずれか1つに記載の濾過装置。
    The filtration object includes two or more kinds of particles having different average particle diameters,
    The filtration device according to any one of claims 1 to 4, wherein a recess amount of the recess is 5 times or more an average particle size of a particle having the smallest average particle size.
  7.  前記凹部の凹み量は、50μm以上である、請求項1~4のいずれか1つに記載の濾過装置。 The filtration device according to any one of claims 1 to 4, wherein the amount of recesses of the recesses is 50 μm or more.
  8.  前記凹部の凹み量は、前記管状部材の内径の0.125倍以上2倍以下である、請求項1~7のいずれか1つに記載の濾過装置。 The filtration device according to any one of Claims 1 to 7, wherein an amount of depression of the recess is 0.125 to 2 times an inner diameter of the tubular member.
PCT/JP2016/081159 2015-12-14 2016-10-20 Filtration device WO2017104260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-243477 2015-12-14
JP2015243477A JP2019022866A (en) 2015-12-14 2015-12-14 Filtration device

Publications (1)

Publication Number Publication Date
WO2017104260A1 true WO2017104260A1 (en) 2017-06-22

Family

ID=59056521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081159 WO2017104260A1 (en) 2015-12-14 2016-10-20 Filtration device

Country Status (2)

Country Link
JP (1) JP2019022866A (en)
WO (1) WO2017104260A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167712A (en) * 1981-04-10 1982-10-15 Hitachi Ltd Strainer
JPH09290116A (en) * 1996-04-25 1997-11-11 Takasago Thermal Eng Co Ltd Air filter of low pressure loss
WO2007135226A1 (en) * 2006-05-24 2007-11-29 Valtion Teknillinen Tutkimuskeskus A method for taking a liquid sample
WO2009034841A1 (en) * 2007-09-12 2009-03-19 Nippon Oil Corporation Air purification filter and air purification filter assembly
JP2010100183A (en) * 2008-10-24 2010-05-06 Komatsu Ltd Air filter cover
JP2012045498A (en) * 2010-08-27 2012-03-08 Yanagawa Engineering Co Ltd Concentrator
WO2012068374A2 (en) * 2010-11-17 2012-05-24 Md Innovate Aerosol collection devices and methods of use
JP2013082005A (en) * 2011-09-30 2013-05-09 Metawater Co Ltd Screw press dehydrator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167712A (en) * 1981-04-10 1982-10-15 Hitachi Ltd Strainer
JPH09290116A (en) * 1996-04-25 1997-11-11 Takasago Thermal Eng Co Ltd Air filter of low pressure loss
WO2007135226A1 (en) * 2006-05-24 2007-11-29 Valtion Teknillinen Tutkimuskeskus A method for taking a liquid sample
WO2009034841A1 (en) * 2007-09-12 2009-03-19 Nippon Oil Corporation Air purification filter and air purification filter assembly
JP2010100183A (en) * 2008-10-24 2010-05-06 Komatsu Ltd Air filter cover
JP2012045498A (en) * 2010-08-27 2012-03-08 Yanagawa Engineering Co Ltd Concentrator
WO2012068374A2 (en) * 2010-11-17 2012-05-24 Md Innovate Aerosol collection devices and methods of use
JP2013082005A (en) * 2011-09-30 2013-05-09 Metawater Co Ltd Screw press dehydrator

Also Published As

Publication number Publication date
JP2019022866A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2017104261A1 (en) Filtration device
JP6521038B2 (en) Metal porous film, classification method using the same, and classification apparatus
WO2017022484A1 (en) Filtration filter device
US10926229B2 (en) Filtration filter
JP6197978B1 (en) Filtration filter and filtration filter device
US20220162539A1 (en) Filtration and collection device
JP6323632B2 (en) Filtration filter device
JP6137438B1 (en) Filtration filter
US11389752B2 (en) Filtration device
WO2017104260A1 (en) Filtration device
WO2016208752A1 (en) Filtration device and filtration method
WO2022123953A1 (en) Filtration device, filtration system, and filtration method
JP2016214154A (en) Filtration container, filtration device, and filtration method
WO2018212096A1 (en) Filtration device
US20240066440A1 (en) Filter device
US11498032B2 (en) Concentration apparatus
JP2024031809A (en) filter device
JP2015181406A (en) Apparatuses and methods for platelet production
WO2016139987A1 (en) Structure and collection device
JP2012105620A (en) Monocyte separation device and monocyte separation cultivation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP