JP2016070077A - Diagnostic device - Google Patents

Diagnostic device Download PDF

Info

Publication number
JP2016070077A
JP2016070077A JP2014196581A JP2014196581A JP2016070077A JP 2016070077 A JP2016070077 A JP 2016070077A JP 2014196581 A JP2014196581 A JP 2014196581A JP 2014196581 A JP2014196581 A JP 2014196581A JP 2016070077 A JP2016070077 A JP 2016070077A
Authority
JP
Japan
Prior art keywords
sensor
filter
regeneration
failure
diagnostic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014196581A
Other languages
Japanese (ja)
Inventor
正 内山
Tadashi Uchiyama
正 内山
哲史 塙
Tetsushi Hanawa
哲史 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014196581A priority Critical patent/JP2016070077A/en
Priority to PCT/JP2015/076309 priority patent/WO2016047530A1/en
Publication of JP2016070077A publication Critical patent/JP2016070077A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance

Abstract

PROBLEM TO BE SOLVED: To accurately detect a failure of a particulate filter.SOLUTION: A diagnostic device of a DPF 220 provided in an exhaust passage 110 of an internal combustion engine 100 so as to capture PM in exhaust gas includes: a PM sensor 10 arranged in the exhaust passage 110 on an exhaust downstream side of the DPF 220, and having a filter member 31 including a cell for capturing a particulate substance in the exhaust gas, and at least a pair of electrode members 32 and 33 disposed so as to face each other across the cell and forming a capacitor; and a DPF failure determining section 43 for determining a failure of the DPF 220 on the basis of electrostatic capacity between the electrode members 32 and 33.SELECTED DRAWING: Figure 1

Description

本発明は、診断装置に関し、特に、排気中の粒子状物質(以下、PMという)を捕集するパティキュレイトフィルタの診断装置に関する。   The present invention relates to a diagnostic device, and more particularly, to a diagnostic device for a particulate filter that collects particulate matter (hereinafter referred to as PM) in exhaust gas.

従来、内燃機関の排気浄化装置として、排気中のPMを捕集するパティキュレイトフィルタを備えたものが知られている。パティキュレイトフィルタに溶損や破損等の故障が生じると、パティキュレイトフィルタに捕集されずに大気に放出されるPM量が増加するため好ましくない。このため、パティキュレイトフィルタの故障を車載状態(On-Board)で診断する要請がある。   2. Description of the Related Art Conventionally, an exhaust gas purification device for an internal combustion engine is known that includes a particulate filter that collects PM in exhaust gas. If a failure such as erosion or breakage occurs in the particulate filter, the amount of PM released to the atmosphere without being collected by the particulate filter is not preferable. For this reason, there is a request for diagnosing a particulate filter failure in an on-board state.

パティキュレイトフィルタの故障を診断する技術として、例えば、パティキュレイトフィルタの下流側に設けた電気抵抗型PMセンサのPM検出値と、予め取得したパティキュレイトフィルタが正常な状態の流出PM推定量とを比較することで、パティキュレイトフィルタの故障を検出する装置が提案されている(例えば、特許文献1参照)。   As a technique for diagnosing the failure of the particulate filter, for example, the PM detection value of the electrical resistance PM sensor provided on the downstream side of the particulate filter, and the outflow PM estimation when the previously acquired particulate filter is in a normal state An apparatus that detects a failure of a particulate filter by comparing the amount is proposed (for example, see Patent Document 1).

特開2011−179467号公報JP 2011-179467 A

ところで、電気抵抗型PMセンサは、各電極にPMを付着させる簡素な構造のため、特に排気流量が多くなる運転状態では、電極に付着したPMの一部が離脱する可能性があり、PM量の検出精度を担保できない課題がある。また、電極間の電気抵抗値はPMの堆積によって電極が互いに繋がるまで変化を示さないため、センサの再生インターバル期間はPM量を正確に検出できない課題もある。   By the way, since the electric resistance type PM sensor has a simple structure in which PM is adhered to each electrode, there is a possibility that a part of the PM adhering to the electrode may be detached, particularly in an operation state in which the exhaust gas flow rate increases. There is a problem that the accuracy of detection cannot be guaranteed. In addition, since the electrical resistance value between the electrodes does not change until the electrodes are connected to each other due to the deposition of PM, there is a problem that the PM amount cannot be accurately detected during the regeneration interval period of the sensor.

このため、電気抵抗型PMセンサを用いた従来の診断装置では、パティキュレイトフィルタの故障を正確に検出できない可能性がある。   For this reason, there is a possibility that a conventional diagnostic device using an electrical resistance PM sensor cannot accurately detect a failure of the particulate filter.

開示の診断装置は、パティキュレイトフィルタの故障を高精度に検出することを目的とする。   It is an object of the disclosed diagnostic device to detect a failure of a particulate filter with high accuracy.

開示の診断装置は、内燃機関の排気通路に設けられて排気中の粒子状物質を捕集するパティキュレイトフィルタの診断装置であって、前記パティキュレイトフィルタよりも排気下流側の前記排気通路に配置されて排気中の粒子状物質を捕集するセルを含むフィルタ部材に、前記セルを挟んで対向配置されてコンデンサを形成する少なくとも一対の電極部材を設けたセンサと、前記一対の電極部材間の静電容量に基づいて、前記パティキュレイトフィルタの故障を判定する故障判定手段とを備える。   The disclosed diagnostic device is a particulate filter diagnostic device that is provided in an exhaust passage of an internal combustion engine and collects particulate matter in exhaust gas, and the exhaust passage on the downstream side of the particulate filter. A filter member including a cell that is disposed on the filter and that collects particulate matter in the exhaust gas, and is provided with at least a pair of electrode members that are disposed opposite to each other with the cell interposed therebetween, and the pair of electrode members And a failure determination means for determining failure of the particulate filter based on the capacitance between them.

開示の診断装置によれば、パティキュレイトフィルタの故障を高精度に検出することができる。   According to the disclosed diagnostic apparatus, a failure of the particulate filter can be detected with high accuracy.

第一実施形態に係る診断装置が適用されたエンジンの排気系の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the exhaust system of the engine to which the diagnostic apparatus which concerns on 1st embodiment was applied. 第一実施形態に係る診断装置のPMセンサを示す模式的な部分断面図である。It is a typical fragmentary sectional view showing PM sensor of a diagnostic device concerning a first embodiment. 第一実施形態に係る診断装置の電子制御ユニットを示す機能ブロック図である。It is a functional block diagram which shows the electronic control unit of the diagnostic apparatus which concerns on 1st embodiment. 第一実施形態に係るPMセンサのセンサ再生を説明する図である。It is a figure explaining sensor regeneration of PM sensor concerning a first embodiment. (A)は、第二実施形態に係るPMセンサのセンサ部を示す模式的な斜視図、(B)は、第二実施形態に係るPMセンサのセンサ部を示す模式的な分解斜視図である。(A) is a typical perspective view which shows the sensor part of PM sensor which concerns on 2nd embodiment, (B) is a typical exploded perspective view which shows the sensor part of PM sensor which concerns on 2nd embodiment. . 他の実施形態に係る診断装置のPMセンサを示す模式的な部分断面図である。It is a typical fragmentary sectional view showing PM sensor of a diagnostic device concerning other embodiments.

以下、添付図面に基づいて、本発明の各実施形態に係る診断装置を説明する。同一の部品には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, based on an accompanying drawing, a diagnostic device concerning each embodiment of the present invention is explained. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

[第一実施形態]
図1は、第一実施形態に係る診断装置が適用されたディーゼルエンジン(以下、単にエンジンという)100の排気系の一例を示す概略構成図である。排気管110には、排気上流側から順に、酸化触媒210、パティキュレイトフィルタ(以下、DPFという)220等が設けられている。本実施形態のPMセンサ10は、DPF220よりも下流側の排気管110に設けられている。
[First embodiment]
FIG. 1 is a schematic configuration diagram illustrating an example of an exhaust system of a diesel engine (hereinafter simply referred to as an engine) 100 to which the diagnostic device according to the first embodiment is applied. The exhaust pipe 110 is provided with an oxidation catalyst 210, a particulate filter (hereinafter referred to as DPF) 220, and the like in order from the exhaust upstream side. The PM sensor 10 of this embodiment is provided in the exhaust pipe 110 on the downstream side of the DPF 220.

次に、図2に基づいて本実施形態に係るPMセンサ10の詳細構成について説明する。   Next, a detailed configuration of the PM sensor 10 according to the present embodiment will be described based on FIG.

PMセンサ10は、排気管110内に挿入されたケース部材11と、ケース部材11を排気管110に取り付ける台座部20と、ケース部材11内に収容されたセンサ部30と、電子制御ユニット(以下、ECUという)40とを備えている。   The PM sensor 10 includes a case member 11 inserted into the exhaust pipe 110, a pedestal portion 20 that attaches the case member 11 to the exhaust pipe 110, a sensor unit 30 accommodated in the case member 11, and an electronic control unit (hereinafter referred to as an electronic control unit). 40).

ケース部材11は、底部側(図示例では下端側)を閉塞した有底円筒状に形成されている。ケース部材11の筒軸方向の長さLは、その底部側の筒壁部が排気管110の軸中心CL近傍まで突出するように、排気管110の半径Rと略同一の長さで形成されている。なお、以下の説明では、ケース部材11の底部側を先端側、底部側とは反対側をケース部材11の基端側とする。   The case member 11 is formed in a bottomed cylindrical shape with the bottom side (the lower end side in the illustrated example) closed. The length L in the cylinder axis direction of the case member 11 is formed to be substantially the same as the radius R of the exhaust pipe 110 so that the bottom cylindrical wall portion protrudes to the vicinity of the axial center CL of the exhaust pipe 110. ing. In the following description, the bottom side of the case member 11 is the front end side, and the side opposite to the bottom side is the base end side of the case member 11.

ケース部材11の先端側筒壁部には、周方向に間隔を隔てて配置された複数の導入口12が設けられている。また、ケース部材11の基端側筒壁部には、周方向に間隔を隔てて配置された複数の導出口13が設けられている。導入口12の総開口面積S12は、導出口13の総開口面積S13よりも小さく形成されている(S12<S13)。すなわち、導入口12付近の排気流速V12が導出口13付近の排気流速V13よりも遅くなることで(V12<V13)、導入口12側の圧力P12は導出口13側の圧力P13よりも高くなる(P12>P13)。これにより、導入口12からはケース部材11内に排気ガスが円滑に取り込まれると同時に、導出口13からはケース部材11内の排気ガスが排気管110内に円滑に導出される。 A plurality of inlets 12 arranged at intervals in the circumferential direction are provided in the cylindrical wall portion on the distal end side of the case member 11. In addition, a plurality of outlets 13 arranged at intervals in the circumferential direction are provided in the base end side cylindrical wall portion of the case member 11. The total opening area S 12 of the inlet 12 is smaller than the total opening area S 13 of the outlet 13 (S 12 <S 13) . That is, in the exhaust flow velocity V 12 of the inlet 12 near slower than the exhaust flow velocity V 13 near guide outlet 13 (V 12 <V 13), the pressure P 12 in the inlet 12 side pressure outlet 13 side It is higher than the P 13 (P 12> P 13 ). As a result, exhaust gas is smoothly taken into the case member 11 from the inlet 12, and at the same time, exhaust gas in the case member 11 is smoothly led out into the exhaust pipe 110 from the outlet 13.

台座部20は、雄ネジ部21と、ナット部22とを備えている。雄ネジ部21はケース部材11の基端部に設けられており、ケース部材11の基端側開口部を閉塞する。この雄ネジ部21は、排気管110に形成されたボス部110Aの雌ネジ部と螺合される。ナット部22は、例えば六角ナットであって、雄ネジ部21の上端部に固定されている。これら雄ネジ部21及びナット部22には、後述する導電線32A,33A等を挿通させる貫通孔(不図示)が形成されている。   The pedestal portion 20 includes a male screw portion 21 and a nut portion 22. The male screw portion 21 is provided at the base end portion of the case member 11 and closes the base end side opening of the case member 11. The male screw portion 21 is screwed with a female screw portion of a boss portion 110 </ b> A formed in the exhaust pipe 110. The nut portion 22 is, for example, a hexagonal nut, and is fixed to the upper end portion of the male screw portion 21. The male screw portion 21 and the nut portion 22 are formed with through holes (not shown) through which conductive wires 32A, 33A described later are inserted.

センサ部30は、フィルタ部材31と、複数対の電極32,33と、電気ヒータ34とを備えている。   The sensor unit 30 includes a filter member 31, a plurality of pairs of electrodes 32 and 33, and an electric heater 34.

フィルタ部材31は、例えば、多孔質セラミックスの隔壁で区画された格子状の排気流路をなす複数のセルの上流側と下流側とを交互に目封止して形成されている。このフィルタ部材31は、セルの流路方向をケース部材11の軸方向(図中上下方向)と略平行にした状態で、ケース部材11の内周面にクッション部材31Aを介して保持されている。導入口12からケース部材11内に取り込まれた排気ガス中のPMは、排気ガスが下流側を目封止されたセルから上流側を目封止されたセルに流れ込むことで、隔壁表面や細孔に捕集される。なお、以下の説明では、下流側が目封止されたセルを測定用セルといい、上流側が目封止されたセルを電極用セルという。   The filter member 31 is formed, for example, by alternately plugging the upstream side and the downstream side of a plurality of cells forming a lattice-like exhaust flow path partitioned by porous ceramic partition walls. The filter member 31 is held on the inner peripheral surface of the case member 11 via a cushion member 31A in a state in which the flow path direction of the cell is substantially parallel to the axial direction of the case member 11 (vertical direction in the drawing). . The PM in the exhaust gas taken into the case member 11 from the introduction port 12 flows from the cell plugged on the downstream side into the cell plugged on the upstream side, so that the surface of the partition wall It is collected in the hole. In the following description, a cell whose downstream side is plugged is referred to as a measurement cell, and a cell whose upstream side is plugged is referred to as an electrode cell.

電極32,33は、例えば導電性の金属線であって、測定用セルを挟んで対向する電極用セルに下流側(非目封止側)から交互に挿入されてコンデンサを形成する。これら電極32,33は、ECU40に内蔵された図示しない静電容量検出回路に導電線32A,33Aを介してそれぞれ接続されている。   The electrodes 32 and 33 are, for example, conductive metal wires, and are alternately inserted from the downstream side (non-plugged side) into the electrode cells facing each other across the measurement cell to form a capacitor. These electrodes 32 and 33 are connected to a capacitance detection circuit (not shown) built in the ECU 40 via conductive wires 32A and 33A, respectively.

電気ヒータ34は、例えば電熱線であって、本発明の再生手段を構成する。電気ヒータ34は、通電により発熱して測定用セルを加熱することで、測定用セル内に堆積したPMを燃焼除去するいわゆるセンサ再生を実行する。このため、電気ヒータ34は、連続S字形に屈曲して形成されており、互いに平行な直線部分を各測定用セル内に流路に沿って挿入されている。   The electric heater 34 is, for example, a heating wire and constitutes the regenerating means of the present invention. The electric heater 34 generates heat by energization and heats the measurement cell, thereby performing so-called sensor regeneration that burns and removes the PM accumulated in the measurement cell. For this reason, the electric heater 34 is formed by being bent into a continuous S-shape, and straight portions parallel to each other are inserted into each measurement cell along the flow path.

次に、図3に基づいて、本実施形態のECU40の詳細について説明する。ECU40は、センサ再生制御部41と、PM量推定演算部42と、DPF故障判定部43とを各機能要素として備えている。これら機能要素は、一体のハードウェアであるECU40に含まれるものとして説明するが、別体のハードウェアに設けることもできる。   Next, details of the ECU 40 of the present embodiment will be described with reference to FIG. The ECU 40 includes a sensor regeneration control unit 41, a PM amount estimation calculation unit 42, and a DPF failure determination unit 43 as functional elements. These functional elements are described as being included in the ECU 40 that is an integral piece of hardware, but may be provided in separate hardware.

センサ再生制御部41は、本発明の再生手段の一部であって、図示しない静電容量検出回路によって検出される電極32,33間の静電容量Cpに応じて電気ヒータ34をON(通電)にするセンサ再生を実行する。電極32,33間の静電容量Cpは、電極32,33間の媒体の誘電率ε、電極32,33の面積S、電極32,33間の距離dとする以下の数式1で表される。   The sensor regeneration control unit 41 is a part of the regeneration means of the present invention, and turns on the electric heater 34 according to the capacitance Cp between the electrodes 32 and 33 detected by a capacitance detection circuit (not shown). ) Perform sensor regeneration. The electrostatic capacitance Cp between the electrodes 32 and 33 is expressed by the following formula 1 where the dielectric constant ε of the medium between the electrodes 32 and 33, the area S of the electrodes 32 and 33, and the distance d between the electrodes 32 and 33 are expressed. .

Figure 2016070077
Figure 2016070077

数式1において、電極32,33の表面積Sは一定であり、フィルタ部材31にPMが捕集されると、誘電率ε及び距離dが変化して、これに伴い静電容量Cpも変化する。すなわち、電極32,33間の静電容量Cpとフィルタ部材31のPM堆積量との間には比例関係が成立する。   In Formula 1, the surface areas S of the electrodes 32 and 33 are constant, and when PM is collected by the filter member 31, the dielectric constant ε and the distance d change, and the capacitance Cp also changes accordingly. That is, a proportional relationship is established between the capacitance Cp between the electrodes 32 and 33 and the amount of PM deposited on the filter member 31.

センサ再生制御部41は、図4に示すように、電極32,33間の静電容量Cpがフィルタ部材31のPM上限堆積量を示す所定の静電容量上限閾値CP_maxに達すると、電気ヒータ34をONにするセンサ再生を開始する。このセンサ再生は、静電容量CpがPMの完全除去を示す所定の静電容量下限閾値CP_minに低下するまで継続される。 As shown in FIG. 4, when the electrostatic capacity Cp between the electrodes 32 and 33 reaches a predetermined electrostatic capacity upper limit threshold CP_max indicating the PM upper limit accumulation amount of the filter member 31, the sensor regeneration control unit 41 Sensor regeneration to turn ON 34 is started. This sensor regeneration is continued until the capacitance Cp falls to a predetermined capacitance lower limit threshold CP_min indicating complete removal of PM.

PM量推定演算部42は、再生インターバルTn間(センサ再生終了から次のセンサ再生開始)における静電容量変化量ΔCpnに基づいて、排気中の総PM量mPM_sumを推定演算する。 Estimating the PM amount calculation unit 42, based on the variation amount of capacitance [Delta] Cp n between regeneration interval T n (next sensor reproduction start from the sensor reproduction end), estimates and calculates the total amount of PM m PM_sum in the exhaust.

再生インターバルTn間にフィルタ部材31で捕集されるPM量mPM_nは、静電容量変化量ΔCpnに一次の係数βを乗算した以下の数式2で得られる。 PM quantity m PM_n to be trapped by the filter member 31 between regeneration interval T n is obtained by Equation 2 below obtained by multiplying the first coefficient β to the variation amount of capacitance [Delta] Cp n.

Figure 2016070077
Figure 2016070077

PM量推定演算部42は、数式2から算出される各再生インターバルTn間のPM量mPM_nを順次積算する以下の数式3に基づいて、フィルタ部材31に流れ込む排気中の総PM量mPM_sumをPMセンサ10の出力値としてリアルタイムに演算する。 The PM amount estimation calculation unit 42 sequentially accumulates the PM amount m PM_n between the regeneration intervals T n calculated from Equation 2 based on the following Equation 3 to calculate the total PM amount m PM_sum in the exhaust gas flowing into the filter member 31. Is calculated in real time as the output value of the PM sensor 10.

Figure 2016070077
Figure 2016070077

DPF故障判定部43は、本発明の故障判定手段であって、PMセンサ10のセンサ再生回数もしくは、再生インターバルTnに基づいて、DPF220の溶損や破損等による故障(機能失陥)を判定する。以下、本実施形態に係る故障判定の詳細について説明する。 DPF failure judgment unit 43, a failure determination means of the present invention, the sensor views of the PM sensor 10 or based on the reproduction interval T n, determine the fault (function failure) caused by melting or damage of DPF220 To do. Hereinafter, details of the failure determination according to the present embodiment will be described.

[センサ再生回数に基づいた判定]
DPF220の溶損や破損等によってPMスリップ量が増加すると、下流側に配置されたPMセンサ10のセンサ再生回数(実行頻度)も増加する。本実施形態では、ECU40の図示しない記憶部に、予め実験等によってDPF220の機能が正常な状態で取得したPMセンサ10のセンサ再生回数を基準回数N_Reg_Stdとして記憶させている。DPF故障判定部43は、センサ再生制御部41によるセンサ再生回数のカウント値N_Reg_Countが基準回数N_Reg_Stdよりも多くなると(N_Reg_Count>N_Reg_Std)、DPF220に故障が発生したと判定する。
[Judgment based on the number of sensor regenerations]
When the PM slip amount increases due to melting or breakage of the DPF 220, the number of sensor regenerations (execution frequency) of the PM sensor 10 arranged on the downstream side also increases. In the present embodiment, the number of sensor regenerations of the PM sensor 10 acquired in advance in a normal state of the function of the DPF 220 by an experiment or the like is stored as a reference number N_Reg_Std in a storage unit (not shown) of the ECU 40. The DPF failure determination unit 43 determines that a failure has occurred in the DPF 220 when the sensor regeneration count value N_Reg_Count by the sensor regeneration control unit 41 is greater than the reference count N_Reg_Std ( N_Reg_Count > N_Reg_Std ).

[再生インターバルに基づいた判定]
DPF220の溶損や破損等によってPMスリップ量が増加すると、PMセンサ10の再生インターバルTnは次第に短縮される。本実施形態では、ECU40の図示しない記憶部に、予め実験等によってDPF220の機能が正常な状態で取得したPMセンサ10の再生インターバルTnを基準インターバルT_Stdとして記憶させている。DPF故障判定部43は、再生インターバルTnが基準インターバルT_Stdよりも短くなると(Tn<T_Std)、DPF220に故障が発生したと判定する。
[Judgment based on playback interval]
When PM slip amount is increased by melting and damage of DPF220, regeneration interval T n of the PM sensor 10 is reduced gradually. In the present embodiment, the storage interval (not shown) of the ECU 40 stores the regeneration interval T n of the PM sensor 10 acquired in advance in a normal state of the function of the DPF 220 through experiments or the like as the reference interval T_Std . DPF failure judgment unit 43, the reproduction interval T n is shorter than the reference interval T _Std (T n <T _Std ), it determines that the failure occurs in the DPF220.

なお、故障判定の手法は、これらセンサ再生回数や再生インターバルに限定されず、例えば、PM量推定演算部42によって推定される総PM量mPM_sumが、予め実験等によって取得したDPF220が正常な状態で下流側に流出する基準PM量mPM_Stdよりも多くなった場合に、DPF220を故障と判定するようにしてもよい。 Note that the failure determination method is not limited to the number of sensor regenerations and the regeneration interval. For example, the total PM amount m PM_sum estimated by the PM amount estimation calculation unit 42 is in a normal state in which the DPF 220 acquired through an experiment or the like is normal. In this case, the DPF 220 may be determined to be faulty when the reference PM amount m PM_Std flowing out downstream becomes larger.

次に、本実施形態に係る診断装置の作用効果を説明する。   Next, the effect of the diagnostic apparatus according to the present embodiment will be described.

電気抵抗型PMセンサは、各電極にPMを付着させる簡素な構造のため、特に排気流量が多くなる運転状態でPMの一部が電極から離脱する可能性があり、PM量の検出精度を担保できない課題がある。また、電極間の電気抵抗値は電極がPMによって繋がるまで変化しないため、再生インターバル期間はPM量を正確に検出できない課題がある。このため、DPF220下流側の電気抵抗型PMセンサを用いる従来の診断装置では、DPF220の故障を正確に検出できない課題がある。   The electric resistance type PM sensor has a simple structure that attaches PM to each electrode, so that part of the PM may be detached from the electrode, especially in an operating state where the exhaust flow rate increases, ensuring the detection accuracy of the PM amount. There is a problem that cannot be done. In addition, since the electrical resistance value between the electrodes does not change until the electrodes are connected by PM, there is a problem that the amount of PM cannot be accurately detected during the regeneration interval period. For this reason, the conventional diagnostic apparatus using the electrical resistance PM sensor on the downstream side of the DPF 220 has a problem that a failure of the DPF 220 cannot be accurately detected.

これに対し、本実施形態の診断装置は、排気流量が多い状態でもPMセンサ10のフィルタ部材31に排気中のPMを確実に捕集しつつ、電気抵抗値よりも感度が良好な電極32,33間の静電容量Cpに基づいて実行されるセンサ再生の回数や再生インターバルに基づいて、DPF220の故障を判定するように構成されている。したがって、本実施形態の診断装置によれば、DPF220の破損や溶損等による故障を高精度に検出することが可能になる。   On the other hand, the diagnostic device of the present embodiment reliably collects PM in the exhaust gas in the filter member 31 of the PM sensor 10 even in a state where the exhaust gas flow rate is large, and has an electrode 32 with better sensitivity than the electric resistance value. The failure of the DPF 220 is determined based on the number of sensor regenerations performed based on the capacitance Cp between 33 and the regeneration interval. Therefore, according to the diagnostic device of the present embodiment, it is possible to detect a failure due to damage or melting of the DPF 220 with high accuracy.

[第二実施形態]
次に、図5に基づいて、第二実施形態に係る診断装置の詳細について説明する。第二実施形態の診断装置は、第一実施形態のPMセンサ10において、センサ部30を積層タイプにしたものである。他の構成要素については同一構造となるため、詳細な説明及び図示は省略する。
[Second Embodiment]
Next, based on FIG. 5, the detail of the diagnostic apparatus which concerns on 2nd embodiment is demonstrated. The diagnostic device according to the second embodiment is a PM sensor 10 according to the first embodiment in which the sensor unit 30 is a stacked type. Since other components have the same structure, detailed description and illustration are omitted.

図5(A)は、第二実施形態のセンサ部60の斜視図、図5(B)はセンサ部60の分解斜視図をそれぞれ示している。センサ部60は、複数のフィルタ層61と、複数枚の第1及び第2電極板62,63とを備えている。   5A is a perspective view of the sensor unit 60 according to the second embodiment, and FIG. 5B is an exploded perspective view of the sensor unit 60. The sensor unit 60 includes a plurality of filter layers 61 and a plurality of first and second electrode plates 62 and 63.

フィルタ層61は、例えば、多孔質セラミックス等の隔壁で区画されて排気流路をなす複数のセルの上流側と下流側とを交互に目封止し、これらセルを一方向に並列に配置した直方体状に形成されている。排気ガス中に含まれるPMは、図5(B)中に破線矢印で示すように、排気ガスが下流側を目封止されたセルC1から上流側を目封止されたセルC2に流れ込むことで、セルC1の隔壁表面や細孔に捕集される。なお、以下の説明では、セル流路方向をセンサ部60の長さ方向(図5(A)中の矢印L)とし、セル流路方向と直交する方向をセンサ部60の幅方向(図5(A)中の矢印W)とする。   The filter layer 61 is, for example, plugged alternately upstream and downstream of a plurality of cells that are partitioned by partition walls such as porous ceramics to form an exhaust passage, and these cells are arranged in parallel in one direction. It is formed in a rectangular parallelepiped shape. The PM contained in the exhaust gas flows into the cell C2 whose upstream side is plugged from the cell C1 whose downstream side is plugged, as indicated by a broken line arrow in FIG. 5B. Thus, it is collected on the partition wall surface and pores of the cell C1. In the following description, the cell flow path direction is the length direction of the sensor section 60 (arrow L in FIG. 5A), and the direction orthogonal to the cell flow path direction is the width direction of the sensor section 60 (FIG. 5). (A) Arrow W).

第1及び第2電極板62,63は、例えば、平板状の導電性部材であって、その長さ方向L及び幅方向Wの外形寸法をフィルタ層61と略同一に形成されている。これら第1及び第2電極板62,63は、フィルタ層61を挟んで交互に積層されると共に、導電線62A,63Aを介してECU40に内蔵された図示しない静電容量検出回路にそれぞれ接続されている。   The first and second electrode plates 62 and 63 are, for example, plate-like conductive members, and are formed so that the outer dimensions in the length direction L and the width direction W are substantially the same as those of the filter layer 61. The first and second electrode plates 62 and 63 are alternately stacked with the filter layer 61 interposed therebetween, and are connected to a capacitance detection circuit (not shown) built in the ECU 40 via conductive lines 62A and 63A, respectively. ing.

すなわち、第1電極板62と第2電極板63とを対向配置し、これら電極板62,63間にフィルタ層61を挟持させたことで、セルC1全体がコンデンサを形成するようになっている。このように、第二実施形態では、平板状の電極板62,63によりセルC1全体をコンデンサにしたことで、電極表面積Sを効果的に確保することが可能となり、検出可能な静電容量絶対値を高めることが可能になる。また、電極間距離dがセルピッチとなり均一化されることで、初期静電容量のバラツキを効果的に抑制することができる。   That is, the first electrode plate 62 and the second electrode plate 63 are disposed to face each other, and the filter layer 61 is sandwiched between the electrode plates 62 and 63, so that the entire cell C1 forms a capacitor. . As described above, in the second embodiment, the entire cell C1 is made the capacitor by the flat electrode plates 62 and 63, so that the electrode surface area S can be effectively secured, and the detectable capacitance absolute It becomes possible to increase the value. Further, since the inter-electrode distance d becomes the cell pitch and is made uniform, variations in the initial capacitance can be effectively suppressed.

なお、セルC1に堆積したPMを燃焼除去する場合は、電極板62,63に電圧を直接印加するか、あるいは、フィルタ層61と電極板62,63との間に図示しないヒータ基板等を介設すればよい。   When the PM accumulated in the cell C1 is burned and removed, a voltage is directly applied to the electrode plates 62 and 63, or a heater substrate (not shown) is interposed between the filter layer 61 and the electrode plates 62 and 63. Just set up.

[その他]
本発明は、上述の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
The present invention is not limited to the above-described embodiments, and can be appropriately modified and implemented without departing from the spirit of the present invention.

例えば、図6に示すように、第一実施形態のPMセンサ10において、導入口12と導出口13との位置を入れ替えて、ケース部材11内に導入される排気ガスの流れを逆向きにしてもよい。この場合は、フィルタ部材31をケース部材11内に反転させて収容すればよい。   For example, as shown in FIG. 6, in the PM sensor 10 of the first embodiment, the positions of the inlet 12 and the outlet 13 are interchanged so that the flow of exhaust gas introduced into the case member 11 is reversed. Also good. In this case, the filter member 31 may be stored in the case member 11 by being inverted.

10 PMセンサ
11 ケース部材
12 導入口
13 導出口
20 台座部
21 雄ネジ部
22 ナット部
30 センサ部
31 フィルタ部材
32,33 電極
34 電気ヒータ
40 ECU
41 センサ再生制御部
42 PM量推定演算部
43 DPF故障判定部
100 エンジン
110 排気管
220 DPF
DESCRIPTION OF SYMBOLS 10 PM sensor 11 Case member 12 Inlet port 13 Outlet port 20 Base part 21 Male screw part 22 Nut part 30 Sensor part 31 Filter member 32, 33 Electrode 34 Electric heater 40 ECU
41 Sensor regeneration control unit 42 PM amount estimation calculation unit 43 DPF failure determination unit 100 Engine 110 Exhaust pipe 220 DPF

Claims (5)

内燃機関の排気通路に設けられて排気中の粒子状物質を捕集するパティキュレイトフィルタの診断装置であって、
前記パティキュレイトフィルタよりも排気下流側の前記排気通路に配置されて排気中の粒子状物質を捕集するセルを含むフィルタ部材に、前記セルを挟んで対向配置されてコンデンサを形成する少なくとも一対の電極部材を設けたセンサと、
前記一対の電極部材間の静電容量に基づいて、前記パティキュレイトフィルタの故障を判定する故障判定手段と、を備える
診断装置。
A particulate filter diagnostic device that is provided in an exhaust passage of an internal combustion engine and collects particulate matter in exhaust gas,
At least a pair of filter members that are disposed in the exhaust passage downstream of the particulate filter and that collect particulate matter in the exhaust and that are opposed to each other with the cell interposed therebetween. A sensor provided with an electrode member;
And a failure determination means for determining failure of the particulate filter based on a capacitance between the pair of electrode members.
前記センサは、前記一対の電極部材間の静電容量が所定の上限閾値に達すると前記セルに堆積した粒子状物質を燃焼除去させるセンサ再生を実行する再生手段をさらに備え、
前記故障判定手段は、前記再生手段によるセンサ再生の実行回数もしくは、前記再生手段によるセンサ再生終了から次のセンサ再生開始までの再生インターバルに基づいて、前記パティキュレイトフィルタの故障を判定する
請求項1に記載の診断装置。
The sensor further includes regeneration means for performing sensor regeneration for burning and removing particulate matter accumulated in the cells when the capacitance between the pair of electrode members reaches a predetermined upper limit threshold.
The failure determination means determines a failure of the particulate filter based on the number of times sensor regeneration is performed by the regeneration means or a regeneration interval from the end of sensor regeneration by the regeneration means to the start of the next sensor regeneration. The diagnostic apparatus according to 1.
前記センサは、筒状に形成されてその筒内に前記フィルタ部材を収容すると共に、一端開口部から筒内に導入した排気を前記フィルタ部材に通過させて他端開口部から筒外に導出するケース部材を備える
請求項1又は2に記載の診断装置。
The sensor is formed in a cylindrical shape and houses the filter member in the cylinder, and exhaust gas introduced into the cylinder from one end opening is passed through the filter member and led out of the cylinder from the other end opening. The diagnostic device according to claim 1, comprising a case member.
前記フィルタ部材が前記セルを一方向に並列に複数配置したフィルタ層であり、前記一対の電極部材が前記フィルタ層を挟んで対向する平板状の第1及び第2電極板である
請求項1から3の何れか一項に記載の診断装置。
The filter member is a filter layer in which a plurality of the cells are arranged in parallel in one direction, and the pair of electrode members are flat plate-like first and second electrode plates facing each other with the filter layer interposed therebetween. 4. The diagnostic device according to any one of 3.
前記第1電極板、前記第2電極板及び、前記フィルタ層をそれぞれ複数有すると共に、前記複数の第1及び第2電極板が前記複数のフィルタ層を一層ずつ挟んで交互に積層された
請求項4に記載の診断装置。
The plurality of first electrode plates, the second electrode plates, and the filter layers, respectively, and the plurality of first and second electrode plates are alternately stacked with the plurality of filter layers sandwiched one by one. 4. The diagnostic device according to 4.
JP2014196581A 2014-09-26 2014-09-26 Diagnostic device Pending JP2016070077A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014196581A JP2016070077A (en) 2014-09-26 2014-09-26 Diagnostic device
PCT/JP2015/076309 WO2016047530A1 (en) 2014-09-26 2015-09-16 Diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014196581A JP2016070077A (en) 2014-09-26 2014-09-26 Diagnostic device

Publications (1)

Publication Number Publication Date
JP2016070077A true JP2016070077A (en) 2016-05-09

Family

ID=55581057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014196581A Pending JP2016070077A (en) 2014-09-26 2014-09-26 Diagnostic device

Country Status (2)

Country Link
JP (1) JP2016070077A (en)
WO (1) WO2016047530A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
WO2008096853A1 (en) * 2007-02-09 2008-08-14 Ngk Insulators, Ltd. Instrument for measuring concentration of particulates in fluid, measuring method, and measuring program
JP2009138645A (en) * 2007-12-06 2009-06-25 Mitsubishi Motors Corp Exhaust emission control device
JP2011012577A (en) * 2009-06-30 2011-01-20 Isuzu Motors Ltd Pm sensor
JP2011021479A (en) * 2009-03-11 2011-02-03 Honda Motor Co Ltd Failure detection device for exhaust gas purification filter
JP2011256811A (en) * 2010-06-10 2011-12-22 Toyota Motor Corp Pm amount detection system
JP2012062804A (en) * 2010-09-15 2012-03-29 Mazda Motor Corp Exhaust emission control device of engine
JP2012246778A (en) * 2011-05-25 2012-12-13 Isuzu Motors Ltd Pm sensor
WO2014148150A1 (en) * 2013-03-22 2014-09-25 トヨタ自動車株式会社 Filter abnormality detecting device
JP6201577B2 (en) * 2013-09-27 2017-09-27 いすゞ自動車株式会社 Diagnostic equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
WO2008096853A1 (en) * 2007-02-09 2008-08-14 Ngk Insulators, Ltd. Instrument for measuring concentration of particulates in fluid, measuring method, and measuring program
JP2009138645A (en) * 2007-12-06 2009-06-25 Mitsubishi Motors Corp Exhaust emission control device
JP2011021479A (en) * 2009-03-11 2011-02-03 Honda Motor Co Ltd Failure detection device for exhaust gas purification filter
JP2011012577A (en) * 2009-06-30 2011-01-20 Isuzu Motors Ltd Pm sensor
JP2011256811A (en) * 2010-06-10 2011-12-22 Toyota Motor Corp Pm amount detection system
JP2012062804A (en) * 2010-09-15 2012-03-29 Mazda Motor Corp Exhaust emission control device of engine
JP2012246778A (en) * 2011-05-25 2012-12-13 Isuzu Motors Ltd Pm sensor
WO2014148150A1 (en) * 2013-03-22 2014-09-25 トヨタ自動車株式会社 Filter abnormality detecting device
JP6201577B2 (en) * 2013-09-27 2017-09-27 いすゞ自動車株式会社 Diagnostic equipment

Also Published As

Publication number Publication date
WO2016047530A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
JP6459437B2 (en) Diagnostic device and sensor
JP6409452B2 (en) Diagnostic equipment
CN107076692B (en) Sensor with a sensor element
WO2016133127A1 (en) Exhaust purification device
JP6379838B2 (en) Sensor
JP6405938B2 (en) Diagnostic device and sensor
WO2016133140A1 (en) Sensor
JP6379837B2 (en) Sensor
JP6458368B2 (en) Sensor
JP6409436B2 (en) Diagnostic equipment
JP6361314B2 (en) Sensor
WO2016047530A1 (en) Diagnostic device
JP6409437B2 (en) Sensor
JP6451179B2 (en) Diagnostic equipment
JP6784050B2 (en) Sensor
JP2016108995A (en) Sensor
JP6417780B2 (en) Sensor
JP6705269B2 (en) Sensor
JP6717021B2 (en) PM sensor
JP6705268B2 (en) Sensor
JP2017191050A (en) Sensor
JP2017191055A (en) Sensor
JP2016109512A (en) Sensor and control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181025

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120