JP6409437B2 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
JP6409437B2
JP6409437B2 JP2014189937A JP2014189937A JP6409437B2 JP 6409437 B2 JP6409437 B2 JP 6409437B2 JP 2014189937 A JP2014189937 A JP 2014189937A JP 2014189937 A JP2014189937 A JP 2014189937A JP 6409437 B2 JP6409437 B2 JP 6409437B2
Authority
JP
Japan
Prior art keywords
sensor
particulate matter
exhaust
filter member
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014189937A
Other languages
Japanese (ja)
Other versions
JP2016061680A (en
Inventor
正 内山
正 内山
直人 村澤
直人 村澤
哲史 塙
哲史 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014189937A priority Critical patent/JP6409437B2/en
Publication of JP2016061680A publication Critical patent/JP2016061680A/en
Application granted granted Critical
Publication of JP6409437B2 publication Critical patent/JP6409437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、センサに関し、特に、排気温度及び、排気中に含まれる粒子状物質(以下、PMという)を検出するセンサに関する。   The present invention relates to a sensor, and more particularly, to a sensor that detects exhaust temperature and particulate matter (hereinafter referred to as PM) contained in the exhaust.

従来、内燃機関から排出される排気中のPMを検出するセンサとして、電気抵抗型PMセンサが知られている。電気抵抗型PMセンサは、絶縁性基板の表面に一対の導電性電極を対向配置し、これら電極に付着する導電性のPM(主に、スート成分)によって電気抵抗値が変化することを利用してPM量を推定している(例えば、特許文献1参照)。   Conventionally, an electrical resistance type PM sensor is known as a sensor for detecting PM in exhaust discharged from an internal combustion engine. An electrical resistance type PM sensor uses a pair of conductive electrodes facing each other on the surface of an insulating substrate, and the electrical resistance value changes depending on the conductive PM (mainly soot component) adhering to these electrodes. The PM amount is estimated (see, for example, Patent Document 1).

また、電気抵抗型PMセンサにPM検出部と温度検出抵抗とを並列に設け、PM量の検出及び温度検出の両方を実施する技術も提案されている(例えば、特許文献2参照)。   In addition, a technique has been proposed in which a PM detection unit and a temperature detection resistor are provided in parallel in an electric resistance type PM sensor to perform both PM amount detection and temperature detection (see, for example, Patent Document 2).

特開2012−83210号公報JP2012-83210A 特開2011−247650号公報JP 2011-247650 A

排気温度を検出するためには、電気抵抗型PMセンサとは別個に排気温度センサを設けることも考えられるが、その場合はセンサ数の増加によってコストの上昇を招く課題がある。また、一般的な排気温度センサのセンサ値は、実際の排気温度の急激な変化に対して応答遅れが生じる課題もある。   In order to detect the exhaust gas temperature, it is conceivable to provide an exhaust gas temperature sensor separately from the electric resistance type PM sensor. Further, the sensor value of a general exhaust temperature sensor has a problem that a response delay occurs with respect to a sudden change in the actual exhaust temperature.

一方、電気抵抗型PMセンサは、各電極にPMを付着させる簡素な構造のため、特に排気流量が多くなる運転状態では、電極に付着したPMの一部が離脱する可能性があり、PM量の検出精度を確保できない課題がある。   On the other hand, the electric resistance type PM sensor has a simple structure in which PM is adhered to each electrode. Therefore, in an operation state in which the exhaust gas flow rate increases, a part of the PM adhering to the electrode may be detached. There is a problem that the detection accuracy cannot be ensured.

また、電極間の電気抵抗値は、PMの堆積によって電極が互いに繋がるまで変化を示さない。このため、電気抵抗型PMセンサをディーゼル・パティキュレイト・フィルタ(以下、DPFと称する)の下流側に配置して故障をオンボードで診断する場合は、PMによって電極が互いに繋がるまでは故障を早期に検知できない課題もある。   Further, the electrical resistance value between the electrodes does not change until the electrodes are connected to each other by the deposition of PM. For this reason, when an electrical resistance type PM sensor is arranged downstream of a diesel particulate filter (hereinafter referred to as DPF) to diagnose the failure on board, the failure is detected until the electrodes are connected to each other by PM. Some issues cannot be detected early.

開示のセンサは、排気温度及び、排気中に含まれるPM量を高精度に検出することを目的とする。   An object of the disclosed sensor is to detect the exhaust gas temperature and the amount of PM contained in the exhaust gas with high accuracy.

開示のセンサは、内燃機関の排気通路に配置されて排気中の粒子状物質を捕集する複数のセルを含むフィルタ部材と、前記セルを挟んで対向配置されてコンデンサを形成する少なくとも一対の電極部材と、前記一対の電極部材間の静電容量に基づいて排気温度を推定する排気温度推定手段と、前記一対の電極部材間の静電容量に基づいて排気中の粒子状物質量を推定する粒子状物質量推定手段とを備える。   The disclosed sensor includes a filter member including a plurality of cells that are disposed in an exhaust passage of an internal combustion engine and collects particulate matter in exhaust gas, and at least a pair of electrodes that are disposed to face each other with the cells interposed therebetween. A member, an exhaust temperature estimating means for estimating an exhaust temperature based on the capacitance between the pair of electrode members, and an amount of particulate matter in the exhaust based on the capacitance between the pair of electrode members Particulate matter amount estimation means.

開示のセンサによれば、排気中に含まれるPM量及び排気温度を高精度に検出することができる。   According to the disclosed sensor, the amount of PM contained in exhaust gas and the exhaust gas temperature can be detected with high accuracy.

第一実施形態に係るセンサが適用されたエンジンの排気系の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the exhaust system of the engine to which the sensor which concerns on 1st embodiment was applied. 第一実施形態に係るセンサを示す模式的な部分断面図である。It is a typical fragmentary sectional view showing the sensor concerning a first embodiment. 第一実施形態に係る温度特性マップの一例を示す図である。It is a figure which shows an example of the temperature characteristic map which concerns on 1st embodiment. 第一実施形態に係るセンサ再生を説明するタイミングチャート図である。It is a timing chart explaining sensor regeneration concerning a first embodiment. 第二実施形態に係るセンサを示す模式的な部分断面図である。It is a typical fragmentary sectional view showing the sensor concerning a second embodiment. (A)は、第三実施形態に係るセンサの模式的な斜視図、(B)は、第三実施形態に係るセンサの模式的な分解斜視図である。(A) is a typical perspective view of the sensor which concerns on 3rd embodiment, (B) is a typical disassembled perspective view of the sensor which concerns on 3rd embodiment. 他の実施形態に係るセンサを示す模式的な部分断面図である。It is a typical fragmentary sectional view showing a sensor concerning other embodiments.

以下、添付図面に基づいて、本発明の各実施形態に係るセンサを説明する。同一の部品には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, a sensor according to each embodiment of the present invention will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

[第一実施形態]
図1は、第一実施形態のセンサ10Aが適用されたディーゼルエンジン(以下、単にエンジンという)100の排気系の一例を示す概略構成図である。エンジン100の排気管110内には、排気上流側から順に酸化触媒210、DPF220等が設けられている。本実施形態のセンサ10Aは、DPF220よりも下流側の排気管110に設けられている。
[First embodiment]
FIG. 1 is a schematic configuration diagram illustrating an example of an exhaust system of a diesel engine (hereinafter simply referred to as an engine) 100 to which the sensor 10A of the first embodiment is applied. In the exhaust pipe 110 of the engine 100, an oxidation catalyst 210, a DPF 220, and the like are provided in order from the exhaust upstream side. The sensor 10 </ b> A of the present embodiment is provided in the exhaust pipe 110 on the downstream side of the DPF 220.

次に、図2に基づいて第一実施形態に係るセンサ10Aの詳細構成について説明する。   Next, a detailed configuration of the sensor 10A according to the first embodiment will be described based on FIG.

センサ10Aは、排気管110内に挿入されたケース部材11と、ケース部材11を排気管110に取り付ける台座部20と、ケース部材11内に収容されたセンサ部30と、コントロールユニット40とを備えている。   The sensor 10 </ b> A includes a case member 11 inserted into the exhaust pipe 110, a pedestal part 20 for attaching the case member 11 to the exhaust pipe 110, a sensor part 30 accommodated in the case member 11, and a control unit 40. ing.

ケース部材11は、底部側(図示例では下端側)を閉塞した有底円筒状に形成されている。ケース部材11の筒軸方向の長さLは、その底部側の筒壁部が排気管110の軸中心CL近傍まで突出するように、排気管110の半径Rと略同一の長さで形成されている。なお、以下の説明では、ケース部材11の底部側を先端側、底部側とは反対側をケース部材11の基端側とする。   The case member 11 is formed in a bottomed cylindrical shape with the bottom side (the lower end side in the illustrated example) closed. The length L in the cylinder axis direction of the case member 11 is formed to be substantially the same as the radius R of the exhaust pipe 110 so that the bottom cylindrical wall portion protrudes to the vicinity of the axial center CL of the exhaust pipe 110. ing. In the following description, the bottom side of the case member 11 is the front end side, and the side opposite to the bottom side is the base end side of the case member 11.

ケース部材11の先端側筒壁部には、周方向に間隔を隔てて配置された複数の導入口12が設けられている。また、ケース部材11の基端側筒壁部には、周方向に間隔を隔てて配置された複数の導出口13が設けられている。導入口12の総開口面積S12は、導出口13の総開口面積S13よりも小さく形成されている(S12<S13)。すなわち、導入口12付近の排気流速V12が導出口13付近の排気流速V13よりも遅くなることで(V12<V13)、導入口12側の圧力P12は導出口13側の圧力P13よりも高くなる(P12>P13)。これにより、導入口12からはケース部材11内に排気ガスが円滑に取り込まれると同時に、導出口13からはケース部材11内の排気ガスが排気管110内に円滑に導出される。 A plurality of inlets 12 arranged at intervals in the circumferential direction are provided in the cylindrical wall portion on the distal end side of the case member 11. In addition, a plurality of outlets 13 arranged at intervals in the circumferential direction are provided in the base end side cylindrical wall portion of the case member 11. The total opening area S 12 of the inlet 12 is smaller than the total opening area S 13 of the outlet 13 (S 12 <S 13) . That is, in the exhaust flow velocity V 12 of the inlet 12 near slower than the exhaust flow velocity V 13 near guide outlet 13 (V 12 <V 13), the pressure P 12 in the inlet 12 side pressure outlet 13 side It is higher than the P 13 (P 12> P 13 ). As a result, exhaust gas is smoothly taken into the case member 11 from the inlet 12, and at the same time, exhaust gas in the case member 11 is smoothly led out into the exhaust pipe 110 from the outlet 13.

台座部20は、雄ネジ部21と、ナット部22とを備えている。雄ネジ部21はケース部材11の基端部に設けられており、ケース部材11の基端側開口部を閉塞する。この雄ネジ部21は、排気管110に形成されたボス部110Aの雌ネジ部と螺合される。ナット部22は、例えば六角ナットであって、雄ネジ部21の上端部に固定されている。これら雄ネジ部21及びナット部22には、後述する導電線32A,33A等を挿通させる貫通孔(不図示)が形成されている。   The pedestal portion 20 includes a male screw portion 21 and a nut portion 22. The male screw portion 21 is provided at the base end portion of the case member 11 and closes the base end side opening of the case member 11. The male screw portion 21 is screwed with a female screw portion of a boss portion 110 </ b> A formed in the exhaust pipe 110. The nut portion 22 is, for example, a hexagonal nut, and is fixed to the upper end portion of the male screw portion 21. The male screw portion 21 and the nut portion 22 are formed with through holes (not shown) through which conductive wires 32A, 33A described later are inserted.

センサ部30は、フィルタ部材31と、複数対の電極32,33と、電気ヒータ34とを備えている。   The sensor unit 30 includes a filter member 31, a plurality of pairs of electrodes 32 and 33, and an electric heater 34.

フィルタ部材31は、例えば、多孔質セラミックスの隔壁で区画された格子状の排気流路をなす複数のセルの上流側と下流側とを交互に目封止して形成されている。このフィルタ部材31は、セルの流路方向をケース部材11の軸方向(図中上下方向)と略平行にした状態で、ケース部材11の内周面にクッション部材31Aを介して保持されている。導入口12からケース部材11内に取り込まれた排気ガス中のPMは、排気ガスが下流側を目封止されたセルから上流側を目封止されたセルに流れ込むことで、隔壁表面や細孔に捕集される。なお、以下の説明では、下流側が目封止されたセルを測定用セルといい、上流側が目封止されたセルを電極用セルという。   The filter member 31 is formed, for example, by alternately plugging the upstream side and the downstream side of a plurality of cells forming a lattice-like exhaust flow path partitioned by porous ceramic partition walls. The filter member 31 is held on the inner peripheral surface of the case member 11 via a cushion member 31A in a state in which the flow path direction of the cell is substantially parallel to the axial direction of the case member 11 (vertical direction in the drawing). . The PM in the exhaust gas taken into the case member 11 from the introduction port 12 flows from the cell plugged on the downstream side into the cell plugged on the upstream side, so that the surface of the partition wall It is collected in the hole. In the following description, a cell whose downstream side is plugged is referred to as a measurement cell, and a cell whose upstream side is plugged is referred to as an electrode cell.

電極32,33は、例えば導電性の金属線であって、測定用セルを挟んで対向する電極用セルに下流側(非目封止側)から交互に挿入されてコンデンサを形成する。これら電極32,33は、コントロールユニット40に内蔵された図示しない静電容量検出回路に導電線32A,33Aを介してそれぞれ接続されている。   The electrodes 32 and 33 are, for example, conductive metal wires, and are alternately inserted from the downstream side (non-plugged side) into the electrode cells facing each other across the measurement cell to form a capacitor. These electrodes 32 and 33 are connected to a capacitance detection circuit (not shown) built in the control unit 40 via conductive lines 32A and 33A, respectively.

電気ヒータ34は、例えば電熱線であって、本発明の再生手段を構成する。電気ヒータ34は、通電により発熱して測定用セルを加熱することで、測定用セル内に堆積したPMを燃焼除去するいわゆるフィルタ再生(以下、センサ再生ともいう)を実行する。このため、電気ヒータ34は、連続S字形に屈曲して形成されており、互いに平行な直線部分を各測定用セル内に流路に沿って挿入されている。   The electric heater 34 is, for example, a heating wire and constitutes the regenerating means of the present invention. The electric heater 34 generates heat by energization and heats the measurement cell, thereby performing so-called filter regeneration (hereinafter also referred to as sensor regeneration) in which PM accumulated in the measurement cell is removed by combustion. For this reason, the electric heater 34 is formed by being bent into a continuous S-shape, and straight portions parallel to each other are inserted into each measurement cell along the flow path.

コントロールユニット40は、排気温度推定演算部41と、センサ再生制御部42と、PM量推定演算部43とを各機能要素として備えている。これら機能要素は、一体のハードウェアであるコントロールユニット40に含まれるものとして説明するが、別体のハードウェアに設けることもできる。   The control unit 40 includes an exhaust temperature estimation calculation unit 41, a sensor regeneration control unit 42, and a PM amount estimation calculation unit 43 as functional elements. These functional elements are described as being included in the control unit 40 that is an integral piece of hardware, but may be provided in separate hardware.

排気温度推定演算部41は、本発明の排気温度推定手段の一例であって、静電容量検出回路(不図示)によって検出される各電極32,33間の静電容量Cpに基づいて、DPF220を通過してセンサ10Aのフィルタ部材31に流れ込む排気温度T_exhを推定演算する。電極32,33間の静電容量Cpは、電極32,33間の媒体の誘電率ε、電極32,33の面積S、電極32,33間の距離dとする以下の数式1で表される。 The exhaust temperature estimation calculation unit 41 is an example of the exhaust temperature estimation means of the present invention, and is based on the capacitance Cp between the electrodes 32 and 33 detected by a capacitance detection circuit (not shown). The exhaust gas temperature T_exh flowing through the filter member 31 of the sensor 10A through the above is estimated and calculated. The electrostatic capacitance Cp between the electrodes 32 and 33 is expressed by the following formula 1 where the dielectric constant ε of the medium between the electrodes 32 and 33, the area S of the electrodes 32 and 33, and the distance d between the electrodes 32 and 33 are expressed. .

Figure 0006409437
Figure 0006409437

数式1において、電極32,33の面積Sは一定であり、上流側に配置されたDPF220のPM捕集効率が正常(例えば、略100%)であれば、フィルタ部材31にPMが捕集されないため、電極32,33間の距離dも一定となる。その結果、誘電率εが温度の影響を受けて変化すると、これに伴い静電容量Cpも変化することになる。すなわち、DPF220のPM捕集能力が正常な状態であれば、電極32,33間の静電容量Cpの変化から排気温度T_exhを推定することができる。 In Formula 1, if the area S of the electrodes 32 and 33 is constant and the PM collection efficiency of the DPF 220 disposed on the upstream side is normal (for example, approximately 100%), PM is not collected by the filter member 31. Therefore, the distance d between the electrodes 32 and 33 is also constant. As a result, when the dielectric constant ε changes under the influence of temperature, the capacitance Cp also changes accordingly. That is, if the PM collection capability of the DPF 220 is normal, the exhaust temperature T_exh can be estimated from the change in the capacitance Cp between the electrodes 32 and 33.

コントロールユニット40の図示しない記憶部には、予め実験等により求めた静電容量Cpと排気温度T_exhとの関係を示す図3の温度特性マップが記憶されている。排気温度推定演算部41は、この温度特性マップから電極32,33間の静電容量Cpに対応する値を読み取ることで、排気温度T_exhを推定演算するようになっている。なお、排気温度T_exhの推定演算は、マップに限定されず、予め実験等により求めた近似式等から推定演算してもよい。 The storage unit (not shown) of the control unit 40 stores a temperature characteristic map of FIG. 3 showing the relationship between the capacitance Cp and the exhaust temperature T_exh obtained in advance through experiments or the like. The exhaust temperature estimation calculation unit 41 reads the value corresponding to the capacitance Cp between the electrodes 32 and 33 from this temperature characteristic map, thereby estimating and calculating the exhaust temperature T_exh . Note that the estimation calculation of the exhaust gas temperature T_exh is not limited to a map, and may be performed by an estimation equation or the like obtained in advance through experiments or the like.

センサ再生制御部42は、本発明の再生手段の一部であって、電極32,33間の静電容量Cpに応じて電気ヒータ34をON(通電)にするセンサ再生を実行する。   The sensor regeneration control unit 42 is a part of the regeneration unit of the present invention, and performs sensor regeneration that turns on (energizes) the electric heater 34 in accordance with the capacitance Cp between the electrodes 32 and 33.

上述の数式1において、電極32,33の表面積Sは一定であり、DPF220の故障等によって下流側のフィルタ部材31にPMが捕集されると、誘電率ε及び距離dが変化し、これに伴い静電容量Cpも変化する。すなわち、電極32,33間の静電容量Cpとフィルタ部材31のPM堆積量との間には比例関係が成立する。   In the above formula 1, the surface areas S of the electrodes 32 and 33 are constant, and when PM is collected in the filter member 31 on the downstream side due to the failure of the DPF 220, the dielectric constant ε and the distance d change. Accordingly, the capacitance Cp also changes. That is, a proportional relationship is established between the capacitance Cp between the electrodes 32 and 33 and the amount of PM deposited on the filter member 31.

センサ再生制御部42は、DPF220の故障等によって電極32,33間の静電容量CpがPM上限堆積量を示す所定の静電容量上限閾値CP_maxに達すると、電気ヒータ34をONにするセンサ再生を開始する(図4の時間t1、t2、t3参照)。このセンサ再生は、静電容量CpがPMの完全除去を示す所定の静電容量下限閾値CP_minに低下するまで継続される。 The sensor regeneration control unit 42 is a sensor that turns on the electric heater 34 when the capacitance Cp between the electrodes 32 and 33 reaches a predetermined capacitance upper limit threshold CP_max indicating the PM upper limit accumulation amount due to a failure of the DPF 220 or the like. Playback is started (see times t 1 , t 2 and t 3 in FIG. 4). This sensor regeneration is continued until the capacitance Cp falls to a predetermined capacitance lower limit threshold CP_min indicating complete removal of PM.

PM量推定演算部43は、本発明の粒子状物質量推定手段の一例であって、再生インターバルTn間(センサ再生終了から次のセンサ再生開始)における静電容量変化量ΔCpnに基づいて、排気中の総PM量mPM_sumを推定する。 Estimating the PM amount calculation unit 43 is an example of the particulate matter amount estimating means of the present invention, based on the variation amount of capacitance [Delta] Cp n between regeneration interval T n (next sensor reproduction start from the sensor reproduction end) The total PM amount m PM_sum in the exhaust is estimated.

再生インターバルTn間にフィルタ部材31で捕集されるPM量mPM_nは、静電容量変化量ΔCpnに一次の係数βを乗算した以下の数式2で得られる。 PM quantity m PM_n to be trapped by the filter member 31 between regeneration interval T n is obtained by Equation 2 below obtained by multiplying the first coefficient β to the variation amount of capacitance [Delta] Cp n.

Figure 0006409437
Figure 0006409437

PM量推定演算部43は、数式2から算出される各再生インターバルTn間のPM量mPM_nを順次積算する以下の数式3に基づいて、故障したDPF220からセンサ10Aのフィルタ部材31に流れ込む排気中の総PM量mPM_sumをリアルタイムに演算する。 The PM amount estimation calculation unit 43 sequentially accumulates the PM amount m PM_n between the regeneration intervals T n calculated from Equation 2, and the exhaust gas flowing from the failed DPF 220 into the filter member 31 of the sensor 10A based on Equation 3 below. The total PM amount m PM_sum is calculated in real time.

Figure 0006409437
Figure 0006409437

次に、本実施形態に係るセンサ10Aの作用効果を説明する。   Next, the function and effect of the sensor 10A according to this embodiment will be described.

本実施形態のセンサ10Aは、DPF220よりも下流側の排気管110に設けられており、DPF220のPM捕集機能が正常な状態では、感度が良好な電極32,33間の静電容量Cpに基づいて排気温度T_exhを検出する。また、センサ10Aは、DPF220の故障や劣化等によってフィルタ部材31にPMが捕集されると、感度が良好な電極32,33間の静電容量Cpに基づいて排気中の総PM量mPM_sumをリアルタイムに検出するようになっている。 The sensor 10A of this embodiment is provided in the exhaust pipe 110 on the downstream side of the DPF 220. When the PM collecting function of the DPF 220 is normal, the capacitance Cp between the electrodes 32 and 33 having good sensitivity is obtained. Based on this, the exhaust temperature T_exh is detected. Further, when PM is collected in the filter member 31 due to failure or deterioration of the DPF 220, the sensor 10A has a total PM amount m PM_sum in the exhaust gas based on the electrostatic capacity Cp between the electrodes 32 and 33 having good sensitivity. Is detected in real time.

したがって、本実施形態のセンサ10Aによれば、DPF220が正常な状態では排気温度を高精度に検出しつつ、DPF220に劣化や故障等が生じた場合は、瞬時に変化する電極32,33間の静電容量Cpに基づいて、DPF220の故障や劣化をオンボードで高精度且つ早期に検知することが可能になる。   Therefore, according to the sensor 10A of the present embodiment, when the DPF 220 is in a normal state, the exhaust temperature is detected with high accuracy, and when the DPF 220 is deteriorated or malfunctioned, the instantaneous change between the electrodes 32 and 33 is detected. Based on the capacitance Cp, it becomes possible to detect failure and deterioration of the DPF 220 with high accuracy and early on-board.

[第二実施形態]
次に、図5に基づいて、第二実施形態に係るセンサ10Bの詳細について説明する。第二実施形態のセンサ10Bは、第一実施形態のセンサ10Aにおいて、ケース部材11を二重管構造にしたものである。他の構成要素については同一構造となるため、詳細な説明は省略する。また、導電線32A,33Aやコントロールユニット40については図示を省略している。
[Second Embodiment]
Next, based on FIG. 5, the detail of the sensor 10B which concerns on 2nd embodiment is demonstrated. The sensor 10B according to the second embodiment is the same as the sensor 10A according to the first embodiment except that the case member 11 has a double tube structure. Since other components have the same structure, detailed description thereof is omitted. Further, the conductive lines 32A and 33A and the control unit 40 are not shown.

第二実施形態のケース部材11は、有底円筒状の内側ケース部11Aと、内側ケース部11Aの円筒外周面を囲む円筒状の外側ケース部11Bとを備えている。   The case member 11 of the second embodiment includes a bottomed cylindrical inner case portion 11A and a cylindrical outer case portion 11B that surrounds a cylindrical outer peripheral surface of the inner case portion 11A.

内側ケース部11Aは、先端側が外側ケース部11Bよりも突出するように、その軸方向長さを外側ケース部11Bよりも長く形成されている。また、内側ケース部11Aの底部には、内側ケース部11A内の排気ガスを排気管110内に導出する導出口13が設けられている。さらに、内側ケース部11Aの基端側の筒壁部には、周方向に間隔を隔てて配置された複数の通過口14が設けられている。この通過口14は、内側ケース部11Aの外周面と外側ケース部11Bの内周面とで区画された流路15内の排気ガスを内側ケース部11A内に通過させる。   The inner case portion 11A is formed to have a longer axial length than the outer case portion 11B so that the tip side protrudes from the outer case portion 11B. In addition, at the bottom of the inner case portion 11A, a lead-out port 13 for leading the exhaust gas in the inner case portion 11A into the exhaust pipe 110 is provided. Furthermore, a plurality of passage openings 14 are provided in the cylindrical wall portion on the proximal end side of the inner case portion 11A and arranged at intervals in the circumferential direction. The passage port 14 allows the exhaust gas in the flow path 15 defined by the outer peripheral surface of the inner case portion 11A and the inner peripheral surface of the outer case portion 11B to pass through the inner case portion 11A.

流路15の下流端には、内側ケース部11Aの先端側筒壁部と外側ケース部11Bの先端部とにより区画された円環状の導入口12が形成されている。導入口12の開口面積S12は、導出口13の開口面積S13よりも小さく形成されている(S12<S13)。 At the downstream end of the flow path 15, an annular introduction port 12 is formed that is partitioned by the distal end side cylindrical wall portion of the inner case portion 11 </ b> A and the distal end portion of the outer case portion 11 </ b> B. The opening area S 12 of the inlet 12 is formed smaller than the opening area S 13 of the outlet 13 (S 12 <S 13 ).

すなわち、排気管110を流れる排気ガスは、外側ケース部11Bよりも突出した内側ケース部11Aの筒壁面に当たり、排気管110の軸中心CL近傍に配置された導入口12から流路15内に円滑に取り込まれる。さらに、流路15内を流れる排気ガスは、通過口14から内側ケース部11Aに取り込まれ、フィルタ部材31を通過した後に、排気管110の軸中心CL近傍に配置された導出口13から排気管110内に円滑に導出されるようになっている。このように、第二実施形態のセンサ10Bでは、導入口12と導出口13とを、排気管110内で排気流速が最も速くなる軸中心CL近傍に配置したことで、フィルタ部材31を通過する排気流量を効果的に高めることが可能になる。   That is, the exhaust gas flowing through the exhaust pipe 110 hits the cylindrical wall surface of the inner case portion 11A protruding from the outer case portion 11B, and smoothly enters the flow path 15 from the inlet 12 disposed in the vicinity of the axial center CL of the exhaust pipe 110. Is taken in. Further, the exhaust gas flowing in the flow path 15 is taken into the inner case portion 11A from the passage port 14, passes through the filter member 31, and then is exhausted from the outlet port 13 disposed in the vicinity of the axial center CL of the exhaust pipe 110. 110 is smoothly led out. As described above, in the sensor 10B of the second embodiment, the introduction port 12 and the outlet port 13 are disposed in the vicinity of the axial center CL where the exhaust flow velocity is the fastest in the exhaust pipe 110, thereby passing through the filter member 31. The exhaust flow rate can be effectively increased.

[第三実施形態]
次に、図6に基づいて、第三実施形態に係るセンサの詳細について説明する。第三実施形態のセンサは、第一実施形態のセンサ部30を積層タイプにしたものである。他の構成要素については同一構造となるため、詳細な説明及び図示は省略する。
[Third embodiment]
Next, based on FIG. 6, the detail of the sensor which concerns on 3rd embodiment is demonstrated. The sensor of the third embodiment is a stacked type of the sensor unit 30 of the first embodiment. Since other components have the same structure, detailed description and illustration are omitted.

図6(A)は、第三実施形態のセンサ部60の斜視図、図6(B)はセンサ部60の分解斜視図をそれぞれ示している。センサ部60は、複数のフィルタ層61と、複数枚の第1及び第2電極板62,63とを備えている。   6A is a perspective view of the sensor unit 60 according to the third embodiment, and FIG. 6B is an exploded perspective view of the sensor unit 60. The sensor unit 60 includes a plurality of filter layers 61 and a plurality of first and second electrode plates 62 and 63.

フィルタ層61は、例えば、多孔質セラミックス等の隔壁で区画されて排気流路をなす複数のセルの上流側と下流側とを交互に目封止し、これらセルを一方向に並列に配置した直方体状に形成されている。排気ガス中に含まれるPMは、図6(B)中に破線矢印で示すように、排気ガスが下流側を目封止されたセルC1から上流側を目封止されたセルC2に流れ込むことで、セルC1の隔壁表面や細孔に捕集される。なお、以下の説明では、セル流路方向をセンサ部60の長さ方向(図6(A)中の矢印L)とし、セル流路方向と直交する方向をセンサ部60の幅方向(図6(A)中の矢印W)とする。   The filter layer 61 is, for example, plugged alternately upstream and downstream of a plurality of cells that are partitioned by partition walls such as porous ceramics to form an exhaust passage, and these cells are arranged in parallel in one direction. It is formed in a rectangular parallelepiped shape. The PM contained in the exhaust gas flows from the cell C1 whose downstream side is plugged into the cell C2 whose upstream side is plugged, as indicated by a broken line arrow in FIG. 6B. Thus, it is collected on the partition wall surface and pores of the cell C1. In the following description, the cell flow path direction is the length direction of the sensor section 60 (arrow L in FIG. 6A), and the direction orthogonal to the cell flow path direction is the width direction of the sensor section 60 (FIG. 6). (A) Arrow W).

第1及び第2電極板62,63は、例えば、平板状の導電性部材であって、その長さ方向L及び幅方向Wの外形寸法をフィルタ層61と略同一に形成されている。これら第1及び第2電極板62,63は、フィルタ層61を挟んで交互に積層されると共に、導電線62A,63Aを介してコントロールユニット40に内蔵された図示しない静電容量検出回路にそれぞれ接続されている。   The first and second electrode plates 62 and 63 are, for example, plate-like conductive members, and are formed so that the outer dimensions in the length direction L and the width direction W are substantially the same as those of the filter layer 61. The first and second electrode plates 62 and 63 are alternately stacked with the filter layer 61 interposed therebetween, and are respectively connected to a capacitance detection circuit (not shown) built in the control unit 40 via the conductive lines 62A and 63A. It is connected.

すなわち、第1電極板62と第2電極板63とを対向配置し、これら電極板62,63間にフィルタ層61を挟持させたことで、セルC1全体がコンデンサを形成するようになっている。このように、第三実施形態のPMセンサでは、平板状の電極板62,63によりセルC1全体をコンデンサにしたことで、電極表面積Sを効果的に確保することが可能となり、検出可能な静電容量絶対値を高めることが可能になる。また、電極間距離dがセルピッチとなり均一化されることで、初期静電容量のバラツキを効果的に抑制することができる。   That is, the first electrode plate 62 and the second electrode plate 63 are disposed to face each other, and the filter layer 61 is sandwiched between the electrode plates 62 and 63, so that the entire cell C1 forms a capacitor. . As described above, in the PM sensor according to the third embodiment, since the entire cell C1 is a capacitor by the flat electrode plates 62 and 63, the electrode surface area S can be effectively secured, and a detectable static It becomes possible to increase the absolute value of the capacitance. Further, since the inter-electrode distance d becomes the cell pitch and is made uniform, variations in the initial capacitance can be effectively suppressed.

なお、セルC1に堆積したPMを燃焼除去する場合は、電極板62,63に電圧を直接印加するか、あるいは、フィルタ層61と電極板62,63との間に図示しないヒータ基板等を介設すればよい。   When the PM accumulated in the cell C1 is burned and removed, a voltage is directly applied to the electrode plates 62 and 63, or a heater substrate (not shown) is interposed between the filter layer 61 and the electrode plates 62 and 63. Just set up.

[その他]
本発明は、上述の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
The present invention is not limited to the above-described embodiments, and can be appropriately modified and implemented without departing from the spirit of the present invention.

例えば、図7に示すように、第一実施形態(又は、第二実施形態)において、導入口12と導出口13との位置を入れ替えて、ケース部材11内に導入される排気ガスの流れを逆向きにしてもよい。この場合は、フィルタ部材31をケース部材11内に反転させて収容すればよい。   For example, as shown in FIG. 7, in the first embodiment (or the second embodiment), the positions of the inlet port 12 and the outlet port 13 are switched, and the flow of exhaust gas introduced into the case member 11 is changed. The direction may be reversed. In this case, the filter member 31 may be stored in the case member 11 by being inverted.

10A センサ
11 ケース部材
12 導入口
13 導出口
20 台座部
21 雄ネジ部
22 ナット部
30 センサ部
31 フィルタ部材
32,33 電極
34 電気ヒータ
40 コントロールユニット
41 排気温度推定演算部
42 センサ再生制御部
43 PM量推定演算部
DESCRIPTION OF SYMBOLS 10A Sensor 11 Case member 12 Inlet port 13 Outlet port 20 Base part 21 Male screw part 22 Nut part 30 Sensor part 31 Filter member 32, 33 Electrode 34 Electric heater 40 Control unit 41 Exhaust temperature estimation calculation part 42 Sensor regeneration control part 43 PM Quantity estimation calculator

Claims (6)

内燃機関の排気通路に配置されて排気中の粒子状物質を捕集する複数のセルを含むフィルタ部材であって、排気中の粒子状物質を捕集するパティキュレイト・フィルタよりも下流側の前記排気通路に配置されたフィルタ部材と、
前記セルを挟んで対向配置されてコンデンサを形成する少なくとも一対の電極部材と、 排気温度推定手段と、
再生手段と、
粒子状物質量推定手段と、を備え、
前記一対の電極部材間の静電容量が所定の静電容量閾値に達するまでは、前記排気温度推定手段が、前記一対の電極部材間の静電容量に基づいて排気温度を推定し、
前記一対の電極部材間の静電容量が前記所定の静電容量閾値に達すると、前記再生手段が、前記フィルタ部材に捕集された粒子状物質を燃焼除去するセンサ再生を実行し、
前記粒子状物質量推定手段は、前記センサ再生の再生インターバル間における前記一対の電極部材間の静電容量変化量に基づいて前記再生インターバル間に前記フィルタ部材に捕集される粒子状物質量を推定する
センサ。
A filter member that is disposed in an exhaust passage of an internal combustion engine and includes a plurality of cells that collect particulate matter in exhaust gas, the filter member being downstream of the particulate filter that collects particulate matter in exhaust gas A filter member disposed in the exhaust passage ;
At least a pair of electrode members disposed opposite to each other with the cell interposed therebetween, and an exhaust gas temperature estimating means;
Reproduction means;
A particulate matter amount estimating means,
Until the capacitance between the pair of electrode members reaches a predetermined capacitance threshold, the exhaust temperature estimation means estimates the exhaust temperature based on the capacitance between the pair of electrode members,
When the capacitance between the pair of electrode members reaches the predetermined capacitance threshold value, the regeneration means performs sensor regeneration that burns and removes the particulate matter collected by the filter member,
The particulate matter amount estimation means calculates the particulate matter amount collected by the filter member during the regeneration interval based on a capacitance change amount between the pair of electrode members during the regeneration interval of the sensor regeneration. The sensor to estimate .
前記再生手段は、通電により発熱して前記セルを加熱することで、前記セル内に堆積した粒子状物質を燃焼除去する電気ヒータである
請求項1に記載のセンサ。
The sensor according to claim 1, wherein the regeneration unit is an electric heater that burns and removes particulate matter accumulated in the cell by heating the cell by generating heat by energization .
前記粒子状物質量推定手段は、前記再生インターバル間の粒子状物質量を順次積算することで、排気中の粒子状物質量を推定する
請求項1又は2に記載のセンサ。
The sensor according to claim 1 or 2, wherein the particulate matter amount estimation means estimates the particulate matter amount in the exhaust gas by sequentially integrating the particulate matter amounts during the regeneration interval .
筒状に形成されてその筒内に前記フィルタ部材を収容すると共に、一端開口部から筒内に導入した排気を前記フィルタ部材に通過させて他端開口部から筒外に導出するケース部材をさらに備える
請求項1から3の何れか一項に記載のセンサ。
A case member that is formed in a cylindrical shape and accommodates the filter member in the cylinder, and allows exhaust introduced into the cylinder from the opening at one end to pass through the filter member and leads out of the cylinder from the opening at the other end. The sensor according to any one of claims 1 to 3.
前記フィルタ部材が前記複数のセルを一方向に並列に配置したフィルタ層であり、前記一対の電極部材が前記フィルタ層を挟んで対向する平板状の第1及び第2電極板である
請求項1から4の何れか一項に記載のセンサ。
2. The filter member is a filter layer in which the plurality of cells are arranged in parallel in one direction, and the pair of electrode members are flat plate-like first and second electrode plates facing each other with the filter layer interposed therebetween. 5. The sensor according to any one of items 1 to 4.
前記第1電極板、前記第2電極板及び、前記フィルタ層をそれぞれ複数有すると共に、前記複数の第1及び第2電極板が前記複数のフィルタ層を一層ずつ挟んで交互に積層された
請求項5に記載のセンサ。
The plurality of first electrode plates, the second electrode plates, and the filter layers, respectively, and the plurality of first and second electrode plates are alternately stacked with the plurality of filter layers sandwiched one by one. 5. The sensor according to 5.
JP2014189937A 2014-09-18 2014-09-18 Sensor Active JP6409437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189937A JP6409437B2 (en) 2014-09-18 2014-09-18 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189937A JP6409437B2 (en) 2014-09-18 2014-09-18 Sensor

Publications (2)

Publication Number Publication Date
JP2016061680A JP2016061680A (en) 2016-04-25
JP6409437B2 true JP6409437B2 (en) 2018-10-24

Family

ID=55797529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189937A Active JP6409437B2 (en) 2014-09-18 2014-09-18 Sensor

Country Status (1)

Country Link
JP (1) JP6409437B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093233A1 (en) * 2004-02-12 2005-10-06 Daimlerchrysler Ag Device for determination of the state of a soot particle filter
WO2006077197A1 (en) * 2005-01-21 2006-07-27 Robert Bosch Gmbh Sensor element for particle sensors and method for operating the same
JP2008064621A (en) * 2006-09-07 2008-03-21 Ngk Insulators Ltd Particle sensor
JP5094702B2 (en) * 2008-12-24 2012-12-12 本田技研工業株式会社 Particulate matter detector
JP5625812B2 (en) * 2010-11-29 2014-11-19 いすゞ自動車株式会社 PM sensor and PM sensor manufacturing method
DE102010055478A1 (en) * 2010-12-22 2012-06-28 Continental Automotive Gmbh Method for operating a soot sensor
JP2013160617A (en) * 2012-02-03 2013-08-19 Honda Motor Co Ltd Particulate matter detection apparatus
JP5915476B2 (en) * 2012-09-18 2016-05-11 トヨタ自動車株式会社 PM sensor abnormality detection apparatus and method

Also Published As

Publication number Publication date
JP2016061680A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP6459437B2 (en) Diagnostic device and sensor
JP6409452B2 (en) Diagnostic equipment
JP6507497B2 (en) Sensor
WO2016133127A1 (en) Exhaust purification device
JP6379838B2 (en) Sensor
JP6405938B2 (en) Diagnostic device and sensor
WO2016133140A1 (en) Sensor
JP6379837B2 (en) Sensor
JP2016136145A (en) Sensor
JP6361314B2 (en) Sensor
JP6409437B2 (en) Sensor
JP6409436B2 (en) Diagnostic equipment
JP6458368B2 (en) Sensor
JP6451179B2 (en) Diagnostic equipment
JP6417780B2 (en) Sensor
JP2016108995A (en) Sensor
WO2016047530A1 (en) Diagnostic device
JP6784050B2 (en) Sensor
JP6705269B2 (en) Sensor
JP6717021B2 (en) PM sensor
JP6805531B2 (en) Sensor
JP2017191050A (en) Sensor
JP2016109512A (en) Sensor and control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R150 Certificate of patent or registration of utility model

Ref document number: 6409437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150